JP5268304B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP5268304B2
JP5268304B2 JP2007215391A JP2007215391A JP5268304B2 JP 5268304 B2 JP5268304 B2 JP 5268304B2 JP 2007215391 A JP2007215391 A JP 2007215391A JP 2007215391 A JP2007215391 A JP 2007215391A JP 5268304 B2 JP5268304 B2 JP 5268304B2
Authority
JP
Japan
Prior art keywords
layer
light
electrode layer
insulating layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007215391A
Other languages
English (en)
Other versions
JP2008077074A (ja
JP2008077074A5 (ja
Inventor
幸一郎 田中
康行 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2007215391A priority Critical patent/JP5268304B2/ja
Publication of JP2008077074A publication Critical patent/JP2008077074A/ja
Publication of JP2008077074A5 publication Critical patent/JP2008077074A5/ja
Application granted granted Critical
Publication of JP5268304B2 publication Critical patent/JP5268304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、薄膜の積層構造を有する表示装置の作製方法に関する。詳しくは表示装置を作製する工程において、薄膜に開口を形成する工程に関する。
薄膜トランジスタ(以下、「TFT」とも記す。)及びそれを用いた電子回路は、半導体膜、絶縁膜及び導電膜などの各種薄膜を基板上に積層し、適宜フォトリソグラフィ技術により所定のパターンを形成して製造されている。フォトリソグラフィ技術とは、フォトマスクと呼ばれる透明な平板面上に光を通さない材料で形成した回路等のパターンを、光を利用して目的とする基板上に転写する技術であり、半導体集積回路等の製造工程において広く用いられている。
従来のフォトリソグラフィ技術を用いた製造工程では、フォトレジストと呼ばれる感光性の有機樹脂材料を用いて形成されるマスクパターンの取り扱いだけでも、露光、現像、焼成、剥離といった多段階の工程が必要になる。従って、フォトリソグラフィ工程の回数が増える程、製造コストは必然的に上がってしまうことになる。このような問題点を改善するために、フォトリソグラフィ工程を削減してTFTを製造することが試みられている(例えば、特許文献1参照。)。特許文献1では、フォトリソグラフィ工程によって形成されたレジストマスクを、一回用いた後、膨潤により体積膨張をさせて異なる形状のレジストマスクとして再び用いている。
特開2000−133636号公報
本発明は、TFT及びそれを用いる電子回路並びにTFTによって形成される表示装置の製造工程においてフォトリソグラフィ工程の回数を削減し、製造工程を簡略化し、一辺が1メートルを越えるような大面積の基板にも、低いコストで歩留まり良く製造することができる技術を提供することを目的とする。
本発明は、絶縁層を介して積層する薄膜(導電層、半導体層)同士を電気的に接続する場合、絶縁層に開口(いわゆるコンタクトホールとなる)を形成する。この場合、絶縁層上にマスク層を形成せず、レーザ光の照射によって選択的に開口を形成する。照射する光を吸収する機能を有する光吸収層を形成し、光吸収層上に絶縁層を積層した後、光吸収層及び絶縁層の積層において開口を形成する領域に選択的に、絶縁層側からレーザ光を照射する。レーザ光は絶縁層を透過するが、光吸収層に吸収される。光吸収層は吸収したレーザ光のエネルギーによって加熱され、上に積層していた絶縁層を破壊する。よって、絶縁層に開口が形成され、絶縁層下の光吸収層が開口の底面に露出する。光吸収層はレーザ光の照射エネルギーによっては蒸発する場合もあり、レーザ光照射による開口形成後、開口を有する絶縁層をマスクとして開口に底面に露出された光吸収層(または、光吸収層下に積層された薄膜)をエッチングによって除去してもよい。
本発明では、光吸収層の光吸収によって上層の絶縁層に開口を形成するので、形成される開口は、絶縁層において光吸収層と重畳して(接して)おり、かつレーザ光が照射される領域のみに形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。例えば、径の大きなレーザビームスポットを用いても、光吸収層を選択的に形成することによって、より径の小さな、微小な開口を形成することができる。また同じ形状のビームスポットを用いても光吸収層における照射領域を異ならせれば、複数の形状の異なる開口を形成することができる。従って、多様の開口形状が選択できるため、表示装置や半導体装置に含まれる配線等の構成の設計の自由度が向上する。
光吸収層は導電性材料を用いた導電層や、半導体材料を用いた半導体層など導電性を有する材料を用いて作製すれば、露出した光吸収層と接するように開口に導電膜を形成することによって、光吸収層及び導電膜は絶縁層を介して電気的に接続することができる。つまり、本発明においては、導電層、半導体層として機能する光吸収層上に形成された絶縁層への開口形成を、光吸収層にレーザ光を照射することによって行い、レーザアブレーションによって光吸収層のレーザ照射領域上の絶縁層に開口を形成する。
レーザ光によって選択的に開口を形成することができるのでマスク層を形成しなくてもよく工程及び材料を削減することができる。またレーザ光は非常に小さいスポットに集光できるので、加工すべき絶縁層を所定の形状に高い精度で加工できる、かつ短時間で瞬間的に加熱されるので、加工領域以外の領域をほとんど加熱しなくてもよいという利点がある。
また、薄膜を所望のパターンに加工する際に用いる導電層、半導体層などを、フォトリソグラフィ工程を用いることなく選択的に所望の形状を有するように形成する。導電膜や半導体膜などの光吸収膜を透光性の転置基板に形成し、転置基板側よりレーザ光を選択的に照射することによって、被転置基板にレーザ光の照射領域に対応する光吸収膜を、被転置基板に転置し、光吸収層である導電層や半導体層を所望の形状(パターン)で形成する。本明細書において、最初の工程で光吸収膜である導電膜や半導体膜を形成し、レーザ光を照射される基板を転置基板、最終的に選択的に光吸収層である導電層や半導体層が形成される基板を被転置基板ともいう。フォトリソグラフィ工程を用いることなく選択的に所望の形状を有するように形成することができるため、工程簡略化、低コスト化などが達成できる。
本発明の表示装置の作製方法の一は、絶縁表面に選択的に光吸収層を形成し、絶縁表面上及び光吸収層上に絶縁層を形成し、絶縁表面、光吸収層及び絶縁層にレーザ光を照射し、絶縁層のレーザ光照射領域において光吸収層上の絶縁層のみを選択的に除去し絶縁層に光吸収層に達する開口を形成し、開口に光吸収層と接するように導電膜を形成する。
本発明の表示装置の作製方法の一は、絶縁表面に選択的に導電層を形成し、導電層上に光吸収層を形成し、絶縁表面上及び光吸収層上に絶縁層を形成し、絶縁表面、光吸収層及び絶縁層にレーザ光を照射し、絶縁層のレーザ光照射領域において光吸収層上の絶縁層のみを選択的に除去し絶縁層に光吸収層に達する開口を形成し、開口に光吸収層と接するように導電膜を形成する。
本発明の表示装置の作製方法の一は、絶縁表面に選択的に導電層を形成し、導電層上に光吸収層を形成し、絶縁表面上及び光吸収層上に絶縁層を形成し、絶縁表面、光吸収層及び絶縁層にレーザ光を照射し、レーザ光照射領域の光吸収層、及び絶縁層のレーザ光照射領域において光吸収層上の絶縁層のみを選択的に除去し絶縁層に光吸収層及び導電層に達する開口を形成し、開口に光吸収層及び導電層と接するように導電膜を形成する。
本発明の表示装置の作製方法の一は、絶縁表面に複数の光吸収層を形成し、絶縁表面上及び複数の光吸収層上に絶縁層を形成し、絶縁表面上、複数の光吸収層及び絶縁層にレーザ光を照射し、絶縁層のレーザ光照射領域において複数の光吸収層上の絶縁層のみを選択的に除去し絶縁層に複数の開口を形成し、複数の開口に複数の光吸収層とそれぞれ接するように導電膜を形成する。
上記で形成する光吸収層は、照射されるレーザ光を吸収すればよく、導電性材料を用いると導電層とすることができ、半導体材料を用いると半導体層とすることができる。表示装置を構成するいずれの導電層、半導体層に用いることができる。例えば導電層としては、配線層、ゲート電極層、ソース電極層、ドレイン電極層、及び画素電極層などに用いることができる。
上記構成において光吸収層として導電性材料を用いることができ、例えば、クロム、タンタル、銀、モリブデン、ニッケル、チタン、コバルト、銅、又はアルミニウムのうち一種又は複数を用いて形成することができる。また、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化珪素を含む酸化インジウムスズ、酸化亜鉛にガリウム(Ga)をドープした導電性材料、インジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。
また、光吸収層として半導体材料を用いることもでき、例えば、シリコン(珪素)、ゲルマニウム、シリコンゲルマニウム、ガリウム砒素、酸化モリブデン、酸化スズ、酸化ビスマス、酸化バナジウム、酸化ニッケル、ヒ化ガリウム、窒化ガリウム、酸化インジウム、リン化インジウム、窒化インジウム、硫化カドミウム、テルル化カドミウム、チタン酸ストロンチウムなどの無機半導体材料を用いることができる。また光吸収層に水素や不活性気体(ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)、ネオン(Ne)、キセノン(Xe)など)を添加してもよい。開口を形成する絶縁層は照射するレーザ光を透過する材料、例えば透光性の無機絶縁材料、又は有機樹脂などを用いて形成することができる。また、絶縁層を透過する波長のレーザ光を用いて絶縁層に開口を形成すればよい。
本発明は表示機能を有する装置である表示装置にも用いることができ、本発明を用いる表示装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現する有機物、無機物、若しくは有機物と無機物の混合物を含む層を、電極間に介在させた発光素子とTFTとが接続された発光表示装置や、液晶材料を有する液晶素子を表示素子として用いる液晶表示装置などがある。本発明において、表示装置とは、表示素子(液晶素子や発光素子など)を有する装置のことを言う。なお、基板上に液晶素子やEL素子などの表示素子を含む複数の画素やそれらの画素を駆動させる周辺駆動回路が形成された表示パネル本体のことでもよい。さらに、フレキシブルプリントサーキット(FPC)やプリント配線基盤(PWB)が取り付けられたもの(ICや抵抗素子や容量素子やインダクタやトランジスタなど)も含んでもよい。さらに、偏光板や位相差板などの光学シートを含んでいても良い。さらに、バックライト(導光板やプリズムシートや拡散シートや反射シートや光源(LEDや冷陰極管など)を含んでいても良い)を含んでいても良い。
なお、表示素子や表示装置は、様々な形態を用いたり、様々な素子を有することが出来る。例えば、EL素子(有機EL素子、無機EL素子又は有機物及び無機物を含むEL素子)、電子放出素子、液晶素子、電子インク、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、デジタルマイクロミラーデバイス(DMD)、圧電セラミックディスプレイ、カーボンナノチューブ、など、電気磁気的作用によりコントラストが変化する表示媒体を適用することができる。なお、EL素子を用いた表示装置としてはELディスプレイ、電子放出素子を用いた表示装置としてはフィールドエミッションディスプレイ(FED)やSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Disply)など、液晶素子を用いた表示装置としては液晶ディスプレイ、透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、電子インクを用いた表示装置としては電子ペーパーがある。
また、本発明を用いて半導体素子(トランジスタ、メモリ素子やダイオードなど)を含む回路を有する装置や、プロセッサ回路を有するチップなどの半導体装置を作製することができる。なお、本発明において、半導体装置とは、半導体特性を利用することで機能しうる装置を指す。
本発明により、表示装置等を構成する配線等の構成物、及びそれらを絶縁層を介して電気的に接続するコンタクトホールを複雑なフォトリソグラフィ工程軽減して形成できる。従って、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。高性能、高信頼性の表示装置を歩留まりよく作製することができる。
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的としたコンタクトホールの形成方法について、図1を用いて説明する。
絶縁層を介して積層する薄膜(導電層、半導体層)同士を電気的に接続する場合、絶縁層に開口(いわゆるコンタクトホールとなる)を形成する。この場合、絶縁層上にマスク層を形成せず、レーザ光の照射によって選択的に開口を形成する。照射する光を吸収する機能を有する光吸収層を形成し、光吸収層上に絶縁層を積層した後、光吸収層及び絶縁層の積層において開口を形成する領域に選択的に、絶縁層側からレーザ光を照射する。レーザ光は絶縁層を透過するが、光吸収層に吸収される。光吸収層は吸収したレーザ光のエネルギーによって加熱され、上に積層していた絶縁層を破壊する。よって、絶縁層に開口が形成され、絶縁層下の光吸収層が開口の底面に露出する。光吸収層はレーザ光の照射エネルギーによっては蒸発する場合もあり、レーザ光照射による開口形成後、開口を有する絶縁層をマスクとして開口に底面に露出された光吸収層(または、光吸収層下に積層された薄膜)をエッチングによって除去してもよい。
本発明を用いた本実施の形態では、光吸収層の光吸収によって上層の絶縁層に開口を形成するので、形成される開口は、絶縁層において光吸収層と重畳して(接して)おり、かつレーザ光が照射される領域のみに形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。
光吸収層は導電性材料を用いた導電層や、半導体材料を用いた半導体層など導電性を有する材料を用いて作製すれば、露出した光吸収層と接するように開口に導電膜を形成することによって、光吸収層及び導電膜は絶縁層を介して電気的に接続することができる。つまり、本発明においては、導電層、半導体層として機能する光吸収層上に形成された絶縁層への開口形成を、選択的に形成された光吸収層にレーザ光を照射することによって行い、レーザアブレーションによって光吸収層のレーザ照射領域上の絶縁層に開口を形成する。
レーザ光及び光吸収層によって選択的に開口を形成することができるのでマスク層を形成しなくてもよく工程及び材料を削減することができる。またレーザ光は非常に小さいスポットに集光できるので、加工すべき絶縁層を所定の形状に高い精度で加工できる、かつ短時間で瞬間的に加熱されるので、加工領域以外の領域をほとんど加熱しなくてもよいという利点がある。
図1(A2)乃至(D2)は、導電層の上面図であり、図1(A1)乃至(D1)は図1(A2)乃至(D2)における線Y−Zの断面図である。
図1を用いて具体的に説明する。本実施の形態では、図1に示すように、基板700上に、光吸収層701、絶縁層702が形成されている。本実施の形態では、光吸収層701として導電性を有する材料を用い、導電層として機能することができるものとする。本実施の形態では、光吸収層701としてクロムを用いる。図1(A2)に示すように光吸収層701は基板700全面に形成されておらず、基板700上に選択的に形成されている。
図1(B1)に示すように、絶縁層702側よりレーザ光703を選択的に絶縁層702、光吸収層701及び基板700に照射する。図1(B2)に示すようにレーザ光703は光吸収層701の一部と基板700の一部にわたって照射領域704のように照射される。照射されたエネルギーにより光吸収層701の照射領域上の絶縁層702のみが選択的に除去され、開口705を形成することができる(図1(C1)(C2)参照。)。図1(C1)おいては、絶縁層702は絶縁層706aと絶縁層706bとに分離される。光吸収層701が露出された開口705に導電膜707を形成し、光吸収層701と導電膜707とを電気的に接続することができる(図1(D1)(D2)参照。)。
本実施の形態では、光吸収層701の光吸収によって上層の絶縁層702に開口705を形成するので、形成される開口705は、絶縁層702において光吸収層701と重畳して(接して)おり、かつレーザ光703が照射される領域であるレーザ光の照射領域704のみに形成される。よって、図1(C2)に示すように、開口705は、光吸収層701とレーザ光の照射領域704とが重なる領域上の絶縁層702に形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。
つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。例えば、径の大きなレーザビームスポットを用いても、光吸収層を選択的に形成することによって、より径の小さな、微小な開口を形成することができる。また同じ形状のビームスポットを用いても光吸収層における照射領域を異ならせれば、複数の形状の異なる開口を形成することができる。従って、多様の開口形状が選択できるため、表示装置や半導体装置に含まれる配線等の構成の設計の自由度が向上する。
レーザ光は直接描画法で選択的に照射してもよいし、フォトマスクや位相シフトマスク等のマスクによって選択的に照射するようにしてもよい。マスクの代表例としては、遮光層、反射層、マイクロレンズ、位相シフトマスク等がある。
フォトマスクを用いて選択的にレーザ光を照射する例を図14に示す。図14(A)に示すように、基板150上に導電層152、導電層152上に光吸収層151を形成し、導電層152及び光吸収層151上に絶縁層156を形成する。図14(B)に示すように、基板161上に選択的に設けられた金属膜162a、162bを有するフォトマスクによって、レーザ光は部分的に遮光され、フォトマスクを透過したレーザ光160が選択的に絶縁層156、光吸収層151、導電層152に照射される。レーザ光160の照射によって、光吸収層151上絶縁層に開口155を形成され、絶縁層156は絶縁層157a、157bに分断される。続いて図14(C)に示すように開口155に露出した光吸収層151と接するように導電膜154を形成し、導電層152、光吸収層151、及び導電膜154を電気的に接続する。
レーザ光(レーザビームともいう)を処理領域に描画する、レーザビーム描画装置について、図30を用いて説明する。本実施の形態では、レーザビームを処理領域に直接照射して処理するため、レーザビーム直接描装置を用いる。図30に示すようにレーザビーム直接描画装置1001は、レーザビームを照射する際の各種制御を実行するパーソナルコンピュータ(以下、PCと示す。)1002と、レーザビームを出力するレーザ発振器1003と、レーザ発振器1003の電源1004と、レーザビームを減衰させるための光学系(NDフィルタ)1005と、レーザビームの強度を変調するための音響光学変調器(AOM)1006と、レーザビームの断面の拡大又は縮小をするためのレンズ、光路の変更するためのミラー等で構成される光学系1007、Xステージ及びYステージを有する基板移動機構1009と、PCから出力される制御データをデジタルーアナログ変換するD/A変換部1010と、D/A変換部から出力されるアナログ電圧に応じて音響光学変調器1006を制御するドライバ1011と、基板移動機構1009を駆動するための駆動信号を出力するドライバ1012とを備えている。
レーザ発振器1003としては、紫外光、可視光、又は赤外光を発振することが可能なレーザ発振器を用いることができる。レーザ発振器としては、KrF、ArF、XeCl、Xe等のエキシマレーザ発振器、He、He−Cd、Ar、He−Ne、HF等の気体レーザ発振器、YAG、GdVO、YVO、YLF、YAlOなどの結晶にCr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmをドープした結晶を使った固体レーザ発振器、GaN、GaAs、GaAlAs、InGaAsP等の半導体レーザ発振器を用いることができる。また、なお、固体レーザ発振器においては、基本波、基本波の第1高調波〜第5高調波を適用するのが好ましい。レーザ発振器から射出されるレーザ光の形状やレーザ光の進路を調整するため、シャッター、ミラー又はハーフミラー等の反射体、シリンドリカルレンズや凸レンズなどによって構成される光学系が設置されていてもよい。
また、パルス発振のレーザ光の発振周波数を0.5MHz以上とし、通常用いられている数十Hz〜数百Hzの周波数帯よりも著しく高い周波数帯を用いてレーザ結晶化を行っても良い。パルス幅をピコ秒台、或いはフェムト秒(10−15秒)台のパルスレーザを用いてもよい。
また、希ガスや窒素などの不活性ガス雰囲気中でレーザ光を照射するようにしても良く、減圧下でレーザ光の照射を行ってもよい。
次に、レーザビーム直接描画装置を用いた膜の改質処理について述べる。基板1008が基板移動機構1009に装着されると、PC1002は図外のカメラによって、基板に付されているマーカーの位置を検出する。次いで、PC1002は、検出したマーカーの位置データと、予め入力されている描画パターンデータとに基づいて、基板移動機構1009を移動させるための移動データを生成する。この後、PC1002が、ドライバ1011を介して音響光学変調器1006の出力光量を制御することにより、レーザ発振器1003から出力されたレーザビームは、光学系1005によって減衰された後、音響光学変調器1006によって所定の光量になるように光量が制御される。一方、音響光学変調器1006から出力されたレーザビームは、光学系1007で光路及びビーム形を変化させ、レンズで集光した後、基板上に形成された下地膜に該ビームを照射して、膜を改質処理する。このとき、PC1002が生成した移動データに従い、基板移動機構1009をX方向及びY方向に移動制御する。この結果、所定の場所にレーザビームが照射され、膜の改質処理が行われる。
短波長のレーザ光のほど、ビーム径を短く集光することが可能であるため、微細な幅の領域を処理するためには、短波長のレーザビームを照射することが好ましい。
また、レーザビームの膜表面でのスポット形状は、点状、円形、楕円形、矩形、または線状(厳密には細長い長方形状)となるように光学系で加工されている。
また、図30に示した装置は、基板の表面側からレーザ光を照射して露光する例を示したが、光学系や基板移動機構を適宜変更し、基板の裏面側からレーザ光を照射して露光するレーザビーム描画装置としてもよい。
なお、ここでは、基板を移動して選択的にレーザビームを照射しているが、これに限定されず、レーザビームをXY軸方向に走査してレーザビームを照射することができる。この場合、光学系1007にポリゴンミラーやガルバノミラーを用いることが好ましい。
光吸収層は蒸着法、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などを用いて形成することができる。また、構成物が所望のパターンに転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷など所望なパターンで形成される方法)、ディスペンサ法、選択的な塗布法なども用いることができる。
光吸収層としてクロム、モリブデン、ニッケル、チタン、コバルト、銅、タングステン、又はアルミニウムのうち一種又は複数を用いて形成することができる。また、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化珪素を含む酸化インジウムスズ、酸化亜鉛にガリウム(Ga)をドープした導電性材料、インジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。また、光吸収層として半導体材料を用いることもでき、例えば、シリコン(珪素)、ゲルマニウム、シリコンゲルマニウム、ガリウム砒素、酸化モリブデン、酸化スズ、酸化ビスマス、酸化バナジウム、酸化ニッケル、酸化亜鉛、ヒ化ガリウム、窒化ガリウム、酸化インジウム、リン化インジウム、窒化インジウム、硫化カドミウム、テルル化カドミウム、チタン酸ストロンチウムなどの無機半導体材料を用いることができる。また光吸収層に水素や不活性気体(ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)、ネオン(Ne)、キセノン(Xe)など)を添加してもよい。開口を形成する絶縁層はレーザ光を透過する材料、例えば透光性の無機絶縁材料、又は有機樹脂などを用いて形成することができる。
図1においては、レーザ光703の照射によって、絶縁層702に開口705を形成しており、光吸収層701は残存する例を示した。絶縁層下に形成された光吸収層に達する開口を形成する他の例を図2(A)乃至(D)に示す。
光吸収層は導電層(又は半導体層)と積層してもよく、光吸収層自体、導電層自体も複数層積層してもよい。図2(A)及び図2(D)は、光吸収層と導電層との積層と絶縁層を介して導電膜とを電気的に接続する例を示す。図2(A)乃至(D)は、図1(A2)乃至(D2)の線V−Xの断面図に対応している。
図2(A)乃至(D)では、光吸収層として導電性を有する材料を用い、導電層として機能することができるものとする。また、光吸収層下に積層される導電層もレーザ光を吸収する材料を用いて形成し、光吸収層としてもよい。
図2(A)は、絶縁層下の光吸収層の上方部のみがレーザ光によりレーザアブレーションされた例である。基板730上に導電層731、光吸収層732、絶縁層733が設けられ、光吸収層732、絶縁層733に形成された開口750に導電膜734が設けられている。開口750において光吸収層732が露出され、導電膜734に接して電気的に接続している。光吸収層732は導電性を有する材料を用い、導電層として機能することができるものとする。また、導電層731もレーザ光を吸収する材料を用いて形成し、光吸収層としてもよい。
導電層731、及び光吸収層732は積層構造となっており、本実施の形態は、光吸収層732に比較的蒸発し易い低沸点金属(本実施の形態ではクロム)を用い、導電層731には光吸収層732よりも蒸発しにくい高沸点(及び高融点)金属(本実施の形態ではタングステン)を用いる。
絶縁層下の光吸収層、及び導電層は融点(沸点)が異なる複数種の層を積層してもよいし、もちろん単層でもよい。絶縁層下に単層の光吸収層を形成する例を図2(B)(C)に示す。図2(B)は、絶縁層下の光吸収層の上方部のみがレーザ光によりレーザアブレーションされた例であり、図2(C)は絶縁層下の光吸収層において基板740が露出するまでレーザアブレーションによって除去された例である。
図2(B)において、基板735上に光吸収層736、絶縁層738が設けられ、光吸収層736、絶縁層738に形成された開口751に導電膜739が設けられている。開口751において光吸収層736が露出され、導電膜739に接して電気的に接続している。図2(A)(B)のように光吸収層の膜厚方向において上方のみを部分的に除去する場合、レーザ光の照射条件(エネルギー、照射時間など)を制御するか、光吸収層を厚く形成すればよい。
図2(C)において、基板740上に光吸収層741a、741b、絶縁層743が設けられ、光吸収層741a、741b、絶縁層743に形成された開口752に導電膜744が設けられている。開口752において光吸収層741a、741bが露出され、導電膜744に接して電気的に接続している。図2(C)のように、開口底面において光吸収層と導電膜とが必ずしも接しなくてもよく、開口の側面に露出した光吸収層に接するように導電膜を形成し、電気的に接続する構成でもよい。
また、コンタクトホールとして機能する開口の形状も側面が底面に対して垂直でなくてもよく、図2(D)のように開口の側辺がテーパーを有する形状でもよい。図2(D)において、基板745上に導電層746、光吸収層747a、747b、絶縁層748が形成され、絶縁層748及び光吸収層747a、747bに開口753が形成されている。開口753はすり鉢状であり、開口753側面は底面に対してテーパーを有する形状となっている。開口753において光吸収層747a、747bが露出され、導電膜749に接して電気的に接続されている。
このように、絶縁層に設けられた開口において絶縁層下の光吸収層と絶縁層上の導電膜とを電気的に接続させる。レーザ光の照射条件(エネルギー強度、照射時間など)及び絶縁層、導電層の材料の性質(熱伝導率、融点、沸点など)によって絶縁層に形成される開口の大きさや形状は制御することができる。
レーザ光の照射により開口を形成した後、液体で開口付近に残存する導電性材料や絶縁性材料(導電層又は絶縁層の除去された部分の残存物)を洗浄し、残存物を除去してもよい。この場合、洗浄に水などの無反応物質を用いてもよいし、絶縁層と反応する(溶解する)エッチャントなどの薬液を用いてもよい。エッチャントを用いると開口がオーバーエッチングされ、ゴミ等が除去され表面がより平坦化される。また開口を広げることもできる。
レーザ光によって選択的に開口を形成することができるのでマスク層を形成しなくてもよく工程及び材料を削減することができる。またレーザ光は非常に小さいスポットに集光できるので、加工すべき導電層及び絶縁層を所定の形状に高い精度で加工できる、かつ短時間で瞬間的に加熱されるので、加工領域以外の領域をほとんど加熱しなくてもよいという利点がある。
このように複雑なフォトリソグラフィ工程、マスク層の形成を行うことなく、レーザ光照射によって導電層と導電層とを電気的に接続する開口(コンタクトホール)を絶縁層に形成することができる。
従って、本発明を用いて表示装置を作製すると、工程を簡略化することができるので、材料のロスが少なく、コストダウンも達成できる。よって表示装置を歩留まりよく作製することができる。
(実施の形態2)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした複数のコンタクトホールの形成方法について、図4を用いて説明する。
絶縁層を介して積層する薄膜(導電層、半導体層)同士を電気的に接続する場合、絶縁層に開口(いわゆるコンタクトホールとなる)を形成する。この場合、絶縁層上にマスク層を形成せず、レーザ光の照射によって選択的に開口を形成する。照射する光を吸収する機能を有する光吸収層を形成し、光吸収層上に絶縁層を積層した後、光吸収層及び絶縁層の積層において開口を形成する領域に選択的に、絶縁層側からレーザ光を照射する。レーザ光は絶縁層を透過するが、光吸収層に吸収される。光吸収層は吸収したレーザ光のエネルギーによって加熱され、上に積層していた絶縁層を破壊する。よって、絶縁層に開口が形成され、絶縁層下の光吸収層が開口の底面に露出する。光吸収層はレーザ光の照射エネルギーによっては蒸発する場合もあり、レーザ光照射による開口形成後、開口を有する絶縁層をマスクとして開口の底面に露出された光吸収層(または、光吸収層下に積層された薄膜)をエッチングによって除去してもよい。
本発明を用いた本実施の形態では、光吸収層の光吸収によって上層の絶縁層に開口を形成するので、形成される開口は、絶縁層において光吸収層と重畳して(接して)おり、かつレーザ光が照射される領域のみに形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。
光吸収層は導電性材料を用いた導電層や、半導体材料を用いた半導体層など導電性を有する材料を用いて作製すれば、露出した光吸収層と接するように開口に導電膜を形成することによって、光吸収層及び導電膜は絶縁層を介して電気的に接続することができる。つまり、本発明においては、導電層、半導体層として機能する光吸収層上に形成された絶縁層への開口形成を、選択的に形成された光吸収層にレーザ光を照射することによって行い、レーザアブレーションによって光吸収層のレーザ照射領域上の絶縁層に開口を形成する。
レーザ光及び光吸収層によって選択的に開口を形成することができるのでマスク層を形成しなくてもよく工程及び材料を削減することができる。またレーザ光は非常に小さいスポットに集光できるので、加工すべき絶縁層を所定の形状に高い精度で加工できる、かつ短時間で瞬間的に加熱されるので、加工領域以外の領域をほとんど加熱しなくてもよいという利点がある。
図4を用いて具体的に説明する。図4(A2)乃至(D2)は、導電層の上面図であり、図4(A1)乃至(D1)は図4(A2)乃至(D2)における線L−M、線N−Oの断面図である。
図4に示すように、基板300上に、光吸収層301a、301b、絶縁層302が形成されている。本実施の形態では、光吸収層301a、301bとして導電性を有する材料を用い、導電層として機能することができるものとする。本実施の形態では、光吸収層301a、301bとしてクロムを用いる。図4(A2)に示すように光吸収層301a、301bは基板300全面に形成されておらず、基板300上に選択的に形成されている。
図4(B1)に示すように、絶縁層302側よりレーザ光303a、303bを選択的に絶縁層302、光吸収層301a、301b及び基板300に照射する。図4(B2)に示すようにレーザ光303a、303bは光吸収層301a、301bの一部と基板300の一部にわたってそれぞれ照射領域304a、304bのように照射される。照射されたエネルギーにより光吸収層301a、301bの照射領域上の絶縁層302のみが選択的に除去され、開口305a、305bを形成することができる(図4(C1)(C2)参照。)。図4(C1)おいては、絶縁層302は絶縁層306a、絶縁層306b、絶縁層306c、絶縁層306dに分離される。光吸収層301aが露出された開口305aに導電膜307aを形成し、光吸収層301aと導電膜307aとを電気的に接続することができ、光吸収層301bが露出された開口305bに導電膜307bを形成し、光吸収層301bと導電膜307bとを電気的に接続することができる(図4(D1)(D2)参照。)。
本実施の形態では、光吸収層301a、301bの光吸収によって上層の絶縁層302に開口305a、305bを形成するので、形成される開口305a、305bは、絶縁層302において光吸収層301a、301bと重畳して(接して)おり、かつレーザ光303a、303bが照射される領域のみに形成される。よって、図4(C2)に示すように、開口305aは、光吸収層301aとレーザ光の照射領域304aとが重なる領域上の絶縁層302に形成される。一方、開口305bは、光吸収層301bとレーザ光の照射領域304bとが重なる領域上の絶縁層302に形成される。本実施の形態において、レーザ光の照射領域304a及び照射領域304bは同じ形状であるが、光吸収層301a及び光吸収層301bは形状が異なる。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映するので、形状の異なる光吸収層301a及び光吸収層301b上に形成される開口305a及び開口305bも形状が異なる。
つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。例えば、径の大きなレーザビームスポットを用いても、光吸収層を選択的に形成することによって、より径の小さな、微小な開口を形成することができる。また同じ形状のビームスポットを用いても光吸収層における照射領域を異ならせれば、複数の形状の異なる開口を形成することができる。従って、多様の開口形状が選択できるため、表示装置や半導体装置に含まれる配線等の構成の設計の自由度が向上する。
光吸収層301a、301bは蒸着法、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などを用いて形成することができる。また、構成物が所望のパターンに転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷など所望なパターンで形成される方法)、ディスペンサ法、選択的な塗布法なども用いることができる。
光吸収層301a、301bとしてクロム、モリブデン、ニッケル、チタン、コバルト、銅、タングステン、又はアルミニウムのうち一種又は複数を用いて形成することができる。また、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化珪素を含む酸化インジウムスズ、酸化亜鉛にガリウム(Ga)をドープした導電性材料、インジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。また、光吸収層として半導体材料を用いることもでき、例えば、シリコン(珪素)、ゲルマニウム、シリコンゲルマニウム、ガリウム砒素、酸化モリブデン、酸化スズ、酸化ビスマス、酸化バナジウム、酸化ニッケル、ヒ化ガリウム、窒化ガリウム、酸化インジウム、リン化インジウム、窒化インジウム、硫化カドミウム、テルル化カドミウム、チタン酸ストロンチウムなどの無機半導体材料を用いることができる。また光吸収層に水素や不活性気体(ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)、ネオン(Ne)、キセノン(Xe)など)を添加してもよい。開口を形成する絶縁層はレーザ光を透過する材料、例えば透光性の無機絶縁材料、又は有機樹脂などを用いて形成することができる。
このように、絶縁層に設けられた開口において絶縁層下の光吸収層と絶縁層上の導電膜とを電気的に接続させる。レーザ光の照射条件(エネルギー強度、照射時間など)及び絶縁層、導電層の材料の性質(熱伝導率、融点、沸点など)によって絶縁層に形成される開口の大きさや形状は制御することができる。
レーザ光の照射により開口を形成した後、液体で開口付近に残存する導電性材料や絶縁性材料(導電層又は絶縁層の除去された部分の残存物)を洗浄し、残存物を除去してもよい。この場合、洗浄に水などの無反応物質を用いてもよいし、絶縁層と反応する(溶解する)エッチャントなどの薬液を用いてもよい。エッチャントを用いると開口がオーパーエッチングされ、ゴミ等が除去され表面がより平坦化される。また開口を広げることもできる。
レーザ光によって選択的に開口を形成することができるのでマスク層を形成しなくてもよく工程及び材料を削減することができる。またレーザ光は非常に小さいスポットに集光できるので、加工すべき導電層及び絶縁層を所定の形状に高い精度で加工できる、かつ短時間で瞬間的に加熱されるので、加工領域以外の領域をほとんど加熱しなくてもよいという利点がある。
このように複雑なフォトリソグラフィ工程、マスク層の形成を行うことなく、レーザ光照射によって導電層と導電層とを電気的に接続する開口(コンタクトホール)を絶縁層に形成することができる。
従って、本発明を用いて表示装置を作製すると、工程を簡略化することができるので、材料のロスが少なく、コストダウンも達成できる。よって表示装置を歩留まりよく作製することができる。
(実施の形態3)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の作製方法について、図3を用いて説明する。
本実施の形態では、薄膜を所望のパターンに加工する際にフォトリソグラフィ工程を用いることなく導電層、半導体層などの構成物(パターンともいう)を選択的に所望の形状を有するように形成する。本発明において、構成物(パターンともいう)とは、薄膜トランジスタや表示装置を構成する、配線層、ゲート電極層、ソース電極層、ドレイン電極層などの導電層、半導体層、マスク層、絶縁層などをいい、所定の形状を有して形成される全ての構成要素を含む。
本実施の形態では、導電膜や半導体膜などの光吸収膜を透光性の転置基板に形成し、転置基板側よりレーザ光を選択的に照射することによって、被転置基板にレーザ光の照射領域に対応する光吸収膜を、被転置基板に転置し、光吸収層である導電層や半導体層を所望の形状(パターン)で形成する。本明細書において、最初の工程で光吸収膜である導電膜や半導体膜を形成し、レーザ光を照射される基板を転置基板、最終的に選択的に光吸収層である導電層や半導体層が形成される基板を被転置基板ともいう。フォトリソグラフィ工程を用いることなく選択的に所望の形状を有するように形成することができるため、工程簡略化、低コスト化などが達成できる。
本実施の形態で示す薄膜の形成方法を、図3を用いて詳細に説明する。図3において、転置基板である第1の基板2201上に光吸収膜2202が形成され、被転置基板である第2の基板2200と光吸収膜2202が内側になるように、第1の基板2201及び第2の基板2200が対向して設置されている。
基板2201側より、基板2201を透過させレーザ光2203を選択的に光吸収膜2202に照射する。レーザ光2203が照射された領域の光吸収膜2202は、レーザ光2203を吸収し、その熱などのエネルギーにより第2の基板2200側に光吸収層2205として転置される。一方、レーザ光2203が照射されなかった領域は、光吸収膜2204a、2204bとして第1の基板2201側に残存する。このように、光吸収層2206である薄膜を所望のパターンに加工する際にフォトリソグラフィ工程を用いることなく、導電層、半導体層などの構成物(パターンともいう)を選択的に所望の形状を有するように形成する。
レーザ光は、実施の形態1で説明したレーザ光と同様なものを用いて、同様に照射することができ、図30により示したレーザ照射描画装置を用いればよい。よってここでは詳細な説明を省略する。
レーザ光により転置後、光吸収層に加熱処理を行ってもよく、レーザ光を照射してもよい。
転置物である光吸収膜2202には、照射される光を吸収する材料を用い、第1の基板2201には照射される光を透過する、透光性の基板を用いる。本発明を用いると、自由に様々な基板に転置することができるため、基板の材料の選択性の幅が広がる。また安価な材料を基板として選択することもでき、用途に合わせて広い機能を持たせることができるだけでなく、低コストで表示装置を作製することができる。
本実施の形態の薄膜形成方法は、薄膜トランジスタや表示装置を構成する、配線層、ゲート電極層、ソース電極層、ドレイン電極層などの導電層、半導体層、マスク層、絶縁層などの形成に用いることができ、光吸収膜として所望の材料を用いた膜を形成し、その膜が吸収する光を選択し、照射すればよい。
例えば、光吸収膜として導電性材料を用いることができ、例えば、クロム、タンタル、銀、モリブデン、ニッケル、チタン、コバルト、銅、又はアルミニウムのうち一種又は複数を用いて形成することができる。また、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化珪素を含む酸化インジウムスズ、酸化亜鉛にガリウム(Ga)をドープした導電性材料、インジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。また、光吸収膜として半導体材料を用いることもでき、例えば、シリコン(珪素)、ゲルマニウム、シリコンゲルマニウム、ガリウム砒素、酸化モリブデン、酸化スズ、酸化ビスマス、酸化バナジウム、酸化ニッケル、酸化亜鉛、ヒ化ガリウム、窒化ガリウム、酸化インジウム、リン化インジウム、窒化インジウム、硫化カドミウム、テルル化カドミウム、チタン酸ストロンチウムなどの無機半導体材料を用いることができる。また光吸収膜に水素や不活性気体(ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)、ネオン(Ne)、キセノン(Xe)など)を添加してもよい。
本発明により、表示装置を構成する配線等の構成物を、所望の形状で形成できる。また複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態4)
図25(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであってRGBを用いたフルカラー表示であれば1024×768×3(RGB)、UXGAであってRGBを用いたフルカラー表示であれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させ、RGBを用いたフルカラー表示であれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
図25(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図26(A)に示すように、COG(Chip on Glass)方式によりドライバIC2751を基板2700上に実装しても良い。また他の実装形態として、図26(B)に示すようなTAB(Tape Automated Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図26において、ドライバIC2751は、FPC2750と接続している。
また、画素に設けるTFTを、結晶性が高い多結晶(微結晶)半導体で形成する場合には、図25(B)に示すように走査線側駆動回路3702を基板3700上に形成することもできる。図25(B)において、3701は画素部であり、信号線側駆動回路は、図25(A)と同様に外付けの駆動回路により制御する。本発明で形成するTFTのように、画素に設けるTFTを移動度の高い、多結晶(微結晶)半導体、単結晶半導体などで形成する場合は、図25(C)は、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に一体形成することもできる。
本発明の実施の形態について、図8乃至図13を用いて説明する。より詳しくは、本発明を適用した、逆スタガ型の薄膜トランジスタを有する表示装置の作製方法について説明する。図8乃至図12の(A)は表示装置画素部の上面図であり、図8乃至図12の(B)は、図8乃至図12の(A)における線A−Cによる断面図、(C)は線B−Dによる断面図である。図13(A)(B)も表示装置の断面図である。
基板100は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等からなるガラス基板、石英基板、金属基板、又は本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板を用いる。また、基板100の表面が平坦化されるようにCMP法などによって、研磨しても良い。なお、基板100上に、絶縁層を形成してもよい。絶縁層は、CVD法、プラズマCVD法、スパッタリング法、スピンコート法等の種々の方法により、珪素を含む酸化物材料、窒化物材料を用いて、単層又は積層して形成される。この絶縁層は、形成しなくても良いが、基板100からの汚染物質などを遮断する効果がある。
基板100上に、ゲート電極層103、104(104a、104b)を形成する。ゲート電極層103、104(104a、104b)は、銀、金、ニッケル、白金、鉛、イリジウム、ロジウム、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、リン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、銀、鉛及び銅からなる合金を用いてもよい。また、単層構造でも複数層の構造でもよく、例えば、窒化タングステン膜とモリブデン膜との2層構造としてもよいし、膜厚50nmのタングステン膜、膜厚500nmのアルミニウムとシリコンの合金膜、膜厚30nmの窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、第1の導電膜のタングステンに代えて窒化タングステンを用いてもよいし、第2の導電膜のアルミニウムとシリコンの合金膜に代えてアルミニウムとチタンの合金膜を用いてもよいし、第3の導電膜の窒化チタン膜に代えてチタン膜を用いてもよい。
ゲート電極層103、104a、104bは、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などを用いて形成し、マスク層を用いて加工して形成することができる。また、構成物が所望のパターンに転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷など所望なパターンで形成される方法)、液滴吐出法、ディスペンサ法、選択的な塗布法なども用いることができる。
導電膜の加工は、ドライエッチングまたはウェットエッチングによりエッチング加工すればよい。ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することにより、電極層をテーパー形状にエッチングすることができる。なお、エッチング用ガスとしては、Cl、BCl、SiClもしくはCClなどを代表とする塩素系ガス、CF、SFもしくはNFなどを代表とするフッ素系ガス又はOを適宜用いることができる。
また、ゲート電極層の形成は、転置基板上に光吸収膜である導電膜を形成後、レーザ光で選択的に被転置基板へ転置することによって所望の形状に加工して形成してもよい。レーザ光により転置後、光吸収層に加熱処理を行ってもよく、レーザ光を照射してもよい。
転置物である光吸収膜には、照射される光を吸収する材料を用い、基板には照射される光を透過する、透光性の基板を用いる。本発明を用いると、自由に様々な基板に転置することができるため、基板の材料の選択性の幅が広がる。また安価な材料を基板として選択することもでき、用途に合わせて広い機能を持たせることができるだけでなく、低コストで表示装置を作製することができる。
次に、ゲート電極層103、104(104a、104b)の上にゲート絶縁層105を形成する(図8(A)乃至(C)参照。)。ゲート絶縁層105としては、珪素の酸化物材料又は窒化物材料等の材料で形成すればよく、積層でも単層でもよい。本実施の形態では、窒化珪素膜、酸化珪素膜の2層の積層を用いる。またそれらや、酸化窒化珪素膜の単層、3層以上からなる積層でも良い。好適には、緻密な膜質を有する窒化珪素膜を用いるとよい。また、液滴吐出法で形成される導電層に銀や銅などを用いる場合、その上にバリア膜として窒化珪素膜やNiB膜を形成すると、不純物の拡散を防ぎ、表面を平坦化する効果がある。なお、低い成膜温度でゲートリーク電流の少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。
次に半導体層を形成する。一導電性型を有する半導体層は必要に応じて形成すればよい。またn型を有する半導体層を形成し、nチャネル型TFTのNMOS構造、p型を有する半導体層を形成したpチャネル型TFTのPMOS構造、nチャネル型TFTとpチャネル型TFTとのCMOS構造を作製することができる。また、導電性を付与するために、導電性を付与する元素をドーピングによって添加し、不純物領域を半導体層に形成することで、nチャネル型TFT、pチャネル型TFTを形成することもできる。n型を有する半導体層を形成するかわりに、PHガスによるプラズマ処理を行うことによって、半導体層に導電性を付与してもよい。
半導体層を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体(以下「AS」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれる。以下「SAS」ともいう。)半導体などを用いることができる。半導体層は各種手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜することができる。
SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測することが出来、珪素を主成分とする場合にはラマンスペクトルが520cm−1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(ダングリングボンド)の終端化するため水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。SASは、珪素を含む気体をグロー放電分解(プラズマCVD)して形成する。珪素を含む気体としては、SiH、その他にもSi、SiHCl、SiHCl、SiCl、SiFなどを用いることが可能である。またF、GeFを混合させても良い。この珪素を含む気体をH、又は、HとHe、Ar、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2〜1000倍の範囲、圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHzである。基板加熱温度は300℃以下が好ましく、100〜200℃の基板加熱温度でも形成可能である。ここで、主に成膜時に取り込まれる不純物元素として、酸素、窒素、炭素などの大気成分に由来する不純物は1×1020cm−3以下とすることが望ましく、特に、酸素濃度は5×1019cm−3以下、好ましくは1×1019cm−3以下となるようにすることが好ましい。また、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なSASが得られる。また半導体層としてフッ素系ガスより形成されるSAS層に水素系ガスより形成されるSAS層を積層してもよい。
アモルファス半導体としては、代表的には水素化アモルファスシリコン、結晶性半導体としては代表的にはポリシリコンなどがあげられる。ポリシリコン(多結晶シリコン)には、800℃以上のプロセス温度を経て形成されるポリシリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度で形成されるポリシリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促進する元素などを添加し結晶化させたポリシリコンなどを含んでいる。もちろん、前述したように、セミアモルファス半導体又は半導体層の一部に結晶相を含む半導体を用いることもできる。
半導体層に、結晶性半導体層を用いる場合、その結晶性半導体層の作製方法は、各種の方法(レーザ結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた熱結晶化法等)を用いれば良い。また、SASである微結晶半導体をレーザ照射して結晶化し、結晶性を高めることもできる。結晶化を助長する元素を導入しない場合は、非晶質珪素膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによって非晶質珪素膜の含有水素濃度を1×1020atoms/cm以下にまで放出させる。これは水素を多く含んだ非晶質珪素膜にレーザ光を照射すると非晶質珪素膜が破壊されてしまうからである。
非晶質半導体層への金属元素の導入の仕方としては、当該金属元素を非晶質半導体層の表面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整が容易であるという点で有用である。また、このとき非晶質半導体層の表面の濡れ性を改善し、非晶質半導体層の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を成膜することが望ましい。
非晶質半導体層の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく、熱処理やレーザ光照射を単独で、複数回行っても良い。
また、結晶性半導体層を、直接基板にプラズマ法により選択的に形成しても良い。
半導体として、有機半導体材料を用い、印刷法、ディスペンサ法、スプレー法、スピン塗布法、液滴吐出法などで形成することができる。この場合、上記エッチング工程が必要ないため、工程数を削減することが可能である。有機半導体としては、低分子材料、高分子材料などが用いられ、有機色素、導電性高分子材料などの材料も用いることができる。本発明に用いる有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の高分子材料が望ましい。代表的には、ポリチオフェン、ポリフルオレン、ポリ(3−アルキルチオフェン)、ポリチオフェン誘導体等の可溶性の高分子材料や、ペンタセンを用いることができる。
その他にも本発明に用いることができる有機半導体材料としては、可溶性の前駆体を成膜した後で処理することにより半導体層を形成することができる材料がある。なお、このような有機半導体材料としては、ポリチエニレンビニレン、ポリ(2,5−チエニレンビニレン)、ポリアセチレン、ポリアセチレン誘導体、ポリアリレンビニレンなどがある。
前駆体を有機半導体に変換する際には、加熱処理だけではなく塩化水素ガスなどの反応触媒を添加することがなされる。また、これらの可溶性有機半導体材料を溶解させる代表的な溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、アニソール、クロロフォルム、ジクロロメタン、γブチルラクトン、ブチルセルソルブ、シクロヘキサン、NMP(N−メチル−2−ピロリドン)、シクロヘキサノン、2−ブタノン、ジオキサン、ジメチルホルムアミド(DMF)または、THF(テトラヒドロフラン)などを適用することができる。
本実施の形態では、半導体層108、109及び一導電型を有する半導体層110、111として非晶質半導体層を形成する。本実施の形態では、一導電型を有する半導体膜として、n型を付与する不純物元素であるリン(P)を含むn型を有する半導体膜を形成する。一導電型を有する半導体膜は、ソース領域及びドレイン領域として機能する。一導電型を有する半導体膜は必要に応じて形成すればよく、n型を付与する不純物元素(P、As)を有するn型を有する半導体膜やp型を付与する不純物元素(B)を有するp型を有する半導体膜を形成することができる。
次にゲート絶縁層105に開口107を形成する。レジストやポリイミド等の絶縁体からなるマスク層を形成し、そのマスク層を用いて、エッチング加工によりゲート絶縁層105の一部に開口107を形成して、その下層側に配置されているゲート電極層104aの一部を露出させることができる。エッチング加工はプラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF、NF、Cl、BCl、などのフッ素系又は塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
本実施の形態では、実施の形態1で示したようにレーザ光を用いて開口107を形成する(図9(A)乃至(C)参照。)。ゲート絶縁層105側よりレーザ光113を光吸収層であるゲート電極層104aに照射し、照射されたエネルギーによりゲート電極層104aの照射領域上のゲート絶縁層105は選択的に除去され、開口107を形成することができる。本実施の形態では、光吸収層の光吸収によって上層の絶縁層に開口を形成するので、形成される開口は、絶縁層において光吸収層と重畳して(接して)おり、かつレーザ光が照射される領域のみに形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。
ゲート電極層104aが露出された開口107にソース電極層又はドレイン電極層を形成する導電膜を形成し、ゲート電極層104aとソース電極層又はドレイン電極層とは電気的に接続することができる。開口107の形成は、半導体層を形成した後に行ってもよい。
次にソース電極層又はドレイン電極層116、117、118、119を形成する。ソース電極層又はドレイン電極層116、117、118、119は、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)、Mo(モリブデン)、Ta(タンタル)、Ti(チタン)から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料等を用いることができる。また、透光性を有するインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを組み合わせても良い。
ソース電極層又はドレイン電極層116、117、118、119は、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などを用いて形成し、マスク層を用いて加工して形成することができる。また、構成物が所望のパターンに転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷など所望なパターンで形成される方法)、液滴吐出法、ディスペンサ法、選択的な塗布法なども用いることができる。
導電膜の加工は、ドライエッチングまたはウェットエッチングによりエッチング加工すればよい。ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することにより、電極層をテーパー形状にエッチングすることができる。なお、エッチング用ガスとしては、Cl、BCl、SiClもしくはCClなどを代表とする塩素系ガス、CF、SFもしくはNFなどを代表とするフッ素系ガス又はOを適宜用いることができる。
ソース電極層又はドレイン電極層の形成は、転置基板上に光吸収膜である導電膜を形成後、レーザ光によって選択的に被転置基板へ所望の形状に加工して形成してもよい。
ソース電極層又はドレイン電極層116はソース配線層としても機能し、ソース電極層又はドレイン電極層118は電源線としても機能する。
ゲート絶縁層105に形成した開口107において、ソース電極層又はドレイン電極層117とゲート電極層104aとを電気的に接続させる。ソース電極層又はドレイン電極層118の一部は容量素子を形成する。ソース電極層又はドレイン電極層116、117、118、119を形成した後、半導体層108、109、一導電型を有する半導体層110、111を所望の形状に加工する。本実施の形態では、ソース電極層又はドレイン電極層116、117、118、119をマスクとして、半導体層108、109、一導電型を有する半導体層110、111をエッチングにより加工し、半導体層114、115、一導電型を有する半導体層120a、120b、121a、121bを形成する。
以上の工程で逆スタガ型薄膜トランジスタであるトランジスタ139a、139bを作製する(図10(A)乃至(C)参照。)。
ゲート絶縁層105及びトランジスタ139a、139b上に絶縁層123を形成する。
絶縁層123は、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などにより形成することができる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。
絶縁層123は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素(CN)、ポリシラザン、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサンを含む材料を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテンを用いることができる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
次に絶縁層123に開口125を形成する。本実施の形態では、実施の形態1で示したようにレーザ光を用いて開口125を形成する。絶縁層123側よりレーザ光124を選択的にソース電極層又はドレイン電極層119に照射し、照射されたエネルギーによりソース電極層又はドレイン電極層119の照射領域上の絶縁層123は除去され、開口125を形成することができる(図11(A)乃至(C)参照。)。本実施の形態では、光吸収層の光吸収によって上層の絶縁層に開口を形成するので、形成される開口は、絶縁層において光吸収層と重畳して(接して)おり、かつレーザ光が照射される領域のみに形成される。絶縁層に形成される開口の領域(形状)は、レーザ光の照射領域の形状だけでなく、下に形成される光吸収層の形状を反映する。つまり光吸収層の形成領域とレーザ光の照射領域の重なる領域を開口領域とすることができるため、光吸収層の形状やレーザ光の照射領域(照射スポット)を制御することによって、様々な形状の開口を形成することができる。
ソース電極層又はドレイン電極層119が露出された開口125に画素電極として機能する発光素子の第1の電極層126を形成し、ソース電極層又はドレイン電極層119と第1の電極層126とは電気的に接続することができる(図12(A)乃至(C)参照。)。
第1の電極層126も実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。
本実施の形態においては、第1の電極層の形成は、導電膜を形成後、マスク層によって所望の形状に加工して形成する。
第1の電極層126は、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などを用いて形成することができる。第1の電極層126を形成する導電性材料としては、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)などで形成することができる。より好ましくは、ITOに酸化珪素が2〜10重量%含まれたターゲットを用いてスパッタリング法で酸化珪素を含む酸化インジウムスズを用いる。この他、ZnOにガリウム(Ga)をドープした導電性材料、酸化珪素を含み酸化インジウムに2〜20wt%の酸化亜鉛(ZnO)を混合したターゲットを用いて形成された酸化物導電性材料であるインジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。
マスク層は、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フッ化アリーレンエーテル、透過性を有するポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、ポジ型レジスト、ネガ型レジストなどを用いてもよい。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整や、界面活性剤等の添加により適宜調整する。
第1の電極層126の加工は、ドライエッチングまたはウェットエッチングによりエッチング加工すればよい。ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することにより、電極層をテーパー形状にエッチングすることができる。なお、エッチング用ガスとしては、Cl、BCl、SiClもしくはCClなどを代表とする塩素系ガス、CF、SFもしくはNFなどを代表とするフッ素系ガス又はOを適宜用いることができる。
第1の電極層126は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層126の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
以上の工程により、基板100上にボトムゲート型のTFTと第1の電極層126が接続された表示パネル用のTFT基板が完成する。また本実施の形態のTFTは逆スタガ型である。
次に、絶縁層131(隔壁とも呼ばれる)を選択的に形成する。絶縁層131は、第1の電極層126上に開口部を有するように形成する。本実施の形態では、絶縁層131を全面に形成し、レジスト等のマスクによって、エッチングし加工する。絶縁層131を、直接選択的に形成できる液滴吐出法、印刷法、ディスペンサ法などを用いて形成する場合は、エッチングによる加工は必ずしも必要はない。
絶縁層131は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン系材料を出発材料として形成された珪素、酸素、水素からなる化合物のうちSi−O−Si結合を含む無機シロキサン、珪素に結合する水素がメチルやフェニルのような有機基によって置換された有機シロキサン系の絶縁材料で形成することができる。アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成してもよい。絶縁層131は曲率半径が連続的に変化する形状が好ましく、上に形成される電界発光層132、第2の電極層133の被覆性が向上する。
また、液滴吐出法により、絶縁層131を組成物を吐出し形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査する方法や、平坦な板状な物で表面を垂直にプレスする方法等により凹凸を軽減することができる。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。この工程により平坦性が向上すると、表示パネルの表示ムラなどを防止することができ、高繊細な画像を表示することができる。
表示パネル用のTFT基板である基板100の上に、発光素子を形成する(図13(A)(B)参照。)。
電界発光層132を形成する前に、大気圧中で200℃の熱処理を行い第1の電極層134、絶縁層131中若しくはその表面に吸着している水分を除去する。また、減圧下で200〜400℃、好ましくは250〜350℃に熱処理を行い、そのまま大気に晒さずに電界発光層132を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。
電界発光層132として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。電界発光層132上に第2の電極層133を積層形成して、発光素子を用いた表示機能を有する表示装置が完成する。
図示しないが、第2の電極層133を覆うようにしてパッシベーション膜を設けることは有効である。表示装置を構成する際に設けるパッシベーション(保護)膜は、単層構造でも多層構造でもよい。パッシベーション膜としては、窒化珪素(SiN)、酸化珪素(SiO)、酸化窒化珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。例えば窒素含有炭素膜、窒化珪素のような積層、また有機材料を用いることも出来、スチレンポリマーなど高分子の積層でもよい。また、シロキサン材料を用いてもよい。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH、C、Cなど)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてCガスとNガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層が酸化するといった問題を防止できる。
シール材を形成し、封止基板を用いて封止する。その後、ゲート電極層103と電気的に接続して形成されるゲート配線層に、フレキシブル配線基板を接続し、外部との電気的な接続をしても良い。これは、ソース配線層でもあるソース電極層又はドレイン電極層116と電気的に接続して形成されるソース配線層も同様である。
素子を有する基板100と封止基板の間には充填剤を封入して封止する。充填剤の封入には滴下法を用いることもできる。充填剤の代わりに、窒素などの不活性ガスを充填してもよい。また、乾燥剤を表示装置内に設置することによって、発光素子の水分による劣化を防止することができる。乾燥剤の設置場所は、封止基板側でも、素子を有する基板100側でもよく、シール材が形成される領域に基板に凹部を形成して設置してもよい。また、封止基板の駆動回路領域や配線領域など表示に寄与しない領域に対応する場所に設置すると、乾燥剤が不透明な物質であっても開口率を低下させることがない。充填剤に吸湿性の材料を含むように形成し、乾燥剤の機能を持たせても良い。以上により、発光素子を用いた表示機能を有する表示装置が完成する。
本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。また半導体をSASや結晶性半導体を用いて作製した場合、一導電型を付与する不純物の添加によって不純物領域を形成することもできる。この場合、半導体層は濃度の異なる不純物領域を有していてもよい。例えば、半導体層のチャネル領域近傍、ゲート電極層と積層する領域は、低濃度不純物領域とし、その外側の領域を高濃度不純物領域としてもよい。
本実施の形態は実施の形態1乃至3と適宜組み合わせることができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態5)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用いる発光表示装置について説明する。本実施の形態における表示装置の作製方法を、図15を用いて詳細に説明する。
絶縁表面を有する基板140の上に下地膜として、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)などにより窒化酸化珪素膜を用いて下地膜141aを10〜200nm(好ましくは50〜150nm)形成し、酸化窒化珪素膜を用いて下地膜141bを50〜200nm(好ましくは100〜150nm)積層する。又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。また、ポリビニルアルコール、ポリビニルブチラールなどのビニル樹脂、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いてもよい。また、ベンゾシクロブテン、パリレン、フッ化アリーレンエーテル、ポリイミドなどの有機材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いてもよい。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。本実施の形態では、プラズマCVD法を用いて下地膜141a、下地膜141bを形成する。基板140としてはガラス基板、石英基板やシリコン基板、金属基板、またはステンレス基板の表面に絶縁膜を形成したものを用いて良い。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよいし、フィルムのような可撓性基板を用いても良い。プラスチック基板としてはPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)からなる基板、可撓性基板としてはアクリル等の合成樹脂を用いることができる。本実施の形態で作製する表示装置は、基板140を通過させて発光素子よりの光を取り出す構成であるので、基板140は透光性を有する必要がある。
下地膜としては、酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素などを用いることができ、単層でも2層、3層といった積層構造でもよい。
次いで、下地膜上に半導体膜を形成する。半導体膜は25〜200nm(好ましくは30〜150nm)の厚さで各種手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜すればよい。本実施の形態では、非晶質半導体膜を、レーザ結晶化し、結晶性半導体膜とするものを用いるのが好ましい。
このようにして得られた半導体膜に対して、薄膜トランジスタのしきい値電圧を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。この不純物元素のドーピングは、結晶化工程の前の非晶質半導体膜に行ってもよい。非晶質半導体膜の状態で不純物元素をドーピングすると、その後の結晶化のための加熱処理によって、不純物の活性化も行うことができる。また、ドーピングの際に生じる欠陥等も改善することができる。
次に結晶性半導体膜を、所望な形状にエッチング加工し、半導体層を形成する。
エッチング加工は、プラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF、NFなどのフッ素系、又はCl、BClなどの塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
本発明において、配線層若しくは電極層を形成する導電層や、所定のパターンを形成するためのマスク層などを、液滴吐出法のような選択的にパターンを形成できる方法により形成してもよい。液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)は、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターン(導電層や絶縁層など)を形成することができる。この際、被形成領域にぬれ性や密着性を制御する処理を行ってもよい。また、パターンが転写(転置)、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、ディスペンサ法なども用いることができる。
半導体層を覆うゲート絶縁層を形成する。ゲート絶縁層はプラズマCVD法またはスパッタ法などを用い、厚さを10〜150nmとして珪素を含む絶縁膜で形成する。ゲート絶縁層としては、窒化珪素、酸化珪素、酸化窒化珪素、窒化酸化珪素に代表される珪素の酸化物材料又は窒化物材料等の材料で形成すればよく、積層でも単層でもよい。また、絶縁層は窒化珪素膜、酸化珪素膜、窒化珪素膜の3層の積層、酸化窒化珪素膜の単層、2層からなる積層でも良い。
次いで、ゲート絶縁層上にゲート電極層を形成する。ゲート電極層は、スパッタリング法、蒸着法、CVD法等の手法により形成することができる。ゲート電極層はタンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ネオジウム(Nd)から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、ゲート電極層としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、銀、鉛及び銅からなる合金を用いてもよい。また、ゲート電極層は単層でも積層でもよい。
本実施の形態ではゲート電極層をテーパー形状を有する様に形成するが、本発明はそれに限定されず、ゲート電極層を積層構造にして、一層のみがテーパー形状を有し、他方は異方性エッチングによって垂直な側面を有していてもよい。本実施の形態のように、テーパー角度も積層するゲート電極層間で異なっていても良いし、同一でもよい。テーパー形状を有することによって、その上に積層する膜の被覆性が向上し、欠陥が軽減されるので信頼性が向上する。
ゲート電極層を形成する際のエッチング工程によって、ゲート絶縁層は多少エッチングされ、膜厚が減る(いわゆる膜減り)ことがある。
半導体層に不純物元素を添加し、不純物領域を形成する。不純物領域は、その濃度を制御することにより高濃度不純物領域及び低濃度不純物領域とすることができる。低濃度不純物領域を有する薄膜トランジスタを、LDD(Light doped drain)構造と呼ぶ。また低濃度不純物領域は、ゲート電極と重なるように形成することができ、このような薄膜トランジスタを、GOLD(Gate Overlaped LDD)構造と呼ぶ。また薄膜トランジスタの極性は、不純物領域にリン(P)等を用いることによりn型とする。p型とする場合は、ボロン(B)等を添加すればよい。
本実施の形態では、不純物領域がゲート絶縁層を介してゲート電極層と重なる領域をLov領域と示し、不純物領域がゲート絶縁層を介してゲート電極層と重ならない領域をLoff領域と示す。図15(B)では、不純物領域においてハッチングと白地で示されているが、これは、白地部分に不純物元素が添加されていないということを示すのではなく、この領域の不純物元素の濃度分布がマスクやドーピング条件を反映していることを直感的に理解できるようにしたためである。なお、このことは本明細書の他の図面においても同様である。
不純物元素を活性化するために加熱処理、強光の照射、又はレーザ光の照射を行ってもよい。活性化と同時にゲート絶縁層へのプラズマダメージやゲート絶縁層と半導体層との界面へのプラズマダメージを回復することができる。
次いで、ゲート電極層、ゲート絶縁層を覆う第1の層間絶縁層を形成する。本実施の形態では、絶縁膜167と絶縁膜168との積層構造とする。絶縁膜167及び絶縁膜168は、スパッタ法、またはプラズマCVDを用いた窒化珪素膜、窒化酸化珪素膜、酸化窒化珪素膜、酸化珪素膜などを用いることができ、他の珪素を含む絶縁膜を単層または3層以上の積層構造として用いても良い。
さらに、窒素雰囲気中で、300〜550℃で1〜12時間の熱処理を行い、半導体層を水素化する工程を行う。好ましくは、400〜500℃で行う。この工程は層間絶縁層である絶縁膜167に含まれる水素により半導体層のダングリングボンドを終端する工程である。本実施の形態では、410度(℃)で加熱処理を行う。
絶縁膜167、絶縁膜168としては他に窒化アルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素、ポリシラザン、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサンを含む材料を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテンを用いることができる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
次いで、絶縁膜167、絶縁膜168、ゲート絶縁層に半導体層に達するコンタクトホール(開口)を形成する。
本実施の形態では、実施の形態1で示したようにレーザ光を用いて開口を形成する。絶縁膜167、絶縁膜168側よりレーザ光を選択的に半導体層のソース領域及びドレイン領域に照射し、照射されたエネルギーにより半導体層のソース領域及びドレイン領域の照射領域上の絶縁膜167、絶縁膜168、ゲート絶縁層は除去され、開口を形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射される半導体層の形状によって制御することができる。
半導体層のソース領域及びドレイン領域が露出された開口にソース電極層又はドレイン電極層を形成し、半導体層のソース領域及びドレイン領域とソース電極層又はドレイン電極層とは電気的に接続することができる。
ソース電極層又はドレイン電極層は、PVD法、CVD法、蒸着法等により導電膜を成膜した後、所望の形状に加工して形成することができる。また、液滴吐出法、印刷法、ディスペンサ法、電解メッキ法等により、所定の場所に選択的に導電層を形成することができる。更にはリフロー法、ダマシン法を用いても良い。ソース電極層又はドレイン電極層の材料は、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等の金属又はその合金、若しくはその金属窒化物を用いて形成する。また、これらの積層構造としても良い。
本実施の形態に示す表示装置を構成するゲート電極層、半導体層、ソース電極層、ドレイン電極層も実施の形態3で示すように、転置基板に導電性材料や半導体材料を用いた光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成することができる。よってフォトリソグラフィ工程を用いないために工程が簡略化し、材料のロスも防止できるため、低コスト化が達成できる。
以上の工程で周辺駆動回路領域204にLov領域にp型不純物領域を有するpチャネル型薄膜トランジスタである薄膜トランジスタ285、Lov領域にnチャネル型不純物領域を有するnチャネル型薄膜トランジスタである薄膜トランジスタ275を、画素領域206にLoff領域にn型不純物領域を有するマルチチャネル型のnチャネル型薄膜トランジスタである薄膜トランジスタ265、Lov領域にp型不純物領域を有するpチャネル型薄膜トランジスタである薄膜トランジスタ255を有するアクティブマトリクス基板を作製することができる。
本実施の形態に限定されず、薄膜トランジスタはチャネル形成領域が一つ形成されるシングルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
次に第2の層間絶縁層として絶縁膜181を形成する。図15において、スクライブによる切り離しのための切り離し領域201、FPCの貼り付け部である外部端子接続領域202、周辺部の引き回し配線領域である配線領域203、周辺駆動回路領域204、画素領域206である。配線領域203には配線179a、配線179bが設けられ、外部端子接続領域202には、外部端子と接続する端子電極層178が設けられている。
絶縁膜181としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素、窒化アルミニウム、窒素を含む酸化アルミニウム(酸化窒化アルミニウムともいう)、酸素を含む窒化アルミニウム(窒化酸化アルミニウムともいう)、酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜、PSG(リンガラス)、BPSG(リンボロンガラス)、アルミナ、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサン樹脂を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、ポリシラザン、低誘電率(Low−k)材料を用いることができる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。平坦化のために設ける層間絶縁層としては、耐熱性および絶縁性が高く、且つ、平坦化率の高いものが要求されるので、絶縁膜181の形成方法としては、スピンコート法で代表される塗布法を用いると好ましい。
絶縁膜181は、その他ディップ法、スプレー塗布、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター、CVD法、蒸着法等を採用することができる。液滴吐出法により絶縁膜181を形成してもよい。液滴吐出法を用いた場合には材料液を節約することができる。また、液滴吐出法のようにパターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、ディスペンサ法なども用いることができる。
画素領域206の絶縁膜181に微細な開口、つまりコンタクトホールを形成する。ソース電極層又はドレイン電極層は絶縁膜181に形成された開口で第1の電極層185と電気的に接続している。絶縁膜181に形成される開口を実施の形態1で示したようにレーザ光を照射することによって形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射されるソース電極層又はドレイン電極層の形状によって制御することができる。
本実施の形態は、ソース電極層又はドレイン電極層に比較的蒸発し易い低沸点金属(本実施の形態ではクロム)を用いる。絶縁膜181側よりレーザ光を選択的にソース電極層又はドレイン電極層に照射し、照射されたエネルギーによりソース電極層又はドレイン電極層の照射領域上の絶縁膜181は除去され、開口を形成することができる。ソース電極層又はドレイン電極層が露出された開口に第1の電極層185を形成し、ソース電極層又はドレイン電極層と第1の電極層185は電気的に接続することができる。
第1の電極層185は陽極、または陰極として機能し、チタン、ニッケル、タングステン、クロム、白金、亜鉛、錫、インジウムまたはモリブデンから選ばれた元素、または窒化チタン、窒化珪化チタン、珪化タングステン、窒化タングステン、窒化珪化タングステン、窒化ニオブなどの前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜800nmの範囲で用いればよい。
本実施の形態では、表示素子として発光素子を用い、発光素子からの光を第1の電極層185側から取り出す構造のため、第1の電極層185が透光性を有する。第1の電極層185として、透明導電膜を形成し、所望の形状にエッチングすることで第1の電極層185を形成する。
本発明においては、透光性電極層である第1の電極層185に、具体的には透光性を有する導電性材料からなる透明導電膜を用いればよく、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。勿論、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)なども用いることができる。
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第1の電極層185から光を放射することが可能となる。また、第1の電極層185に用いることのできる金属薄膜としては、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウム、およびそれらの合金からなる導電膜などを用いることができる。
第1の電極層185は、蒸着法、スパッタ法、CVD法、印刷法、ディスペンサ法または液滴吐出法などを用いて形成することができる。本実施の形態では、第1の電極層185として、酸化タングステンを含むインジウム亜鉛酸化物を用いてスパッタリング法によって作製する。第1の電極層185は、好ましくは総膜厚100nm〜800nmの範囲で用いればよい。第1の電極層185も実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。
第1の電極層185は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層185の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
第1の電極層185を形成後、加熱処理を行ってもよい。この加熱処理により、第1の電極層185中に含まれる水分は放出される。よって、第1の電極層185は脱ガスなどを生じないため、第1の電極層上に水分によって劣化しやすい発光材料を形成しても、発光材料は劣化せず、信頼性の高い表示装置を作製することができる。
次に、第1の電極層185の端部、ソース電極層又はドレイン電極層を覆う絶縁層186(隔壁、障壁などと呼ばれる)を形成する。
絶縁層186としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素などを用いることができ、単層でも2層、3層といった積層構造でもよい。また、絶縁層186の他の材料として、窒化アルミニウム、酸素含有量が窒素含有量よりも多い酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素、ポリシラザン、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。シロキサンを含む材料を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、ポリシラザンを用いることができる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
絶縁層186は、スパッタリング法、PVD法(Physical Vapor Deposition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD法(Chemical Vapor Deposition)、また、選択的にパターンを形成できる液滴吐出法や、パターンが転写または描写できる印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、ディスペンサ法、その他スピンコート法などの塗布法、ディッピング法などを用いることもできる。
所望の形状に加工するエッチング加工は、プラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良い。大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF、NFなどのフッ素系のガス、又はCl、BClなどの塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
図15(A)に示す接続領域205において、第2の電極層と同工程、同材料で形成される配線層はゲート電極層と同工程、同材料で形成される配線層と電気的に接続する。
第1の電極層185の上には発光層188が形成される。なお、図15では一画素しか図示していないが、本実施の形態ではR(赤)、G(緑)、B(青)の各色に対応した電界電極層を作り分けている。
次に、発光層188の上に導電膜からなる第2の電極層189が設けられる。第2の電極層189としては、Al、Ag、Li、Ca、またはこれらの合金や化合物MgAg、MgIn、AlLi、CaF、または窒化カルシウムを用いればよい。こうして第1の電極層185、発光層188及び第2の電極層189からなる発光素子190が形成される(図15(B)参照。)。
図15に示した本実施の形態の表示装置において、発光素子190から発した光は、第1の電極層185側から、図15(B)中の矢印の方向に透過して射出される。
本実施の形態では、第2の電極層189上にパッシベーション膜(保護膜)として絶縁層を設けてもよい。このように第2の電極層189を覆うようにしてパッシベーション膜を設けることは有効である。パッシベーション膜としては、窒化珪素、酸化珪素、酸化窒化珪素、窒化酸化珪素、窒化アルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。又はシロキサン樹脂を用いてもよい。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層188の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH、C、Cなど)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてCガスとNガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、発光層188の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層188が酸化するといった問題を防止できる。
このように発光素子190が形成された基板140と、封止基板195とをシール材192によって固着し、発光素子を封止する(図15参照。)。シール材192としては、代表的には可視光硬化性、紫外線硬化性または熱硬化性の樹脂を用いるのが好ましい。例えば、ビスフェノールA型液状樹脂、ビスフェノールA型固形樹脂、含ブロムエポキシ樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、フェノール型樹脂、クレゾール型樹脂、ノボラック型樹脂、環状脂肪族エポキシ樹脂、エピビス型エポキシ樹脂、グリシジルエステル樹脂、グリジシルアミン系樹脂、複素環式エポキシ樹脂、変性エポキシ樹脂等のエポキシ樹脂を用いることができる。なお、シール材で囲まれた領域には充填材193を充填してもよく、窒素雰囲気下で封止することによって、窒素等を封入してもよい。本実施の形態は、下面射出型のため、充填材193は透光性を有する必要はないが、充填材193を透過して光を取り出す構造の場合は、透光性を有する必要がある。代表的には可視光硬化、紫外線硬化または熱硬化のエポキシ樹脂を用いればよい。以上の工程において、本実施の形態における、発光素子を用いた表示機能を有する表示装置が完成する。また充填材は、液状の状態で滴下し、表示装置内に充填することもできる。充填剤として、乾燥剤などの吸湿性を含む物質を用いると、さらなる吸水効果が得られ、素子の劣化を防ぐことができる。
EL表示パネル内には素子の水分による劣化を防ぐため、乾燥剤が設置される。本実施の形態では、乾燥剤は、画素領域を取り囲むように封止基板に形成された凹部に設置され、薄型化を妨げない構成とする。また、ゲート配線層に対応する領域にも乾燥剤を形成し、吸水面積を広く取ると、吸水効果が高い。また、直接発光しないゲート配線層上に乾燥剤を形成すると、光取り出し効率を低下させることもない。
なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
また、ソース電極層又はドレイン電極層と第1の電極層が直接接して電気的な接続を行わず、配線層を介して接続いてもよい。
本実施の形態では、外部端子接続領域202において、端子電極層178に異方性導電層196によってFPC194を接続し、外部と電気的に接続する構造とする。また表示装置の上面図である図15(A)で示すように、本実施の形態において作製される表示装置は信号線駆動回路を有する周辺駆動回路領域204、周辺駆動回路領域209のほかに、走査線駆動回路を有する周辺駆動回路領域207、周辺駆動回路領域208が設けられている。
本実施の形態では、上記のような回路で形成するが、本発明はこれに限定されず、周辺駆動回路としてICチップを前述したCOG方式やTAB方式によって実装したものでもよい。また、ゲート線駆動回路、ソース線駆動回路は複数であっても単数であっても良い。
また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
本実施の形態は実施の形態1乃至3と適宜組み合わせることができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態6)
本発明を適用して薄膜トランジスタを形成し、該薄膜トランジスタを用いて表示装置を形成することができるが、発光素子を用いて、なおかつ、該発光素子を駆動するトランジスタとしてnチャネル型トランジスタを用いた場合、該発光素子から発せられる光は、下方放射、上方放射、両方放射のいずれかを行う。ここでは、それぞれの場合に応じた発光素子の積層構造について、図17を用いて説明する。
また、本実施の形態では、本発明を適用したチャネル保護型の薄膜トランジスタ461、471、481を用いる。薄膜トランジスタ481は、透光性を有する基板480上に設けられ、ゲート電極層493、ゲート絶縁膜497、半導体層494、n型を有する半導体層495a、n型を有する半導体層495b、ソース電極層又はドレイン電極層487a、ソース電極層又はドレイン電極層487b、チャネル保護層496、絶縁層499、配線層498により形成される。ゲート電極層、半導体層、ソース電極層、ドレイン電極層などは実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。工程が簡略化し、材料のロスも防止できるため、低コスト化が達成できる。
本実施の形態で示す図17(A)乃至(C)において、絶縁層499にソース電極層又はドレイン電極層487bに達するコンタクトホール(開口)を形成する。
本実施の形態では、実施の形態1で示したようにレーザ光を用いて開口を形成する。絶縁層499側よりレーザ光を選択的にソース電極層又はドレイン電極層487bに照射し、照射されたエネルギーによりソース電極層又はドレイン電極層487bの照射領域上の絶縁層499は除去され、開口を形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射されるソース電極層又はドレイン電極層487bの形状によって制御することができる。
ソース電極層又はドレイン電極層487bが露出された開口に配線層498を形成し、ソース電極層又はドレイン電極層487bと配線層498とは電気的に接続することができる。配線層498は発光素子の第1の電極層484と接続されるため、配線層498を介して薄膜トランジスタ481と発光素子とが電気的接続される。
本実施の形態では、半導体層として非晶質半導体層を用いる。しかし本実施の形態に限定されず、半導体層として結晶性半導体層を用い、一導電型の半導体層としてn型を有する半導体層を用いることもできる。n型を有する半導体層を形成するかわりに、PHガスによるプラズマ処理を行うことによって、半導体層に導電性を付与してもよい。ポリシリコンのような結晶性半導体層を用いる場合、一導電型の半導体層を形成せず、結晶性半導体層に不純物を導入(添加)して一導電型を有する不純物領域を形成してもよい。また、ペンタセンなどの有機半導体を用いることもでき、有機半導体を液滴吐出法などによって選択的に形成すると、加工工程を簡略化することができる。
半導体層として結晶性半導体層を用いる場合を説明する。まず、非晶質半導体層を結晶化し、結晶性半導体層を形成する。結晶化工程で、非晶質半導体層に結晶化を促進する元素(触媒元素、金属元素とも示す)を添加し、熱処理(550℃〜750℃で3分〜24時間)により結晶化を行う。結晶化を助長する元素としては、この珪素の結晶化を助長する金属元素としては鉄(Fe)、ニッケル(Ni)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミニウム(Os)、イリジウム(Ir)、白金(Pt)、銅(Cu)及び金(Au)から選ばれた一種又は複数種類を用いることができる。
結晶化を促進する元素を結晶性半導体層から除去、又は軽減するため、結晶性半導体層に接して、不純物元素を含む半導体層を形成し、ゲッタリングシンクとして機能させる。不純物元素としては、n型を付与する不純物元素、p型を付与する不純物元素や希ガス元素などを用いることができ、例えばリン(P)、窒素(N)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、ボロン(B)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、Kr(クリプトン)、Xe(キセノン)から選ばれた一種または複数種を用いることができる。結晶化を促進する元素を含む結晶性半導体層に、n型を有する半導体層を形成し、熱処理(550℃〜750℃で3分〜24時間)を行う。結晶性半導体層中に含まれる結晶化を促進する元素は、n型を有する半導体層中に移動し、結晶性半導体層中の結晶化を促進する元素は除去、又は軽減され、半導体層が形成される。一方n型を有する半導体層は、結晶性を促進する元素である金属元素を含む、n型を有する半導体層となり、その後所望の形状に加工されてn型を有する半導体層となる。このようにn型を有する半導体層は、半導体層のゲッタリングシンクとしても機能し、そのままソース領域及びドレイン領域としても機能する。
半導体層の結晶化工程とゲッタリング工程を複数の加熱処理により行ってもよく、結晶化工程とゲッタリング工程を一度の加熱処理により行うこともできる。この場合は、非晶質半導体層を形成し、結晶化を促進する元素を添加し、ゲッタリングシンクとなる半導体層を形成した後、加熱処理を行えばよい。
本実施の形態では、ゲート絶縁層を複数層の積層で形成し、ゲート絶縁膜497としてゲート電極層493側から窒化酸化珪素膜、酸化窒化珪素膜を形成し、2層の積層構造とする。積層される絶縁層は、同チャンバー内で真空を破らずに同一温度下で、反応ガスを切り変えながら連続的に形成するとよい。真空を破らずに連続的に形成すると、積層する膜同士の界面が汚染されるのを防ぐことができる。
チャネル保護層496は、液滴吐出法を用いてポリイミド又はポリビニルアルコール等を滴下してもよい。その結果、露光工程を省略することができる。チャネル保護層としては、無機材料(酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素など)、感光性または非感光性の有機材料(有機樹脂材料)(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト、ベンゾシクロブテンなど)、低誘電率材料などの一種、もしくは複数種からなる膜、またはこれらの膜の積層などを用いることができる。また、シロキサン材料を用いてもよい。作製法としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることができる。また、液滴吐出法や、ディスペンサ法、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)を用いることもできる。塗布法で得られるSOG膜なども用いることができる。
まず、基板480側に放射する場合、つまり下方放射を行う場合について、図17(A)を用いて説明する。この場合、薄膜トランジスタ481に電気的に接続するように、ソース電極層又はドレイン電極層487bに接して、配線層498、第1の電極層484、電界発光層485、第2の電極層486が順に積層される。光が透過する基板480は少なくとも可視領域の光に対して透光性を有する必要がある。
次に、基板460と反対側に放射する場合、つまり上方放射を行う場合について、図17(B)を用いて説明する。薄膜トランジスタ461は、前述した薄膜トランジスタ481の同様に形成することができる。薄膜トランジスタ461に電気的に接続するソース電極層又はドレイン電極層462が第1の電極層463と接し、電気的に接続する。第1の電極層463、電界発光層464、第2の電極層465が順に積層される。ソース電極層又はドレイン電極層462は反射性を有する金属層であり、発光素子から放射される光を矢印の上面に反射する。ソース電極層又はドレイン電極層462は第1の電極層463と積層する構造となっているので、第1の電極層463に透光性の材料を用いて、光が透過しても、該光はソース電極層又はドレイン電極層462において反射され、基板460と反対側に放射する。もちろん第1の電極層463を、反射性を有する金属膜を用いて形成してもよい。発光素子から放出する光は第2の電極層465を透過して放出されるので、第2の電極層465は、少なくとも可視領域において透光性を有する材料で形成する。
最後に、光が基板470側とその反対側の両側に放射する場合、つまり両方放射を行う場合について、図17(C)を用いて説明する。薄膜トランジスタ471もチャネル保護型の薄膜トランジスタである。薄膜トランジスタ471の半導体層に電気的に接続するソース電極層又はドレイン電極層に配線層475、第1の電極層472が電気的に接続している。第1の電極層472、電界発光層473、第2の電極層474が順に積層される。このとき、第1の電極層472と第2の電極層474のどちらも少なくとも可視領域において透光性を有する材料、又は光を透過できる厚さで形成すると、両方放射が実現する。この場合、光が透過する絶縁層や基板470も少なくとも可視領域の光に対して透光性を有する必要がある。
本実施の形態は、実施の形態1乃至5とそれぞれ自由に組み合わせることが可能である。
本発明により、表示装置を構成する配線等の構成物を、所望の形状で形成できる。また複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態7)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用いる発光表示装置について説明する。
本実施の形態では、本発明の表示装置の表示素子として適用することのできる発光素子の構成を、図22を用いて説明する。
図22は発光素子の素子構造であり、第1の電極層870と第2の電極層850との間に、有機化合物と無機化合物を混合してなる電界発光層860が挟持されている発光素子である。電界発光層860は、図示した通り、第1の層804、第2の層803、第3の層802から構成されている。
まず、第1の層804は、第2の層803にホールを輸送する機能を担う層であり、少なくとも第1の有機化合物と、第1の有機化合物に対して電子受容性を示す第1の無機化合物とを含む構成である。重要なのは、単に第1の有機化合物と第1の無機化合物が混ざり合っているのではなく、第1の無機化合物が第1の有機化合物に対して電子受容性を示す点である。このような構成とすることで、本来内在的なキャリアをほとんど有さない第1の有機化合物に多くのホールキャリアが発生し、極めて優れたホール注入性及びホール輸送性を示す。
したがって第1の層804は、無機化合物を混合することによって得られると考えられている効果(耐熱性の向上など)だけでなく、優れた導電性(第1の層804においては特に、ホール注入性および輸送性)をも得ることができる。このことは、互いに電子的な相互作用を及ぼさない有機化合物と無機化合物を単に混合した従来のホール輸送層では、得られない効果である。この効果により、従来よりも駆動電圧を低くすることができる。また、駆動電圧の上昇を招くことなく第1の層804を厚くすることができるため、ゴミ等に起因する素子の短絡も抑制することができる。
ところで、上述したように、第1の有機化合物にはホールキャリアが発生するため、第1の有機化合物としてはホール輸送性の有機化合物が好ましい。ホール輸送性の有機化合物としては、例えば、フタロシアニン(略称:HPc)、銅フタロシアニン(略称:CuPc)、バナジルフタロシアニン(略称:VOPc)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、1,3,5−トリス[N,N−ジ(m−トリル)アミノ]ベンゼン(略称:m−MTDAB)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、4,4’−ビス{N−[4−ジ(m−トリル)アミノ]フェニル−N−フェニルアミノ}ビフェニル(略称:DNTPD)、4,4’,4’’−トリス(N−カルバゾリル)トリフェニルアミン(略称:TCTA)などが挙げられるが、これらに限定されることはない。また、上述した化合物の中でも、TDATA、MTDATA、m−MTDAB、TPD、NPB、DNTPD、TCTAなどに代表される芳香族アミン化合物は、ホールキャリアを発生しやすく、第1の有機化合物として好適な化合物群である。
一方、第1の無機化合物は、第1の有機化合物から電子を受け取りやすいものであれば何であってもよく、種々の金属酸化物または金属窒化物が可能であるが、周期表第4族乃至第12族のいずれかの遷移金属酸化物が電子受容性を示しやすく好適である。具体的には、酸化チタン、酸化ジルコニウム、酸化バナジウム、酸化モリブデン、酸化タングステン、酸化レニウム、酸化ルテニウム、酸化亜鉛などが挙げられる。また、上述した金属酸化物の中でも、周期表第4族乃至第8族のいずれかの遷移金属酸化物は電子受容性の高いものが多く、好ましい一群である。特に酸化バナジウム、酸化モリブデン、酸化タングステン、酸化レニウムは真空蒸着が可能で扱いやすいため、好適である。
なお、第1の層804は、上述した有機化合物と無機化合物の組み合わせを適用した層を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物をさらに含んでいてもよい。
次に、第3の層802について説明する。第3の層802は、第2の層803に電子を輸送する機能を担う層であり、少なくとも第3の有機化合物と、第3の有機化合物に対して電子供与性を示す第3の無機化合物とを含む構成である。重要なのは、単に第3の有機化合物と第3の無機化合物が混ざり合っているのではなく、第3の無機化合物が第3の有機化合物に対して電子供与性を示す点である。このような構成とすることで、本来内在的なキャリアをほとんど有さない第3の有機化合物に多くの電子キャリアが発生し、極めて優れた電子注入性及び電子輸送性を示す。
したがって第3の層802は、無機化合物を混合することによって得られると考えられている効果(耐熱性の向上など)だけでなく、優れた導電性(第3の層802においては特に、電子注入性および輸送性)をも得ることができる。このことは、互いに電子的な相互作用を及ぼさない有機化合物と無機化合物を単に混合した従来の電子輸送層では、得られない効果である。この効果により、従来よりも駆動電圧を低くすることができる。また、駆動電圧の上昇を招くことなく第3の層802を厚くすることができるため、ゴミ等に起因する素子の短絡も抑制することができる。
ところで、上述したように、第3の有機化合物には電子キャリアが発生するため、第3の有機化合物としては電子輸送性の有機化合物が好ましい。電子輸送性の有機化合物としては、例えば、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(略称:BAlq)、ビス[2−(2’−ヒドロキシフェニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX))、ビス[2−(2’−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、2,2’,2’’−(1,3,5−ベンゼントリイル)−トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−ビフェニリル)−4−(4−エチルフェニル)−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:p−EtTAZ)などが挙げられるが、これらに限定されることはない。また、上述した化合物の中でも、Alq、Almq、BeBq、BAlq、Zn(BOX)、Zn(BTZ)などに代表される芳香環を含むキレート配位子を有するキレート金属錯体や、BPhen、BCPなどに代表されるフェナントロリン骨格を有する有機化合物や、PBD、OXD−7などに代表されるオキサジアゾール骨格を有する有機化合物は、電子キャリアを発生しやすく、第3の有機化合物として好適な化合物群である。
一方、第3の無機化合物は、第3の有機化合物に電子を与えやすいものであれば何であってもよく、種々の金属酸化物または金属窒化物が可能であるが、アルカリ金属酸化物、アルカリ土類金属酸化物、希土類金属酸化物、アルカリ金属窒化物、アルカリ土類金属窒化物、希土類金属窒化物が電子供与性を示しやすく好適である。具体的には、酸化リチウム、酸化ストロンチウム、酸化バリウム、酸化エルビウム、窒化リチウム、窒化マグネシウム、窒化カルシウム、窒化イットリウム、窒化ランタンなどが挙げられる。特に酸化リチウム、酸化バリウム、窒化リチウム、窒化マグネシウム、窒化カルシウムは真空蒸着が可能で扱いやすいため、好適である。
なお、第3の層802は、上述した有機化合物と無機化合物の組み合わせを適用した層を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物をさらに含んでいてもよい。
次に、第2の層803について説明する。第2の層803は発光機能を担う層であり、発光性の第2の有機化合物を含む。また、第2の無機化合物を含む構成であってもよい。第2の層803は、種々の発光性の有機化合物、無機化合物を用いて形成することができる。ただし、第2の層803は、第1の層804や第3の層802に比べて電流が流れにくいと考えられるため、その膜厚は10nm〜100nm程度が好ましい。
第2の有機化合物としては、発光性の有機化合物であれば特に限定されることはなく、例えば、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジ(2−ナフチル)−2−tert−ブチルアントラセン(略称:t−BuDNA)、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、クマリン30、クマリン6、クマリン545、クマリン545T、ペリレン、ルブレン、ペリフランテン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、9,10−ジフェニルアントラセン(略称:DPA)、5,12−ジフェニルテトラセン、4−(ジシアノメチレン)−2−メチル−[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6−[2−(ジュロリジン−9−イル)エテニル]−4H−ピラン(略称:DCM2)、4−(ジシアノメチレン)−2,6−ビス[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:BisDCM)等が挙げられる。また、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(ピコリナート)(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(ピコリナート)(略称:Ir(CFppy)(pic))、トリス(2−フェニルピリジナト−N,C2’)イリジウム(略称:Ir(ppy))、ビス(2−フェニルピリジナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(ppy)(acac))、ビス[2−(2’−チエニル)ピリジナト−N,C3’]イリジウム(アセチルアセトナート)(略称:Ir(thp)(acac))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(pq)(acac))、ビス[2−(2’−ベンゾチエニル)ピリジナト−N,C3’]イリジウム(アセチルアセトナート)(略称:Ir(btp)(acac))などの燐光を放出できる化合物用いることもできる。
第2の層803を一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。
また、第2の層803においては、上述した発光を示す第2の有機化合物だけでなく、さらに他の有機化合物が添加されていてもよい。添加できる有機化合物としては、例えば、先に述べたTDATA、MTDATA、m−MTDAB、TPD、NPB、DNTPD、TCTA、Alq、Almq、BeBq、BAlq、Zn(BOX)、Zn(BTZ)、BPhen、BCP、PBD、OXD−7、TPBI、TAZ、p−EtTAZ、DNA、t−BuDNA、DPVBiなどの他、4,4’−ビス(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)などを用いることができるが、これらに限定されることはない。なお、このように第2の有機化合物以外に添加する有機化合物は、第2の有機化合物を効率良く発光させるため、第2の有機化合物の励起エネルギーよりも大きい励起エネルギーを有し、かつ第2の有機化合物よりも多く添加されていることが好ましい(それにより、第2の有機化合物の濃度消光を防ぐことができる)。あるいはまた、他の機能として、第2の有機化合物と共に発光を示してもよい(それにより、白色発光なども可能となる)。
第2の層803は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルターを設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図ることができる。フィルターを設けることで、従来必要であるとされていた円偏光板などを省略することが可能となり、発光層から放射される光の損失を無くすことができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができる。
第2の層803で用いることのできる材料は低分子系有機発光材料でも高分子系有機発光材料でもよい。高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の電界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系が挙げられる。
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン)[PPV]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン)[RO−PPV]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
前記第2の無機化合物としては、第2の有機化合物の発光を消光しにくい無機化合物であれば何であってもよく、種々の金属酸化物や金属窒化物を用いることができる。特に、周期表第13族または第14族の金属酸化物は、第2の有機化合物の発光を消光しにくいため好ましく、具体的には酸化アルミニウム、酸化ガリウム、酸化ケイ素、酸化ゲルマニウムが好適である。ただし、これらに限定されることはない。
なお、第2の層803は、上述した有機化合物と無機化合物の組み合わせを適用した層を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物をさらに含んでいてもよい。発光層の層構造は変化しうるものであり、特定の電子注入領域や発光領域を備えていない代わりに、電子注入用の電極層を備えたり、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲において許容されうるものである。
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光表示装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。
よって、封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は、蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークが鋭いピークになるように補正できるからである。
単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば封止基板に形成し、素子基板へ張り合わせればよい。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
第1の電極層870及び第2の電極層850は仕事関数を考慮して材料を選択する必要があり、そして第1の電極層870及び第2の電極層850は、画素構成によりいずれも陽極、又は陰極となりうる。駆動用薄膜トランジスタの極性がpチャネル型である場合、図22(A)のように第1の電極層870を陽極、第2の電極層850を陰極とするとよい。また、駆動用薄膜トランジスタの極性がnチャネル型である場合、図22(B)のように、第1の電極層870を陰極、第2の電極層850を陽極とすると好ましい。第1の電極層870および第2の電極層850に用いることのできる材料について述べる。第1の電極層870、第2の電極層850が陽極として機能する場合は仕事関数の大きい材料(具体的には4.5eV以上の材料)が好ましく、第1の電極層、第2の電極層850が陰極として機能する場合は仕事関数の小さい材料(具体的には3.5eV以下の材料)が好ましい。しかしながら、第1の層804のホール注入、ホール輸送特性や、第3の層802の電子注入性、電子輸送特性が優れているため、第1の電極層870、第2の電極層850共に、ほとんど仕事関数の制限を受けることなく、種々の材料を用いることができる。
図22(A)、(B)における発光素子は、第1の電極層870より光を取り出す構造のため、第2の電極層850は、必ずしも光透光性を有する必要はない。第2の電極層850としては、チタン、ニッケル、タングステン、クロム、白金、亜鉛、錫、インジウム、タンタル、アルミニウム、銅、金、銀、マグネシウム、カルシウム、リチウムまたはモリブデンから選ばれた元素、または窒化チタン、窒化珪化チタン、珪化タングステン、窒化タングステン、窒化珪化タングステン、窒化ニオブなどの前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜800nmの範囲で用いればよい。
また、第1の電極層870および第2の電極層850に関しても同様に、抵抗加熱による蒸着法、EB蒸着法、スパッタリング法、CVD法、印刷法、ディスペンサ法または液滴吐出法などの湿式法などを用いて形成することができる。また、第1の電極層870および第2の電極層850も実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。
また、第2の電極層850に第1の電極層870で用いる材料のような透光性を有する導電性材料を用いると、第2の電極層850からも光を取り出す構造となり、発光素子から放射される光は、第1の電極層870と第2の電極層850との両方より放射される両面放射構造とすることができる。
なお、第1の電極層870や第2の電極層850の種類を変えることで、本発明の発光素子は様々なバリエーションを有する。
図22(B)は、電界発光層860が、第1の電極層870側から第3の層802、第2の層803、第1の層804の順で構成されているケースである。
図22(C)は、図22(A)において、第1の電極層870に反射性を有する電極層を用い、第2の電極層850に透光性を有する電極層を用いており、発光素子より放射された光は第1の電極層870で反射され、第2の電極層850を透過して放射される。同様に図22(D)は、図22(B)において、第1の電極層870に反射性を有する電極層を用い、第2の電極層850に透光性を有する電極層を用いており、発光素子より放射された光は第1の電極層870で反射され、第2の電極層850を透過して放射される。
以上で述べたように、本発明の発光素子は、第1の電極層870と第2の電極層850との間に挟持された層が、有機化合物と無機化合物が複合された層を含む電界発光層860から成っている。そして、有機化合物と無機化合物を混合することにより、それぞれ単独では得られない高いキャリア注入性、キャリア輸送性という機能が得られる層(すなわち、第1の層804および第3の層802)が設けられている有機及び無機複合型の発光素子である。また、上記第1の層804、第3の層802は、第1の電極層870側に設けられる場合、特に有機化合物と無機化合物が複合された層である必要があり、第2の電極層850側に設けられる場合、有機化合物、無機化合物のみであってもよい。
なお、電界発光層860は有機化合物と無機化合物が混合された層であるが、その形成方法としては種々の手法を用いることができる。例えば、有機化合物と無機化合物の両方を抵抗加熱により蒸発させ、共蒸着する手法が挙げられる。その他、有機化合物を抵抗加熱により蒸発させる一方で、無機化合物をエレクトロンビーム(EB)により蒸発させ、共蒸着してもよい。また、有機化合物を抵抗加熱により蒸発させると同時に、無機化合物をスパッタリングし、両方を同時に堆積する手法も挙げられる。その他、湿式法により成膜してもよい。
本実施の形態は、上記の発光素子を有する表示装置についての実施の形態と自由に組み合わせることが可能である。本実施の形態は、上記の実施の形態1乃至5それぞれと適宜自由に組み合わせることができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態8)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用いる発光表示装置について説明する。本実施の形態では、本発明の表示装置の表示素子として適用することのできる発光素子の構成を、図23及び図24を用いて説明する。
エレクトロルミネセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。前者は、発光材料の粒子をバインダ中に分散させた電界発光層を有し、後者は、発光材料の薄膜からなる電界発光層を有している点に違いはあるが、高電界で加速された電子を必要とする点では共通である。なお、得られる発光のメカニズムとしては、ドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光と、金属イオンの内殻電子遷移を利用する局在型発光とがある。一般的に、分散型無機ELではドナー−アクセプター再結合型発光、薄膜型無機EL素子では局在型発光である場合が多い。
本発明で用いることのできる発光材料は、母体材料と発光中心となる不純物元素とで構成される。含有させる不純物元素を変化させることで、様々な色の発光を得ることができる。発光材料の作製方法としては、固相法や液相法(共沈法)などの様々な方法を用いることができる。また、噴霧熱分解法、複分解法、プレカーサーの熱分解反応による方法、逆ミセル法やこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法などの液相法なども用いることができる。
固相法は、母体材料と、不純物元素又は不純物元素を含む化合物を秤量し、乳鉢で混合、電気炉で加熱、焼成を行い反応させ、母体材料に不純物元素を含有させる方法である。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。比較的高温での焼成を必要とするが、簡単な方法であるため、生産性がよく大量生産に適している。
液相法(共沈法)は、母体材料又は母体材料を含む化合物と、不純物元素又は不純物元素を含む化合物を溶液中で反応させ、乾燥させた後、焼成を行う方法である。発光材料の粒子が均一に分布し、粒径が小さく低い焼成温度でも反応が進むことができる。
発光材料に用いる母体材料としては、硫化物、酸化物、窒化物を用いることができる。硫化物としては、例えば、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化カルシウム(CaS)、硫化イットリウム(Y)、硫化ガリウム(Ga)、硫化ストロンチウム(SrS)、硫化バリウム(BaS)等を用いることができる。また、酸化物としては、例えば、酸化亜鉛(ZnO)、酸化イットリウム(Y)等を用いることができる。また、窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)等を用いることができる。さらに、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)等も用いることができ、硫化カルシウム−ガリウム(CaGa)、硫化ストロンチウム−ガリウム(SrGa)、硫化バリウム−ガリウム(BaGa)、等の3元系の混晶であってもよい。
局在型発光の発光中心として、マンガン(Mn)、銅(Cu)、サマリウム(Sm)、テルビウム(Tb)、エルビウム(Er)、ツリウム(Tm)、ユーロピウム(Eu)、セリウム(Ce)、プラセオジウム(Pr)などを用いることができる。なお、フッ素(F)、塩素(Cl)などのハロゲン元素が添加されていてもよい。ハロゲン元素は電荷補償として機能することもできる。
一方、ドナー−アクセプター再結合型発光の発光中心として、ドナー準位を形成する第1の不純物元素及びアクセプター準位を形成する第2の不純物元素を含む発光材料を用いることができる。第1の不純物元素は、例えば、フッ素(F)、塩素(Cl)、アルミニウム(Al)等を用いることができる。第2の不純物元素としては、例えば、銅(Cu)、銀(Ag)等を用いることができる。
ドナー−アクセプター再結合型発光の発光材料を固相法を用いて合成する場合、母体材料と、第1の不純物元素又は第1の不純物元素を含む化合物と、第2の不純物元素又は第2の不純物元素を含む化合物をそれぞれ秤量し、乳鉢で混合した後、電気炉で加熱、焼成を行う。母体材料としては、上述した母体材料を用いることができ、第1の不純物元素又は第1の不純物元素を含む化合物としては、例えば、フッ素(F)、塩素(Cl)、硫化アルミニウム(Al)等を用いることができ、第2の不純物元素又は第2の不純物元素を含む化合物としては、例えば、銅(Cu)、銀(Ag)、硫化銅(CuS)、硫化銀(AgS)等を用いることができる。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。
また、固相反応を利用する場合の不純物元素として、第1の不純物元素と第2の不純物元素で構成される化合物を組み合わせて用いてもよい。この場合、不純物元素が拡散されやすく、固相反応が進みやすくなるため、均一な発光材料を得ることができる。さらに、余分な不純物元素が入らないため、純度の高い発光材料が得ることができる。第1の不純物元素と第2の不純物元素で構成される化合物としては、例えば、塩化銅(CuCl)、塩化銀(AgCl)等を用いることができる。
なお、これらの不純物元素の濃度は、母体材料に対して0.01〜10atom%であればよく、好ましくは0.05〜5atom%の範囲である。
薄膜型無機ELの場合、電界発光層は、上記発光材料を含む層であり、抵抗加熱蒸着法、電子ビーム蒸着(EB蒸着)法等の真空蒸着法、スパッタリング法等の物理気相成長法(PVD)、有機金属CVD法、ハイドライド輸送減圧CVD法等の化学気相成長法(CVD)、原子層エピタキシ法(ALE)等を用いて形成することができる。
図23(A)乃至(C)に発光素子として用いることのできる薄膜型無機EL素子の一例を示す。図23(A)乃至(C)において、発光素子は、第1の電極層50、電界発光層52、第2の電極層53を含む。
図23(B)及び図23(C)に示す発光素子は、図23(A)の発光素子において、電極層と電界発光層間に絶縁層を設ける構造である。図23(B)に示す発光素子は、第1の電極層50と電界発光層52との間に絶縁層54を有し、図23(C)に示す発光素子は、第1の電極層50と電界発光層52との間に絶縁層54a、第2の電極層53と電界発光層52との間に絶縁層54bとを有している。このように絶縁層は電界発光層を挟持する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また絶縁層は単層でもよいし複数層からなる積層でもよい。
また、図23(B)では第1の電極層50に接するように絶縁層54が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層53に接するように絶縁層54を設けてもよい。
分散型無機EL素子の場合、粒子状の発光材料をバインダ中に分散させ膜状の電界発光層を形成する。発光材料の作製方法によって、十分に所望の大きさの粒子が得られない場合は、乳鉢等で粉砕などによって粒子状に加工すればよい。バインダとは、粒状の発光材料を分散した状態で固定し、電界発光層としての形状に保持するための物質である。発光材料は、バインダによって電界発光層中に均一に分散し固定される。
分散型無機EL素子の場合、電界発光層の形成方法は、選択的に電界発光層を形成できる液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷など)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。膜厚は特に限定されることはないが、好ましくは、10〜1000nmの範囲である。また、発光材料及びバインダを含む電界発光層において、発光材料の割合は50wt%以上80wt%以下とするよい。
図24(A)乃至(C)に発光素子として用いることのできる分散型無機EL素子の一例を示す。図24(A)における発光素子は、第1の電極層60、電界発光層62、第2の電極層63の積層構造を有し、電界発光層62中にバインダによって保持された発光材料61を含む。
また、第1の電極層50、60、第2の電極層53、63も実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。
本実施の形態に用いることのできるバインダとしては、絶縁材料を用いることができ、有機材料や無機材料を用いることができ、有機材料及び無機材料の混合材料を用いてもよい。有機絶縁材料としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。また、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、ポリビニルアルコール、ポリビニルブチラールなどのビニル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂、オキサゾール樹脂(ポリベンゾオキサゾール)等の樹脂材料を用いてもよい。これらの樹脂に、チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(SrTiO)などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。
バインダに含まれる無機絶縁材料としては、酸化珪素(SiOx)、窒化珪素(SiNx)、酸素及び窒素を含む珪素、窒化アルミニウム(AlN)、酸素及び窒素を含むアルミニウムまたは酸化アルミニウム(Al)、酸化チタン(TiO)、BaTiO、SrTiO、チタン酸鉛(PbTiO)、ニオブ酸カリウム(KNbO)、ニオブ酸鉛(PbNbO)、酸化タンタル(Ta)、タンタル酸バリウム(BaTa)、タンタル酸リチウム(LiTaO)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。有機材料に、誘電率の高い無機材料を含ませる(添加等によって)ことによって、発光材料及びバインダよりなる電界発光層の誘電率をより制御することができ、より誘電率を大きくすることができる。バインダに無機材料と有機材料との混合層を用い、高い誘電率とすると、発光材料により大きい電荷を誘起することができる。
作製工程において、発光材料はバインダを含む溶液中に分散されるが本実施の形態に用いることのできるバインダを含む溶液の溶媒としては、バインダ材料が溶解し、電界発光層を形成する方法(種々のウエットプロセス)及び所望の膜厚に適した粘度の溶液を作製できるような溶媒を適宜選択すればよい。有機溶媒等を用いることができ、例えばバインダとしてシロキサン樹脂を用いる場合は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEAともいう)、3−メトシキ−3メチル−1−ブタノール(MMBともいう)などを用いることができる。
図24(B)及び図24(C)に示す発光素子は、図24(A)の発光素子において、電極層と電界発光層間に絶縁層を設ける構造である。図24(B)に示す発光素子は、第1の電極層60と電界発光層62との間に絶縁層64を有し、図24(C)に示す発光素子は、第1の電極層60と電界発光層62との間に絶縁層64a、第2の電極層63と電界発光層62との間に絶縁層64bとを有している。このように絶縁層は電界発光層を挟持する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また絶縁層は単層でもよいし複数層からなる積層でもよい。
また、図24(B)では第1の電極層60に接するように絶縁層64が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層63に接するように絶縁層64を設けてもよい。
図23における絶縁層54、図24における絶縁層64のような絶縁層は、特に限定されることはないが、絶縁耐圧が高く、緻密な膜質であることが好ましく、さらには、誘電率が高いことが好ましい。例えば、酸化シリコン(SiO)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化ハフニウム(HfO)、酸化タンタル(Ta)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸鉛(PbTiO)、窒化シリコン(Si)、酸化ジルコニウム(ZrO)等やこれらの混合膜又は2種以上の積層膜を用いることができる。これらの絶縁膜は、スパッタリング、蒸着、CVD等により成膜することができる。また、絶縁層はこれら絶縁材料の粒子をバインダ中に分散して成膜してもよい。バインダ材料は、電界発光層に含まれるバインダと同様な材料、方法を用いて形成すればよい。膜厚は特に限定されることはないが、好ましくは10〜1000nmの範囲である。
本実施の形態で示す発光素子は、電界発光層を挟持する一対の電極層間に電圧を印加することで発光が得られるが、直流駆動又は交流駆動のいずれにおいても動作することができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
本実施の形態は、上記の実施の形態1乃至5それぞれと適宜自由に組み合わせることができる。
(実施の形態9)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の例について説明する。詳しくは表示素子に液晶表示素子を用いる液晶表示装置について説明する。
図19(A)は、液晶表示装置の上面図であり、図19(B)は図19(A)線G−Hにおける断面図である。
図19(A)で示すように、画素領域606、走査線駆動回路である駆動回路領域608a、走査線駆動領域である駆動回路領域608bが、シール材692によって、基板600と対向基板695との間に封止され、基板600上にICドライバによって形成された信号線駆動回路である駆動回路領域607が設けられている。画素領域606にはトランジスタ622及び容量素子623が設けられ、駆動回路領域608bにはトランジスタ620及びトランジスタ621を有する駆動回路が設けられている。基板600には、上記実施の形態と同様の絶縁基板を適用することができる。また一般的に合成樹脂からなる基板は、他の基板と比較して耐熱温度が低いことが懸念されるが、耐熱性の高い基板を用いた作製工程の後、転置することによっても採用することが可能となる。なお、図中602は外部端子接続領域、603は封止領域である。
画素領域606には、下地膜604a、下地膜604bを介してスイッチング素子となるトランジスタ622が設けられている。本実施の形態では、トランジスタ622にマルチゲート型薄膜トランジスタ(TFT)を用い、ソース領域及びドレイン領域として機能する不純物領域を有する半導体層、ゲート絶縁層、2層の積層構造であるゲート電極層、ソース電極層及びドレイン電極層を有し、ソース電極層又はドレイン電極層は、半導体層の不純物領域と画素電極層630に接して電気的に接続している。
ソース電極層及びドレイン電極層は積層構造となっており、ソース電極層又はドレイン電極層644a、644bは絶縁層615に形成された開口で画素電極層630と電気的に接続している。絶縁層615に形成される開口を実施の形態1で示したようにレーザ光を照射することによって形成することができる。本実施の形態は、ソース電極層又はドレイン電極層644bに比較的蒸発し易い低沸点(及び低融点)金属(本実施の形態ではクロム)を用い、ソース電極層又はドレイン電極層644aにはソース電極層又はドレイン電極層644bよりも蒸発しにくい高沸点金属(本実施の形態ではタングステン)を用いる。絶縁層615側よりレーザ光を選択的にソース電極層又はドレイン電極層644a、644bに照射し、照射されたエネルギーによりソース電極層又はドレイン電極層644bの照射領域上の絶縁層615は除去され、開口を形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射されるソース電極層又はドレイン電極層644a、644bの形状によって制御することができる。ソース電極層又はドレイン電極層644a、644bが露出された開口に画素電極層630を形成し、ソース電極層又はドレイン電極層644a、644bと画素電極層630は電気的に接続することができる。
薄膜トランジスタは、多くの方法で作製することができる。例えば、活性層として、結晶性半導体膜を適用する。結晶性半導体膜上には、ゲート絶縁膜を介してゲート電極が設けられる。該ゲート電極を用いて該活性層へ不純物元素を添加することができる。このようにゲート電極を用いた不純物元素の添加により、不純物元素添加のためのマスクを形成する必要はない。ゲート電極は、単層構造、又は積層構造を有することができる。不純物領域は、その濃度を制御することにより高濃度不純物領域及び低濃度不純物領域とすることができる。このように低濃度不純物領域を有する薄膜トランジスタを、LDD(Light doped drain)構造と呼ぶ。また低濃度不純物領域は、ゲート電極と重なるように形成することができ、このような薄膜トランジスタを、GOLD(Gate Overlaped LDD)構造と呼ぶ。また薄膜トランジスタの極性は、不純物領域にリン(P)等を用いることによりn型とする。p型とする場合は、ボロン(B)等を添加すればよい。その後、ゲート電極等を覆う絶縁膜611及び絶縁膜612を形成する。絶縁膜611(及び絶縁膜612)に混入された水素元素により、結晶性半導体膜のダングリングボンドを終端することができる。
さらに平坦性を高めるため、層間絶縁層として絶縁層615を形成してもよい。絶縁層615には、有機材料、又は無機材料、若しくはそれらの積層構造を用いることができる。例えば酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素、窒化アルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、ポリシラザン、窒素含有炭素(CN)、PSG(リンガラス)、BPSG(リンボロンガラス)、アルミナ、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、シロキサン樹脂などを用いることができる。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
また結晶性半導体膜を用いることにより、画素領域と駆動回路領域を同一基板上に一体形成することができる。その場合、画素部のトランジスタと、駆動回路領域608bのトランジスタとは同時に形成される。駆動回路領域608bに用いるトランジスタは、CMOS回路を構成する。CMOS回路を構成する薄膜トランジスタは、GOLD構造であるが、トランジスタ622のようなLDD構造を用いることもできる。
本実施の形態に限定されず、画素領域の薄膜トランジスタはチャネル形成領域が一つ形成されるシングルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。また、周辺駆動回路領域の薄膜トランジスタも、シングルゲート構造、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
なお、本実施の形態で示した薄膜トランジスタの作製方法に限らず、トップゲート型(例えば順スタガ型)、ボトムゲート型(例えば、逆スタガ型)、あるいはチャネル領域の上下にゲート絶縁膜を介して配置された2つのゲート電極層を有する、デュアルゲート型やその他の構造においても適用できる。
次に、画素電極層630を覆うように、印刷法や液滴吐出法により、配向膜と呼ばれる絶縁層631を形成する。なお、絶縁層631は、スクリーン印刷法やオフセット印刷法を用いれば、選択的に形成することができる。その後、ラビング処理を行う。このラビング処理は液晶のモード、例えばVAモードのときには処理を行わないときがある。配向膜として機能する絶縁層633も絶縁層631と同様である。続いて、シール材692を液滴吐出法により画素を形成した周辺の領域に形成する。
その後、配向膜として機能する絶縁層633、対向電極として機能する導電層634、カラーフィルタとして機能する着色層635、偏光子641(偏光板ともいう)、及び偏光子642が設けられた対向基板695と、TFT基板である基板600とをスペーサ637を介して貼り合わせ、その空隙に液晶層632を設ける。本実施の形態の液晶表示装置は透過型であるため、基板600の素子を有する面と反対側にも偏光子(偏光板)643を設ける。偏光子は、接着層によって基板に設けることができる。シール材にはフィラーが混入されていても良く、さらに対向基板695には、遮蔽膜(ブラックマトリクス)などが形成されていても良い。なお、カラーフィルタ等は、液晶表示装置をフルカラー表示とする場合、赤色(R)、緑色(G)、青色(B)を呈する材料から形成すればよく、モノカラー表示とする場合、着色層を無くす、もしくは少なくとも一つの色を呈する材料から形成すればよい。
なお、バックライトにRGBの発光ダイオード(LED)等を配置し、時分割によりカラー表示する継時加法混色法(フィールドシーケンシャル法)を採用するときには、カラーフィルタを設けない場合がある。ブラックマトリクスは、トランジスタやCMOS回路の配線による外光の反射を低減するため、トランジスタやCMOS回路と重なるように設けるとよい。なお、ブラックマトリクスは、容量素子に重なるように形成してもよい。容量素子を構成する金属膜による反射を防止することができるからである。
液晶層を形成する方法として、ディスペンサ式(滴下式)や、素子を有する基板600と対向基板695とを貼り合わせてから毛細管現象を用いて液晶を注入する注入法を用いることができる。滴下法は、注入法を適用しづらい大型基板を扱うときに適用するとよい。
スペーサは数μmの粒子を散布して設ける方法でも良いが、本実施の形態では基板全面に樹脂膜を形成した後これをエッチング加工して形成する方法を採用した。このようなスペーサの材料を、スピナーで塗布した後、露光と現像処理によって所定のパターンに形成する。さらにクリーンオーブンなどで150〜200℃で加熱して硬化させる。このようにして作製されるスペーサは露光と現像処理の条件によって形状を異ならせることができるが、好ましくは、スペーサの形状は柱状で頂部が平坦な形状となるようにすると、対向側の基板を合わせたときに液晶表示装置としての機械的な強度を確保することができる。形状は円錐状、角錐状などを用いることができ、特別な限定はない。
続いて、画素領域と電気的に接続されている端子電極層678a、678bに、異方性導電体層696を介して、接続用の配線基板であるFPC694を設ける。FPC694は、外部からの信号や電位を伝達する役目を担う。上記工程を経て、表示機能を有する液晶表示装置を作製することができる。
なおトランジスタが有する配線、ゲート電極層、画素電極層630、対向電極層である導電層634は、インジウム錫酸化物(ITO)、酸化インジウムに酸化亜鉛(ZnO)を混合したIZO(indium zinc oxide)、酸化インジウムに酸化珪素(SiO)を混合した導電材料、有機インジウム、有機スズ、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、タングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属又はその合金、若しくはその金属窒化物から選ぶことができる。
偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
なお、本実施の形態ではTN型の液晶パネルについて示しているが、上記のプロセスは他の方式の液晶パネルに対しても同様に適用することができる。例えば、ガラス基板と平行に電界を印加して液晶を配向させる横電界方式の液晶パネルに本実施の形態を適用することができる。また、VA(Vertical Aligment)方式の液晶パネルに本実施の形態を適用することができる。
図5と図6は、VA型液晶パネルの画素構造を示している。図5は平面図であり、図中に示す切断線I−Jに対応する断面構造を図6に表している。以下の説明ではこの両図を参照して説明する。
この画素構造は、一つの画素に複数の画素電極が有り、それぞれの画素電極にTFTが接続されている。各TFTは、異なるゲート信号で駆動されるように構成されている。すなわち、マルチドメイン設計された画素において、個々の画素電極に印加する信号を、独立して制御する構成を有している。
画素電極層1624は開口(コンタクトホール)1623により、配線層1618でTFT1628と接続している。また、画素電極層1626は開口(コンタクトホール)1627により、配線層1619でTFT1629と接続している。TFT1628のゲート配線層1602と、TFT1629のゲート電極層1603には、異なるゲート信号を与えることができるように分離されている。一方、データ線として機能する配線層1616は、TFT1628とTFT1629で共通に用いられている。
画素電極層1624と画素電極層1626は、実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。このように本発明を用いると、工程が簡略化し、材料のロスが防げるので、低コストで生産性良く表示装置を作製することができる。
画素電極層1624と画素電極層1626の形状は異なっており、スリット1625によって分離されている。V字型に広がる画素電極層1624の外側を囲むように画素電極層1626が形成されている。画素電極層1624と画素電極層1626に印加する電圧のタイミングを、TFT1628及びTFT1629により異ならせることで、液晶1650の配向を制御している。対向基板1601には、遮光膜1632、着色層1636、対向電極層1640が形成されている。また、着色層1636と対向電極層1640の間には平坦化膜1637が形成され、液晶1650の配向乱れを防いでいる。
なお、図6において、1600は基板、1606はゲート絶縁層、1609は半導体層、1610及び1611は一導電型を有する半導体層、1620及び1622は絶縁層、1646及び1648は配向膜をそれぞれ表す。
図7に対向基板側の構造を示す。対向電極層1640は異なる画素間で共通化されている電極であるが、スリット1641が形成されている。このスリット1641と、画素電極層1624及び画素電極層1626側のスリット1625とを交互に咬み合うように配置することで、斜め電界が効果的に発生させて液晶の配向を制御することができる。これにより、液晶が配向する方向を場所によって異ならせることができ、視野角を広げている。
このように、画素電極層として有機化合物と無機化合物を複合化させた複合材料を用いて液晶パネルを製造することができる。このような画素電極を用いることにより、インジウムを主成分とする透明導電膜を使う必要がなく、原材料面でのボトルネックを解消することができる。
本実施の形態は、上記の実施の形態1乃至3と適宜自由に組み合わせることができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態10)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の例について説明する。詳しくは表示素子に液晶表示素子を用いる液晶表示装置について説明する。
図18に示す表示装置は、基板250上に、画素領域に逆スタガ型薄膜トランジスタであるトランジスタ220、画素電極層251、絶縁層252、絶縁層253、液晶層254、スペーサ281、絶縁層235、対向電極層256、カラーフィルタ258、ブラックマトリクス257、対向基板210、偏光板(偏光子)231、偏光板(偏光子)233、封止領域にシール材282、端子電極層287、異方性導電層288、FPC286が設けられている。
本実施の形態で作製される逆スタガ型薄膜トランジスタであるトランジスタ220のゲート電極層、半導体層、ソース電極層、ドレイン電極層、及び画素電極層251は実施の形態3で示すように、転置基板に導電性材料又は半導体材料を用いた光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。このように本発明を用いると、工程が簡略化し、材料のロスが防げるので、低コストで生産性良く表示装置を作製することができる。
本実施の形態では、半導体層として非晶質半導体を用いており、一導電性型を有する半導体層は必要に応じて形成すればよい。本実施の形態では、半導体層と一導電型を有する半導体層として非晶質n型半導体層を積層する。またn型半導体層を形成し、nチャネル型薄膜トランジスタのNMOS構造、p型半導体層を形成したpチャネル型薄膜トランジスタのPMOS構造、nチャネル型薄膜トランジスタとpチャネル型薄膜トランジスタとのCMOS構造を作製することができる。
また、導電性を付与するために、導電性を付与する元素をドーピングによって添加し、不純物領域を半導体層に形成することで、nチャネル型薄膜トランジスタ、Pチャネル型薄膜トランジスタを形成することもできる。n型半導体層を形成するかわりに、PHガスによるプラズマ処理を行うことによって、半導体層に導電性を付与してもよい。
本実施の形態では、トランジスタ220はnチャネル型の逆スタガ型薄膜トランジスタとなっている。また、半導体層のチャネル領域上に保護層を設けたチャネル保護型の逆スタガ型薄膜トランジスタを用いることもできる。
次いで、バックライトユニット352の構成について説明する。バックライトユニット352は、蛍光を発する光源361として冷陰極管、熱陰極管、発光ダイオード、無機EL、有機ELが、蛍光を効率よく導光板365に導くためのランプリフレクタ362、蛍光が全反射しながら全面に光を導くための導光板365、明度のムラを低減するための拡散板366、導光板365の下に漏れた光を再利用するための反射板364を有するように構成されている。
バックライトユニット352には、光源361の輝度を調整するための制御回路が接続されている。制御回路からの信号供給により、光源361の輝度を制御することができる。
トランジスタ220のソース電極層又はドレイン電極層は絶縁層252に形成された開口で画素電極層251と電気的に接続している。絶縁層252に形成される開口を実施の形態1で示したようにレーザ光を照射することによって形成することができる。本実施の形態は、ソース電極層又はドレイン電極層に比較的蒸発し易い低沸点金属(本実施の形態ではクロム)を用いる。絶縁層252側よりレーザ光を選択的にソース電極層又はドレイン電極層に照射し、照射されたエネルギーによりソース電極層又はドレイン電極層の照射領域上の絶縁層252は除去され、開口を形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射されるソース電極層又はドレイン電極層の形状によって制御することができる。ソース電極層又はドレイン電極層が露出された開口に画素電極層251を形成し、ソース電極層又はドレイン電極層と画素電極層251とを電気的に接続することができる。
本実施の形態は実施の形態1乃至3と適宜組み合わせることができる。
本発明により、複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態11)
本実施の形態では、信頼性も高く、より簡略化した工程で低コストに作製することを目的とした表示装置の一例について説明する。
図21は、本発明を適用したアクティブマトリクス型の電子ペーパーを示す。図21ではアクティブマトリクス型を示すが、本発明はパッシブマトリクス型にも適用することができる。
電子ペーパーとしてツイストボール表示方式を用いることができる。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
トランジスタ581は逆コプラナ型の薄膜トランジスタであり、ゲート電極層582、ゲート絶縁層584、配線層585a、配線層585b、半導体層586を含む。また配線層585bと第1の電極層587aは絶縁層598に形成する開口で接しており電気的に接続している。第1の電極層587a及び587bと第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(図21参照)。なお、図中、580及び596は基板を表している。
本実施の形態において、ゲート電極層、半導体層、ソース電極層、ドレイン電極層、電極層などは実施の形態3で示すように、転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成してもよい。本発明を用いると、工程が簡略化し、材料のロスも防止できるため、低コスト化が達成できる。
配線層585bは絶縁層598に形成された開口で第1の電極層587aと電気的に接続している。絶縁層598に形成される開口を実施の形態1で示したようにレーザ光を照射することによって形成することができる。本実施の形態は、配線層585bに比較的蒸発し易い低沸点金属(本実施の形態ではクロム)を用いる。絶縁層598側よりレーザ光を選択的に配線層585bに照射し、照射されたエネルギーにより配線層585bの照射領域上の絶縁層598は除去され、開口を形成することができる。開口の形状はレーザ光の照射領域(スポット)と照射される配線層585bの形状によって制御することができる。配線層585bが露出された開口に第1の電極層587aを形成し、配線層585bと第1の電極層587aは電気的に接続することができる。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能であるため、電波発信源から表示機能付き表示装置を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
トランジスタはスイッチング素子として機能し得るものであれば、どのような構成で設けてもよい。半導体層も非晶質半導体、結晶性半導体、多結晶半導体、微結晶半導体など様々な半導体を用いることができ、有機化合物を用いて有機トランジスタを形成してもよい。
本実施の形態では、具体的には、表示装置の構成がアクティブマトリクス型の場合に関して示すが、勿論本発明はパッシブマトリクス型の表示装置にも適用できる。パッシブマトリクス型の表示装置においても配線層、電極層などを転置基板に導電性を有する光吸収膜を形成後、レーザ光で照射することによって、選択的に被転置基板に所望の形状に加工して形成すればよい。
本実施の形態は、上記の実施の形態1乃至3と適宜自由に組み合わせることができる。
本発明により、また複雑なフォトリソグラフィ工程を軽減し、簡略化された工程で表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態12)
次に、実施の形態4乃至11によって作製される表示パネルに駆動用のドライバ回路を実装する態様について説明する。
まず、COG方式を採用した表示装置について、図25(A)を用いて説明する。基板2700上には、文字や画像などの情報を表示する画素部2701が設けられる。複数の駆動回路が設けられた基板を、矩形状に分断し、分断後の駆動回路(ドライバICとも表記)2751は、基板2700上に実装される。図26(A)は複数のドライバIC2751、ドライバIC2751の先にFPC2750を実装する形態を示す。また、分割する大きさを画素部の信号線側の辺の長さとほぼ同じにし、単数のドライバICに、該ドライバICの先にテープを実装してもよい。
また、TAB方式を採用してもよく、その場合は、図26(B)で示すように複数のテープを貼り付けて、該テープにドライバICを実装すればよい。COG方式の場合と同様に、単数のテープに単数のドライバICを実装してもよく、この場合には、強度の問題から、ドライバICを固定する金属片等を一緒に貼り付けるとよい。
これらの表示パネルに実装されるドライバICは、生産性を向上させる観点から、一辺が300mm〜1000mm、さらには1000mm以上の矩形状の基板上に複数個作り込むとよい。
つまり、基板上に駆動回路部と入出力端子を一つのユニットとする回路パターンを複数個形成し、最後に分割して取り出せばよい。ドライバICの長辺の長さは、画素部の一辺の長さや画素ピッチを考慮して、長辺が15〜80mm、短辺が1〜6mmの矩形状に形成してもよいし、画素部の一辺、又は画素部の一辺と各駆動回路の一辺とを足した長さに形成してもよい。
ドライバICのICチップに対する外形寸法の優位性は長辺の長さにあり、長辺が15〜80mmで形成されたドライバICを用いると、画素部に対応して実装するのに必要な数がICチップを用いる場合よりも少なくて済み、製造上の歩留まりを向上させることができる。また、ガラス基板上にドライバICを形成すると、母体として用いる基板の形状に限定されないので生産性を損なうことがない。これは、円形のシリコンウエハからICチップを取り出す場合と比較すると、大きな優位点である。
また、図25(B)のように走査線側駆動回路3702は基板上に一体形成される場合、画素部3701の外側の領域には、信号線側の駆動回路駆動回路が形成されたドライバICが実装される。これらのドライバICは、信号線側の駆動回路である。RGBフルカラーに対応した画素部を形成するためには、XGAクラスで信号線の本数が3072本必要であり、UXGAクラスでは4800本が必要となる。このような本数で形成された信号線は、画素部3701の端部で数ブロック毎に区分して引出線を形成し、ドライバICの出力端子のピッチに合わせて集められる。
ドライバICは、基板上に形成された結晶質半導体により形成されることが好適であり、該結晶質半導体は連続発光のレーザ光を照射することで形成されることが好適である。従って、当該レーザ光を発生させる発振器としては、連続発光の固体レーザ又は気体レーザを用いる。連続発光のレーザを用いると、結晶欠陥が少なく、大粒径の多結晶半導体層を用いて、トランジスタを作成することが可能となる。また移動度や応答速度が良好なために高速駆動が可能で、従来よりも素子の動作周波数を向上させることができ、特性バラツキが少ないために高い信頼性を得ることができる。なお、さらなる動作周波数の向上を目的として、トランジスタのチャネル長方向とレーザ光の走査方向と一致させるとよい。これは、連続発光レーザによるレーザ結晶化工程では、トランジスタのチャネル長方向とレーザ光の基板に対する走査方向とが概ね並行(好ましくは−30度以上30度以下)であるときに、最も高い移動度が得られるためである。なおチャネル長方向とは、チャネル形成領域において、電流が流れる方向、換言すると電荷が移動する方向と一致する。このように作製したトランジスタは、結晶粒がチャネル方向に延在する多結晶半導体層によって構成される活性層を有し、このことは結晶粒界が概ねチャネル方向に沿って形成されていることを意味する。
レーザ結晶化を行うには、レーザ光の大幅な絞り込みを行うことが好ましく、そのレーザ光の形状(ビームスポット)の幅は、ドライバICの短辺の同じ幅の1mm以上3mm以下程度とすることがよい。また、被照射体に対して、十分に且つ効率的なエネルギー密度を確保するために、レーザ光の照射領域は、線状であることが好ましい。但し、ここでいう線状とは、厳密な意味で線を意味しているのではなく、アスペクト比の大きい長方形もしくは長楕円形を意味する。例えば、アスペクト比が2以上(好ましくは10以上10000以下)のものを指す。このように、レーザ光のレーザ光の形状(ビームスポット)の幅をドライバICの短辺と同じ長さとすることで、生産性を向上させた表示装置の作製方法を提供することができる。
図26(A)、(B)のように走査線駆動回路及び信号線駆動回路の両方として、ドライバICを実装してもよい。その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにするとよい。
画素部は、信号線と走査線が交差してマトリクスを形成し、各交差部に対応してトランジスタが配置される。本発明は、画素部に配置されるトランジスタとして、非晶質半導体又はセミアモルファス半導体をチャネル部としたTFTを用いることを特徴とする。非晶質半導体は、プラズマCVD法やスパッタリング法等の方法により形成する。セミアモルファス半導体は、プラズマCVD法で300℃以下の温度で形成することが可能であり、例えば、外寸550×650mmの無アルカリガラス基板であっても、トランジスタを形成するのに必要な膜厚を短時間で形成するという特徴を有する。このような製造技術の特徴は、大画面の表示装置を作製する上で有効である。また、セミアモルファスTFTは、SASでチャネル形成領域を構成することにより2〜10cm/V・secの電界効果移動度を得ることができる。また本発明を用いると、パターンを所望の形状に制御性よく形成することができるので、微細な配線もショート等の不良が生じることなく安定的に形成することができる。このように、システムオンパネル化を実現した表示パネルを作製することができる。
半導体層をSASで形成したTFTを用いることにより、走査線側駆動回路も基板上に一体形成することができ、半導体層をASで形成したTFTを用いる場合には、走査線側駆動回路及び信号線側駆動回路の両方をドライバICを実装するとよい。
その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにすることが好適である。例えば、走査線側のドライバICを構成するトランジスタには30V程度の耐圧が要求されるものの、駆動周波数は100kHz以下であり、比較的高速動作は要求されない。従って、走査線側のドライバを構成するトランジスタのチャネル長(L)は十分大きく設定することが好適である。一方、信号線側のドライバICのトランジスタには、12V程度の耐圧があれば十分であるが、駆動周波数は3Vにて65MHz程度であり、高速動作が要求される。そのため、ドライバを構成するトランジスタのチャネル長などはミクロンルールで設定することが好適である。
ドライバICの実装方法は、特に限定されるものではなく、COG方法やワイヤボンディング方法、或いはTAB方法を用いることができる。
ドライバICの厚さは、対向基板と同じ厚さとすることで、両者の間の高さはほぼ同じものとなり、表示装置全体としての薄型化に寄与する。また、それぞれの基板を同じ材質のもので作製することにより、この表示装置に温度変化が生じても熱応力が発生することなく、TFTで作製された回路の特性を損なうことはない。その他にも、本実施形態で示すようにICチップよりも長尺のドライバICで駆動回路を実装することにより、1つの画素部に対して、実装されるドライバICの個数を減らすことができる。
以上のようにして、表示パネルに駆動回路を組み入れることができる。
(実施の形態13)
実施の形態4乃至11によって作製される表示パネル(EL表示パネル、液晶表示パネル)において、半導体層を非晶質半導体、又はSASで形成し、走査線側の駆動回路を基板上に形成する例を示す。
図31は、1〜15cm/V・secの電界効果移動度が得られるSASを使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。
図31において8500で示すブロックが1段分のサンプリングパルスを出力するパルス出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。8501はバッファ回路であり、その先に画素8502が接続される。
図32は、パルス出力回路8500の具体的な構成を示したものであり、nチャネル型のTFT8601〜8613で回路が構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定することができる。
また、バッファ回路8501の具体的な構成を図33に示す。バッファ回路も同様にnチャネル型のTFT8620〜8635で構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で設定することとなる。
このような回路を実現するには、TFT相互を配線によって接続する必要がある。
以上のようにして、表示パネルに駆動回路を組み入れることができる。
(実施の形態14)
本実施の形態を図16を用いて説明する。図16は、本発明を適用して作製されるTFT基板2800を用いてEL表示モジュールを構成する一例を示している。図16において、TFT基板2800上には、画素により構成された画素部が形成されている。
図16では、画素部の外側であって、駆動回路と画素との間に、画素に形成されたものと同様なTFT又はそのTFTのゲートとソース若しくはドレインの一方とを接続してダイオードと同様に動作させた保護回路部2801が備えられている。駆動回路2809は、単結晶半導体で形成されたドライバIC、ガラス基板上に多結晶半導体膜で形成されたスティックドライバIC、若しくはSASで形成された駆動回路などが適用されている。
TFT基板2800は、液滴吐出法で形成されたスペーサ2806a、スペーサ2806bを介して封止基板2820と固着されている。スペーサは、基板の厚さが薄く、また画素部の面積が大型化した場合にも、2枚の基板の間隔を一定に保つために設けておくことが好ましい。TFT2802、TFT2803とそれぞれ接続する発光素子2804、発光素子2805上であって、TFT基板2800と封止基板2820との間にある空隙には少なくとも可視領域の光に対して透光性を有する樹脂材料を充填して固体化しても良いし、無水化した窒素若しくは不活性気体を充填させても良い。
図16では発光素子2804、発光素子2805を上方放射型(トップエミッション型)の構成とした場合を示し、図中に示す矢印の方向に光を放射する構成としている。各画素は、画素を赤色、緑色、青色として発光色を異ならせておくことで、多色表示を行うことができる。また、このとき封止基板2820側に各色に対応した着色層2807a、着色層2807b、着色層2807cを形成しておくことで、外部に放射される発光の色純度を高めることができる。また、画素を白色発光素子として着色層2807a、着色層2807b、着色層2807cと組み合わせても良い。
外部回路である駆動回路2809は、外部回路基板2811の一端に設けられた走査線若しくは信号線接続端子と、配線基板2810で接続される。また、TFT基板2800に接して若しくは近接させて、熱を機器の外部へ伝えるために使われる、パイプ状の高効率な熱伝導デバイスであるヒートパイプ2813と放熱板2812を設け、放熱効果を高める構成としても良い。
なお、図16では、トップエミッションのELモジュールとしたが、発光素子の構成や外部回路基板の配置を変えてボトムエミッション構造、もちろん上面、下面両方から光が放射する両方放射構造としても良い。トップエミッション型の構成の場合、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、顔料系の黒色樹脂やカーボンブラック等を混合させて形成すればよく、その積層でもよい。
また、EL表示モジュールは、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。また上方放射型の表示装置ならば、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法などによっても形成することができ、顔料系の黒色樹脂や、ポリイミドなどの樹脂材料に、カーボンブラック等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域に複数回吐出し、隔壁を形成してもよい。位相差板、位相差板としてはλ/4板とλ/2板とを用い、光を制御できるように設計すればよい。構成としては、TFT素子基板側から順に、発光素子、封止基板(封止材)、位相差板、位相差板(λ/4板、λ/2板)、偏光板という構成になり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が放射される側に設置すればよく、両方放射される両方放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜を有していても良い。これにより、より高繊細で精密な画像を表示することができる。
TFT基板2800において、画素部が形成された側にシール材や接着性の樹脂を用いて樹脂フィルムを貼り付けて封止構造を形成してもよい。本実施の形態では、ガラス基板を用いるガラス封止を示したが、樹脂による樹脂封止、プラスチックによるプラスチック封止、フィルムによるフィルム封止、など様々な封止方法を用いることができる。樹脂フィルムの表面には水蒸気の透過を防止するガスバリア膜を設けておくと良い。フィルム封止構造とすることで、さらなる薄型化及び軽量化を図ることができる。
本実施の形態は、実施の形態1乃至8、実施の形態12、実施の形態13とそれぞれ組み合わせて用いることが可能である。
(実施の形態15)
本実施の形態を図20(A)及び図20(B)を用いて説明する。図20(A)、図20(B)は、本発明を適用して作製されるTFT基板2600を用いて液晶表示モジュールを構成する一例を示している。
図20(A)は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間に画素部2603と液晶層2604が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、2607、拡散板2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2609によりTFT基板2600と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また、TFT基板2600に設けられた駆動回路2608は外部回路基板2612の一端に設けられた走査線若しくは信号線接続端子と、配線基板2609で接続されている。また偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)などを用いることができる。
図20(B)は図20(A)の液晶表示モジュールにOCBモードを適用した一例であり、FS−LCD(Field sequential−LCD)となっている。FS−LCDは、1フレーム期間に赤色発光と緑色発光と青色発光をそれぞれ行うものであり、時間分割を用いて画像を合成しカラー表示を行うことが可能である。また、各発光を発光ダイオードまたは冷陰極管等で行うので、カラーフィルタが不要である。よって、3原色のカラーフィルタを並べ、各色の表示領域を限定する必要がなく、どの領域でも3色全ての表示を行うことができる。一方、1フレーム期間に3色の発光を行うため、液晶の高速な応答が求められる。本発明の表示装置に、FS方式を用いたFLCモード、及びOCBモードを適用し、高性能で高画質な表示装置、また液晶テレビジョン装置を完成させることができる。
OCBモードの液晶層は、いわゆるπセル構造を有している。πセル構造とは、液晶分子のプレチルト角がアクティブマトリクス基板と対向基板との基板間の中心面に対して面対称の関係で配向された構造である。πセル構造の配向状態は、基板間に電圧が印加されていない時はスプレイ配向となり、電圧を印加するとベンド配向に移行する。このベンド配向が白表示となる。さらに電圧を印加するとベンド配向の液晶分子が両基板と垂直に配向し、光が透過しない状態となる。なお、OCBモードにすると、従来のTNモードより約10倍速い高速応答性を実現できる。
また、FS方式に対応するモードとして、高速動作が可能な強誘電性液晶(FLC:Ferroelectric Liquid Crystal)を用いたHV(Half V)−FLC、SS(Surface Stabilized)−FLCなども用いることができる。OCBモードは粘度の比較的低いネマチック液晶を用い、HV−FLC、SS−FLCには、強誘電相を有するスメクチック液晶を用いることができる。
また、液晶表示モジュールの高速光学応答速度は、液晶表示モジュールのセルギャップを狭くすることで高速化する。また液晶材料の粘度を下げることでも高速化できる。上記高速化は、TNモードの液晶表示モジュールの画素領域の画素ピッチが30μm以下の場合に、より効果的である。また、印加電圧を一瞬だけ高く(または低く)するオーバードライブ法により、より高速化が可能である。
図20(B)の液晶表示モジュールは透過型の液晶表示モジュールを示しており、光源として赤色光源2910a、緑色光源2910b、青色光源2910cが設けられている。光源は赤色光源2910a、緑色光源2910b、青色光源2910cのそれぞれオンオフを制御するために、制御部2912が設置されている。制御部2912によって、各色の発光は制御され、液晶に光は入射し、時間分割を用いて画像を合成し、カラー表示が行われる。
以上のように本発明を用いると、高繊細、高信頼性の液晶表示モジュールを作製することができる。
本実施の形態は、実施の形態1乃至3、実施の形態9乃至13とそれぞれ組み合わせて用いることが可能である。
(実施の形態16)
本発明によって形成される表示装置によって、テレビジョン装置(単にテレビ、又はテレビジョン受信機ともよぶ)を完成させることができる。図27はテレビジョン装置の主要な構成を示すブロック図を示している。
図25(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであってRGBを用いたフルカラー表示であれば1024×768×3(RGB)、UXGAであってRGBを用いたフルカラー表示であれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させ、RGBを用いたフルカラー表示であれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素部2701の画素それぞれには、スイッチング素子とそれに接続する画素電極層が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極層側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
図25(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図26(A)に示すように、COG(Chip on Glass)方式によりドライバIC2751を基板2700上に実装しても良い。また他の実装形態として、図26(B)に示すようなTAB(Tape Automated Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図26において、ドライバIC2751は、FPC(Flexible printed circuit)2750と接続している。
また、画素に設けるTFTを結晶性を有する半導体で形成する場合には、図25(B)に示すように走査線側駆動回路3702を基板3700上に形成することもできる。図25(B)において、画素部3701は、信号線側入力端子3704と接続した図25(A)と同様に外付けの駆動回路により制御する。画素に設けるTFTを移動度の高い、多結晶(微結晶)半導体、単結晶半導体などで形成する場合は、図25(C)に示すように、画素部4701、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に一体形成することもできる。
表示パネルには、図25(A)で示すような構成として、図27において、画素部901のみが形成されて走査線側駆動回路903と信号線側駆動回路902とが、図26(B)のようなTAB方式により実装される場合と、図26(A)のようなCOG方式により実装される場合と、図25(B)に示すようにTFTを形成し、画素部901と走査線側駆動回路903を基板上に形成し信号線側駆動回路902を別途ドライバICとして実装する場合、また図26(C)で示すように画素部901と信号線側駆動回路902と走査線側駆動回路903を基板上に一体形成する場合などがあるが、どのような形態としても良い。
図27において、その他の外部回路の構成として、映像信号の入力側では、チューナ904で受信した信号のうち、映像信号を増幅する映像信号増幅回路905と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路906と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路907などからなっている。コントロール回路907は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路908を設け、入力デジタル信号をm個に分割して供給する構成としても良い。
チューナ904で受信した信号のうち、音声信号は、音声信号増幅回路909に送られ、その出力は音声信号処理回路910を経てスピーカー913に供給される。制御回路911は受信局(受信周波数)や音量の制御情報を入力部912から受け、チューナ904や音声信号処理回路910に信号を送出する。
これらの表示モジュールを、図28(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。表示モジュールとして液晶表示モジュールを用いれば液晶テレビジョン装置、ELモジュールを用いればELテレビジョン装置、またプラズマテレビジョン、電子ぺーパーなども作製することができる。図28(A)において、表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。
筐体2001に表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン装置2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003及びサブ画面2008を本発明の液晶表示用パネルで形成することができし、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とすることができる。
図28(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、表示部2011、操作部であるリモコン装置2012、スピーカー部2013等を含む。本発明は、表示部2011の作製に適用される。図28(B)のテレビジョン装置は、壁かけ型となっており、設置するスペースを広く必要としない。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面積の表示媒体として様々な用途に適用することができる。
本実施の形態は、上記の実施の形態1乃至15と適宜自由に組み合わせることができる。
(実施の形態17)
本発明に係る電子機器として、テレビジョン装置(単にテレビ、又はテレビジョン受信機ともよぶ)、デジタルカメラやデジタルビデオカメラ等のカメラ、携帯電話装置(単に携帯電話機、携帯電話ともよぶ)、PDA等の携帯情報端末、携帯型ゲーム機、コンピュータ用のモニタ、コンピュータ、カーオーディオ等の音響再生装置、家庭用ゲーム機等の記録媒体を備えた画像再生装置等が挙げられる。その具体例について、図29を参照して説明する。
図29(A)に示す携帯情報端末機器は、本体9201、表示部9202等を含んでいる。表示部9202は、本発明の表示装置を適用することができる。その結果、簡略化した工程で低コストで作製できるため、高信頼性の携帯情報端末機器を低価格で提供することができる。
図29(B)に示すデジタルビデオカメラは、表示部9701、表示部9702等を含んでいる。表示部9701は本発明の表示装置を適用することができる。その結果、簡略化した工程で低コストで作製できるため、高信頼性のデジタルビデオカメラを低価格で提供することができる。
図29(C)に示す携帯電話機は、本体9101、表示部9102等を含んでいる。表示部9102は、本発明の表示装置を適用することができる。その結果、簡略化した工程で低コストで作製できるため、高信頼性の携帯電話機を低価格で提供することができる。
図29(D)に示す携帯型のテレビジョン装置は、本体9301、表示部9302等を含んでいる。表示部9302は、本発明の表示装置を適用することができる。その結果、簡略化した工程で低コストで作製できるため、高信頼性のテレビジョン装置を低価格で提供することができる。またテレビジョン装置としては、携帯電話機などの携帯端末に搭載する小型のものから、持ち運びをすることができる中型のもの、また、大型のもの(例えば40インチ以上)まで、幅広いものに、本発明の表示装置を適用することができる。
図29(E)に示す携帯型のコンピュータは、本体9401、表示部9402等を含んでいる。表示部9402は、本発明の表示装置を適用することができる。その結果、簡略化した工程で低コストで作製できるため、高信頼性のコンピュータを低価格で提供することができる。
このように、本発明の表示装置により、高信頼性及び高性能な電子機器を低価格で提供することができる。
本実施の形態は、上記の実施の形態1乃至16と適宜自由に組み合わせることができる。
本発明を説明する概念図。 本発明を説明する概念図。 本発明を説明する概念図。 本発明を説明する概念図。 本発明の表示装置を説明する図。 本発明の表示装置を説明する図。 本発明の表示装置法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明を説明する概念図。 本発明の表示装置を説明する図。 本発明の表示モジュールの構成例を説明する断面図。 本発明の表示装置を説明する図。 本発明の表示装置を説明する図。 本発明の表示装置を説明する図。 本発明の表示モジュールの構成例を説明する断面図。 本発明の表示装置を説明する図。 本発明に適用できる発光素子の構成を説明する図。 本発明に適用できる発光素子の構成を説明する図。 本発明に適用できる発光素子の構成を説明する図。 本発明の表示装置の上面図。 本発明の表示装置の上面図。 本発明が適用される電子機器の主要な構成を示すブロック図。 本発明が適用される電子機器を示す図。 本発明が適用される電子機器を示す図。 本発明に適用することのできるレーザ直接描画装置の構成を説明する図。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。
符号の説明
50 第1の電極層
52 電界発光層
53 第2の電極層
54 絶縁層
54a 絶縁層
54b 絶縁層
60 第1の電極層
61 発光材料
62 電界発光層
63 第2の電極層
64 絶縁層
64a 絶縁層
64b 絶縁層
100 基板
103 ゲート電極層
104 ゲート電極層
104a ゲート電極層
104b ゲート電極層
105 ゲート絶縁層
107 開口
108 半導体層
109 半導体層
110 一導電型を有する半導体層
111 一導電型を有する半導体層
113 レーザ光
114 半導体層
115 半導体層
116 ドレイン電極層
117 ドレイン電極層
118 ドレイン電極層
119 ドレイン電極層
120a 一導電型を有する半導体層
120b 一導電型を有する半導体層
121a 一導電型を有する半導体層
121b 一導電型を有する半導体層
123 絶縁層
124 レーザ光
125 開口
126 第1の電極層
131 絶縁層
132 電界発光層
133 第2の電極層
134 第1の電極層
139a トランジスタ
139b トランジスタ
140 基板
141a 下地膜
141b 下地膜
150 基板
151 光吸収層
152 導電層
154 導電膜
155 開口
156 絶縁層
157a 絶縁層
157b 絶縁層
160 レーザ光
161 基板
162a 金属膜
162b 金属膜
167 絶縁膜
168 絶縁膜
178 端子電極層
179a 配線
179b 配線
181 絶縁膜
185 第1の電極層
186 絶縁層
188 発光層
189 第2の電極層
190 発光素子
192 シール材
193 充填材
194 FPC
195 封止基板
196 異方性導電層
201 領域
202 外部端子接続領域
203 配線領域
204 周辺駆動回路領域
205 接続領域
206 画素領域
207 周辺駆動回路領域
208 周辺駆動回路領域
209 周辺駆動回路領域
210 対向基板
220 トランジスタ
231 偏光板(偏光子)
232 電極層
233 偏光板(偏光子)
235 絶縁層
250 基板
251 画素電極層
252 絶縁層
253 絶縁層
254 液晶層
255 薄膜トランジスタ
256 対向電極層
257 ブラックマトリクス
258 カラーフィルタ
265 薄膜トランジスタ
275 薄膜トランジスタ
281 スペーサ
282 シール材
285 薄膜トランジスタ
286 FPC
287 端子電極層
288 異方性導電層
300 基板
301a 光吸収層
301b 光吸収層
302 絶縁層
303a レーザ光
303b レーザ光
304a 照射領域
304b 照射領域
305a 開口
305b 開口
306a 絶縁層
306b 絶縁層
306c 絶縁層
306d 絶縁層
307a 導電膜
307b 導電膜
352 バックライトユニット
361 光源
362 ランプリフレクタ
364 反射板
365 導光板
366 拡散板
460 基板
461 薄膜トランジスタ
462 ドレイン電極層
463 第1の電極層
464 電界発光層
465 第2の電極層
470 基板
471 薄膜トランジスタ
472 第1の電極層
473 電界発光層
474 第2の電極層
475 配線層
480 基板
481 薄膜トランジスタ
484 第1の電極層
485 電界発光層
486 第2の電極層
487a ドレイン電極層
487b ドレイン電極層
493 ゲート電極層
494 半導体層
495a 半導体層
495b 半導体層
496 チャネル保護層
497 ゲート絶縁膜
498 配線層
499 絶縁層
580 基板
581 トランジスタ
582 ゲート電極層
584 ゲート絶縁層
585a 配線層
585b 配線層
586 半導体層
587a 第1の電極層
587b 第1の電極層
588 第2の電極層
589 球形粒子
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
596 基板
598 絶縁層
600 基板
602 外部端子接続領域
603 封止領域
604a 下地膜
604b 下地膜
606 画素領域
607 駆動回路領域
608a 駆動回路領域
608b 駆動回路領域
611 絶縁膜
612 絶縁膜
615 絶縁層
620 トランジスタ
621 トランジスタ
622 トランジスタ
623 容量素子
630 画素電極層
631 絶縁層
632 液晶層
633 絶縁層
634 導電層
635 着色層
637 スペーサ
641 偏光子
642 偏光子
643 偏光子(偏光板)
644a ドレイン電極層
644b ドレイン電極層
678a 端子電極層
678b 端子電極層
692 シール材
694 FPC
695 対向基板
696 異方性導電体層
700 基板
701 光吸収層
702 絶縁層
703 レーザ光
704 照射領域
705 開口
706a 絶縁層
706b 絶縁層
707 導電膜
730 基板
731 導電層
732 光吸収層
733 絶縁層
734 導電膜
735 基板
736 光吸収層
738 絶縁層
739 導電膜
740 基板
741a 光吸収層
741b 光吸収層
743 絶縁層
744 導電膜
745 基板
746 導電層
747a 光吸収層
747b 光吸収層
748 絶縁層
749 導電膜
750 開口
751 開口
752 開口
753 開口
802 第3の層
803 第2の層
804 第1の層
850 第2の電極層
860 電界発光層
870 第1の電極層
901 画素部
902 信号線側駆動回路
903 走査線側駆動回路
904 チューナ
905 映像信号増幅回路
906 映像信号処理回路
907 コントロール回路
908 信号分割回路
909 音声信号増幅回路
910 音声信号処理回路
911 制御回路
912 入力部
913 スピーカー
1001 レーザビーム直接描画装置
1002 PC
1003 レーザ発振器
1004 電源
1005 光学系
1006 音響光学変調器(AOM)
1007 光学系
1008 基板
1009 基板移動機構
1010 D/A変換部
1011 ドライバ
1012 ドライバ
1600 基板
1601 対向基板
1602 ゲート配線層
1603 ゲート電極層
1606 ゲート絶縁層
1609 半導体層
1610 一導電型を有する半導体層
1611 一導電型を有する半導体層
1616 配線層
1618 配線層
1619 配線層
1620 絶縁層
1622 絶縁層
1623 開口(コンタクトホール)
1624 画素電極層
1625 スリット
1626 画素電極層
1627 開口(コンタクトホール)
1628 TFT
1629 TFT
162a 金属膜
1632 遮光膜
1636 着色層
1637 平坦化膜
1640 対向電極層
1641 スリット
1646 配向膜
1648 配向膜
1650 液晶
2001 筐体
2002 表示用パネル
2003 主画面
2004 モデム
2005 受信機
2006 リモコン装置
2007 表示部
2008 サブ画面
2009 スピーカー部
2010 筐体
2011 表示部
2012 リモコン装置
2013 スピーカー部
2200 基板
2201 基板
2202 光吸収膜
2203 レーザ光
2204a 光吸収膜
2204b 光吸収膜
2205 光吸収層
2206 光吸収層
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 液晶層
2605 着色層
2606 偏光板
2607 偏光板
2608 駆動回路
2609 配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2700 基板
2701 画素部
2702 画素
2703 走査線側入力端子
2704 信号線側入力端子
2750 FPC
2751 ドライバIC
2800 TFT基板
2801 保護回路部
2802 TFT
2803 TFT
2804 発光素子
2805 発光素子
2806a スペーサ
2806b スペーサ
2807a 着色層
2807b 着色層
2807c 着色層
2809 駆動回路
2810 配線基板
2811 外部回路基板
2812 放熱板
2813 ヒートパイプ
2820 封止基板
2910a 赤色光源
2910b 緑色光源
2910c 青色光源
2912 制御部
3700 基板
3701 画素部
3702 走査線側駆動回路
3704 信号線側入力端子
4700 基板
4701 画素部
4702 走査線駆動回路
4704 信号線駆動回路
8500 パルス出力回路
8501 バッファ回路
8502 画素
8601〜8613 TFT
8620〜8635 TFT
9101 本体
9102 表示部
9201 本体
9202 表示部
9301 本体
9302 表示部
9401 本体
9402 表示部
9701 表示部
9702 表示部

Claims (3)

  1. 絶縁表面に選択的に光吸収層を形成し、
    前記絶縁表面上及び前記光吸収層上に絶縁層を形成し、
    前記絶縁表面、前記光吸収層及び前記絶縁層に選択的にレーザ光を照射し、
    前記絶縁層のレーザ光照射領域において前記光吸収層上の前記絶縁層のみを選択的に除去し前記絶縁層に前記光吸収層に達する開口を形成し、
    前記開口に前記光吸収層と接するように導電層を形成し、
    前記光吸収層は、タンタル、又はモリブデンを用いて形成され、
    前記光吸収層は、水素、又は不活性気体が添加され、
    前記絶縁層を透過する波長の前記レーザ光で前記開口を形成することを特徴とする半導体装置の作製方法。
  2. 絶縁表面に選択的に光吸収層を形成し、
    前記絶縁表面上及び前記光吸収層上に絶縁層を形成し、
    前記絶縁表面、前記光吸収層及び前記絶縁層に選択的にレーザ光を照射し、
    前記絶縁層のレーザ光照射領域において前記光吸収層上の前記絶縁層のみを選択的に除去し前記絶縁層に前記光吸収層に達する開口を形成し、
    前記開口を洗浄し、
    前記開口に前記光吸収層と接するように導電層を形成し、
    前記光吸収層は、タンタル、又はモリブデンを用いて形成され、
    前記光吸収層は、水素、又は不活性気体が添加され、
    前記絶縁層を透過する波長の前記レーザ光で前記開口を形成することを特徴とする半導体装置の作製方法。
  3. 絶縁表面に選択的に光吸収層を形成し、
    前記絶縁表面上及び前記光吸収層上に絶縁層を形成し、
    前記絶縁表面、前記光吸収層及び前記絶縁層に選択的にレーザ光を照射し、
    前記絶縁層のレーザ光照射領域において前記光吸収層上の前記絶縁層のみを選択的に除去し前記絶縁層に前記光吸収層に達する開口を形成し、
    前記開口の表面をエッチングすることで、前記開口の表面を平坦化させ、
    前記開口に前記光吸収層と接するように導電層を形成し、
    前記光吸収層は、タンタル、又はモリブデンを用いて形成され、
    前記光吸収層は、水素、又は不活性気体が添加され、
    前記絶縁層を透過する波長の前記レーザ光で前記開口を形成することを特徴とする半導体装置の作製方法。
JP2007215391A 2006-08-24 2007-08-22 半導体装置の作製方法 Expired - Fee Related JP5268304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215391A JP5268304B2 (ja) 2006-08-24 2007-08-22 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006228350 2006-08-24
JP2006228350 2006-08-24
JP2007215391A JP5268304B2 (ja) 2006-08-24 2007-08-22 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2008077074A JP2008077074A (ja) 2008-04-03
JP2008077074A5 JP2008077074A5 (ja) 2010-10-07
JP5268304B2 true JP5268304B2 (ja) 2013-08-21

Family

ID=39106715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215391A Expired - Fee Related JP5268304B2 (ja) 2006-08-24 2007-08-22 半導体装置の作製方法

Country Status (4)

Country Link
US (1) US7727847B2 (ja)
JP (1) JP5268304B2 (ja)
KR (1) KR101346246B1 (ja)
WO (1) WO2008023630A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639820B (zh) * 2001-08-11 2010-05-26 敦提大学校董事会 场致发射背板
TWI412079B (zh) * 2006-07-28 2013-10-11 Semiconductor Energy Lab 製造顯示裝置的方法
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8563431B2 (en) * 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7749907B2 (en) * 2006-08-25 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7838410B2 (en) * 2007-07-11 2010-11-23 Sony Corporation Method of electrically connecting element to wiring, method of producing light-emitting element assembly, and light-emitting element assembly
DE102007046851B4 (de) * 2007-09-29 2019-01-10 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Halbleiterstruktur mit einem elektrisch leitfähigen Strukturelement und Verfahren zum Ausbilden einer Halbleiterstruktur
KR101689519B1 (ko) * 2007-12-26 2016-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 증착용 기판, 증착용 기판의 제조방법, 및 발광장치의 제조방법
US8080811B2 (en) 2007-12-28 2011-12-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing evaporation donor substrate and light-emitting device
WO2009099002A1 (en) * 2008-02-04 2009-08-13 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
JP5416987B2 (ja) 2008-02-29 2014-02-12 株式会社半導体エネルギー研究所 成膜方法及び発光装置の作製方法
WO2009107548A1 (en) * 2008-02-29 2009-09-03 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
JP2009231277A (ja) * 2008-02-29 2009-10-08 Semiconductor Energy Lab Co Ltd 製造装置
JP5238544B2 (ja) * 2008-03-07 2013-07-17 株式会社半導体エネルギー研究所 成膜方法及び発光装置の作製方法
US8182863B2 (en) * 2008-03-17 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
DE102008015697A1 (de) * 2008-03-26 2009-10-01 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines strukturierten optoelektronischen Bauelementes und Anordnung zur Durchführung eines solchen
US8409672B2 (en) * 2008-04-24 2013-04-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing evaporation donor substrate and method of manufacturing light-emitting device
TWI389211B (zh) * 2008-04-30 2013-03-11 Chimei Innolux Corp 影像顯示系統及其製造方法
KR101629637B1 (ko) * 2008-05-29 2016-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 성막방법 및 발광장치의 제조방법
US8835909B2 (en) * 2008-08-04 2014-09-16 The Trustees Of Princeton University Hybrid dielectric material for thin film transistors
US8486736B2 (en) * 2008-10-20 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
JP4666068B2 (ja) * 2008-12-11 2011-04-06 カシオ計算機株式会社 保護板一体型液晶表示パネル及びその製造方法
DE112010001707T5 (de) * 2009-04-21 2012-11-08 Youna T&E Co. Ltd. Photovoltaik-Modul mit Kühlvorrichtung und Herstellungsmethode der Kühlvorrichtung
JP4935963B2 (ja) * 2009-09-28 2012-05-23 凸版印刷株式会社 アクティブマトリクス基板及びその製造方法並びに画像表示装置
KR20120028080A (ko) * 2010-09-14 2012-03-22 삼성모바일디스플레이주식회사 액정 표시 장치 및 액정 표시 장치의 제조 방법
JP5899220B2 (ja) * 2010-09-29 2016-04-06 ポスコ ロール状の母基板を利用したフレキシブル電子素子の製造方法、フレキシブル電子素子及びフレキシブル基板
DE102010046966B4 (de) * 2010-09-29 2018-05-24 Infineon Technologies Ag Baustein und Verfahren zur Herstellung eines Bausteins
WO2012057430A1 (ko) * 2010-10-29 2012-05-03 주식회사 씨원코퍼레이션 엘이디 메탈 사인보드
JP2013033843A (ja) * 2011-08-02 2013-02-14 Sony Corp 回路基板、回路基板の製造方法、表示装置および電子機器
JP2013115098A (ja) * 2011-11-25 2013-06-10 Sony Corp トランジスタ、トランジスタの製造方法、表示装置および電子機器
KR20140020114A (ko) * 2012-08-08 2014-02-18 삼성전기주식회사 금속 방열기판 및 그 제조방법
JP6031650B2 (ja) * 2013-03-29 2016-11-24 株式会社Joled 表示装置およびその製造方法、並びに電子機器
KR20150056112A (ko) * 2013-11-14 2015-05-26 삼성디스플레이 주식회사 막 형성용 마스크, 이를 이용한 막 형성 방법 및 유기 발광 표시 장치의 제조 방법
US9832886B2 (en) 2014-03-11 2017-11-28 National University Corporation Yamagata University Method for forming wiring
CN103809236A (zh) * 2014-03-12 2014-05-21 中国电子科技集团公司第三十八研究所 一种基于mems高精度网点导光板的制作方法
KR102402599B1 (ko) * 2015-12-16 2022-05-26 삼성디스플레이 주식회사 트랜지스터 표시판 및 그 제조 방법
US10694641B2 (en) 2016-04-29 2020-06-23 Intel Corporation Wickless capillary driven constrained vapor bubble heat pipes for application in electronic devices with various system platforms
US20180301647A1 (en) * 2017-03-31 2018-10-18 Scott Hohulin Family 2014 Irrevocable Trust Film Technologies Processes and Production of Products Thereby
JP6616368B2 (ja) * 2017-09-14 2019-12-04 ファナック株式会社 レーザ加工前に光学系の汚染レベルに応じて加工条件を補正するレーザ加工装置
JP6938312B2 (ja) * 2017-09-28 2021-09-22 株式会社ジャパンディスプレイ 表示装置
KR102515817B1 (ko) * 2017-11-28 2023-03-29 엘지디스플레이 주식회사 발광체, 이를 포함하는 발광 필름, 발광다이오드 및 발광장치

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594471A (en) 1983-07-13 1986-06-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US4713518A (en) 1984-06-08 1987-12-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device manufacturing methods
AU583423B2 (en) 1985-09-21 1989-04-27 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device free from the electrical shortage through a semiconductor layer and method for manufacturing same
KR900006772B1 (ko) 1985-11-06 1990-09-21 세미콘닥터 에너지 라보라토리 컴파니 리미티드 반도체층을 통한 전기적 단락이 없는 반도체 장치와 그 제조방법
JPH0820638B2 (ja) 1986-08-08 1996-03-04 株式会社半導体エネルギ−研究所 液晶装置およびその作製方法
US6149988A (en) 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
JPS6384789A (ja) 1986-09-26 1988-04-15 Semiconductor Energy Lab Co Ltd 光加工方法
US5708252A (en) 1986-09-26 1998-01-13 Semiconductor Energy Laboratory Co., Ltd. Excimer laser scanning system
US6261856B1 (en) 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US4937129A (en) 1988-01-06 1990-06-26 Semiconductor Energy Laboratory Co., Ltd. Thin film pattern structure formed on a glass substrate
US5187601A (en) 1988-03-07 1993-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for making a high contrast liquid crystal display including laser scribing opaque and transparent conductive strips simultaneously
JP3071851B2 (ja) 1991-03-25 2000-07-31 株式会社半導体エネルギー研究所 電気光学装置
US5373627A (en) * 1993-11-23 1994-12-20 Grebe; Kurt R. Method of forming multi-chip module with high density interconnections
US5866444A (en) 1995-03-21 1999-02-02 Semiconductor Energy Laboratory Co. Integrated circuit and method of fabricating the same
JP2755223B2 (ja) * 1995-09-20 1998-05-20 日本電気株式会社 バイアホール形成方法および装置
JP3479761B2 (ja) * 1996-11-08 2003-12-15 シャープ株式会社 透明薄膜除去装置、透明薄膜除去方法および薄膜エレクトロルミネッセント素子
JPH11300487A (ja) * 1998-04-20 1999-11-02 Sony Corp 孔加工方法及び孔加工体
JP3236266B2 (ja) 1998-10-27 2001-12-10 鹿児島日本電気株式会社 パターン形成方法
JP2000252609A (ja) * 1999-02-26 2000-09-14 Omron Corp プリント基板およびその加工方法
TW522453B (en) 1999-09-17 2003-03-01 Semiconductor Energy Lab Display device
US6641933B1 (en) 1999-09-24 2003-11-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting EL display device
US6384427B1 (en) 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP4776769B2 (ja) 1999-11-09 2011-09-21 株式会社半導体エネルギー研究所 発光装置の作製方法
JP3813402B2 (ja) * 2000-01-31 2006-08-23 新光電気工業株式会社 半導体装置の製造方法
JP4993830B2 (ja) * 2000-11-11 2012-08-08 三星電子株式会社 反射型液晶表示装置及びその製造方法
JP3810629B2 (ja) 2000-11-24 2006-08-16 シャープ株式会社 半導体装置およびその半導体装置の製造方法
JP5181317B2 (ja) * 2001-08-31 2013-04-10 Nltテクノロジー株式会社 反射型液晶表示装置およびその製造方法
TWI258317B (en) 2002-01-25 2006-07-11 Semiconductor Energy Lab A display device and method for manufacturing thereof
JP3910908B2 (ja) * 2002-10-29 2007-04-25 新光電気工業株式会社 半導体装置用基板及びこの製造方法、並びに半導体装置
WO2004070810A1 (ja) 2003-02-05 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. 表示装置の製造方法
KR101115291B1 (ko) 2003-04-25 2012-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액적 토출 장치, 패턴의 형성 방법, 및 반도체 장치의 제조 방법
CN100467141C (zh) 2003-04-25 2009-03-11 株式会社半导体能源研究所 图形的制作方法和液滴排出装置
US7202155B2 (en) 2003-08-15 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring and method for manufacturing semiconductor device
EP1542272B1 (en) 2003-10-06 2016-07-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7226819B2 (en) 2003-10-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Methods for forming wiring and manufacturing thin film transistor and droplet discharging method
US8101467B2 (en) 2003-10-28 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same, and liquid crystal television receiver
US7462514B2 (en) * 2004-03-03 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
JP4754848B2 (ja) * 2004-03-03 2011-08-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7247529B2 (en) * 2004-08-30 2007-07-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP2008515654A (ja) * 2004-10-12 2008-05-15 ナノシス・インク. 導電性ポリマー及び半導体ナノワイヤに基づいてプラスチック電子部品を製造するための完全に集積化された有機層プロセス
US7651932B2 (en) 2005-05-31 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing antenna and method for manufacturing semiconductor device
US7542301B1 (en) * 2005-06-22 2009-06-02 Alien Technology Corporation Creating recessed regions in a substrate and assemblies having such recessed regions
JP2007019014A (ja) * 2005-07-06 2007-01-25 Samsung Sdi Co Ltd 平板表示装置及びその製造方法
US8048473B2 (en) * 2006-07-04 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
TWI427682B (zh) * 2006-07-04 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
US7994021B2 (en) * 2006-07-28 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI412079B (zh) * 2006-07-28 2013-10-11 Semiconductor Energy Lab 製造顯示裝置的方法
US7943287B2 (en) * 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8148259B2 (en) * 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7651896B2 (en) * 2006-08-30 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4621791B2 (ja) * 2009-06-11 2011-01-26 シャープ株式会社 窒化物半導体レーザ素子

Also Published As

Publication number Publication date
JP2008077074A (ja) 2008-04-03
US7727847B2 (en) 2010-06-01
KR20090056981A (ko) 2009-06-03
KR101346246B1 (ko) 2013-12-31
WO2008023630A1 (en) 2008-02-28
US20080050851A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP5268304B2 (ja) 半導体装置の作製方法
TWI427702B (zh) 顯示裝置的製造方法
US8183067B2 (en) Method for manufacturing display device including laser irradiation and selective removing of a light absorber layer
US7943287B2 (en) Method for manufacturing display device
JP5110830B2 (ja) 半導体装置の作製方法
TWI427682B (zh) 顯示裝置的製造方法
KR101407371B1 (ko) 표시장치의 제작방법
US7968453B2 (en) Method for manufacturing display device, and etching apparatus
JP5227563B2 (ja) 半導体装置の作製方法
JP2008033284A (ja) 表示装置の作製方法
JP5147330B2 (ja) 半導体装置の作製方法
JP5329784B2 (ja) 半導体装置の作製方法
JP4954836B2 (ja) 半導体装置の作製方法
JP5230145B2 (ja) 表示装置の作製方法
JP5030535B2 (ja) 半導体装置の作製方法
JP5371143B2 (ja) 半導体装置の作製方法
JP5127338B2 (ja) 表示装置の作製方法
JP5041903B2 (ja) 表示装置の作製方法
JP2008034832A (ja) 表示装置の作製方法
JP2008052268A (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees