JP5252147B2 - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP5252147B2
JP5252147B2 JP2008070768A JP2008070768A JP5252147B2 JP 5252147 B2 JP5252147 B2 JP 5252147B2 JP 2008070768 A JP2008070768 A JP 2008070768A JP 2008070768 A JP2008070768 A JP 2008070768A JP 5252147 B2 JP5252147 B2 JP 5252147B2
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor layer
electrode
plate
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008070768A
Other languages
English (en)
Other versions
JP2008153712A (ja
Inventor
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2008070768A priority Critical patent/JP5252147B2/ja
Publication of JP2008153712A publication Critical patent/JP2008153712A/ja
Application granted granted Critical
Publication of JP5252147B2 publication Critical patent/JP5252147B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Memories (AREA)
  • Photovoltaic Devices (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Hall/Mr Elements (AREA)

Description

この発明は、太陽電池および光電変換素子に関する。
従来の機能素子は、半導体集積回路に代表されるように、微細加工に基づくトップダウンのアプローチで製造されたものが主流である。そして、特に半導体素子に関しては、バーディーン(Bardeen)らによるトランジスタの発明や、ノイス(Noyce)らによる半導体集積回路の発明を経て現在、このトップダウンのアプローチに基づく巨大な半導体エレクトロニクス産業が興っている。
また、ドリフト速度の一定性に基づき、時間とともに連続的に移動する2次電子(素粒子の飛跡に沿って生成する電子)を利用した素粒子検出器としてタイムプロジェクションチェンバー(Time Projection Chamber,TPC)の改良が本発明者らにより報告されている(P.Nemethy, P.Oddone, N.Toge, and A.Ishibashi, Nuclear Instruments and Methods 212 (1983)273-280)。
また、pn接合面に太陽光が垂直入射するタイプの太陽電池は多く報告されている(例えば、D.J.Friedman, J.F.Geisz, S.R.Kurtz, and J.M.Olson, July 1998・NREL/CP-520-23874)。
P.Nemethy, P.Oddone, N.Toge, and A.Ishibashi, Nuclear Instruments and Methods 212 (1983)273-280 D.J.Friedman, J.F.Geisz, S.R.Kurtz, and J.M.Olson, July 1998・NREL/CP-520-23874
そこで、この発明が解決しようとする課題は、新規な太陽電池および光電変換素子を提供することである。
この発明が解決しようとする他の課題は、より一般的には、太陽電池および光電変換素子を含む新規な機能素子を提供することである。
上記課題およびその他の課題は、添付図面を参照した本明細書の以下の記述により明らかとなるであろう。
トップダウン系は、いわば非連続的に時間が投影された非等方的な(方向性のある) 構造である。
他方、生体そのもののシステム以外にも、人工のシステムにおいて、リジッドな固体系ではないが、ドラム缶様の容器中に充填されたガスという最小限のセットアップにおいて、経過時間の空間座標への連続的投影を利用し、フルに3次元的に空間アドレスを認知するシステムとして図1に示すようなTPCがあり、本発明者らによりその開発および優れた性能が報告されている(P.Nemethy, P.Oddone, N.Toge, and A.Ishibashi, Nuclear Instruments and Methods 212 (1983)273-280)。
このTPCについて少し詳しく説明すると、図1に示すように、ガスの入った円筒形状のTPC21の両端から入射した電子ビーム22と陽電子ビーム23とが衝突して新たな素粒子24がジェット状に生成する。この素粒子24の飛跡に沿って生成した電子25は、軸方向に一定のドリフト速度で、TPC21の両端にあるセクター26と呼ばれる2次元検出器へ到達するので、上記の衝突時刻を起点としたときのセクター26への到達までの経過時間で軸方向、すなわちz方向の位置が分かる。図2はセクター26の部分の拡大図であり、符号26aはセンスワイヤー、26bはグリッド、26cはパッド、26dは電気力線を示す。図2に示すように、セクター26のセンスワイヤー26aの部分で電子がアバランシェを引き起こし、それによって電気信号をセンスワイヤー26aとその下部に存在するパッド26cとに与えることでx、y方向の位置が求まる。こうして3次元位置が求まるが、z方向の位置は、電子のドリフト速度が一定であることに起因して上述のように時間情報が空間に投影されている。この特徴からそのシステムはタイムプロジェクション(時間投影)チェンバーと呼ばれ、この空間への時間投影のコンセプトの有用性を実証するひとつの例となっている。
この発明は上記の考察に基づいて案出されたものであり、上記の考察、後に記述する発明の実施の形態などにより裏付けられるものである。
すなわち、上記課題を解決するために、第1の発明は、
アノード電極とカソード電極とが、間に半導体層をはさんで渦巻き状に形成され、全体として板状の形状を有することを特徴とする太陽電池である。
ここで、半導体層は、光電変換が可能であり、渦巻き状に形成することに支障がない限り、基本的にはどのようなものであってもよいが、典型的には、アモルファスシリコン層などの無機半導体層または有機半導体層である。この太陽電池の形状は問わないが、典型的には円形、三角形または六角形の形状を有する。アノード電極およびカソード電極は、典型的にはストリップ状またはリボン状である。
第2の発明は、
光電変換層が渦巻き状または同心形状に形成され、全体として板状の形状を有し、この板に交差する方向から光を入射させる光電変換素子であって、
上記板の厚さ方向に上記光電変換層の光電変換可能な光の波長が段階的および/または連続的に変化していることを特徴とするものである。
典型的には、第1の電極と第2の電極とが、間に光電変換層をはさんで渦巻き状または同心形状に形成される。また、典型的には、第1の電極および第2の電極のうちの少なくとも一方、通常は少なくともアノード電極が、板の厚さ方向に互いに分離して設けられた複数の電極からなる。また、典型的には、板の光入射面から厚さ方向に光電変換層の光電変換可能な光の波長が段階的に増加しており、第1の電極および第2の電極のうちの少なくとも一方が、板の厚さ方向に上記の各段階に対応した位置に互いに分離して設けられた複数の電極からなる。光電変換層は、典型的には、p型半導体層とn型半導体層とからなるpn接合である。これらのp型半導体層およびn型半導体層は、無機半導体、有機半導体のいずれであってもよく、典型的には、板の厚さ方向に組成傾斜した無機半導体または有機半導体からなる。典型的には、板の光入射面から厚さ方向にp型半導体層およびn型半導体層のバンドギャップが段階的および/または連続的に減少している。第1の電極および第2の電極の厚さは必要に応じて決められるが、典型的にはそれぞれ0.2nm以上100nm以下である。また、光電変換層の厚さも必要に応じて決められるが、典型的には10nm以上100nm以下である。光電変換層は、公知の色素増感湿式太陽電池と同様に、色素を担持した半導体光電極とこの半導体光電極と接した電解質層とこの電解質層と接した対極とにより構成してもよい。電解質層としては、好適には固体電解質層が用いられる。この固体電解質層は印刷や塗布などにより形成することができる。半導体光電極としては、典型的には、酸化チタン(例えば、アナターゼ型構造のもの)などの金属酸化物からなるものが用いられる。典型的には、板の光入射面から厚さ方向に半導体光電極に担持させる色素の種類を変え、この色素が吸収する光の波長を段階的に増加させる。より具体的には、板の光入射面から厚さ方向に、半導体光電極に担持させる色素を、短波長の光を吸収するものから長波長の光を吸収するものへと段階的に変化させる。この光電変換素子の形状は問わないが、典型的には円形、三角形または六角形の形状を有する。
この発明によれば、時間が連続的に織り込まれた構造において、織り込まれた方向に直交する方向から、当該構造にアクセスすることによって、あたかも絵巻物を見るように、時間軸が織り込まれるのを、直面する2次元面の中に(例えば、左右方向に)見ることができ、例えば原子層オーダーの究極の空間分解能・制御性を、当該機能素子に持ち込むことが可能となる。
また、新規な高効率の太陽電池および光電変換素子を実現することができる。
以下、この発明の実施形態について図面を参照しながら説明する。
まず、この発明の第1の実施形態について説明する。
この第1の実施形態は、時間が連続的に折織り込まれた構造において、織り込まれた方向に直交する方向から、この構造にアクセスすることを特徴とする機能素子である。この機能素子は、ストリップ状またはリボン状の金属層などの導電体層と、この導電体層の厚さ以上の厚さを有する非金属層との周期構造体からなる薄片を有し、この薄片に交差する方向、好ましくは直交する方向から、光(太陽光など)をアクセスさせる。
具体的には、図3A、BおよびCはこの第1の実施形態による有機太陽電池を示す。ここで、図3Aは表面図、図3Bは裏面図、図3Cは側面図である。図3A、BおよびCに示すように、この有機太陽電池は、アノード電極151とカソード電極152とが間に有機半導体層153をはさんで渦巻き(スパイラル)状に形成されたもので、全体として薄い円板の形状を有する。図示は省略するが、アノード電極151とカソード電極152とが背中合わせになる部位にはこれらを互いに電気的に絶縁するための絶縁膜が設けられている。この有機太陽電池の裏面には、中心から半径方向に沿って線状の取り出し電極154、155が形成されている。ここで、取り出し電極154はアノード電極151とコンタクトしており、取り出し電極155はカソード電極152とコンタクトしている。
有機半導体層153はヘテロジャンクション型あるいはバルクヘテロジャンクション型の構造を有する。ヘテロジャンクション型構造の有機半導体層153においては、p型有機半導体膜およびn型有機半導体膜とを、それぞれアノード電極151およびカソード電極152と接触するように接合する。バルクヘテロジャンクション型構造の有機半導体層153は、p型有機半導体分子とn型有機半導体分子との混合物からなり、p型有機半導体とn型有機半導体とが互いに入り組んで互いに接触した微細構造を有する。有機半導体層153の材料としては、有機太陽電池の材料として一般的に報告されているものは全て用いることができるが、具体的には、ポリアセチレン(好ましくは二置換型ポリアセチレン)、ポリ(p−フェニレンビニレン)、ポリ(2,5−チエニレンビニレン)、ポリピロール、ポリ(3−メチルチオフェン)、ポリアニリン、ポリ(9,9−ジアルキルフルオレン)(PDAF)、ポリ(9,9−ジオクチルフルオレン−co−ビチオフェン)(F8T2)、ポリ(1−ヘキシル−2−フェニルアセチレン)(PHX PA)(発光材料としては青色の発光を示す)、ポリ(ジフェニルアセチレン)誘導体(PDPA−n Bu)(発光材料としては緑色の発光を示す)、ポリ(ピリジン)(PPy)、ポリ(ピリジルビニレン)(PPyV)、シアノ置換型ポリ(p−フェニレンビニレン)(CNPPV)、ポリ(3,9−ジ−tert−ブチルインデノ[1,2−b]フルオレン(PIF)などを用いることができる。これらの有機半導体のドーパントについては、ドナーとしてはアルカリ金属(Li、Na、K、Cs)を用いることができ、アクセプタとしてはハロゲン類(Br2 、I2 、CI2 )、ルイス酸(BF3 、PF5 、AsF5 、SbF5 、SO3 )、遷移金属ハロゲン化物(FeCl3 、MoCl5 、WCl5 、SnCl4 )、有機アクセプタ分子としてはTCNE、TCNQを用いることができる。また、電気化学ドーピングに用いられるドーパントイオンは、陽イオンとしてはテトラエチルアンモニウムイオン(TEA+ )、テトラブチルアンモニウムイオン(TBA+ )、Li+ 、Na+ 、K+ 、陰イオンとしてはClO4 - 、BF4 - 、PF6 - 、AsF6 - 、SbF6 - などを用いることができる。
有機半導体層153としてはさらに、高分子電解質を用いることもできる。この高分子電解質の具体例を挙げると、ポリアニオンとしては、サルフォネートポリアニリン、ポリ(チオフェン−3−酢酸)、サルフォネートポリスチレン、ポリ(3−チオフェンアルカンサルフォネート)など、ポリカチオンとしては、ポリアリルアミン、ポリ(p−フェニレン−ビニレン)前躯体高分子、ポリ(p−メチルピリジニウムビニレン)、プロトン化ポリ(p−ピリジルビニレン)、ポロトン(2−N−メチルピリジニウムアセチレン)などを用いることができる。
アノード電極151およびカソード電極152は好適には互いに仕事関数が異なる金属からなり、具体的には、例えば、アノード電極151はAuやNiからなり、電極152はAlからなる。
この有機太陽電池の各部の寸法の例を挙げると、有機半導体層153の厚さは70〜100nm、アノード電極151およびカソード電極152の厚さはそれぞれ100nm程度である。この有機太陽電池の高さ(厚さ)、従って有機半導体層153の高さは、この有機太陽電池の面に垂直な方向から入射する光のほぼ全部または完全に吸収されて光電変換されるのに十分な高さに選ばれ、具体的には数μm〜1mm程度に選ばれる。
次に、この有機太陽電池の製造方法の一例について説明する。ここでは、有機半導体層153が、p型有機半導体膜とn型有機半導体膜とを接合したヘテロジャンクション型構造を有する場合について説明する。図4A、BおよびCにこの有機太陽電池の製造に用いる真空蒸着装置を示す。ここで、図4Aは正面図、図4Bは側面図、図4Cは平面図である。
図4A、BおよびCに示すように、ローラ161に、例えば所定幅の薄い平坦なテープ状の樹脂製ベースフィルム162を巻き付けておき、この樹脂製ベースフィルム162の一方の面に、まず蒸着源163からカソード電極用の金属を蒸発させてカソード電極152を形成し、次に蒸着源164からn型有機半導体を蒸発させてn型有機半導体膜を形成し、次に蒸着源165からp型有機半導体を蒸発させてp型有機半導体膜を形成し、次に蒸着源163からアノード電極用の金属を蒸発させてアノード電極151を形成した後、この蒸着膜付き樹脂製ベースフィルム162を巻き取りローラ166で巻き取っていく。この場合、樹脂製ベースフィルム162としては、熱または光により剥離可能なものを用いる。そして、カソード電極152、n型有機半導体膜、p型有機半導体膜およびアノード電極151が渦巻き状に形成される際に樹脂製ベースフィルム162が巻き込まれないようにするため、巻き込まれる直前にこの樹脂製ベースフィルム162の裏面に高温に加熱されたローラを押し付けたり、この裏面に光を照射したりすることにより、樹脂製ベースフィルム162を剥離する。符号166〜171は蒸着源163〜165に通電を行うための電極を示す。また、樹脂製ベースフィルム162のローラ161および巻き取りローラ166の全体は下部が解放した容器172内に収容されている。蒸着源163〜165からの蒸着ビームは、この容器172の解放された下部から樹脂製ベースフィルム162に照射されるようになっている。
図4Bに示すように、容器172およびその中のローラ161および巻き取りローラ166の全体は点線で示すように鉛直面から傾斜させることができるようになっており、必要に応じて斜め蒸着を行うことができるようになっている。
また、実際には蒸着源163〜165の前方に例えば直径が1〜3mmの開口を有する金属製の遮蔽板(図示せず)が設けられており、蒸着源163〜165から樹脂製ベースフィルム162への熱放射を極力抑えることができるようになっている。
この第1の実施形態によれば、アノード電極151とカソード電極152とが間に有機半導体層153をはさんで渦巻き状に形成されて薄い円板状に有機太陽電池が構成されているので、有機太陽電池の単位面積当たりのpn接合の面積は極めて大きくなり、この有機太陽電池の面に垂直方向に光を入射させたとき、有機半導体層153の光吸収領域を増大させることができる。また、有機半導体層153は一般に電気抵抗が高いが、この有機半導体層153の厚さを十分に小さくすることができるため、その電気抵抗を十分に低く抑えることができる。このため、光電変換効率が高く、しかもフレキシブルな有機太陽電池を実現することができる。
次に、この発明の第2の実施形態について説明する。
図5A、BおよびCはこの第2の実施形態による有機太陽電池を示す。ここで、図5Aは表面図、図5Bは裏面図、図5Cは側面図である。図5A、BおよびCに示すように、この有機太陽電池は、アノード電極151とカソード電極152とが間に有機半導体層153をはさんで六角形の渦巻き状に形成されたもので、全体として薄い六角形板の形状を有する。その他の構成は第1の実施形態と同様である。
次に、この有機太陽電池の製造方法の一例について説明する。ここでは、有機半導体層153が、p型有機半導体膜とn型有機半導体膜とを接合したヘテロジャンクション型構造を有する場合について説明する。図6にこの有機太陽電池の製造に用いる真空蒸着装置を示す。また、図7は蒸着膜付き樹脂製ベースフィルム162が巻き取りローラ166で巻き取られる状態を示す。
図6に示すように、ローラ161に、例えば所定幅の薄い平坦なテープ状の樹脂製ベースフィルム162を巻き付けておき、この樹脂製ベースフィルム162の一方の面に、まず蒸着源163からカソード電極用の金属を蒸発させてカソード電極152を形成し、次に蒸着源164からn型有機半導体を蒸発させてn型有機半導体膜153aを形成し、次に蒸着源165からp型有機半導体を蒸発させてp型有機半導体膜153bを形成し、次に蒸着源163からアノード電極用の金属を蒸発させてアノード電極151を形成した後、この蒸着膜付き樹脂製ベースフィルム162を断面形状が六角形の巻き取りローラ166で巻き取っていく。その他のことは第1の実施形態と同様である。
図7において、符号173はp側とn側との電気的分離用の絶縁膜を示す。この絶縁膜173は、蒸着源163からアノード電極用の金属を蒸発させる直前に形成する。
カソード電極152、n型有機半導体膜153a、p型有機半導体膜153bおよびアノード電極151が渦巻き状に形成される際に樹脂製ベースフィルム162が巻き込まれないようにするため、巻き込まれる直前にこの樹脂製ベースフィルム162の裏面に高温に加熱されたローラ174を押し付けたり、この裏面に光を照射したりすることにより、樹脂製ベースフィルム162を剥離する。
この第2の実施形態によれば、第1の実施形態と同様な利点を得ることができるほか、次のような利点を得ることもできる。すなわち、この第2の実施形態による有機太陽電池は六角形の形状を有するため、図8に示すように、この有機太陽電池を隙間なく一面に敷き詰めることができる。このため、単位面積当たりの発電量を大幅に増すことができる。
次に、この発明の第3の実施形態による太陽電池について説明する。
図9A、BおよびCはこの太陽電池を示す。ここで、図9Aは表面図、図9Bは裏面図、図9Cは側面図である。図9A、BおよびCに示すように、この太陽電池は、アノード電極151とカソード電極152とが、間にp型半導体層とn型半導体層とからなるpn接合をはさんで渦巻き状に形成されたもので、全体として薄い円板の形状を有する。これらのp型半導体層およびn型半導体層は無機半導体でも有機半導体でもよい。
図10にこの太陽電池の詳細構造を模式的に示す。図10において、符号191がp型半導体層、192がn型半導体層を示す。図10に示すように、アノード電極151とカソード電極152とが背中合わせになる部位には樹脂などの各種の絶縁体からなる絶縁膜193が設けられており、この絶縁膜193によりアノード電極151とカソード電極152とが互いに電気的に絶縁されている。この場合、カソード電極152は全面電極であり、n型半導体層192とオーミック接触しているのに対し、アノード電極151は円板の厚さ(W)方向に互いに分離された細長いn個の微小アノード電極151−1〜151−nからなる。これらの微小アノード電極151−1〜151−nの幅はそれぞれW1 、W2 、…、Wn であり、これらは互いに同一であっても異なっていてもよい。
p型半導体層191およびn型半導体層192のバンドギャップEg は、光入射面から円板の厚さ方向にn段階(n≧2)に段階的に減少しており、光入射面側から順にEg1、Eg2、…、Egn(Eg1>Eg2>…>Egn)となっている。p型半導体層191およびn型半導体層192のうちのバンドギャップEg がEgk(1≦k≦n)の領域をEgk領域と呼ぶ。このEgk領域のp型半導体層191と微小アノード電極151−kとがオーミック接触している。これらのEgk領域は一体になっていても互いに分離されていてもよい。微小アノード電極151−kとカソード電極152との間にEgk領域が挟まれた構造が微小太陽電池を構成し、カソード電極152を共通電極としたこれらのn個の微小太陽電池によりこの太陽電池が構成されている。
gkは次のように設定することができる。例えば、AM1.5太陽光スペクトルの全波長範囲またはその主要な波長範囲(入射エネルギーが高い部分を含む範囲)において、波長をn個の区間に分ける。そして、これらの区間に短波長側(高エネルギー側)から順に1、2、…、nというように番号を付け、k番目の区間の最小光子エネルギーに等しくEgkを選ぶ。こうすることで、k番目の区間の光子エネルギーを有する光子がEgk領域に入射すると電子−正孔対が発生し、光電変換が行われる。また、この場合、このk番目の区間の光子エネルギーを有する光子が各Egk領域に到達して十分に吸収されるように、光入射面からこのEgk領域までの深さを選ぶ。これによって、この太陽電池の光入射面に入射する太陽光は、まずEg1領域に入射してそのスペクトルのうち光子エネルギーがEg1以上のものが吸収されて光電変換され、続いてEg2領域に入射してそのスペクトルのうち光子エネルギーがEg2以上でEg1より小さいものが吸収されて光電変換され、最終的にEgn領域に入射してそのスペクトルのうち光子エネルギーがEgn以上でEgn-1より小さいものが吸収されて光電変換される。この結果、太陽光スペクトルのほぼ全範囲あるいは主要な波長範囲の光を光電変換に使用することができる。
gkの理想的な設定例について説明する。図11にAM1.5太陽光スペクトルの光子密度nphと光子エネルギーhνとの関係を示す。ここでは、AM1.5太陽光スペクトルの光子エネルギーをエネルギー幅Δの10個の区間に等分するものとする。この場合の理論最高光電変換効率は約65%にもなり、これは例えばEg =1.35eVの従来の太陽電池の理論最高光電変換効率31%の倍以上である。
各Egkの設定は、各Egk領域を構成する半導体の組成を変えることにより行うことができる。具体的には、各Egk領域を別種の半導体により構成する。無機半導体を用いる場合について具体例をいくつか挙げると次のとおりである。n=2の最も簡単な場合には、例えば、Eg1領域をGaAs(Eg =1.43eV)、Eg2領域をSi(Eg =1.11eV)により構成する。また、n=3の場合には、例えば、Eg1領域をGaP(Eg =2.25eV)、Eg2領域をGaAs(Eg =1.43eV)、Eg3領域をSi(Eg =1.11eV)により構成する。また、n=4の場合には、例えば、Eg1領域をGaP(Eg =2.25eV)、Eg2領域をGaAs(Eg =1.43eV)、Eg3領域をSi(Eg =1.11eV)、Eg4領域をGe(Eg =0.76eV)により構成する。さらには、GaInNx As1-x やGaInNx 1-x を用いてxの制御だけでn〜10の場合のEgk領域を構成することも可能である。加えて、Teを含ませると大きなボウイング(bowing)を示すことが知られているII−VI族化合物半導体を用いてEgk領域を構成してもよい。
この太陽電池の製造方法は第1の実施形態と同様である。
この太陽電池を複数用いて太陽電池システムを構成する場合には、例えば、一列に並べた太陽電池の微小アノード電極151−k同士を接続し、各列毎の最終段の太陽電池の微小アノード電極151−kから出力電圧を取り出す。
この第3の実施形態によれば、第1の実施形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、例えば従来のアモルファスSi太陽電池では太陽光スペクトルのうち光子エネルギーが1.12eVより小さい波長の光は利用することができないのに対し、この第3の実施形態によれば、Egk領域の設計により、太陽光スペクトルの全部または主要部の光を光電変換に利用することができ、光電変換効率の飛躍的な向上を図ることができる。
次に、この発明の第4の実施形態による太陽電池について説明する。
図12A、BおよびCはこの太陽電池を示す。ここで、図12Aは表面図、図12Bは裏面図、図12Cは側面図である。図12A、BおよびCに示すように、この太陽電池は、アノード電極151とカソード電極152とが、間にp型半導体層191とn型半導体層192とからなるpn接合をはさんで渦巻き状に形成されたもので、全体として薄い六角形板の形状を有する。その他の構成は第13の実施形態と同様である。
この六角形の形状を有する太陽電池を隙間なく一面に敷き詰めて太陽電池システムを構成する場合には、一列に並べた太陽電池の微小アノード電極151−k同士を接続し、各列毎の最終段の太陽電池の微小アノード電極151−kから出力電圧を取り出す。このとき、一つの列の各太陽電池のEgk領域の微小太陽電池毎に並列接続する。この太陽電池システムを図13に示す。
この第4の実施形態によれば、第3の実施形態と同様な利点を得ることができるほか、次のような利点を得ることもできる。すなわち、この第14の実施形態による太陽電池は六角形の形状を有するため、図8に示すように、この太陽電池を隙間なく一面に敷き詰めることができる。このため、各太陽電池の光電変換効率の飛躍的な増加と相まって単位面積当たりの発電量を飛躍的に増加させることができる。
次に、この発明の第5の実施形態による太陽電池について説明する。
図14に示すように、この太陽電池は、アノード電極151とカソード電極152とが、間にp型半導体層とn型半導体層とからなるpn接合をはさんで渦巻き状に形成されていることは第3の実施形態による太陽電池と同様であるが、この場合、巻き取り軸である中心軸194がアノード側となっており、したがってn型半導体層192よりもp型半導体層191が先に巻きついていること、アノード電極151が円板の厚さ(W)方向に互いに分離された細長いn個の微小アノード電極151−1〜151−nからなるだけでなく、カソード電極152も、六角形板の厚さ(W)方向に互いに分離された細長いn個の微小カソード電極152−1〜152−nからなることが異なる。これらの微小カソード電極152−1〜152−nの幅はそれぞれW1 、W2 、…、Wn である。その他の構成は第3の実施形態と同様である。
図15に中心軸194の詳細構造を示す。図15に示すように、中心軸194の表面は絶縁体からなり、その表面にpコンタクト層195−1〜195−nが軸方向に互いに分離されて形成されており、その周りにそれぞれ微小アノード電極151−1〜151−nが巻き付いてコンタクトした構造になっている。中心軸194の一端にはコネクター196が設けられている。このコネクター196の表面は絶縁体からなり、この表面に電極197−1〜197−nが軸方向に互いに分離されて形成されている。電極197−1〜197−nは、図示省略した内部配線により、それぞれpコンタクト層195−1〜195−nと電気的に接続されている。
この太陽電池を複数用いて太陽電池システムを構成する場合には、例えば、一列に並べた太陽電池の微小アノード電極151−k同士および微小カソード電極152−k同士を接続し、各列毎の最終段の太陽電池の微小アノード電極151−kから出力電圧を取り出す。このとき、一つの列の各太陽電池のEgk領域の微小太陽電池毎に並列接続する。
この第5の実施形態によれば、第3の実施形態と同様な利点を得ることができる。
次に、この発明の第6の実施形態による太陽電池について説明する。
この太陽電池は、全体として薄い六角形板の形状を有する。その他の構成は第5の実施形態と同様である。
この六角形の形状を有する太陽電池を隙間なく一面に敷き詰めて太陽電池システムを構成する場合には、一列に並べた太陽電池の微小アノード電極151−k同士および微小カソード電極152−k同士を接続し、各列毎の最終段の太陽電池の微小アノード電極151−kから出力電圧を取り出す。このとき、一つの列の各太陽電池のEgk領域の微小太陽電池毎に並列接続する。この場合、太陽電池の側面に微小アノード電極151−kが露出しているため、この太陽電池の側面同士を突き合わせるだけで微小アノード電極151−k同士を電気的に接続することができる。この太陽電池システムを図16に示す。
次に、この太陽電池システムからの出力電圧の好ましい取り出し方について説明する。この太陽電池の各微小太陽電池の微小アノード電極151−kと微小カソード電極152−kとの間に発生する光起電力はEgk/eで表されるため、各微小太陽電池の光起電力は互いに異なる。各微小太陽電池の光起電力をそのまま使ってもよいが、太陽電池を最も有効に利用するためには、各微小太陽電池の接続の仕方を工夫して単一の電圧の出力電圧が得られるようにするのが好ましい。そこで、Egn=Δとし、Egi=Eg1−(i−1)Δ(i=1〜n)とする。このとき、一つの列の各太陽電池のEgk領域の微小太陽電池毎に並列接続する。そして、i番目の列のj番目の太陽電池をCijで表すとき、図17に示すように、2i−1番目の列の1番目の太陽電池C2i-1,1のEgk領域(k≧2)の微小太陽電池と2i番目の列の1番目の太陽電池C2i,1のEg(n+2-k)領域の微小太陽電池とを直列接続すると合計の光起電力の値は(Egk+Eg(n+2-k))/e=Eg1/eとなる。一方、Eg1領域の微小太陽電池の光起電力はEg1/eである。したがって、これらの光起電力を同一の端子から取り出すことにより、この太陽電池から単一の電圧の出力電圧を得ることができる。
以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態において挙げた数値、材料、形状、配置などはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、形状、配置などを用いてもよい。必要に応じて、上述の実施形態の二以上を組み合わせてもよい。
また、同心円構造自体は、第1〜第6の実施形態で述べた方法以外の方法で形成することもできる。例えば、回転軸を回転させながらその側面上に交互に異なる物質を真空蒸着により形成したり、MOCVD法などにより円柱状の基板に交互に異なる物質を成長させたりすることができる。
また、同心円構造を形成する物質としては、上述の第1〜第6の実施形態で用いたものと異なる物質を用いてもよい。誘電体としては酸化物などの無機物質のほか、ポリスチレンやポリカーボネートなどの有機物質を用いてもよい。
TPCを説明するための略線図である。 TPCを説明するための略線図である。 この発明の第1の実施形態を説明するための略線図である。 この発明の第1の実施形態による有機太陽電池の製造方法を説明するための略線図である。 この発明の第2の実施形態を説明するための略線図である。 この発明の第2の実施形態による有機太陽電池の製造方法を説明するための略線図である。 この発明の第2の実施形態による有機太陽電池の製造方法を説明するための略線図である。 この発明の第2の実施形態による有機太陽電池の配置例を示す略線図である。 この発明の第3の実施形態を説明するための略線図である。 この発明の第3の実施形態を説明するための略線図である。 この発明の第3の実施形態を説明するための略線図である。 この発明の第4の実施形態を説明するための略線図である。 この発明の第4の実施形態による太陽電池を用いた太陽電池システムを説明するための略線図である。 この発明の第5の実施形態を説明するための略線図である。 この発明の第5の実施形態を説明するための略線図である。 この発明の第6の実施形態による太陽電池を用いた太陽電池システムを説明するための略線図である。 この発明の第6の実施形態による太陽電池を用いた太陽電池システムを説明するための略線図である。
符号の説明
151…アノード電極、151−1〜151−n…微小アノード電極、152…カソード電極、152−1〜152−n…微小カソード電極、153…有機半導体膜、154、155…取り出し電極、162…樹脂製ベースフィルム、181…酸化膜、182…金属膜、194…中心軸、195−1〜195−n…pコンタクト層、196…コネクター、197−1〜197−n…電極

Claims (6)

  1. アノード電極およびカソード電極がストリップ状またはリボン状であり、
    上記アノード電極と上記カソード電極との間に上記アノード電極および上記カソード電極と接触した状態で半導体層をはさんで構造体が構成され、
    上記構造体が渦巻き状に形成されて、全体として板状の形状を有し、この板の光入射面にほぼ垂直な方向から太陽光を入射させることを特徴とする太陽電池。
  2. 上記板の厚さが1mm以下であることを特徴とする請求項1記載の太陽電池。
  3. 上記板の光入射面にほぼ垂直な方向から太陽光を入射させることを特徴とする請求項1または2記載の太陽電池。
  4. 上記半導体層がアモルファスシリコン層または有機半導体層であることを特徴とする請求項1〜3のいずれか一項記載の太陽電池。
  5. 上記板の光入射面から上記板の厚さ方向に上記半導体層のバンドギャップが段階的および/または連続的に減少していることを特徴とする請求項1〜4のいずれか一項記載の太陽電池。
  6. 上記板の厚さはこの板の光入射面に垂直な方向から入射する太陽光を完全に吸収するのに十分な厚さに選ばれていることを特徴とする請求項1〜5のいずれか一項記載の太陽電池。
JP2008070768A 2004-09-09 2008-03-19 太陽電池 Expired - Fee Related JP5252147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070768A JP5252147B2 (ja) 2004-09-09 2008-03-19 太陽電池

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004262040 2004-09-09
JP2004262040 2004-09-09
JP2004375089 2004-12-24
JP2004375089 2004-12-24
JP2008070768A JP5252147B2 (ja) 2004-09-09 2008-03-19 太陽電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006537675A Division JPWO2006035610A1 (ja) 2004-09-09 2005-09-08 機能素子、記憶素子、磁気記録素子、太陽電池、光電変換素子、発光素子、触媒反応装置およびクリーンユニット

Publications (2)

Publication Number Publication Date
JP2008153712A JP2008153712A (ja) 2008-07-03
JP5252147B2 true JP5252147B2 (ja) 2013-07-31

Family

ID=36118762

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2006537675A Pending JPWO2006035610A1 (ja) 2004-09-09 2005-09-08 機能素子、記憶素子、磁気記録素子、太陽電池、光電変換素子、発光素子、触媒反応装置およびクリーンユニット
JP2008008032A Active JP4934061B2 (ja) 2004-09-09 2008-01-17 機能素子の製造方法および機能材料の製造方法
JP2008070768A Expired - Fee Related JP5252147B2 (ja) 2004-09-09 2008-03-19 太陽電池
JP2010140109A Expired - Fee Related JP5344631B2 (ja) 2004-09-09 2010-06-21 磁気記録装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2006537675A Pending JPWO2006035610A1 (ja) 2004-09-09 2005-09-08 機能素子、記憶素子、磁気記録素子、太陽電池、光電変換素子、発光素子、触媒反応装置およびクリーンユニット
JP2008008032A Active JP4934061B2 (ja) 2004-09-09 2008-01-17 機能素子の製造方法および機能材料の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010140109A Expired - Fee Related JP5344631B2 (ja) 2004-09-09 2010-06-21 磁気記録装置

Country Status (6)

Country Link
US (1) US20070202797A1 (ja)
EP (1) EP1804300A4 (ja)
JP (4) JPWO2006035610A1 (ja)
KR (1) KR101119851B1 (ja)
CN (2) CN101015068B (ja)
WO (1) WO2006035610A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119851B1 (ko) * 2004-09-09 2012-03-16 국립대학법인 홋가이도 다이가쿠 기능소자, 기억소자, 자기기록소자, 태양전지,광전변환소자, 발광소자, 촉매반응창치 및 클린유닛
JP2008109165A (ja) * 2004-09-09 2008-05-08 Hokkaido Univ 太陽電池の製造方法および光電変換素子の製造方法
WO2009012465A2 (en) * 2007-07-18 2009-01-22 Moylechester Ltd Wrapped solar cell
EP2443683B1 (en) * 2009-06-15 2020-02-26 University Of Houston Wrapped optoelectronic devices and methods for making same
EP2450969B1 (en) 2009-06-30 2020-02-26 LG Innotek Co., Ltd. Photovoltaic power-generating apparatus
DE112010002768T5 (de) 2009-06-30 2012-10-18 National University Corporation Hokkaido University Sonde, Methode zur Herstellung einer Sonde, Sonden-Mikroskop, Magnetkopf, Methode zurHerstellung eines Magnetkopfs und einer magnetischen Aufnahme- und Wiedergabevorrichtung
KR101034848B1 (ko) * 2010-01-15 2011-05-17 주식회사 엘스콤 에어터널이 구비된 태양전지모듈용 접속단자함
KR101068884B1 (ko) * 2010-08-31 2011-09-30 주식회사 엘스콤 태양전지모듈용 접속단자함의 터미널레일
JP5894372B2 (ja) 2010-11-01 2016-03-30 パナソニック株式会社 光電気素子、及び光電気素子の製造方法
TW201221236A (en) * 2010-11-19 2012-06-01 Hon Hai Prec Ind Co Ltd Container data center
JP5773491B2 (ja) * 2011-09-09 2015-09-02 国立大学法人北海道大学 ナノ接合素子およびその製造方法
EP2883610B1 (en) 2013-03-29 2016-11-02 Panasonic Healthcare Holdings Co., Ltd. Isolator system
US9916852B2 (en) * 2016-06-15 2018-03-13 Oracle International Corporation Optical tape with an increased track pitch for improvement of tracking performance after seam
CN109478557B (zh) 2016-08-03 2023-07-28 株式会社半导体能源研究所 摄像装置、摄像模块、电子设备及摄像系统
CN107507875B (zh) * 2017-08-14 2024-01-26 江苏科来材料科技有限公司 一种背接触太阳能电池片电极环绕交错结构及制备方法
KR102503269B1 (ko) * 2018-09-05 2023-02-22 주식회사 엘지에너지솔루션 육각기둥 형상의 배터리 셀 및 그 제조방법, 그리고 이를 포함하는 배터리 모듈
CN110906584A (zh) * 2018-09-14 2020-03-24 佛山市国能宏基投资有限公司 一种复合半导体制冷片的供热供冷装置
CN110111694B (zh) * 2019-05-22 2021-12-10 上海中航光电子有限公司 一种柔性显示模组及显示装置
CN110797065B (zh) * 2019-11-01 2021-09-03 西安交通大学 一种基于金属-离子液体界面电势差的信息存储和读取系统
JP2023009623A (ja) * 2021-07-07 2023-01-20 学校法人トヨタ学園 記憶装置と記憶媒体とその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939019A (ja) * 1982-08-27 1984-03-03 Hitachi Ltd クリ−ン保管箱
US4485264A (en) * 1982-11-09 1984-11-27 Energy Conversion Devices, Inc. Isolation layer for photovoltaic device and method of producing same
JPS6074685A (ja) 1983-09-30 1985-04-26 Toshiba Corp 光起電力装置
JPS6172947A (ja) * 1984-09-18 1986-04-15 Takasago Thermal Eng Co Ltd クリ−ンル−ムの形成法およびこの方法に使用する空気調和設備ユニツト
US4643817A (en) * 1985-06-07 1987-02-17 Electric Power Research Institute, Inc. Photocell device for evolving hydrogen and oxygen from water
JPS62299641A (ja) * 1986-06-19 1987-12-26 Hazama Gumi Ltd クリ−ンル−ムの気流方式
JPS6310570A (ja) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp 有機半導体デバイス
US4737173A (en) * 1986-07-03 1988-04-12 Amway Corporation Room air treatment system
DE3745132C2 (de) * 1987-01-13 1998-03-19 Hoegl Helmut Photovoltaische Solarzellenanordnung mit mindestens zwei auf Abstand voneinander angeordneten Solarzellen-Elementen
US4905578A (en) * 1989-01-03 1990-03-06 Curtis Michael S Apparatus for ventilating controlled areas
JPH03154680A (ja) * 1989-11-10 1991-07-02 Mitsubishi Electric Corp 除塵方法
JPH03233501A (ja) * 1990-02-09 1991-10-17 Copal Co Ltd 光学多層膜フイルタ素子及びその製造方法
US5241417A (en) * 1990-02-09 1993-08-31 Copal Company Limited Multi-layered optical filter film and production method thereof
US5721462A (en) * 1993-11-08 1998-02-24 Iowa State University Research Foundation, Inc. Nuclear battery
JP3697275B2 (ja) * 1994-09-20 2005-09-21 株式会社朝日工業社 局所クリーン化におけるインターフェイスボックス及びそのクリーンルーム
JP3276587B2 (ja) * 1997-06-20 2002-04-22 三宝電機株式会社 クリーンルームの空気清浄性能評価方法、装置及びプログラムを記録した可読記録媒体
JP3594463B2 (ja) * 1997-10-15 2004-12-02 株式会社西部技研 ガス吸着装置
JP2996940B2 (ja) * 1998-02-06 2000-01-11 株式会社日立製作所 磁性メモリ
JP2000091399A (ja) * 1998-09-07 2000-03-31 Kokusai Electric Co Ltd 半導体製造装置
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
JP2000329934A (ja) * 1999-05-18 2000-11-30 Mitsui Chemicals Inc 透明導電性フィルム
JP3231742B2 (ja) * 1999-07-13 2001-11-26 科学技術振興事業団 積層構造を用いる単電子トンネルトランジスタ
JP2001067862A (ja) * 1999-09-01 2001-03-16 Sanyo Electric Co Ltd 磁気メモリ素子
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6547953B2 (en) * 2000-01-28 2003-04-15 Ebara Corporation Substrate container and method of dehumidifying substrate container
JP4560898B2 (ja) * 2000-06-12 2010-10-13 ソニー株式会社 検査装置及び検査方法
JP2002050931A (ja) * 2000-08-03 2002-02-15 Japan Science & Technology Corp 銅酸化物超伝導単結晶を用いる高周波発振器
JP3939101B2 (ja) * 2000-12-04 2007-07-04 株式会社荏原製作所 基板搬送方法および基板搬送容器
FR2823527B1 (fr) * 2001-04-17 2003-12-12 Jacques Lambey Toiles photogeneratrices pour stores auvents et couvertures de piscine
US6531371B2 (en) * 2001-06-28 2003-03-11 Sharp Laboratories Of America, Inc. Electrically programmable resistance cross point memory
US6569745B2 (en) * 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
WO2003069683A1 (fr) * 2002-02-14 2003-08-21 Sony Corporation Dispositif de production de puissance photovoltaique, systeme de fixation de dispositif de production de puissance photovoltaique, et dispositif electrique ou electronique
JP2004108630A (ja) * 2002-09-17 2004-04-08 Sony Corp クリーンルーム
KR100537751B1 (ko) * 2003-12-22 2006-01-10 김현동 팬브라스터
KR101119851B1 (ko) * 2004-09-09 2012-03-16 국립대학법인 홋가이도 다이가쿠 기능소자, 기억소자, 자기기록소자, 태양전지,광전변환소자, 발광소자, 촉매반응창치 및 클린유닛

Also Published As

Publication number Publication date
JP2008193072A (ja) 2008-08-21
JPWO2006035610A1 (ja) 2008-05-15
CN101015068A (zh) 2007-08-08
US20070202797A1 (en) 2007-08-30
JP5344631B2 (ja) 2013-11-20
EP1804300A1 (en) 2007-07-04
EP1804300A4 (en) 2011-10-19
KR20070059087A (ko) 2007-06-11
KR101119851B1 (ko) 2012-03-16
CN101015068B (zh) 2011-03-30
JP2010263229A (ja) 2010-11-18
JP4934061B2 (ja) 2012-05-16
JP2008153712A (ja) 2008-07-03
CN102208535A (zh) 2011-10-05
WO2006035610A1 (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
JP5252147B2 (ja) 太陽電池
JP4022631B2 (ja) 太陽電池および光電変換素子
Guo et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes
US8461451B2 (en) Vertical junction tandem/multi-junction PV device
Wong-Stringer et al. A flexible back-contact perovskite solar micro-module
KR101208272B1 (ko) 양면 구조를 가지는 태양전지 및 이의 제조방법
CN103563090A (zh) 用于高效太阳能电池的均匀分布的自组装锥形柱
US9343598B2 (en) Solar cell
US10699820B2 (en) Three dimensional radioisotope battery and methods of making the same
US20090255585A1 (en) Flexible photovoltaic device
US8435812B1 (en) Method for making solar cell
US20070289627A1 (en) Nanoscale solar cell with vertical and lateral junctions
JP5392795B2 (ja) 太陽電池および光電変換素子
CN107945901B (zh) 一种量子点贝塔伏特电池
CN108807678A (zh) 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器
CN110828609B (zh) 一种自激发可存储式光电导器件及其制备方法
US11581150B2 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
JP2007273491A (ja) 光電変換素子、繊維状構造体、織物、布地および壁紙材料
US11424375B2 (en) Photoelectronic device, photodiode, and phototransistor
KR20210039281A (ko) 페로브스카이트 실리콘 탠덤 태양전지 및 이의 제조 방법
Zheng et al. A flexible, high‐voltage (> 100 V) generating device based on zebra‐like asymmetrical photovoltaic cascade
KR101281566B1 (ko) 탄소 나노튜브를 이용한 고효율 유기 태양전지 및 그 제조방법
US9023679B2 (en) Preparation method for organic solar cells having conductive nanorods
Puigdollers et al. Physics and Technology of Carrier Selective Contact Based Heterojunction Silicon Solar Cells
JP5467311B2 (ja) 有機薄膜太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

R150 Certificate of patent or registration of utility model

Ref document number: 5252147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees