JP5172269B2 - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP5172269B2
JP5172269B2 JP2007269770A JP2007269770A JP5172269B2 JP 5172269 B2 JP5172269 B2 JP 5172269B2 JP 2007269770 A JP2007269770 A JP 2007269770A JP 2007269770 A JP2007269770 A JP 2007269770A JP 5172269 B2 JP5172269 B2 JP 5172269B2
Authority
JP
Japan
Prior art keywords
data
memory cell
write
pulse
variable resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007269770A
Other languages
English (en)
Other versions
JP2009099198A (ja
Inventor
宏行 永嶋
裕文 井上
春希 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007269770A priority Critical patent/JP5172269B2/ja
Priority to PCT/JP2008/066613 priority patent/WO2009050969A1/en
Priority to US12/677,017 priority patent/US8259489B2/en
Priority to KR1020107008287A priority patent/KR101239582B1/ko
Priority to CN200880112062.4A priority patent/CN101828236B/zh
Priority to TW097135266A priority patent/TWI401683B/zh
Publication of JP2009099198A publication Critical patent/JP2009099198A/ja
Application granted granted Critical
Publication of JP5172269B2 publication Critical patent/JP5172269B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Description

本発明は、可変抵抗素子を用いた不揮発性半導体装置に関し、特に多値データの書き込みを高速に行うことができる不揮発性半導体記憶装置に関する。
従来、電気的に書き換え可能な不揮発性メモリとしては、フローティングゲート構造を有するメモリセルをNAND接続又はNOR接続してメモリセルアレイを構成したフラッシュメモリが周知である。また、不揮発性で且つ高速なランダムアクセスが可能なメモリとして、強誘電体メモリも知られている。
一方、メモリセルの更なる微細化を図る技術として、可変抵抗素子をメモリセルに使用した抵抗変化型メモリが提案されている(特許文献1)。この種の抵抗変化型メモリは、例えばカルコゲナイドガラスの結晶−非結晶の抵抗比が100:1以上と大きいことを利用して、その異なる抵抗値状態を情報として記憶する。この抵抗変化型メモリはトランジスタに変えてショットキーダイオードと抵抗変化素子の直列回路によりメモリセルを構成することができるので、積層が容易で3次元構造化することにより更なる高集積化が図れるという利点がある(特許文献2)。しかし、各メモリセルは、高抵抗状態と低抵抗状態の2値の状態を制御するのみである。
特表2002−541613号 特表2005−522045号
本発明は、可変抵抗素子を用いた不揮発性半導体装置において、多値データの書き込みを高速に行うことができる不揮発性半導体記憶装置を提供することを目的とする。
本発明の一態様に係る不揮発性半導体記憶装置は、可変抵抗素子を使用した電気的に書き換え可能な不揮発性のメモリセルをマトリクス状に配置してなるメモリセルアレイと、3値以上の書き込みデータに基づいて前記可変抵抗素子の抵抗値を3段階以上に変化させる複数種類の書き込みパルスを生成出力するパルスジェネレータと、書き込みアドレスに基づいて前記メモリセルアレイの書き込むべきメモリセルを選択して前記パルスジェネレータから生成出力された書き込みパルスを供給する選択回路とを備えてなることを特徴とする。
本発明によれば、可変抵抗素子を用いた不揮発性半導体装置において、多値データの書き込みを高速に行うことができる。
以下、図面を参照して、この発明の実施の形態を説明する。
[実施形態]
[全体構成]
図1は、本発明の一実施形態に係る不揮発性メモリのブロック図である。
この不揮発性メモリは、後述する抵抗変化型素子を使用したメモリセルをマトリクス状に配置したメモリセルアレイ1を備える。メモリセルアレイ1のビット線BL方向に隣接する位置には、メモリセルアレイ1のビット線BLを制御し、メモリセルのデータ消去、メモリセルへのデータ書き込み、及びメモリセルからのデータ読み出しを行うカラム制御回路2が設けられている。また、メモリセルアレイ1のワード線WL方向に隣接する位置には、メモリセルアレイ1のワード線WLを選択し、メモリセルのデータ消去、メモリセルへのデータ書き込み、及びメモリセルからのデータ読み出しに必要な電圧を印加するロウ制御回路3が設けられている。
データ入出力バッファ4は、図示しない外部のホストにI/O線を介して接続され、書き込みデータの受け取り、消去命令の受け取り、読み出しデータの出力、アドレスデータやコマンドデータの受け取りを行う。データ入出力バッファ4は、受け取った書き込みデータをカラム制御回路2に送り、カラム制御回路2から読み出したデータを受け取って外部に出力する。外部からデータ入出力バッファ4に供給されたアドレスは、アドレスレジスタ5を介してカラム制御回路2及びロウ制御回路3に送られる。また、ホストからデータ入出力バッファ4に供給されたコマンドは、コマンド・インターフェイス6に送られる。コマンド・インターフェイス6は、ホストからの外部制御信号を受け、データ入出力バッファ4に入力されたデータが書き込みデータかコマンドかアドレスかを判断し、コマンドであれば受け取りコマンド信号としてステートマシン7に転送する。ステートマシン7は、この不揮発性メモリ全体の管理を行うもので、ホストからのコマンドを受け付け、読み出し、書き込み、消去、データの入出力管理等を行う。
また、ホストからデータ入出力バッファ4に入力されたデータはエンコード・デコード回路8に転送され、その出力信号がパルスジェネレータ9に入力される。この入力信号によってパルスジェネレータ9は所定の電圧、所定のタイミングの書き込みパルスを出力する。パルスジェネレータ9で生成出力されたパルスが、スラム制御回路2及びロウ制御回路3で選択された任意の配線へ転送される。
[メモリセルアレイ及びその周辺回路]
図2は、メモリセルアレイ1の一部の斜視図、図3は、図2におけるI−I′線で切断して矢印方向に見たメモリセル1つ分の断面図である。
複数本の第1の配線としてワード線WL0〜WL2が平行に配設され、これと交差して複数本の第2の配線としてビット線BL0〜BL2が平行に配設され、これらの各交差部に両配線に挟まれるようにメモリセルMCが配置される。第1及び第2の配線は、熱に強く、且つ抵抗値の低い材料が望ましく、例えばW,WSi,NiSi,CoSi等を用いることができる。
メモリセルMCは、図3に示すように、可変抵抗素子VRと非オーミック素子NOの直列接続回路からなる。
可変抵抗素子VRとしては、電圧印加によって、電流、熱、化学エネルギー等を介して抵抗値を変化させることができるもので、上下にバリアメタル及び接着層として機能する電極EL1,EL2が配置される。電極材としては、Pt,Au,Ag,TiAlN,SrRuO,Ru,RuN,Ir,Co,Ti,TiN,TaN,LaNiO,Al,PtIrOx, PtRhOx,Rh/TaAlN等が用いられる。また、配向性を一様にするようなメタル膜の挿入も可能である。また、別途バッファ層、バリアメタル層、接着層等を挿入することも可能である。
可変抵抗素子VRは、カルコゲナイド等のように結晶状態と非晶質状態の相転移により抵抗値を変化させるもの(PRAM)、遷移元素となる陽イオンを含む複合化合物であって陽イオンの移動により抵抗値が変化するもの等を用いることができる。
図4及び図5は、後者の可変抵抗素子の例を示す図である。図4に示す可変抵抗素子VRは、電極層11、13の間に記録層12を配置してなる。記録層12は、少なくとも2種類の陽イオン元素を有する複合化合物から構成される。陽イオン元素の少なくとも1種類は電子が不完全に満たされたd軌道を有する遷移元素とし、且つ隣接する陽イオン元素間の最短距離は、0.32nm以下とする。具体的には、化学式AxMyXz(AとMは互いに異なる元素)で表され、例えばスピネル構造(AM)、イルメナイト構造(AMO)、デラフォサイト構造(AMO)、LiMoN構造(AMN)、ウォルフレマイト構造(AMO)、オリビン構造(AMO)、ホランダイト構造(AxMO)、ラムスデライト構造(AMO)パロブスカイト構造(AMO)等の結晶構造を持つ材料により構成される。
図4の例では、AがZn、MがMn、XがOである。記録層12内の小さな白丸は拡散イオン(Zn)、大きな白丸は陰イオン(O)、小さな黒丸は遷移元素イオン(Mn)をそれぞれ表している。記録層12の初期状態は高抵抗状態であるが、電極層11を固定電位、電極層13側に負の電圧を印加すると、記録層12中の拡散イオンの一部が電極層13側に移動し、記録層12内の拡散イオンが陰イオンに対して相対的に減少する。電極層13側に移動した拡散イオンは、電極層13から電子を受け取り、メタルとして析出するため、メタル層14を形成する。記録層12の内部では、陰イオンが過剰となり、結果的に記録層12内の遷移元素イオンの下層を上昇させる。これにより、記録層12はキャリアの注入により電子伝導性を有するようになってセット動作が完了する。再生に関しては、記録層12を構成する材料が抵抗変化を起こさない程度の微小な電流値を流せば良い。プログラム状態(低抵抗状態)を初期状態(高抵抗状態)にリセットするには、例えば記録層12に大電流を充分な時間流してジュール加熱して、記録層12の酸化還元反応を促進すれば良い。また、セット時と逆向きの電場を印加することによってもリセット動作が可能である。
図5の例は、電極層11,13に挟まれた記録層15が第1化合物層15aと第2化合物層15bの2層で形成されている。第1化合物層15aは電極層11側に配置され化学式AxM1yX1zで表記される。第2化合物層15bは電極層13側に配置され第1化合物層15aの陽イオン元素を収容できる空隙サイトを有している。
図5の例では、第1化合物層15aにおけるAがMg、M1がMn、X1がOである。第2化合物層15bには、遷移還元イオンとして黒丸で示すTiが含まれている。また、第1化合物層15a内の小さな白丸は拡散イオン(Mg)、大きな白丸は陰イオン(O)、二重丸は遷移元素イオン(Mn)をそれぞれ表している。なお、第1化合物層15aと第2化合物層15bとは、2層以上の複数層となるように積層されていても良い。
この可変抵抗素子VRにおいて、第1化合物層15aが陽極側、第2化合物層15bが陰極側となるように、電極層11,13に電位を与え、記録層15に電位勾配を発生させると、第1化合物層15a内の拡散イオンの一部が結晶中を移動し、陰極側の第2化合物層15b内に進入する。第2化合物層15bの結晶中には、拡散イオンを収容できる空隙サイトがあるため、第1化合物層15a側から移動してきた拡散イオンは、この空隙サイトに収まることになる。このため、第1化合物層15a内の遷移元素イオンの価数が上昇し、第2化合物層15b内の遷移元素イオンの価数が減少する。初期状態において、第1及び第2の化合物層15a,15bが高抵抗状態であるとすれば、第1化合物層15a内の拡散イオンの一部が第2化合物層15b内に移動することにより、第1及び第2化合物の結晶中に伝導キャリアが発生し、両者共に電気伝導性を有することになる。なお、プログラム状態(低抵抗状態)を消去状態(高抵抗状態)にリセットするには、先の例と同様に、記録層15に大電流を充分な時間流してジュール加熱して、記録層15の酸化還元反応を促進すれば良い。また、セット時とは逆向きの電場を印加することによってもリセットは可能である。
非オーミック素子NOは、例えば図6に示すように、(a)ショットキーダイオード、(b)PN接合ダイオード、(c)PINダイオード等の各種ダイオード、(d)MIM(Metal-Insulator-Metal)構造、(e)SIS構造(Silicon-Insulator-Silicon)等からなる。ここにもバリアメタル層、接着層を形成する電極EL2,EL3を挿入しても良い。また、ダイオードを使用する場合はその特性上、ユニポーラ動作を行うことができ、また、MIM構造、SIS構造等の場合にはバイポーラ動作を行うことが可能である。なお、非オーミック素子NOと可変抵抗素子VRの配置は、図3と上下を逆にしても良いし、非オーミック素子NOの極性を上下反転させても良い。
また、図7に示すように、上述したメモリ構造を複数積層した三次元構造とすることもできる。図8は、図7のII−II′断面を示す断面図である。図示の例は、セルアレイ層MA0〜MA3からなる4層構造のメモリセルアレイで、ワード線WL0jがその上下のメモリセルMC0,MC1で共有され、ビット線BL1iがその上下のメモリセルMC1,MC2で共有され、ワード線WL1jがその上下のメモリセルMC2,MC3で共有されている。また、このような配線/セル/配線/セルの繰り返しではなく、配線/セル/配線/層間絶縁膜/配線/セル/配線のように、セルアレイ層間に層間絶縁膜を介在させるようにしても良い。
なお、メモリセルアレイ1は、幾つかのメモリセル群のMATに分けられることも可能である。前述したカラム制御回路2及びロウ制御回路3は、MAT毎、セクタ毎、又はセルアレイ層MA毎に設けられていても良いし、これらで共有しても良い。また、面積削減のために複数のビット線BLで共有することも可能である。
図9は、非オーミック素子NOとしてダイオードSDを用いたメモリセルアレイ1及びその周辺回路の回路図である。ここでは、説明を簡単にするため、1層構造であるとして説明を進める。
図9において、メモリセルMCを構成するダイオードのアノードはワード線WLに接続され、カソードは可変抵抗素子VRを介してビット線BLに接続されている。各ビット線BLの一端はカラム制御回路2の一部である選択回路2aに接続されている。また、各ワード線WRの一端はロウ制御回路3の一部である選択回路3aに接続されている。
選択回路2aは、ビット線BL毎に設けられた、ゲート及びドレインが共通接続された選択PMOSトランジスタQP0及び選択NMOSトランジスタQN0からなる。選択PMOSトランジスタQP0のソースは、高電位電源Vccに接続されている。選択NMOSトランジスタQN0のソースは、書き込みパルスを印加すると共にデータ読み出し時に検出すべき電流を流すビット線側ドライブセンス線BDSに接続されている。トランジスタQP0,QN0の共通ドレインは、ビット線BLに接続され、共通ゲートには、各ビット線BLを選択するビット線選択信号BSiが供給されている。
また、選択回路3aは、ワード線WL毎に設けられた、ゲート及びドレインが共通接続された選択PMOSトランジスタQP1及び選択NMOSトランジスタQN1からなる。選択PMOSトランジスタQP1のソースは、書き込みパルスを印加すると共にデータ読み出し時に検出すべき電流を流すワード線側ドライブセンス線WDSに接続されている。選択NMOSトランジスタQN1のソースは、低電位電源Vssに接続されている。トランジスタQP1,QN1の共通ドレインは、ワード線WLに接続され、共通ゲートには、各ワード線WLを選択するワード線選択信号/WSiが供給されている。
[二値データ読み出し動作]
次に、多値データのリード・ライト動作に先立ち、説明の理解のために、二値のリード・ライト動作を説明する。
上述した回路において、データは各メモリセルMCの抵抗素子VRの抵抗値の大小として記憶される。非選択状態では、例えば、ワード線選択信号/WS0,/WS1,…が“H”レベル、ビット線選択信号BS0,BS1,…が“L”レベルとなって全てのワード線WLは“L”レベル、全てのビット線BLは“H”レベルとなる。この非選択状態では、全てのメモリセルMCのダイオードSDが逆バイアス状態でオフであり、可変抵抗素子VRには電流は流れない。ここで、ワード線WL1及びビット線BL1に繋がる真中のメモリセルMCを選択する場合を考えると、ロウ制御回路3はワード線選択信号/WS1を“L”レベルとし、カラム制御回路2はビット線選択信号BS1を“H”レベルとする。これによってワード線WL1はワード線側ドライブセンス線WDSに接続され、ビット線BL1はビット線側ドライブセンス線BDSに接続されるので、ドライブセンス線WDSに“H”レベル、ドライブセンス線BDSに“L”レベルを印加することにより、ワード線WL1が“H”レベル、ビット線BL1が“L”レベルとなる。これにより、選択セルでは、ダイオードSDが順バイアスになって電流が流れる。このとき、選択セルに流れる電流量は、抵抗素子VRの抵抗値によって決まるから、電流量の大きさを検知することにより、データの読み出しができる。すなわち、図10に示すように、例えば高抵抗の消去状態を“1”、低抵抗のプログラム状態を“0”に対応させて、センスされた電流値が少ない場合“1”、多い場合“0”と検出することができる。
なお、選択されたワード線WL1と非選択のビット線BLとは共に“H”レベルであるため、両者間に電流は流れず、非選択のワード線WLと選択されたビット線BL1とは共に“L”レベルであるから、これらの間にも電流は流れない。従って、選択されたメモリセル以外のメモリセルには電流は流れない。
図11は、上述したセルアレイに適用される二値のデータのセンスアンプ回路2b,3bの基本構成を示している。これらは、例えばカラム制御回路2及びロウ制御回路3の内部に設けられる。なお、この構成は、メモリセル層が多層に配置された場合のセンスアンプ方式に発展させるのに好ましい構成例として示したものであり、本例のように、1層の場合には、センスアンプ回路2b,3bのいずれかが備えられていれば良い。
図11に示すセンスアンプ回路2b,3bは、電流検出型センスアンプであり、選択セルに流れる電流を電圧に変換する素子である抵抗R0,R1、ダミーセルDMC、このダミーセルDMCに流れる電流を電圧に変換する抵抗r0,r1、及びオペアンプOP0,OP1を備えて構成されている。
セルアレイの中のあるワード線WLが、ロウ制御回路3の出力であるワード線選択信号/WSにより駆動される選択PMOSトランジスタQP1により選択されると、ドライブセンス線WDSを介し、抵抗R1を介して高電位電源線WPSに接続される。またビット線BLは、カラム制御回路2の出力である選択信号BSにより駆動される選択NMOSトランジスタQN0により選択され、ドライブセンス線BDSを介し、抵抗R0を介して低電位電源線BPSに接続される。
メモリセルMCと等価なダミーセルDMCは、ダミーダイオードDSDとダミー抵抗素子DVRから構成されて、メモリセルMCの二値データの抵抗値の中間の抵抗値を持つものとする。ダミーセルDMCの一端は、PMOSトランジスタQP2を介し、抵抗r1を介して高電位電源線WPSに接続される。PMOSトランジスタQP2は、選択PMOSトランジスタQP1のダミー素子であり、常時オン駆動されている。ダミーセルDMCの他端は、NMOSトランジスタQN2を介し、抵抗r0を介して低電位電源線BPSに接続される。NMOSトランジスタQN2は、選択NMOSトランジスタQN0のダミー素子であり、常時オン駆動されている。
センスアンプの主要部は、二つのオペアンプOP0,OP1により構成される。オペアンプOP0の非反転入力端子には、抵抗R0の適当な中間タップの出力bの電圧が入力され、反転入力端子には抵抗r0とNMOSトランジスタQN0の接続ノードの電圧が入力される。オペアンプOP1の反転入力端子には、抵抗R1の適当な中間タップの出力wの電圧が入力され、非反転入力端子には抵抗r1とPMOSトランジスタQP2の接続ノードの電圧が入力される。
この様に構成されたセンスアンプ回路2b,3bの動作を説明する。前述のように、非選択状態では、ワード線WLは“L”レベルに、ビット線BLは“H”レベルに保持されている。選択時は、ワード線選択信号/WSが“L”、ビット線選択信号BSが“H”になる。そして、高電位電源線WPSに“H”レベル=Vcc、低電位電源線BPSに“L”レベル=Vssがそれぞれ与えられているとすると、選択されたメモリセルMCにセル電流が流れる。
具体的に、抵抗R0,R1,r0,r1の関係は例えば、抵抗R0のオペアンプOP0への電圧出力bの中間タップから端子BPSまでの抵抗値が抵抗r0と同じとし、同様に抵抗R1のオペアンプOP1への電圧出力wの中間タップから端子WPSまでの抵抗値が抵抗r1と同じとする。選択セルが高抵抗状態(以下、これをデータ“1”とする)であって、ダミーセルDMC側に流れる電流に比べてセル電流が小さいと、オペアンプOP0,OP1の出力は共に“H”となる。逆に、選択セルが低抵抗状態(以下、これをデータ“0”とする)であって、ダミーセルDMC側に流れる電流に比べて大きなセル電流が流れると、オペアンプOP0,OP1の出力は共に“L”となる。これにより、データ“0”,“1”の判別ができる。
なお、このセンスアンプ回路2a,3aの構成は、メモリセル層が多層に配置された場合のセンスアンプ方式に発展させるのに好ましい構成例として示したものであって、上述した二値記憶のみを考えた場合には、オペアンプOP0,OP1のいずれか一方のみ用いてもよい。或いはオペアンプOP0,OP1の一方の反転入力端子と非反転入力端子の接続関係を逆にすることもできる。これにより、二つのオペアンプOP0,OP1の出力は、データに応じて一方が“H”,他方が“L”となる。従って更にこれらの二つのオペアンプ出力を入力するオペアンプを用意すれば、データ“0”,“1”を“H”,“L”に対応させたセンス出力を得ることができる。
[二値データ書き込み動作]
次に二値データの書き込み動作について説明する。
図12は、データ書込時の選択信号/WS,BSと、ドライブデータ線WDS,BDSに印加する書き込みパルスWP,BPを示す波形図である。書き込みパルスWP,BPは、昇圧回路を含むパルスジェネレータ9から生成出力される。
高抵抗状態から低抵抗状態に変化させるデータセット時には、データを書き込むメモリセルに対応したワード線WL1のワード線選択信号/WS1を“L”レベルにすると共に、書き込むメモリに対応したビット線BL1のビット線選択信号BS1を“H”レベルにする。これと同時に、ワード線側ドライブセンス線WDSには、図10に示す、可変抵抗素子VRの抵抗値を消去レベルからプログラムレベルに変化させるための書き込みパルスWPを与える。この書き込みパルスWPは、図1に示すパルスジェネレータ9から与えられ、パルス高さは例えばVccレベルとする。同時にビット線側ドライブセンス線BDSには、Vssレベルとなる負の書き込みパルスBPが与えられる。これにより、高抵抗状態(消去状態)の可変抵抗素子VRを低抵抗状態(プログラム状態)にセットすることができる。
また、低抵抗状態から高低抵抗状態に変化させるデータリセット時には、複数のメモリセルに対する一括消去が可能であるが、メモリセル毎の個別消去も可能である。この場合には、データを消去するメモリセルに対応したワード線WL1のワード線選択信号/WS1をセット時よりも長い時間“L”レベルにすると共に、書き込むメモリに対応したビット線BL1のビット線選択信号BS1を同じくセット時よりも長い時間“H”レベルにする。消去時には、メモリセルが低抵抗状態となっているので、ワード線側ドライブセンス線WDSには、セット時よりも低い消去パルスEWPを印加し、ビット線側ドライブセンス線BDSには、Vssレベルとなる負の消去パルスEBPを印加する。これにより、低抵抗状態にある可変抵抗素子VRに長い時間、多めの電流を流すことによってジュール熱によって高抵抗状態にリセットすることができる。
[多値データ書き込み動作]
次に、不揮発性メモリの多値データの書き込み動作について説明する。
図13は、多値記憶の場合のメモリセルの抵抗値分布とデータとの関係を示すグラフである。同図(a)は各メモリセルMCに2ビットのデータを記憶させる場合の例で、4つの抵抗値分布A〜Dに入るように各メモリセルMCに対する書き込みが行われる。抵抗値の高い方の分布Aから順に2ビットのデータ“11”,“10”,“01”,“00”が対応している。同図(b)は各メモリセルMCに3ビットのデータを記憶させる場合の例で、8つの抵抗値分布A〜Hに入るように各メモリセルMCに対する書き込みが行われる。抵抗値の高い方の分布Aから順に3ビットのデータ“111”,“110”,“101”,“100”,“011”,“010”,“001”,“000”が対応している。同図(c)は各メモリセルMCに4ビットのデータを記憶させる場合の例で、16個の抵抗値分布A〜Pに入るように各メモリセルMCに対する書き込みが行われる。抵抗値の高い方の分布Aから順に4ビットのデータ“1111”,“1110”,“1101”,“1100”,…,“0011”,…,“0010”,“0001”,“0000”が対応している。
多値データの書き込みを行う場合、ホストからデータ入出力バッファ4に書き込みデータが入力される。その際、多値データの1セルあたりのストレージビット数単位でデータ入力が行われる場合を考える。たとえば、1セル当たり4値を記憶する場合は、ホストから2ビット単位で書き込みデータが入力される。ホストから入力されたデータはデータ入出力バッファ4で受け取られ、エンコード・デコード回路8へ転送される。ここで、入力されたデータがエンコード、デコード回路8により、デコードされてパルスジェネレータ9に送られても良いし、または、外部からの入力データがそのままの形でパルスジェネレータ9に送られても良い(この場合はエンコード・デコード回路8は不要となる)。ここでパルスジェネレータ9は、入力されたデータにより、図13のA,B,C,Dのいずれかの抵抗値レベルを得るための書き込みパルスWPを作成する。このパルスはステートマシン7で制御される書き込みのタイミングで、ロウ制御回路3で選択される選択ワード線WLへ転送され、書き込みが行われる。
ここで、入力データによる書き込みパルス形成の例を図14に示す。この例は、入力データによって書き込みパルスのパルス電圧を変化させる例である。ここで示す抵抗変化素子VRの消去状態(“11”)をAレベルと仮定すると、入力データが“00”のとき、同図(a)に示すように、最大のパルス高さ(Vcc)の書き込みパルスWPを生成する。入力データが“01”のときには、同図(b)に示すように、最大のパルス高さよりも一段階低いパルス高さの書き込みパルスWPを生成する。入力データが“10”のときには、同図(c)に示すように、更に最も低いパルス高さの書き込みパルスWPを生成する。なお、これらの書き込みパルスWPは、可変抵抗素子VRの抵抗値を、図13に示すレベルD,C,Bまで移動可能な電圧値とパルス幅であることを必要とする。
図15は、書き込みパルス形成の他の例を示している。
この実施形態では、入力データによって書き込みパルスのパルス幅を変化させる。消去状態(“11”)をAレベルと仮定すると、入力データが“00”のとき、同図(a)に示すように、最大のパルス幅の書き込みパルスWPを生成する。入力データが“01”のときには、同図(b)に示すように、最大のパルス幅よりも一段階狭いパルス幅の書き込みパルスWPを生成する。入力データが“10”のときには、同図(c)に示すように、最も狭いパルス幅の書き込みパルスWPを生成する。なお、これらの書き込みパルスWPは、可変抵抗素子VRの抵抗値を、図13に示すレベルD,C,Bまで移動可能な電圧値とパルス幅であることを必要とする。
図16は、8値データの書き込みパルスWPの例で、パルス幅とパルス高さの組合せで書き込みパワーを変化させている。すなわち、消去状態(“111”)をAレベルと仮定すると、入力データが“000”のとき、パルス高さが最も大きく、パルス幅が最も広い書き込みパルスHが選択され、入力データが“110”のとき、パルス高さが最も小さく、パルス幅が最も狭い書き込みパルスBが選択される。
図17は、ステップアップ又はステップダウン書き込みを行う場合の書き込みパルスWPを示す波形図である。この場合には、書き込みパルスWPの数によって抵抗変化素子VRの抵抗値が変化する。なお、このようなステップアップ、ステップダウン書き込みを行う場合は、書き込みデータの入力によって、初めのパルスの形成が行われるようにすれば書き込み時間を短縮することができる。また、パルス数だけでなく、ステップ幅も変更されるようにしても良い。
なお、以上は、書き込みパルスと消去パルスが同一極性のユニポーラ動作を中心として説明したが、バイポーラ動作を行う不揮発性メモリにもこの発明は適用可能である。図18は、非オーミック素子NOの非対称特性を利用して可変抵抗素子VRに逆方向パルスを消去パルスEWPとして印加可能な例を示している。上述した可変抵抗素子では、逆方向電圧を印加することによりリセットが可能であることが知られている。この場合には、書き込みパルスWPを多段階に変化させることに加え、逆極性の消去パルスのパルス幅やパルス高さを変えることで、不完全消去状態のレベルを変えることにより、任意の抵抗値を得るようにしても良い。
なお、上記の例では、1つのメモリセルに2ビットのデータを記憶する場合に、2ビットずつデータを入力した。この場合、入力データがパルスジェネレータ9まで転送され、2ビットの書き込みが行われる。この動作を繰り返すことでシリアルな書き込み動作を行う。このとき、アドレスを入れ替えて、ランダムアクセスとしても良い。また、入力データがさらに複数ビット、例えば8ビットで入力された場合にも、2ビットずつ順番に書き込み動作を実行させることは可能である。この場合、入力データが、まずカラム制御回路2へ転送され、その情報を書き込み前にパルスジェネレータ9に転送することで書き込み、消去を行うことができる。
[多値データ読み出し動作]
次に、多値データの読み出しについて説明する。
図19は、多値データ用のセンスアンプ回路2b′,3b′の構成を示す回路図である。この回路が図11に示した二値用のセンスアンプ2b,3bと異なるのは、オペアンプOP0,OP1の基準電圧を与えるダミーセルDMCを、読み出しレベルに応じて3つのダミーセルDMCa,DMCb,DMCcから切り換えるように構成した点である。ダミーセルDMCa〜DMCcは、それぞれダイオードSDのダミーであるダミーダイオードDSDa〜DSDcと、ダミー抵抗素子DVRa〜DVRcの直列回路から構成されている。4値データの読み出しを例にとると、図13(a)に示すように、1つのメモリセルMCは、A〜Dの4つの抵抗値分布を取り得るので、これらの抵抗値分布A〜Dの間の抵抗値RLa,RLb,RLcをダミー抵抗素子DVRa,DVRb,DVRcの抵抗値に設定する。ダミーのPMOSトランジスタQP2a〜QO2cと、ダミーのNMOSトランジスタQN2a〜QN2cは、それぞれダミーセルDMCa〜DMCcを択一的に選択する選択トランジスタも兼用する。
従って、読み出し抵抗レベルRLa,RLb,RLcを一つずつ選択して基準となる抵抗値を変化させることにより、メモリセルMCの抵抗レベルを検出することができる。
また、この読み出し動作は、読み出し抵抗レベルをベリファイレベルに設定すれば、書き込み時のベリファイ読み出し動作にも適用できる。
なお、以上の回路は、あくまで一例であり、メモリセルMCを流れる電流値の大きさを充電電圧に変換して、スレッショルト電圧が変化するクランプトランジスタで充電電圧を判定することにより、データをセンスする回路とすることもできる。
また、上述したメモリセルアレイは、特に一層構造に限定されるものではなく、多層に配置すれば、更にデータ記憶容量を増加させることができる。その際、ワード線及びビット線の一部が上下の層で共有されていた場合でも、電流の流れる向きを考慮して各配線に流れる電流値を検出することで、多値のデータの読み出しが可能である。
本発明の一実施形態に係る不揮発性メモリのブロック図である。 同実施形態に係る不揮発性メモリのメモリセルアレイの一部の斜視図である。 図2におけるI−I′線で切断して矢印方向に見たメモリセル1つ分の断面図である。 同実施形態における可変抵抗素子の一例を示す模式的な断面図である。 同実施形態における可変抵抗素子の他の例を示す模式的な断面図である。 同実施形態における非オーミック素子の例を示す模式的断面図である。 本発明の他の実施形態に係るメモリセルアレイの一部を示す斜視図である。 図7におけるII−II′線で切断して矢印方向に見たメモリセル1つ分の断面図である。 同実施形態に係る不揮発性メモリのメモリセルアレイ及びその周辺回路の回路図である。 二値データの場合のメモリセルの抵抗値分布とデータの関係を示すグラフである。 同実施形態におけるセンスアンプの構成を示す回路図である。 同実施形態におけるデータ書込時の選択信号/WS,BSと、書き込みパルスWP,BPを示す波形図である。 多値記憶の場合のメモリセルの抵抗値分布とデータとの関係を示すグラフである。 同実施形態における書き込みパルスの第1の生成例を示す波形図である。 同実施形態における書き込みパルスの第2の生成例を示す波形図である。 同実施形態における書き込みパルスの第3の生成例を示す波形図である。 同実施形態における書き込みパルスの第4の生成例を示す波形図である。 他の実施形態における書き込みパルス及び消去パルスの生成例を示す波形図である。 同実施形態における多値データ検出のためのセンスアンプの構成を示す回路図である。
符号の説明
1…メモリセルアレイ、2…カラム制御回路、3…ロウ制御回路、4…データ入出力バッファ、5…アドレスレジスタ、6…コマンド・インターフェイス、7…ステートマシン、8…エンコード・デコード回路、9…パルスジェネレータ。

Claims (3)

  1. 可変抵抗素子を使用した電気的に書き換え可能な不揮発性のメモリセルをマトリクス状に配置してなるメモリセルアレイと、
    3値以上の書き込みデータに基づいて前記可変抵抗素子の抵抗値を3段階以上に変化させる書き込みパルスを生成出力するパルスジェネレータと、
    書き込みアドレスに基づいて前記メモリセルアレイの書き込むべきメモリセルを選択して前記パルスジェネレータから生成出力された書き込みパルスを供給する選択回路と
    を備え、
    前記パルスジェネレータは、前記書き込みデータに応じて異なる数の前記書き込みパルスを生成し、生成された当該書き込みパルスは、当該書き込みデータに応じて異なる初期値で、且つ、異なるステップ幅でステップアップ又はステップダウンする
    ことを特徴とする不揮発性半導体記憶装置。
  2. 前記メモリセルは、前記可変抵抗素子と直列に接続された非オーミック素子を有する
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 前記非オーミック素子は、ダイオードである
    ことを特徴とする請求項2記載の不揮発性半導体記憶装置。
JP2007269770A 2007-10-17 2007-10-17 不揮発性半導体記憶装置 Expired - Fee Related JP5172269B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007269770A JP5172269B2 (ja) 2007-10-17 2007-10-17 不揮発性半導体記憶装置
PCT/JP2008/066613 WO2009050969A1 (en) 2007-10-17 2008-09-09 Nonvolatile semiconductor memory device
US12/677,017 US8259489B2 (en) 2007-10-17 2008-09-09 Nonvolatile semiconductor memory device generating different write pulses to vary resistances
KR1020107008287A KR101239582B1 (ko) 2007-10-17 2008-09-09 불휘발성 반도체 기억 장치
CN200880112062.4A CN101828236B (zh) 2007-10-17 2008-09-09 非易失性半导体存储器件
TW097135266A TWI401683B (zh) 2007-10-17 2008-09-12 非揮發性半導體記憶裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269770A JP5172269B2 (ja) 2007-10-17 2007-10-17 不揮発性半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2009099198A JP2009099198A (ja) 2009-05-07
JP5172269B2 true JP5172269B2 (ja) 2013-03-27

Family

ID=40567245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269770A Expired - Fee Related JP5172269B2 (ja) 2007-10-17 2007-10-17 不揮発性半導体記憶装置

Country Status (6)

Country Link
US (1) US8259489B2 (ja)
JP (1) JP5172269B2 (ja)
KR (1) KR101239582B1 (ja)
CN (1) CN101828236B (ja)
TW (1) TWI401683B (ja)
WO (1) WO2009050969A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418434B1 (ko) 2008-03-13 2014-08-14 삼성전자주식회사 비휘발성 메모리 장치, 이의 제조 방법, 및 이를 포함하는프로세싱 시스템
JP4977180B2 (ja) * 2009-08-10 2012-07-18 株式会社東芝 不揮発性半導体記憶装置の製造方法
US9184213B2 (en) * 2010-01-29 2015-11-10 Hewlett-Packard Development Company, L.P. Nanoscale switching device
US8416609B2 (en) 2010-02-15 2013-04-09 Micron Technology, Inc. Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, methods of writing to and reading from a memory cell, and computer systems
US8437174B2 (en) 2010-02-15 2013-05-07 Micron Technology, Inc. Memcapacitor devices, field effect transistor devices, non-volatile memory arrays, and methods of programming
JP2011198440A (ja) * 2010-03-24 2011-10-06 Toshiba Corp 不揮発性半導体記憶装置
JP5566776B2 (ja) * 2010-05-21 2014-08-06 株式会社東芝 抵抗変化メモリ
US8634224B2 (en) 2010-08-12 2014-01-21 Micron Technology, Inc. Memory cells, non-volatile memory arrays, methods of operating memory cells, methods of writing to and reading from a memory cell, and methods of programming a memory cell
US8816312B2 (en) 2010-09-28 2014-08-26 Nec Corporation Semiconductor device
CN102034535B (zh) * 2010-12-15 2013-01-16 清华大学 带有操控电路的三值型阻变存储单元及其读写实现方法
CN102610749B (zh) 2011-01-25 2014-01-29 中国科学院微电子研究所 阻变型随机存储单元及存储器
CN102610748B (zh) * 2011-01-25 2014-02-12 中国科学院微电子研究所 非挥发性存储单元及存储器
JP2012216702A (ja) * 2011-04-01 2012-11-08 Rohm Co Ltd データ保持装置及びこれを用いた論理演算回路
JP5634367B2 (ja) * 2011-09-26 2014-12-03 株式会社東芝 半導体記憶装置
KR102030326B1 (ko) * 2013-01-21 2019-10-10 삼성전자 주식회사 비휘발성 메모리 장치 및 그 구동 방법
KR20140128482A (ko) 2013-04-25 2014-11-06 에스케이하이닉스 주식회사 저항변화 메모리 소자와 이를 위한 쓰기제어 회로, 이를 포함하는 메모리 장치 및 데이터 처리 시스템과 동작 방법
TWI514551B (zh) * 2013-05-15 2015-12-21 Toshiba Kk Nonvolatile memory device
KR102126967B1 (ko) 2013-10-11 2020-07-08 삼성전자주식회사 메모리 소자 및 그 제조 방법
US10134470B2 (en) 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US10446226B2 (en) 2016-08-08 2019-10-15 Micron Technology, Inc. Apparatuses including multi-level memory cells and methods of operation of same
US10157667B2 (en) * 2017-04-28 2018-12-18 Micron Technology, Inc. Mixed cross point memory
JP6517385B1 (ja) * 2018-02-07 2019-05-22 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141241A (en) 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US6314014B1 (en) * 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
JP4025527B2 (ja) * 2000-10-27 2007-12-19 松下電器産業株式会社 メモリ、書き込み装置、読み出し装置およびその方法
US6809401B2 (en) 2000-10-27 2004-10-26 Matsushita Electric Industrial Co., Ltd. Memory, writing apparatus, reading apparatus, writing method, and reading method
JP3749847B2 (ja) 2001-09-27 2006-03-01 株式会社東芝 相変化型不揮発性記憶装置及びその駆動回路
US7767993B2 (en) 2002-04-04 2010-08-03 Kabushiki Kaisha Toshiba Resistance change memory device
US7989789B2 (en) 2002-04-04 2011-08-02 Kabushiki Kaisha Toshiba Phase-change memory device that stores information in a non-volatile manner by changing states of a memory material
JP4205938B2 (ja) * 2002-12-05 2009-01-07 シャープ株式会社 不揮発性メモリ装置
CN100394603C (zh) * 2003-04-03 2008-06-11 株式会社东芝 相变存储装置
JP2004319587A (ja) * 2003-04-11 2004-11-11 Sharp Corp メモリセル、メモリ装置及びメモリセル製造方法
EP1726017A1 (en) * 2003-12-26 2006-11-29 Matsushita Electric Industries Co., Ltd. Memory device, memory circuit and semiconductor integrated circuit having variable resistance
JP4670252B2 (ja) * 2004-01-20 2011-04-13 ソニー株式会社 記憶装置
US7082052B2 (en) * 2004-02-06 2006-07-25 Unity Semiconductor Corporation Multi-resistive state element with reactive metal
KR100657944B1 (ko) 2005-01-12 2006-12-14 삼성전자주식회사 상전이 램 동작 방법
EP2309516A1 (en) 2005-06-03 2011-04-13 STMicroelectronics Srl Method for multilevel programming of phase change memory cells using a percolation algorithm
JP2006351061A (ja) * 2005-06-14 2006-12-28 Matsushita Electric Ind Co Ltd メモリ回路
KR100794654B1 (ko) * 2005-07-06 2008-01-14 삼성전자주식회사 상 변화 메모리 장치 및 그것의 프로그램 방법
KR100790043B1 (ko) 2005-09-16 2008-01-02 가부시끼가이샤 도시바 상변화 메모리장치
KR100773095B1 (ko) * 2005-12-09 2007-11-02 삼성전자주식회사 상 변화 메모리 장치 및 그것의 프로그램 방법
JP5143415B2 (ja) * 2006-01-02 2013-02-13 三星電子株式会社 マルチビットセル及び直径が調節できるコンタクトを具備する相変化記憶素子、その製造方法及びそのプログラム方法
KR100746224B1 (ko) 2006-01-02 2007-08-03 삼성전자주식회사 멀티비트 셀들을 구비하는 상변화 기억소자들 및 그프로그램 방법들

Also Published As

Publication number Publication date
TW200933632A (en) 2009-08-01
CN101828236B (zh) 2014-03-12
US20100328988A1 (en) 2010-12-30
US8259489B2 (en) 2012-09-04
JP2009099198A (ja) 2009-05-07
TWI401683B (zh) 2013-07-11
WO2009050969A1 (en) 2009-04-23
KR20100068445A (ko) 2010-06-23
KR101239582B1 (ko) 2013-03-05
CN101828236A (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5172269B2 (ja) 不揮発性半導体記憶装置
JP5253784B2 (ja) 不揮発性半導体記憶装置
JP4719236B2 (ja) 半導体記憶装置及び半導体記憶システム
JP5085405B2 (ja) 不揮発性半導体記憶装置
JP5049814B2 (ja) 不揮発性半導体記憶装置のデータ書き込み方法
JP4719233B2 (ja) 不揮発性半導体記憶装置
JP5178448B2 (ja) 不揮発性半導体記憶装置
JP5214560B2 (ja) 不揮発性半導体記憶装置
JP5100554B2 (ja) 半導体記憶装置
TWI406297B (zh) Semiconductor memory device
US8045355B2 (en) Semiconductor memory device including a reference cell
JP5072564B2 (ja) 半導体記憶装置及びメモリセル電圧印加方法
JP2011108327A (ja) 不揮発性半導体記憶装置
US8149609B2 (en) Nonvolatile semiconductor memory device
JP2012069216A (ja) 不揮発性半導体記憶装置
JP2009193626A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees