JP5161361B1 - 金属混合溶液中の金属の分離方法 - Google Patents

金属混合溶液中の金属の分離方法 Download PDF

Info

Publication number
JP5161361B1
JP5161361B1 JP2011289867A JP2011289867A JP5161361B1 JP 5161361 B1 JP5161361 B1 JP 5161361B1 JP 2011289867 A JP2011289867 A JP 2011289867A JP 2011289867 A JP2011289867 A JP 2011289867A JP 5161361 B1 JP5161361 B1 JP 5161361B1
Authority
JP
Japan
Prior art keywords
metal
extractant
mixed
solution
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011289867A
Other languages
English (en)
Other versions
JP2013139593A (ja
Inventor
陽介 山口
敬太郎 古賀
淳一 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011289867A priority Critical patent/JP5161361B1/ja
Priority to KR20120092417A priority patent/KR101420501B1/ko
Application granted granted Critical
Publication of JP5161361B1 publication Critical patent/JP5161361B1/ja
Publication of JP2013139593A publication Critical patent/JP2013139593A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1608Leaching with acyclic or carbocyclic agents
    • C22B3/1616Leaching with acyclic or carbocyclic agents of a single type
    • C22B3/1633Leaching with acyclic or carbocyclic agents of a single type with oximes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

【課題】コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液から効率的に金属群Bを分離する方法を提供する。
【解決手段】コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液に対して、燐酸エステル系抽出剤(以下、「第一抽出剤」という。)とオキシム系抽出剤(以下、「第二抽出剤」という。)とを含有する混合抽出剤を使用して溶媒抽出し、当該金属混合溶液から金属群Bを分離することを含む金属混合溶液中の金属の分離方法。
【選択図】なし

Description

本発明は、金属混合溶液中の金属の分離方法に関する。とりわけ、本発明はリチウムイオン電池の正極活物質を含む廃材を酸浸出することによって得られた金属混合溶液から銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄を分離する方法に関する。
リチウムイオン電池はハイブリッド自動車用として急速に用途が広がっている。更にはユニットの高容量化により大型電池の生産量が急増することが予想される。また、リチウムイオン電池の需要拡大に伴い、リチウムイオン電池からの有価金属回収方法の確立が求められている。
リチウムイオン電池は、主に正極、負極、セパレーター、筐体からなっており、正極はアルミニウム箔等の集電体上にマンガン、コバルト、ニッケル及びリチウム等を含む正極活物質がフッ素系等のバインダーを介して接着した構造となっている。
リチウムイオン電池のリサイクル方法としては、使用済みリチウムイオン電池を焼却、破砕して選別した後の原料を用いて酸浸出を行った後、得られた浸出液から溶媒抽出によってそれぞれの金属を抽出分離する方法が提案されている。しかしながら、原料中に不純物として銅、亜鉛、カルシウム、アルミニウム及び鉄が含まれていると、酸浸出によって銅、亜鉛、カルシウム、アルミニウム及び鉄が浸出され、目的回収物であるコバルト、ニッケル及びリチウムの品質を低下させる。そのため、原料を酸浸出した浸出液中に銅、亜鉛、カルシウム、アルミニウム及び鉄が含まれている場合は、銅、亜鉛、カルシウム、アルミニウム及び鉄の除去が必要となっていた。
例えば、特開2010−180439号公報(特許文献1)では、中和処理によって鉄及びアルミニウムを除去する方法が記載されている。具体的には、ニッケル及びコバルトと鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、ニッケルを回収する方法であって、下記の工程(1)〜(5)を含むことを特徴とする硫酸酸性水溶液からのニッケル回収方法が開示されている。
工程(1):前記硫酸酸性水溶液に、亜硫酸ガスと空気又は酸素ガスからなる混合ガスを吹き込みながら、炭酸カルシウムを添加して酸化中和処理に付し、生成された鉄及びアルミニウムを含有する沈殿物(a)を除去する。
工程(2):前記工程(1)で得られた酸化中和処理後液に、水酸化カルシウムを添加して中和処理に付し、ニッケル及びコバルトを含有する混合水酸化物を分離回収する。
工程(3):前記工程(2)で得られた混合水酸化物を、濃度50質量%以上の硫酸溶液中で溶解処理に付し、生成されたマンガン及び石膏を含有する沈殿物(b)を除去してニッケル及びコバルトの濃縮液を得る。
工程(4):前記工程(3)で得られた濃縮液を、燐酸エステル系酸性抽出剤を用いて溶媒抽出処理に付し、ニッケルを含有する抽出残液とコバルトを含有する逆抽出液を得る。
工程(5):前記工程(4)で得られた抽出残液に、中和剤を添加して中和処理に付し、生成された水酸化ニッケルを分離回収する。
特開2010−180439号公報
しかしながら、特開2010−180439号公報(特許文献1)の方法のように中和処理によって鉄及びアルミニウムを除去する方法だと、コバルト及びニッケルが中和時に共沈してロスする割合が高いという問題がある。また、中和処理によって生成した水酸化アルミニウム、水酸化鉄、水酸化コバルト及び水酸化ニッケルは濾過性が悪く、固液分離に非常に時間を有するために、この工程に合わせて他の処理工程全体の処理速度を遅く調整する必要がある。
そこで、本発明は、コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液から効率的に金属群Bを分離する方法を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意検討した結果、特定の抽出剤を組み合わせて溶媒抽出すると、極めて効率的に銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の分離が可能になることを見出した。
以上の知見を基礎として完成した本発明は一側面において、
コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液に対して、燐酸エステル系抽出剤(以下、「第一抽出剤」という。)とオキシム系抽出剤(以下、「第二抽出剤」という。)とを含有する混合抽出剤を使用して溶媒抽出し、当該金属混合溶液から金属群Bを分離することを含む金属混合溶液中の金属の分離方法である。
本発明に係る金属混合溶液中の金属の分離方法の一実施形態においては、第一抽出剤及び第二抽出剤の体積比は、第一抽出剤:第二抽出剤=1:1〜50:1である。
本発明に係る金属混合溶液中の金属の分離方法の別の一実施形態においては、金属混合水溶液のpHが1.5〜4.5である。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、第一抽出剤がジ−2−エチルヘキシルリン酸であり、第二抽出剤がアドキシム系抽出剤である。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、混合抽出剤中の第一抽出剤及び第二抽出剤の合計濃度は10〜30体積%である。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、O/A比が1〜5である。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、前記金属混合溶液がリチウムイオン電池の正極活物質を含む廃材を酸浸出して得られた浸出後液である。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、上記の金属混合溶液中の金属の分離方法を実施することにより得られた抽出剤(有機相)に対して、酸性水溶液を使用して洗浄することにより、当該抽出剤(有機相)から金属群Aを分離することを含む。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、洗浄後、洗浄に使用した酸性水溶液よりもpHの低い酸性水溶液を使用して逆抽出を実施することにより、洗浄後の抽出剤(有機相)から金属群Bを分離することを含む。
本発明に係る金属混合溶液中の金属の分離方法の更に別の一実施形態においては、逆抽出後、逆抽出に使用した酸性水溶液よりもpHの低い酸性水溶液を使用してスカベンジングを実施することにより、逆抽出後の抽出剤(有機相)に残留している金属を分離することを含む。
本発明によれば、コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液から効率的に金属群Bを分離することができる。
本発明に係る金属混合溶液中の金属の分離方法の一実施形態においては、コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液に対して、燐酸エステル系抽出剤(以下、「第一抽出剤」という。)とオキシム系抽出剤(以下、「第二抽出剤」という。)とを含有する混合抽出剤を使用して溶媒抽出し、当該金属混合溶液から金属群Bを分離することを含む。
本発明の処理対象となる金属混合水溶液としては、コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する限り特に制限はないが、典型的には、リチウムイオン電池の正極活物質を含む廃材を酸浸出して得られた浸出後液が挙げられる。具体例としては、正極活物質メーカーから出てくる廃正極活物質、電池メーカーから出てくる正極活物質(場合によっては負極活物質及び溶剤(PVDFやNMP)が混練されている)を焼却・乾燥したもの、アルミニウム箔等の集電体にバインダーを介して正極活物質が接着された正極材、正極材から正極活物質を分離したもの、一般に電池滓や電池破砕粉と呼ばれる電池そのものを焼却・破砕・篩別などして正極活物質を分離したようなものを硫酸等で酸浸出して得られた浸出後液である。リチウムイオン電池以外に由来するものとしては、CuとNiを含有するメッキスラッジ等が挙げられる。
典型的な実施形態においては、浸出後液は酸性である。斯かる浸出後液は、典型的には、0.1〜100g/Lのコバルト、0.1〜100g/Lのニッケル、0.001〜50g/Lのリチウム、0.001〜20g/Lの銅、0.001〜20g/Lの亜鉛、0.1〜100g/Lのマンガン、0.001〜20g/Lのカルシウム、0.001〜20g/Lのアルミニウム、0.001〜20g/Lの鉄を含有する。斯かる浸出後液は、より典型的には、1〜80g/Lのコバルト、1〜80g/Lのニッケル、0.01〜20g/Lのリチウム、0.01〜10g/Lの銅、0.01〜10g/Lの亜鉛、1〜80g/Lのマンガン、0.01〜10g/Lのカルシウム、0.01〜10g/Lのアルミニウム、0.01〜10g/Lの鉄を含有する。
鉄の含有量が多い場合は、鉄は溶媒抽出により抽出されやすいものの逆抽出するのに非常に高い酸濃度(低いpH)の酸と接触させる必要があり、200g/L程度の酸濃度(pH−0.6程度)だと溶媒中に残り溶媒中に蓄積していくため、抽出剤を別途抜き出して鉄を除去するための作業が必要となるので、高濃度の鉄は溶媒抽出に不向きである。そこで、溶媒抽出の前に予め脱鉄しておくことが好ましい。脱鉄の方法としては、特に制限はないが、例えば水溶液中の2価の鉄を3価の鉄に酸化しながら水酸化ナトリウム水溶液を添加して中和した後、固液分離する方法がある。鉄の酸化中和処理は、金属混合水溶液を60〜80℃(例:70℃)に加温し、pH3.5〜4.0に調整しながら空気吹込む方法や、40〜60℃(例:50℃)に加温し、pH3.5〜4.0に調整しながら過酸化水素等の酸化剤を溶液中に送り込む方法等がある。
金属混合水溶液のpHは低すぎると溶媒抽出時のpH調整が困難になる一方で、高すぎるとコバルトやニッケルまで抽出される場合がある。そこで、金属混合水溶液のpHは1.5〜4.5に調整することが好ましく、2.5〜4.0に調整することがより好ましい。pHの調整方法は特に制限はなく、公知の任意の方法を使用すれば良いが、例えばアルカリ又は酸を添加することが挙げられる。典型的な浸出後液はpHが1.0〜3.0程度と低いことからアルカリを添加することが多いが、その場合は、苛性ソーダやアンモニアのアルカリを使用することが好ましく、苛性ソーダを使用することがより好ましい。
本発明においては特定の抽出剤を混合して使用することを特徴の一つとしている。第一抽出剤及び第二抽出剤を併用することにより、金属混合水溶液からの金属群Bの分離効率が顕著に向上する。
第一抽出剤は燐酸エステル系の抽出剤であり、燐酸エステルとしては限定的ではないがジ−2−エチルヘキシルリン酸(商品名:D2EHPA又はDEHPA)等が挙げられる。
第二抽出剤はオキシム系抽出剤であり、好ましくはアルドキシムやアルドキシムが主成分のものが挙げられる。具体的には、限定的ではないが、2−ヒドロキシ−5−ノニルアセトフェノンオキシム(商品名:LIX84)、5−ドデシルサリシルアルドオキシム(商品名:LIX860)、LIX84とLIX860の混合物(商品名:LIX984)、5−ノニルサリチルアルドキシム(商品名:ACORGA M5640)が挙げられ、その中でも主に価格面の理由により5−ノニルサリチルアルドキシムが好ましい。
第一抽出剤及び第二抽出剤の体積比には特に制限はないが、第二抽出剤は本来銅を選択的に抽出する抽出剤であり、第二抽出剤は銅の抽出を促進する役割を担うことと、第二抽出剤の割合が多いと銅を逆抽出するのに多くの酸を必要とする理由により、第一抽出剤に対して第二抽出剤の体積が少ないことが好ましい。例えば、第一抽出剤及び第二抽出剤の体積比は第一抽出剤:第二抽出剤=1:1〜50:1とすることが好ましく、5:1〜15:1とするのがより好ましい。
抽出剤は典型的には炭化水素系有機溶剤で希釈して使用することができる。有機溶剤としては芳香族系、パラフィン系、ナフテン系等が挙げられる。本発明に係る金属混合溶液の分離方法の一実施形態においては、混合抽出剤中の第一抽出剤及び第二抽出剤の合計濃度が10〜30体積%となるように希釈することができ、粘度、分相性、抽出速度、抽出容量の理由により、20〜25体積%となるように希釈することが好ましい。
抽出の手順は常法に従えばよい。一例を挙げれば、金属混合水溶液(水相)と前記抽出剤(有機相)を接触させ、典型的にはミキサーでこれらを攪拌混合(例:200〜500rpmで5〜60分)し、金属群Bのイオンを抽出剤と反応させる。抽出は、常温(例:15〜25℃)〜60℃以下で実施し、抽出速度、分相性、有機溶剤の蒸発の理由により35〜45℃で実施することが好ましい。抽出時の平衡pHは2.0〜4.0とするのが好ましいが、抽出率やAlの水酸化物発生の理由により2.7〜3.0とするのがより好ましい。抽出反応が起きるとpHが低下する傾向があるが、抽出時に苛性ソーダ等のアルカリを適宜添加することでpH調整することができる。その後、セトラーにより、混合した有機相と水相を比重差により分離する。溶媒抽出は繰り返し行ってもよく、例えば有機相と水相が向流接触するようにした多段方式とすることもできる。
O/A比(水相に対する油相の体積比)は、抽出したい金属の含有量によるが、ミキサーセトラーでの操業を考慮すると0.1〜10とするのが好ましく、1〜5がより好ましい。
溶媒抽出後の、金属群A及び金属群Bを含有する抽出剤(有機相)に対しては、洗浄を行うことができる。洗浄は逆抽出液や硫酸、塩酸等の酸性水溶液を使用して、ミキサー等で撹拌混合(例:200〜500rpmで5〜60分)することにより実施することができる。液としては製品品質、設備腐食防止、排水中の塩化物イオン濃度制限の理由により硫酸を使用することが好ましく、高濃度のMn、例えば30〜60g/LのMnを含む硫酸水溶液を洗浄に使えば抽出されやすいMnが有機相に抽出され、反対に抽出されにくいCoは水相へ移行しやすい。洗浄後液は抽出前液に戻すことができる。洗浄液のpHは抽出した金属群Aを洗浄するという理由により1.0〜2.5に調整することが好ましく、1.5〜2.3に調整することがより好ましい。洗浄は、常温(例:15〜25℃)〜60℃以下で実施することができ、洗浄速度、分相性、有機溶剤の蒸発の理由により35〜45℃で実施することが好ましい。洗浄することにより、金属群Bは有機相側にできるだけ保持したまま、溶媒抽出時に有機相側に残留した金属群Aの多くを水相側に移動させることができ、金属群Aの回収率を上げることができる。
洗浄後の、金属群Bを含有する抽出剤(有機相)に対しては、逆抽出を行うことができる。逆抽出は硫酸、塩酸等の酸性水溶液を使用して、ミキサー等で撹拌混合(例:200〜500rpmで5〜60分)することにより実施することができる。逆抽出液としては製品品質、設備腐食防止、排水中の塩化物イオン濃度制限の理由により硫酸を使用することが好ましい。逆抽出液のpHは抽出した金属Bを逆抽出することと、後工程に移行する酸の量を少なくする理由により、洗浄に使用する酸性水溶液よりもpHを低くし、−0.6〜2.0(硫酸濃度0.5〜200g/l)に調整することが好ましく、−0.3〜0.3(硫酸濃度25〜100g/l)に調整することがより好ましい。逆抽出は、常温(例:15〜25℃)〜60℃以下で実施することができ、逆抽出速度、分相性、有機溶剤の蒸発の理由により35〜45℃で実施することが好ましい。逆抽出することにより、金属群Bの多くを水相側に移動させることができる。これによって、水相側に移動した金属群Bを中和などによって更に処理することができる。
逆抽出後の抽出剤(有機相)に対しては、抽出剤(有機相)中に残っている金属を除くことを目的としてスカベンジングを実施することができる。スカベンジングは、硫酸、塩酸等の酸性水溶液を使用して、ミキサー等で撹拌混合(例:200〜500rpmで5〜60分)することにより実施することができる。スカベンジング液としては製品品質、設備腐食防止、排水中の塩化物イオン濃度制限の理由により硫酸を使用することが好ましい。スカベンジング液のpHは逆抽出後に抽出剤(有機相)中に残っている金属を可能な限り多く取り除くことと、後工程に移行する酸の量を少なくする理由により逆抽出に使用する酸性水溶液よりもpHを低くし、−0.9〜0.3(硫酸濃度25〜400g/L)に調整することが好ましく、−0.7〜−0.3(硫酸濃度100〜250g/L)に調整することがより好ましい。スカベンジングは、常温(例:15〜25℃)〜60℃以下で実施することができ、スカベンジング速度、分相性、有機溶剤の蒸発の理由により35〜45℃で実施することが好ましい。スカベンジングすることにより、金属群Bの逆抽出後に抽出剤(有機相)中に残っている金属の多くを水相側に移動させることができる。これによって、抽出剤を再利用することができる。
以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。
(実施例1)
リチウムイオン電池の電池破砕粉を硫酸浸出して得られる浸出後液を模した種々の金属を含む抽出前液(pH:3.8)を用意した。各金属の濃度は表1に示してある。
なお、各金属の濃度はICPにより測定した。
また、ジ−2−エチルヘキシルリン酸(商品名:D2EHPA)を23体積%、5−ノニルサリチルアルドキシム(商品名:ACORGA M5640)を2体積%、直鎖系炭化水素が主成分の有機溶剤(商品名:Shellsol D70)を75体積%を含有する抽出剤を用意した。
抽出前液と抽出剤をO/A比=3になるように向流多段ミキサーセトラー(抽出段数:3段)を使用して混合撹拌(400rpm)し、溶媒抽出を行った。この際、ミキサーセトラー中にpH調整のための苛性ソーダを添加した。抽出時の平衡pHは2.9であった。各段の抽出段における撹拌時間は15分とした。抽出時の液温は25〜30℃に維持した。抽出後液(水相)中の各元素の濃度及び水相側への分配率を表2に示す。分配率は(抽出後液中の金属量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(抽出後液中のNa量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
Figure 0005161361
上記の結果より、Mn、Fe、Al、Cu、Zn及びCaの大部分は油相側に移行したことが分かる。そして、溶媒抽出後もCo、Ni及びLiはほとんどロスすることなく、水相側に残っていることが分かる。
次に、抽出後の有機相を洗浄液(pH=1.7のMn濃度が51,000mg/Lの硫酸水溶液)を使用して洗浄した。洗浄は抽出後の有機相と洗浄液をO/A比=1になるように向流多段ミキサーセトラー(洗浄段数:1段)を使用して混合撹拌(400rpm)することにより行った。洗浄段における撹拌時間は29分とした。洗浄時の液温は25〜30℃に維持した。洗浄液(水相)中の各元素の濃度及び水相側への分配率を表3に示す。分配率は(洗浄液中の金属量増加量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(洗浄液中のNa量増加量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
上記の結果より、抽出されたCo,Ni及びLiは洗浄によりほとんどが水相側に移行したことが分かる。洗浄液は抽出前液へ繰り返しとする。
次に、洗浄後の有機相を硫酸水溶液(H2SO4濃度:75g/L;pH=−0.18)を逆抽出液として使用して逆抽出した。逆抽出は洗浄後の有機相と逆抽出剤をO/A比=1になるように向流多段ミキサーセトラー(逆抽出段数:1段)を使用して混合撹拌(400rpm)することにより行った。逆抽出段における撹拌時間は29分とした。抽出時の液温は25〜30℃に維持した。逆抽出後液(水相)中の各元素の濃度及び水相側への分配率を表4に示す。分配率は(逆抽出液中の金属量増加量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(逆抽出液中のNa量増加量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
上記の結果より、Mn、Cu、Al、Zn及びCaの多くが水相側に移行したことが分かる。Co、Ni及びNaが検出されているがほとんどが逆抽出液中にもともと混入されていた分である。
逆抽出後の有機相に対しては、再度、硫酸水溶液(H2SO4濃度:200g/L;pH=−0.61)をスカベンジング液として使用してスカベンジングを実施した。スカベンジングは逆抽出後の有機相とスカベンジング液をO/A比=1になるように向流多段ミキサーセトラー(スカベンジング段数:1段)を使用して混合撹拌(400rpm)することにより行った。スカベンジング段における撹拌時間は29分とした。抽出時の液温は25〜30℃に維持した。スカベンジング液(水相)中の各元素の濃度及び水相側への分配率を表5に示す。分配率は(スカベンジング液中の金属量増加量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(スカベンジング液中のNa量増加量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
上記の結果より、逆抽出後に抽出剤(有機相)中に残っている金属であるMn、Cu、Fe、Al、Zn及びCaのうち、Mn、Cu、Al、Zn及びCaのほぼ全量が水相側に移行し、Feは抽出剤(有機相)中に残ったことが分かる。Co、Ni及びNaが検出されているがほとんどが逆抽出液中にもともと混入されていた分である。
(比較例1)(D2EHPAのみ)
リチウムイオン電池の電池破砕粉を硫酸浸出して得られる浸出後液を模した種々の金属を含む抽出前液(pH:4.0)を用意した。各金属の濃度は表6に示してある。
なお、各金属の濃度はICPにより測定した。
また、ジ−2−エチルヘキシルリン酸(商品名:D2EHPA)を25体積%、直鎖系炭化水素が主成分の有機溶剤(商品名:Shellsol D70)を75体積%を含有する抽出剤を用意した。
抽出前液と抽出剤をO/A比=4になるように向流多段ミキサーセトラー(抽出段数:3段)を使用して混合撹拌(400rpm)し、溶媒抽出を行った。この際、ミキサーセトラー中にpH調整のための苛性ソーダを添加した。抽出時の平衡pHは2.9であった。各段の抽出段における撹拌時間は15分とした。抽出時の液温は25〜30℃に維持した。抽出後液(水相)中の各元素の濃度及び水相側への分配率を表7に示す。分配率は(抽出後液中の金属量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(抽出後液中のNa量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
Figure 0005161361
上記の結果より、実施例1に比べて水相に残留したCuの量が多いことが分かる。Cuが水相に残留していると、後にCoを抽出する際にCuも一緒に抽出され、Coの抽出液からCo電解採取を行う場合であればCo電解採取のときに一緒に電着してしまうという問題が生じる。また、O/A比が高めであり、実施例1よりもCoの水相への分配率が低下した。
(比較例2)(ACORGA M5640のみ)
リチウムイオン電池の電池破砕粉を硫酸浸出して得られる浸出後液を模した種々の金属を含む抽出前液(pH:3.5)を用意した。各金属の濃度は表8に示してある。
なお、各金属の濃度はICPにより測定した。
また、5−ノニルサリチルアルドキシム(商品名:ACORGA M5640)を25体積%、直鎖系炭化水素が主成分の有機溶剤(商品名:Shellsol D70)を75体積%を含有する抽出剤を用意した。
抽出前液と抽出剤をO/A比=1になるように向流多段ミキサーセトラー(抽出段数:3段)を使用して混合撹拌(400rpm)し、溶媒抽出を行った。この際、ミキサーセトラー中にpH調整のための苛性ソーダを添加した。抽出時の平衡pHは2.8であった。各段の抽出段における撹拌時間は15分とした。抽出時の液温は25〜30℃に維持した。抽出後液(水相)中の各元素の濃度及び水相側への分配率を表9に示す。分配率は(抽出後液中の金属量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(抽出後液中のNa量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
Figure 0005161361
上記の結果より、Cu以外はほとんど抽出されずに水相に残留したことが分かる。
(実施例2)
リチウムイオン電池の電池破砕粉を硫酸浸出して得られる浸出後液を模した種々の金属を含む抽出前液(pH:3.8)を用意した。各金属の濃度は表10に示してある。
なお、各金属の濃度はICPにより測定した。
また、ジ−2−エチルヘキシルリン酸(商品名:D2EHPA)を20体積%、5−ノニルサリチルアルドキシム(商品名:ACORGA M5640)を5体積%、直鎖系炭化水素が主成分の有機溶剤(商品名:Shellsol D70)を75体積%を含有する抽出剤を用意した。
抽出前液と抽出剤をO/A比=4になるように向流多段ミキサーセトラー(抽出段数:3段)を使用して混合撹拌(400rpm)し、溶媒抽出を行った。この際、ミキサーセトラー中にpH調整のための苛性ソーダを添加した。抽出時の平衡pHは3.2であった。各段の抽出段における撹拌時間は15分とした。抽出時の液温は25〜30℃に維持した。抽出後液(水相)中の各元素の濃度及び水相側への分配率を表11に示す。分配率は(抽出後液中の金属量)/(抽出前液中の金属量)の計算式により算出し、Naのみ(抽出後液中のNa量)/(抽出前液中のNa量+添加した苛性ソーダのNa量)の計算式により算出した。
Figure 0005161361
Figure 0005161361
実施例1に比べてCo、Ni及びLiの水相への分配率が低かったことが分かる。これは、O/A比が高めであり、実施例1よりもCo、Niの水相への分配率が低下した。また、pHが実施例1に比べて高く、Alの水酸化物が25%分発生した。このため実際には、抽出74%+水酸化物として沈殿25%+未抽出0.6%=100%(トータル)であった。

Claims (5)

  1. コバルト、ニッケル及びリチウムの少なくとも1種からなる金属群Aと、銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄の少なくとも1種からなる金属群Bとを含有する金属混合水溶液に対して、燐酸エステル系抽出剤(以下、「第一抽出剤」という。)とオキシム系抽出剤(以下、「第二抽出剤」という。)とを含有する混合抽出剤を使用して溶媒抽出し、当該金属混合溶液から金属群Bを分離することを含む金属混合溶液中の金属の分離方法であって、金属混合水溶液は金属群Aとしてコバルト、ニッケル及びリチウムを、金属群Bとして少なくとも銅、アルミニウム及び鉄を含有し、第一抽出剤及び第二抽出剤の体積比は、第一抽出剤:第二抽出剤=1:1〜50:1であり、金属混合水溶液のpHは1.5〜4.5であり、第一抽出剤がジ−2−エチルヘキシルリン酸であり、第二抽出剤がアドキシム系抽出剤であり、混合抽出剤中の第一抽出剤及び第二抽出剤の合計濃度は10〜30体積%であり、O/A比が1〜5であり、前記金属混合溶液がリチウムイオン電池の正極活物質を含む廃材を酸浸出して得られた浸出後液である金属の分離方法
  2. 金属混合水溶液は金属群Bとして銅、亜鉛、マンガン、カルシウム、アルミニウム及び鉄のすべてを含有する請求項1に記載の金属混合溶液中の金属の分離方法。
  3. 請求項1又は2に記載の金属混合溶液中の金属の分離方法を実施することにより得られた抽出剤(有機相)に対して、酸性水溶液を使用して洗浄することにより、当該抽出剤(有機相)から金属群Aを分離することを含む金属混合溶液中の金属の分離方法。
  4. 洗浄後、洗浄に使用した酸性水溶液よりもpHの低い酸性水溶液を使用して逆抽出を実施することにより、洗浄後の抽出剤(有機相)から金属群Bを分離することを含む請求項に記載の金属混合溶液中の金属の分離方法。
  5. 逆抽出後、逆抽出に使用した酸性水溶液よりもpHの低い酸性水溶液を使用してスカベンジングを実施することにより、逆抽出後の抽出剤(有機相)に残留している金属を分離することを含む請求項に記載の金属混合溶液中の金属の分離方法。
JP2011289867A 2011-12-28 2011-12-28 金属混合溶液中の金属の分離方法 Active JP5161361B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011289867A JP5161361B1 (ja) 2011-12-28 2011-12-28 金属混合溶液中の金属の分離方法
KR20120092417A KR101420501B1 (ko) 2011-12-28 2012-08-23 금속 혼합 용액 중의 금속의 분리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289867A JP5161361B1 (ja) 2011-12-28 2011-12-28 金属混合溶液中の金属の分離方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012272172A Division JP5902601B2 (ja) 2012-12-13 2012-12-13 金属混合溶液中の金属の分離方法

Publications (2)

Publication Number Publication Date
JP5161361B1 true JP5161361B1 (ja) 2013-03-13
JP2013139593A JP2013139593A (ja) 2013-07-18

Family

ID=48013589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289867A Active JP5161361B1 (ja) 2011-12-28 2011-12-28 金属混合溶液中の金属の分離方法

Country Status (2)

Country Link
JP (1) JP5161361B1 (ja)
KR (1) KR101420501B1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349781A (zh) * 2015-12-09 2016-02-24 中国科学院上海有机化学研究所 一种溶剂萃取除铁的方法
CN115058597A (zh) * 2022-06-30 2022-09-16 盛隆资源再生(无锡)有限公司 一种含钙、铁、钴、镍的电镀污泥的回收处理方法
US20230304128A1 (en) * 2022-02-23 2023-09-28 Green Li-Ion Pte. Ltd. Processes and systems for purifying and recycling lithium-ion battery waste streams
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132078A (ja) * 2010-12-24 2012-07-12 Univ Of Miyazaki 無電解ニッケルめっき液の再生処理方法
KR101662723B1 (ko) * 2014-12-23 2016-10-05 재단법인 포항산업과학연구원 금속 리튬의 제조 방법
JP6375258B2 (ja) * 2015-03-31 2018-08-15 Jx金属株式会社 金属混合水溶液からの金属の除去方法
KR101645431B1 (ko) * 2015-08-12 2016-08-04 (주)에코리사이클링 탄탈륨 또는 탄탈륨/니오븀의 회수 방법
JP6658238B2 (ja) * 2016-04-12 2020-03-04 住友金属鉱山株式会社 コバルト水溶液からの不純物の除去方法
JP6759882B2 (ja) * 2016-09-05 2020-09-23 住友金属鉱山株式会社 ニッケル、コバルトを含有する溶液の製造方法
CN109088116A (zh) * 2018-07-26 2018-12-25 合肥国轩高科动力能源有限公司 一种废旧锂离子电池正极粉料的回收方法
CN112342383B (zh) * 2020-09-17 2022-08-12 湖北金泉新材料有限公司 三元废料中镍钴锰与锂的分离回收方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940007372A (ko) * 1992-09-11 1994-04-27 가부시끼가이샤 히다찌세이사꾸쇼 밀폐형기 전압축기
JPH06264156A (ja) * 1993-03-09 1994-09-20 Sekiyu Sangyo Kasseika Center ニッケル及び/又はコバルトの分離回収方法
JPH07138670A (ja) * 1993-11-16 1995-05-30 Catalysts & Chem Ind Co Ltd ニッケルおよび/またはコバルトの分離回収方法
JP3661911B2 (ja) * 1997-07-31 2005-06-22 住友金属鉱山株式会社 高純度コバルト溶液の製造方法
JP4581553B2 (ja) * 2004-08-20 2010-11-17 住友金属鉱山株式会社 リチウムの回収方法
JP4388091B2 (ja) * 2007-03-22 2009-12-24 日鉱金属株式会社 Co,Ni,Mn含有電池滓からの貴金属回収方法
JP5014394B2 (ja) * 2009-09-29 2012-08-29 Jx日鉱日石金属株式会社 ニッケルとリチウムの分離回収方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349781A (zh) * 2015-12-09 2016-02-24 中国科学院上海有机化学研究所 一种溶剂萃取除铁的方法
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
US20230304128A1 (en) * 2022-02-23 2023-09-28 Green Li-Ion Pte. Ltd. Processes and systems for purifying and recycling lithium-ion battery waste streams
CN115058597A (zh) * 2022-06-30 2022-09-16 盛隆资源再生(无锡)有限公司 一种含钙、铁、钴、镍的电镀污泥的回收处理方法

Also Published As

Publication number Publication date
JP2013139593A (ja) 2013-07-18
KR101420501B1 (ko) 2014-07-16
KR20130076686A (ko) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5161361B1 (ja) 金属混合溶液中の金属の分離方法
JP5706457B2 (ja) 金属混合溶液からの金属の分離回収方法
JP5847742B2 (ja) 廃正極材及び廃電池からの金属回収方法
JP6375258B2 (ja) 金属混合水溶液からの金属の除去方法
JP6334450B2 (ja) リチウムイオン電池リサイクル原料からの金属の回収方法
JP7348130B2 (ja) 金属含有溶液中のマグネシウムイオン除去方法及び、金属回収方法
KR102577927B1 (ko) 유가 금속의 회수 방법
JP5539942B2 (ja) 鉄及びアルミニウムの分離方法
JP5902601B2 (ja) 金属混合溶液中の金属の分離方法
JP5004106B2 (ja) ニッケルとリチウムの分離回収方法
JP7246570B2 (ja) 混合金属塩の製造方法
WO2022130793A1 (ja) リチウムイオン電池廃棄物の処理方法
JP2013152854A (ja) 廃二次電池からの有価金属の分離方法及びそれを用いた有価金属の回収方法
JP2013112859A (ja) 硫酸マンガンの製造方法
KR102282701B1 (ko) 리튬 회수 방법
JP2013181247A (ja) 金属の混合溶液の分離方法
JP2020105597A (ja) 有価金属の回収方法
JP5161379B1 (ja) 金属の混合溶液の分離方法
KR101447324B1 (ko) 알루미늄 및 망간의 분리 방법
JP7164763B2 (ja) 金属混合溶液の製造方法及び、混合金属塩の製造方法
JP2013209267A (ja) 硫酸マンガンの製造方法
JP7303947B1 (ja) コバルト溶液の製造方法、コバルト塩の製造方法、ニッケル溶液の製造方法、及びニッケル塩の製造方法
WO2024053147A1 (ja) 金属回収方法
JP2013209266A (ja) 硫酸マンガンの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5161361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250