JP5132842B1 - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
JP5132842B1
JP5132842B1 JP2012530443A JP2012530443A JP5132842B1 JP 5132842 B1 JP5132842 B1 JP 5132842B1 JP 2012530443 A JP2012530443 A JP 2012530443A JP 2012530443 A JP2012530443 A JP 2012530443A JP 5132842 B1 JP5132842 B1 JP 5132842B1
Authority
JP
Japan
Prior art keywords
axis
speed
workpiece
command
tool post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012530443A
Other languages
English (en)
Other versions
JPWO2013061445A1 (ja
Inventor
浩司 寺田
正一 嵯峨崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5132842B1 publication Critical patent/JP5132842B1/ja
Publication of JPWO2013061445A1 publication Critical patent/JPWO2013061445A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/02Machine tools for performing different machining operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49074Control cutting speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

ワークを回転させながら正面に対する加工を実行すると同時に、端面における偏心位置に加工を行うために、本発明の実施の形態によれば、NC装置(300)は、第一の刃物台を用いて正面加工を行いながらワーク回転軸の回転を制御する基準軸プログラムの指令に基づいてワーク回転軸を回転せしめると同時に、ワークに対する相対座標を用いて記述され、第二の刃物台の位置制御を行う重畳軸プログラムの指令に基づいて、前記相対座標上の第一の加工経路にワーク回転軸の回転を重畳した第二の加工経路で第二の刃物台を位置制御する円弧重畳補間制御部(29)を備える。
【選択図】図7

Description

本発明は、旋盤等、旋削加工を行なう工作機械を制御する数値制御装置(以下、NC装置)に関する。
近年、上述の工作機械に関し、加工時間を短縮するために、ワークの正面(外周面)の旋削加工とワークの側面(端面)における偏心位置に対する加工を同時に行ないたいという要望がある。
ワークの正面や端面に対する加工にかかる技術として、特許文献1には、ワークの正面(外周面)や側面(端面)に点、直線、円、角、点群などの各種加工を行なう技術が開示されている。これらの加工形状は、ワーク回転とX軸1軸との合成を行うことによって、端面上において指令された2次元のパス制御を行なうことで得られる。点加工は、ドリルによって行われ、ミーリング加工は、ミル工具によって行われる。
また、特許文献2には、重畳制御を用いて、正面に対するキー溝加工と端面に対するミーリング加工とを同時に行う技術が開示されている。
また、特許文献3には、Y軸制御可能な櫛刃型自動旋盤において、正面に対する加工と端面の偏心位置に対する加工とを同時に行う技術が開示されている。
また、特許文献4には、ワークを回転させながら、刃物台の円運動中心をC軸/主軸中心とずらせることにより、C軸/主軸の中心とは別の中心を有する小径の円加工を前記ワークの端面に施す技術が開示されている。
特開昭60−044239号公報 特開2005−238379号公報 特開2000−117506号公報 特開2008−126391号公報
しかしながら、特許文献1の技術によれば、刃物台が1つしかないため、ワークの正面および端面に対する同時加工が不可能である。
また、特許文献2の技術によれば、正面に対する長手方向のキー溝加工と端面に対するミーリング加工はC軸/主軸の停止中に行われる。したがって、この技術を用いても、正面に対する旋削または回転加工と端面に対する偏心加工とを同時に実行することができない。
また、特許文献3の技術によれば、正面に対する偏心加工は、C軸/主軸停止中に実行される。C軸/主軸回転中に回転中心を外れた位置にドリル加工を行なおうとすると、ドリルビットに横方向の力が掛かり、ドリルが折損することになる。
また、特許文献4の技術は、端面加工に限定したものとなっており、この技術を適用しても、正面加工と端面加工とを同時に実行することができない。
本発明は、上記に鑑みてなされたものであって、ワークを回転させながら正面に対する加工を実行すると同時に、端面における偏心位置に加工を行うことができる数値制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、被加工物を回転させる被加工物回転軸と、前記被加工物が回転している時に当該被加工物の正面を加工する第一の刃物台と、前記被加工物回転軸の軸方向を法線とする面上を駆動可能に構成され、前記被加工物の端面に対向する側から前記被加工物を加工する第二の刃物台と、を備える工作機械を制御する数値制御装置であって、前記第一の刃物台を用いて正面加工を行いながら前記被加工物回転軸の回転を制御する第1指令と、前記被加工物に対する相対座標を用いて記述され、前記第二の刃物台の位置制御を行う第2指令と、を含む加工プログラムを記憶する加工プログラム格納領域と、前記第1指令に基づいて前記被加工物回転軸を回転せしめると同時に、前記第2指令に基づく第一の加工経路に前記被加工物回転軸の回転を重畳した第二の加工経路で前記第二の刃物台を位置制御する円弧重畳補間制御部と、前記第二の刃物台が前記第二の加工経路上を移動する速度が予め設定された最大許容速度を越えないように前記被加工物回転軸の最大速度を算出する最大速度算出部と、前記最大速度算出部が算出した最大速度で前記被加工物回転軸の回転速度をクランプする速度クランプ部と、を備えることを特徴とする。
本発明にかかる数値制御装置は、ワークを回転させながら正面に対する加工を実行すると同時に、端面における偏心位置に加工を行うことができるという効果を奏する。
図1−1は、本発明の実施の形態のNC装置が制御対象とする旋盤の主要構成を説明する図である。 図1−2は、当該旋盤をワークの端面側から見た図である。 図2は、円弧重畳補間によりワークの端面に溝加工が行われる様子を説明する図である。 図3は、円弧重畳補間によりワークの端面に穴あけ加工が行われる様子を説明する図である。 図4は、円弧重畳補間によりワークの端面に同期タッピング加工が行われる様子を説明する図である。 図5は、円弧重畳補間によりワークの端面に中ぐり加工が行われる様子を説明する図である。 図6は、円弧重畳補間を行う際の加工プログラム例を説明する図である。 図7は、本発明の実施の形態1のNC装置の構成を説明する図である。 図8は、円弧重畳補間の開始位置を説明する図である。 図9−1は、円弧重畳補間によって重畳軸にG0の処理を実行せしめる場合の加工プログラムの例を示す図である。 図9−2は、円弧重畳補間によって重畳軸にG1の処理を実行せしめる場合の加工プログラムの例を示す図である。 図10−1は、最大速度の算出のためのパラメータを説明する図である。 図10−2は、動作モード別最大速度計算部による最大速度の算出方法を説明する図である。 図10−3は、最大速度の算出結果例を説明する図である。 図11は、円弧重畳補正モードに移行する際のNC装置の動作を説明するフローチャートである。 図12は、ステップS5の処理をさらに詳しく説明するフローチャートである。 図13は、円弧重畳モードに移行後のNC装置の動作を説明するフローチャートである。 図14は、ステップS26の処理をさらに詳しく説明するフローチャートである。
以下に、本発明にかかるNC装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1−1は、本発明の実施の形態のNC装置が制御対象とする旋盤の主要構成を説明する図であり、図1−2は、当該旋盤をワークの端面側から見た図である。図1−1および図1−2に示すように、この旋盤100は、ワーク140を回転させるワーク保持具110と、少なくともX(X1)軸方向およびZ(Z1)軸方向に制御可能であり、ワーク140の回転中にワーク140の正面加工を行うことができる第一の刃物台120と、ワークの端面に対向した位置においてX(X2)軸方向、Y(Y2)軸方向およびZ(Z2)軸方向に制御可能であり、ワーク140の端面に加工を行うことができる第二の刃物台130とを具備する。第一の刃物台120および第二の刃物台130は、工具を回転させる工具主軸を具備するようにしてもよい。なお、以降、ワーク140を回転させる軸をワーク回転軸と表記する。また、ワーク回転軸を、位置制御下で駆動される場合にはC(C1)軸、速度制御下で駆動される場合には主軸と表記する。
ここで、第二の刃物台130は、第一の刃物台120と異なり、ワーク140の端面に対向する位置において、ワーク回転軸を法線とする面(X2軸およびY2軸により張られる面)を移動することができるようになっている。本願発明の実施の形態のNC装置は、ワーク140を回転させて第一の刃物台120を用いてワーク140の正面の加工を行いながら、且つ同時に、ワーク140の端面の任意の位置に第二の刃物台130を用いて任意の加工を行う制御を行うことができる。以降、この制御を、円弧重畳補間ということとする。
前記任意の加工の種類としては、例えば、穴あけ、同期タッピング、ミーリング加工が挙げられる。図2は、円弧重畳補間によりワーク140の端面に溝加工が行われる様子を説明する図である。図示するように、溝加工が実行される際には、第二の刃物台130の工具主軸にはエンドミルが装着される。そして、第二の刃物台130は、円弧重畳補間により、ワーク140の回転が停止している場合のエンドミルの加工経路にワーク140の回転を重畳した経路で移動するように位置制御される。
図3は、円弧重畳補間によりワーク140の端面に穴あけ加工が行われる様子を説明する図である。図示するように、穴あけ加工が実行される際には、第二の刃物台130の工具主軸にはドリルが装着される。そして、第二の刃物台130は、円弧重畳補間により、ワーク140の回転が停止している場合における穴あけ位置にワーク140の回転を重畳した経路で移動するように位置制御される。
図4は、円弧重畳補間によりワーク140の端面に同期タッピング加工が行われる様子を説明する図である。図示するように、同期タッピング加工が行われる際には、第二の刃物台130の工具主軸にはタップが装着される。そして、第二の刃物台130は、円弧重畳補間を適用した穴あけ加工時と同様に、円弧重畳補間により、ワーク140の回転が停止している場合における同期タッピング加工を行う経路にワーク140の回転を重畳した経路で移動するように位置制御される。
図5は、円弧重畳補間によりワーク140の端面に中ぐり加工が行われる様子を説明する図である。図示するように、中ぐり加工が行われる際には、第二の刃物台130の工具主軸にはエンドミルが装着される。そして、第二の刃物台130は、円弧重畳補間により、ワーク140の回転が停止させて中ぐり加工を行う場合のエンドミルの加工経路にワーク140の回転を重畳した経路で移動するように位置制御される。より具体的には、第二の刃物台130は、円弧重畳補間により、工具主軸とは異なる軸を中心としたエンドミルの回転の経路にワーク140の回転を重畳(いわゆるヘリカル重畳)した経路で移動せしめられる。
図6は、円弧重畳補間を行う際の加工プログラム例を説明する図である。図6に示す加工プログラム200は、第一の刃物台120によるワーク140の回転を伴う正面加工中に、第二の刃物台130によってワーク140の端面に直線の溝加工を行うためのプログラムである。加工プログラム200は、第一の刃物台120およびワーク140の回転を制御するためのプログラム(基準軸プログラム210)と第二の刃物台130を制御するためのプログラム(重畳軸プログラム220)とを具備する。ここで、第1軸をX1軸、第2軸をZ1軸、第3軸をC1軸とする被制御系統を基準軸と呼び、第1軸をX2軸、第2軸をY2軸、第3軸をZ2軸とする被制御系統を重畳軸と呼んでいる。
重畳軸プログラム220は、静止した状態のワーク140に対する相対座標を用いて記述されている。この加工プログラム200によれば、重畳軸プログラム220によって指定されたワーク140の端面上の相対座標上の加工経路(第一の加工経路)を基準軸プログラム210によるワーク140の回転に重畳した第二の加工経路上を移動するようにX2、Y2軸の位置制御が行われるとともに、Z2軸方向の切込が行われる。
また、円弧重畳補間は、円弧重畳補間指令を実行することによって開始される。ここでは、円弧重畳補間指令は、「G155“基準軸の第3軸名称”=“重畳軸の第1軸名称”+“重畳軸の第2軸名称”」という記述により構成される。また、円弧重畳補間は、円弧重畳補間キャンセル指令を実行することによって終了せしめられる。即ち、図6に示した例においては、「G155C1=X2+Y2」が円弧重畳補間指令に該当し、「G155C1」が円弧重畳補間キャンセル指令に該当する。
また、円弧重畳補間指令によれば、「G155C1=X2+Y2」の記述に続いて「,CθXxaYya」の記述を付加することによって重畳加工の開始位置を指定することができるようになっている。「,CθXxaYya」の記述は、重畳軸のXxaYyaの位置に基準軸のθが到達した時点から重畳加工を開始せしめることを意味する。即ち、例えば、「G155C1=X2+Y2,C45.X−50.Y−50.」は、第二の刃物台130の工具がX−50Y−50の位置に予め位置決めしていて、ワーク140のθ(45度)の線が通過すると同時にワーク140の回転に合わせて円運動しながら所望の軌跡を加工せしめる指令を意味する。開始位置を指定する記述により、ワーク回転軸の座標系と重畳軸プログラム220で用いられる相対座標系と間の対応関係が確定する。
本実施の形態のNC装置は、基準軸プログラム210および重畳軸プログラム220の夫々を並行して読み込む。そして、本実施の形態のNC装置は、基準軸プログラム210に記述されている円弧重畳補間指令により円弧重畳モードに移行した後、基準軸プログラム210おいて円弧重畳補間指令の後に記述されている「!2L20」と、重畳軸プログラム220に記述されている「!1L20」と、により、夫々の記述の後の記述されている指令の実行タイミングを同期させる。即ち、本実施の形態のNC装置は、「G91 G01 Z30.C−90.F360.」の指令の実行を開始すると同時に、「G01X−40.Y−40.F100」の指令の実行を開始する。このとき、前述のように、本実施の形態のNC装置は、「G91 G01 Z30.C−90.F360.」の指令に「G01X−40.Y−40.F100」の指令を重畳して実行する。なお、「G91 G01 Z30.C−90.F360.」の指令を完了する前に「G01X−40.Y−40.F100」の指令を完了すると、「G91 G01 Z30.C−90.F360.」の指令と同時に、「G01X−40.Y−40.F100」の指令の次の指令である「G00X40.Y40.」を「G91 G01 Z30.C−90.F360.」の指令に重畳して実行する。
図7は、本発明の実施の形態1のNC装置の構成を説明する図である。図示するように、NC装置300は、制御演算部1と、オペレータによるNC装置300に対する操作入力を受け付ける入力操作部2と、NC装置300の制御状態をオペレータに表示出力する表示部3と、旋盤100が備える各軸(C1、X1、Z1、X2、Y2、Z2)を夫々駆動するサーボモータ5a〜5fと、サーボモータ5a〜5fを駆動する電流を供給するサーボ制御部4a〜4fとを備えている。制御演算部1は、入力操作部2を介してオペレータから入力された加工プログラムや移動操作指令を解析して、サーボ駆動情報を生成し、生成したサーボ駆動情報をサーボ制御部4a〜4fに出力する。サーボ制御部4a〜4fは、入力されたサーボ駆動情報に基づいてサーボモータ5a〜5fを駆動する電流を生成し、生成した電流をサーボモータ5a〜5fに供給する。なお、サーボ駆動情報には、一例として、制御サイクル毎の移動量が採用されるものとする。
制御演算部1は、入力制御部6、データ設定部7、記憶部8、機械制御信号処理部12、プログラマブルコントローラ(PLC)13、画面処理部16、解析処理部17、円弧重畳補間速度クランプ処理部21、補間処理部22、円弧重畳補間開始処理部24、加減速処理部28、円弧重畳補間制御部29、および軸データ入出力部35を具備する。
なお、制御演算部1は、典型的には、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)およびI/Oインターフェイスを備えたコンピュータにより実現される。具体的には、例えば、CPUは、前記ROMに予め格納しておいた数値制御プログラムを実行することにより、データ設定部7、機械制御信号処理部12、プログラマブルコントローラ(PLC)13、画面処理部16、解析処理部17、円弧重畳補間速度クランプ処理部21、補間処理部22、円弧重畳補間開始処理部24、加減速処理部28、および円弧重畳補間制御部29として機能する。記憶部8は、ROMまたはRAMに確保され、入力制御部6および軸データ入出力部35の機能はI/Oインターフェイスが実現する。なお、制御演算部1は、典型的にはCPU上で実現されるとして列挙した機能部のうちの一部または全部を、ハードウェアや、ハードウェアおよびソフトウェア(数値制御プログラム)の組み合わせにより実現するようにしてもよい。
入力操作部2から制御演算部1に入力されるデータは入力インターフェイスである入力制御部6を介してデータ設定部7に入力される。データ設定部7は、入力されたデータを、記憶部8内に夫々確保されたパラメータ格納領域9、工具補正データ格納領域10、加工プログラム格納領域11に、入力操作部2で選択された入力モードに基づいて振り分けられて格納する。ここで、加工プログラム200は、加工プログラム格納領域11に格納される。
なお、旋盤100には、危険防止などの目的のために、リレーや電磁弁、表示灯等の周辺機器(図示せず)が接続されている。これらの周辺機器の制御は、ワーク140の加工機構の制御と協調して実行される。周辺機器の制御をワーク140の加工機構の制御と協調させるための情報は、機械制御信号処理部12を介してPLC13に入出力される。PLC13は、機械制御信号処理部12を介して入力された情報と、内部に予め組み込まれた制御プログラムとに基づき、前記周辺機器の制御を実行する。
PLC13の制御、加工プログラム200の実行処理やNC装置300にかかる定常処理は、共有領域14に中間情報を格納したり参照したりして行なわれる。周辺機器の制御をワーク140の加工機構の制御と協調させるための情報は、共有領域14に格納される。
入力操作部2を介して入力される表示要求に対応する表示内容は、表示用に整形されて画面表示データ格納領域15に格納される。画面処理部16は、前記画面表示データ格納領域15に格納されたデータを表示部3に転送することによって、前記表示内容を表示部3に表示させる。
解析処理部17は、加工プログラム格納領域11に格納されている加工プログラム200を順次読み取って解析し、読み取ったプログラムブロックから、現在位置から指令された位置までの移動量と、指令された送り速度とを抽出する。ここで、重畳軸プログラム220から抽出される移動量および送り速度は、夫々重畳前の座標系で記述されたものである。抽出された移動量や送り速度は、共有領域14を介して円弧重畳補間速度クランプ処理部21に入力される。また、解析処理部17は、加工プログラム200の中に「G155」の記述を検出すると、円弧重畳補間指令解析部18に「G155」の記述を含むプログラムブロックを入力する。
なお、ワーク回転軸が主軸として制御され、ワーク回転軸の速度が回転数(指令回転数)で与えられる場合には、解析処理部17は、ワーク回転軸にかかる移動量および送り速度の代わりに、ワーク回転軸の指令回転数を抽出して、抽出した指令回転数を円弧重畳補間制御部29に入力する。
円弧重畳補間指令解析部18は、入力されたプログラムブロックから第二の刃物台130にワーク回転軸の回転に同期した座標回転を行なわせるために必要となる情報として、円弧重畳補間指令の開始位置にかかる記述である「,CθXxaYya」と、基準軸および重畳軸の定義情報(軸番号情報、極性情報等)とを取り出し、取り出した内容を座標変換データとして記憶部8内の円弧重畳モード別座標変換データ格納領域20に格納する。なお、「重畳軸開始位置指定あり」や「基準軸開始位置指定あり」のフラグ(FG)を円弧重畳モード別座標変換データ格納領域20内に定義しておき、円弧重畳補間指令解析部18は、「,CθXxaYya」の記述内容に基づき、当該フラグをオン・オフさせるようにしてもよい。また、「G155C1=X2+Y2」の記述以降に「,CθXxaYya」の記述がない場合には、円弧重畳補間指令解析部18は、C=0deg、XYの現在位置を開始位置とするようにしてもよい。
なお、座標変換データには、上述した円弧重畳補間の開始位置および各軸の定義情報のほかに、ワーク140の中心から現在位置の縦軸、横軸のベクトルを含む。当該ベクトルは、後述する円弧重畳補間座標設定部27により座標変換データに記述(設定)される。
円弧重畳補間速度クランプ処理部21は、第一の刃物台120の送り速度および重畳後の第二の刃物台130の送り速度が夫々パラメータにより与えられる最大許容速度以下になるように、解析処理部17によって抽出された第一の刃物台120の送り速度および第二の刃物台130の重畳前の送り速度に夫々速度クランプをかけ、速度クランプをかけた送り速度と、解析処理部17によって抽出された移動量とを補間処理部22に入力する。
なお、重畳後の第二の刃物台130の送り速度が最大許容速度以下となるように、動作モード別最大速度計算部26は、円弧重畳モードを実行する前に、予め、第二の刃物台130の重畳前の送り速度に許容される最大速度を動作モード(各刃物台の停止、位置決め、切削の組合せ)別に算出し、算出した最大速度を円弧重畳モード別最大速度データ格納領域19に格納する。動作モード別最大速度計算部26の機能については後ほど詳述する。円弧重畳補間速度クランプ処理部21は、円弧重畳モード別最大速度データ格納領域19に格納されている最大速度で重畳前の速度データをクランプする。
補間処理部22は、後述する加減速処理部28と協働して、重畳軸プログラム220に記述された指令に基づいて静止したワーク140に対する相対座標における制御サイクル毎の移動量を算出する相対座標速度算出部として機能する。
具体的には、補間処理部22は、入力された移動量および送り速度に基づいて、当該移動量を粗補間することにより、制御サイクル毎の移動量を算出する。粗補間とは、例えば、移動量を送り速度に対応する制御サイクル数で単純に分割することである。
補間処理部22内にある円弧重畳補間開始位置移動部23は、第二の刃物台130の工具の現在位置からワーク140の端面上に指定された円弧重畳補間の開始位置までの位置決め制御を実行するために、第二の刃物台130の工具の現在位置から円弧重畳補間の開始位置までの制御サイクル毎の移動量を生成する。
円弧重畳補間開始処理部24は、円弧重畳補間を開始する際の準備および円弧重畳補間の開始を行う。円弧重畳補間開始処理部24は、円弧重畳補間開始判定部25、動作モード別最大速度計算部26、および円弧重畳補間座標設定部27を備えている。
円弧重畳補間開始判定部25は、基準軸と重畳軸との待ち合わせが完了したか否かを判定し、両者の待ち合わせが完了した場合に、円弧重畳補間にかかる制御の開始を許可する。
図8は、図6に示した加工プログラム200による円弧重畳補間の開始位置を説明する図である。図6の基準軸プログラム210に示すように、円弧重畳開始指令によって第二の刃物台130の開始位置(ここではX−50Y−50)とC軸の角度(ここでは45deg)とで指定されている場合、重畳軸である第二の刃物台130の工具は、円弧重畳補間開始位置移動部23が生成した制御サイクル毎の移動量にしたがって各軸が駆動されることにより、初期位置(待機位置)から重畳軸の回転中心(X0Y0Z0)に向かって移動せしめられ、最終的に、重畳軸の回転中心を中心とした第二の刃物台130の工具の回転半径が前記指定された開始位置X−50Y−50の回転半径に等しい位置で停止せしめられる。なお、この停止位置を、開始位置に対応する位置ということとする。円弧重畳補間開始判定部25は、回転中のワーク140の回転角度(45deg)が、重畳軸の回転中心を始点とし、前記開始位置に対応する位置を終点とするベクトルの角度に一致したか否かを判定する。言い換えると、円弧重畳補間開始判定部25は、指定された開始位置の対応する位置とワーク回転軸の位置とが一致したか否かを判定する。双方の角度が一致した後、円弧重畳補間開始判定部25は、円弧重畳補間にかかる制御の開始を許可する。即ち、制御演算部1は、円弧重畳モードに移行して、第二の刃物台130の工具をZ軸方向に切り込ませることができるようになる。
なお、円弧重畳補間の開始位置を指定する技術としては、前記角度と第二の刃物台130の位置、XY座標値指令、円弧重畳補間指令の実行位置を自動記憶、等の各種方法があるが、円弧重畳補間開始判定が必要なのは前記のようにワーク回転中に重畳加工を始める場合であって、ワーク停止中に第二の刃物台130を指定の位置に位置決めしておき、第一の刃物台120と同時に加工を始める場合には円弧重畳補間開始判定は不要である。
動作モード別最大速度計算部26は、重畳前の送り速度に対して円弧重畳補間速度クランプ処理部21が速度クランプを行うためのクランプ値として、重畳前の送り速度に許容される最大速度を算出し、算出した最大速度を円弧重畳モード別最大速度データ格納領域19に格納する。最大速度は、ワーク140の最大加工半径と、ワーク回転軸、X2軸、およびY2軸の夫々について設定されている早送り(G0)中および切削送り(G1)中の最大許容速度と、を用いて、ワーク回転軸、X2軸、およびY2軸が夫々最大許容速度を越えないように算出される。また、最大速度は、基準軸の動作(G0、G1)と重畳軸の動作(停止、G0、G1)との組み合わせ(動作モード)毎に、基準軸および重畳軸の夫々について算出される。なお、最大加工半径の入力手法は特定の手法に限定されるものではなく、例えばパラメータ格納領域9に格納されるパラメータとして外部から設定されるようにしてもよいし、加工プログラム200に記述されて入力されるようにしてもよい。
図9−1は、円弧重畳補間によって重畳軸にG0の処理を実行せしめる場合の加工プログラム200の例を示す図であり、図9−2は、円弧重畳補間によって重畳軸にG1の処理を実行せしめる場合の加工プログラム200の例を示す図である。図9−1の加工プログラム200によれば、重畳軸にX−40Y−40の位置まで速度100mm/minで早送りを実行せしめる指令が基準軸の回転に重畳される。図9−2の加工プログラム200によれば、重畳軸にX−40Y−40の位置まで速度100mm/minで切削送りを実行せしめる指令が基準軸の回転に重畳される。
ここで、図10−1〜図10−3を参照して、動作モード別最大速度計算部26による最大速度の算出手法を説明する。図10−1は、パラメータ格納領域9に格納されている、最大速度の算出のためのパラメータを説明する図である。図10−1に示すように、パラメータ格納領域9には、C1軸、X2軸、およびY2軸の夫々について、早送り中および切削送り中の最大許容速度が記述されているパラメータAと、ワーク140の最大加工半径が記述されているパラメータBとが格納されている。
動作モード別最大速度計算部26は、まず、重畳軸同期最大速度、重畳軸送り最大速度、および重畳軸実軸最大速度を夫々算出する。そして、算出した各情報を次の式に代入して、クランプ率を算出する。
クランプ率=重畳軸実軸最大速度/(重畳軸同期最大速度+重畳軸送り最大速度) ・・・(式1)
まず、基準軸に対する指令が早送りである場合において、重畳軸の指令毎に重畳軸同期最大速度、重畳軸送り最大速度、および重畳軸実軸最大速度、ならびに基準軸および重畳軸の最大速度の計算方法を説明する。
図10−2は、動作モード別最大速度計算部26による最大速度の算出方法を説明する図である。図10−2に示すように、動作モード別最大速度計算部26は、重畳軸に対する指令が停止、早送り、または切削送りである場合には、(早送り時におけるC1軸の最大許容速度)×π/180×(最大加工半径)を重畳軸同期最大速度とする。また、重畳軸に対する指令が停止であるとき、重畳軸送り最大速度をゼロ値とし、重畳軸に対する指令が早送りであるとき、X2軸の早送り時の最大許容速度およびY2軸の早送り時の最大許容速度のうちの何れか小さいほうを重畳軸送り最大速度とし、重畳軸に対する指令が切削送りであるとき、X2軸の切削送り時の最大許容速度およびY2軸の切削送り時の最大許容速度のうちの何れか小さいほうを重畳軸送り最大速度とする。また、重畳軸に対する指令が停止または早送りであるとき、X2軸の早送り時の最大許容速度およびY2軸の早送り時の最大許容速度のうちの何れか小さいほうを重畳軸実軸最大速度とし、重畳軸に対する指令が切削送りであるとき、X2軸の切削送り時の最大許容速度およびY2軸の切削送り時の最大許容速度のうちの何れか小さいほうを重畳軸実軸最大速度とする。
そして、動作モード別最大速度計算部26は、求めた重畳軸同期最大速度、重畳軸送り最大速度、および重畳軸実軸最大速度を式1に代入してクランプ率Qを求める。そして、早送り時におけるC1軸の最大許容速度にクランプ率Qを乗算した値を基準軸の最大速度(円弧重畳中基準軸最大速度)とする。そして、重畳軸に対する指令が停止であるとき、重畳軸の最大速度(円弧重畳中重畳軸最大速度)をゼロ値とする。また、重畳軸に対する指令が早送りであるとき、X2軸の早送り時の最大許容速度およびY2軸の早送り時の最大許容速度のうちの何れか小さいほうにクランプ率Qを乗算した値を円弧重畳中重畳軸最大速度とする。また、重畳軸に対する指令が切削送りであるとき、X2軸の切削送り時の最大許容速度およびY2軸の切削送り時の最大許容速度のうちの何れか小さいほうにクランプ率Qを乗算した値を円弧重畳中重畳軸最大速度とする。
このように、動作モード別最大速度計算部26は、基準軸の動作が早送りである場合には、基準軸および重畳軸がともに最大速度で駆動されたとき、基準軸の送り速度および重畳軸の送り速度はともに最大許容速度に等しくなるように、重畳軸の動作毎に、基準軸および重畳軸の最大速度を算出する。これにより、重畳軸の速度が最大許容速度を越えない範囲で基準軸および重畳軸の速度が可及的に大きくなるように基準軸の送り速度および重畳軸の重畳前の送り速度の最大速度を定めることができる。
次に、基準軸に対する指令が切削送りである場合において、重畳軸の指令毎に重畳軸同期最大速度、重畳軸送り最大速度、および重畳軸実軸最大速度、ならびに基準軸および重畳軸の最大速度の計算方法を説明する。
図10−2に示すように、動作モード別最大速度計算部26は、(切削送り時におけるC1軸の最大許容速度)×π/180×(最大加工半径)を重畳軸同期最大速度とする。また、X2軸およびY2軸の早送り時および切削送り時の最大許容速度のうちの最小値を重畳軸送り最大速度とし、当該重畳軸送り最大速度と同じ値を重畳軸実軸最大速度とする。
そして、動作モード別最大速度計算部26は、求めた重畳軸同期最大速度、重畳軸送り最大速度、および重畳軸実軸最大速度を式1に代入してクランプ率Qを求める。そして、切削送り時におけるC1軸の最大許容速度にクランプ率Qを乗算した値を円弧重畳中基準軸最大速度とする。そして、重畳軸に対する指令が停止であるとき、円弧重畳中重畳軸最大速度をゼロ値とする。また、重畳軸に対する指令が早送りまたは切削送りであるとき、X2軸およびY2軸の早送り時および切削送り時の最大許容速度のうちの最小値にクランプ率Qを乗算した値を円弧重畳中重畳軸最大速度とする。
このように、動作モード別最大速度計算部26は、基準軸の動作が切削送りである場合には、第二の刃物台130の動作が早送り、切削送り、および停止のうちのいずれであっても、第二の刃物台130の最大速度が切削送りにかかる最大許容速度および早送りにかかる最大許容速度のうちの最小値となるように基準軸および重畳軸の最大速度を算出するようにした。これにより、基準軸の送り速度の最大速度が重畳軸の動作(停止、早送り、切削送り)に依存することなく一定の値となるので、第一の刃物台120を使用して加工している最中に重畳軸側の動作が変化しても、第一の刃物台120による加工面の加工品質を高く保つことができる。
図10−3は、図10−1に示したパラメータを用いて算出された最大速度の算出結果例を説明する図である。図10−3に示すように、基準軸および重畳軸について、動作モード毎に最大速度が算出される。
円弧重畳補間座標設定部27は、座標変換データのうちの、ワーク中心から現在位置の縦軸、横軸のベクトルを円弧重畳モード別座標変換データ格納領域20に格納されている座標変換データに設定する。
加減速処理部28は、粗補間により生成された制御サイクル毎の移動量に対して例えば平滑化処理など所定の演算を行うことによって、各軸の加減速を考慮した移動量を生成する。具体的には、加減速処理部28は、速度クランプされた送り速度に到達するまで各軸をなめらかに加速せしめ、各軸が停止位置に近づくと各軸をなめらかに減速せしめるように、移動量を生成する。
円弧重畳補間制御部29は、基準軸プログラム210に記述されている指令(第1指令)に基づいてワーク回転軸を回転せしめると同時に、重畳軸プログラム220に記述されている(第2指令)に基づく加工経路(第一の加工経路)にワーク回転軸の回転を重畳した加工経路で第二の刃物台130を位置制御する。
具体的には、円弧重畳補間制御部29は、速度変動追従方式判定部30と、C軸指令回転角度算出部31と、C軸FB回転角度算出部36と、主軸指令回転角度算出部37と、主軸FB回転角度算出部38と、重畳座標系位置座標算出部32と、実座標変換部33と、重畳軸実移動量算出部34と、を備えている。
速度変動追従方式判定部30は、生成する重畳軸の位置制御動作を基準軸のC軸の指令回転角度に追従させるか、C軸のフィードバック(FB)回転角度に追従させるか、速度制御である主軸の指令回転角度に追従させるか、主軸のフィードバック回転角度に追従させるか、のうちの何れの追従方式が設定されているかを判定し、判定結果に基づいて、C軸指令回転角度算出部31、C軸FB回転角度算出部36、主軸指令回転角度算出部37、および主軸FB回転角度算出部38のうちの、ワーク回転軸の指令回転角度の算出に用いる機能部を選択する。指令回転角度に追従させる場合には、当該指令回転角度に忠実にワーク回転軸を駆動でき、フィードバック回転角度に追従させる場合には、加工負荷変動による実角度の遅れがあっても対応できるという特徴がある。なお、追従方式の設定は、パラメータ格納領域9に速度変動追従方式パラメータとして予め格納されるものとし、速度変動追従方式判定部30は、当該速度変動追従方式パラメータに基づいて追従方式の判定を行う。
C軸指令回転角度算出部31、C軸FB回転角度算出部36、主軸指令回転角度算出部37、または主軸FB回転角度算出部38は、ワーク回転軸の指令回転角度またはフィードバック回転角度を算出する。具体的には、C軸指令回転角度算出部31は基準軸として位置制御駆動軸であるC軸を用いて指令回転角度を計算する。同様に主軸指令回転角度算出部37は基準軸として速度制御駆動軸である主軸を用いて速度指令から指令回転角度を計算する。また、C軸FB回転角度算出部36は基準軸として位置制御駆動軸であるC軸を用いてサーボモータの位置フィードバックデータからフィードバック回転角度を計算する。同様に主軸FB回転角度算出部38は基準軸として速度制御駆動軸である主軸を用いてサーボモータの速度フィードバックデータからフィードバック回転角度を計算する。
重畳座標系位置座標算出部32は、入力された制御サイクル毎の移動量と現在位置とに基づいて、次に指令する各軸の位置(以降、指令位置という)を算出する。なお、ここでは一例として、重畳座標系位置座標算出部32は、現在位置を、制御サイクル毎の移動量を積算することによって求める。即ち、現在位置として、前回の制御サイクルにて算出された位置が用いられる。ここでの現在位置および算出される位置は、重畳軸プログラム220に記述された指令に基づいて求まる重畳前の加工経路上に位置し、重畳前の相対座標により記述される。
実座標変換部33は、重畳座標系位置座標算出部32が算出した第二の刃物台130の指令位置を、C軸指令回転角度算出部31、C軸FB回転角度算出部36、主軸指令回転角度算出部37、および主軸FB回転角度算出部38のうちの速度変動追従方式判定部30により選択された機能部が算出した指令回転角度またはフィードバック回転角度の分だけ座標回転することによって、第二の刃物台130の重畳後の指令位置を算出する。なお、実座標変換部33は、座標変換データに記述されている各軸の識別情報を用いて、基準軸の指令位置および重畳軸の重畳後の指令位置を、加工プログラム200にて用いられているプログラム座標系から機械座標系に変換する。
重畳軸実移動量算出部34は、実座標変換部33が算出した各軸の指令位置と、各軸の現在位置とに基づいて、サーボ制御部4a〜4fに指令する実移動量を算出する。なお、現在位置として、サーボモータ5a〜5fからサーボ制御部4a〜4fを介して入力される位置情報を用いるようにしてもよいし、算出した実移動量の積算値を用いるようにしてもよい。
軸データ入出力部35は、重畳軸実移動量算出部34から出力された重畳軸である第二の刃物台130のX軸Y軸や他の制御軸を駆動するための実移動量を各軸のサーボ制御部(4a〜4f)に出力する。また各軸モータ(5a〜5f)の位置情報等をフィードバック(FB)データとして各軸サーボ制御部(4a〜4f)を経由して取り込み、円弧重畳補間制御部29へ出力する。
次に、図11〜図14を用いて本発明の実施の形態のNC装置300の動作を説明する。
図11は、円弧重畳補正モードに移行する際のNC装置300の動作を説明するフローチャートである。まず、解析処理部17が加工プログラムを読み込み(ステップS1)、解析処理部17が円弧重畳補間指令を検出すると、円弧重畳補間指令解析部18は、当該検出された円弧重畳補間指令の解析処理を実行する(ステップS2)。円弧重畳補間指令解析部18は、この解析処理により、開始位置にかかる記述と、基準軸および重畳軸の定義情報とを取り出し、取り出した内容を座標変換データとして円弧重畳モード別座標変換データ格納領域20に格納する。
そして、円弧重畳補間開始位置移動部23は、重畳軸である第二の刃物台130の工具を現在位置(待機位置)から開始位置に対応する位置まで移動させるための、制御サイクル毎の移動量を生成する(ステップS3)。当該移動量は、加減速処理部28、円弧重畳補間制御部29、および軸データ入出力部35を介してサーボ制御部4d、4fに伝達され。結果として、第二の刃物台130の位置(X2軸およびY2軸)は、図8を用いて説明したように、開始位置に対応する位置まで移動する。
続いて、円弧重畳補間開始判定部25は、基準軸と重畳軸との待ち合わせが完了したか否かを判定する(ステップS4)。待ち合わせが完了するとは、前述のように、第二の刃物台130が開始位置に対応する位置に到達し、かつ、ワーク回転軸における指定された角度が、ワーク140の回転中心から前記開始位置に対応する位置へのベクトルの角度と一致することである。待ち合わせが完了していない場合(ステップS4、No)、円弧重畳補間開始判定部25は、ステップS4の判定処理を再度実行する。待ち合わせが完了した場合(ステップS4、Yes)、動作モード別最大速度計算部26は、動作モード毎に基準軸と重畳軸との夫々について最大速度を計算し、計算結果を円弧重畳モード別最大速度データ格納領域19に格納する(ステップS5)。
図12は、ステップS5の処理をさらに詳しく説明するフローチャートである。図示するように、動作モード別最大速度計算部26は、まず、図10−2を示して説明した算出方法に基づき、基準軸に対する指令が早送りである場合における基準軸の送り速度および重畳軸の重畳前の送り速度の最大速度を算出する(ステップS11)。ステップS11においては、夫々の最大速度は、重畳軸に対する指令(停止、切削送り、早送り)毎に算出される。算出された最大速度は、円弧重畳モード別最大速度データ格納領域19に保存される。
次に、動作モード別最大速度計算部26は、基準軸に対する指令が切削送りである場合における基準軸の送り速度および重畳軸の重畳前の送り速度の最大速度を算出する(ステップS12)。ステップS12においても、夫々の最大速度は、重畳軸に対する指令(停止、切削送り、早送り)毎に算出される。算出された最大速度は、円弧重畳モード別最大速度データ格納領域19に保存される。
ステップS5の処理の後、円弧重畳補間座標設定部27は、座標変換データを円弧重畳モード別座標変換データ格納領域20に格納する(ステップS6)。具体的には、円弧重畳補間座標設定部27は、ワーク140の回転中心から重畳軸の現在位置の縦軸、横軸のベクトルを算出し、算出したベクトルを記憶部8の円弧重畳モード別座標変換データ格納領域20に保存する。そして、円弧重畳補間座標設定部27は、基準軸、重畳軸の軸情報(軸番号情報、極性情報等)を記憶部8のパラメータより読み出し、記憶部8の円弧重畳モード別座標変換データ格納領域20に情報変換して保存する。
以上の処理により円弧重畳補間の演算及び実行のための各種データが揃うので、円弧重畳補間座標設定部27は、円弧重畳モードを実行中のフラグをセットし(ステップS7)、円弧重畳モードが確立される。なお、円弧重畳モードを実行中のフラグは、例えば共有領域14に格納される。
図13は、円弧重畳モードに移行後のNC装置300の動作を説明するフローチャートである。
まず、解析処理部17が加工プログラムを読み込み(ステップS21)、読み込んだ1ブロックの指令を解読し、各軸の移動量および送り速度を抽出する(ステップS22)。
続いて、円弧重畳補間速度クランプ処理部21は、ステップS22にて抽出された送り速度を、円弧重畳モード別最大速度データ格納領域19に保存されている動作モード別の最大速度で速度クランプする(ステップS23)。なお、どの動作モードにかかる最高速度でクランプするかを特定する方法は特に限定されない。例えば、解析処理部17が基準軸および重畳軸の現在実行中の動作(停止、切削送り、早送り)を共有領域14に記録しておき、円弧重畳補間速度クランプ処理部21は、共有領域14に記録されている各軸の動作に基づいて、どの動作モードの最高速度を用いるかを決定するようにしてもよい。
続いて、補間処理部22は、ステップS22にて抽出された移動量と、ステップS23にて速度クランプされた送り速度とに基づいて、基準軸および重畳軸の加工経路を粗補間し、単位制御サイクル毎の移動量を算出する(ステップS24)。
そして、加減速処理部28は、ステップS24の処理により算出された単位制御サイクル毎の移動量から、加減速処理を考慮した移動量を生成する(ステップS25)。
円弧重畳補間制御部29は、ステップS25により生成された移動量に基づいて、基準軸および重畳軸の実移動量を生成する(ステップS26)。
図14は、ステップS26の処理をさらに詳しく説明するフローチャートである。基本軸のワーク回転軸、X1軸、Z1軸による制御は基本的な制御内容であるので、以下ではこの説明は割愛し、ワーク回転軸の回転に同期して重畳軸を制御する技術について説明する。
まず、速度変動追従方式判定部30は、重畳軸の位置制御動作をワーク回転軸のフィードバック回転角度に追従させるか指令回転速度に追従させるか(ステップS31)、およびワーク回転軸はC軸であるか主軸であるか(ステップS32、ステップS33)を判定する。これらの判定処理は、パラメータ格納領域9などに設定されている速度変動追従モードフラグをチェックすることにより行なわれる。例えば、このフラグが“0”を示す場合、このフラグは指令回転角度に追従させる設定を、“1”を示す場合、このフラグはフィードバック回転角度に追従させる設定を示す。
重畳軸の位置制御動作をC軸の指令回転角度に追従させる設定がなされている場合(ステップS31、No、ステップS32、Yes)、C軸指令回転角度算出部31は、入力された移動量のうち、C軸の移動量を指令回転角度移動量Fcとする(ステップS34)。
重畳軸の位置制御動作を主軸の指令回転角度に追従させる設定がなされている場合(ステップS31、No、ステップS32、No)、主軸指令回転角度算出部37は、解析処理部17が抽出した指令回転数から制御サイクル毎の移動量を算出し(ステップS35)、算出した移動量を指令回転角度移動量Fcとする(ステップS36)。
重畳軸の位置制御動作をC軸のフィードバック回転角度に追従させる設定がなされている場合(ステップS31、Yes、ステップS33、Yes)、C軸FB回転角度算出部36は、主軸/C1軸モータ5cから主軸/C1軸サーボ制御部4cを介して所定時間毎にフィードバックされてくる位置情報からフィードバック回転角度移動量Fcを算出する(ステップS37)。
重畳軸の位置制御動作を主軸のフィードバック回転角度に追従させる設定がなされている場合(ステップS31、Yes、ステップS33、No)、主軸FB回転角度算出部38は、速度フィードバックデータを単位速度制御時間で積分することによって制御サイクル毎の移動量を算出し(ステップS38)、算出した移動量をフィードバック回転角度移動量Fcとする(ステップS39)。
ステップS34、ステップS36、ステップS37またはステップS39の処理の後、C軸指令回転角度算出部31、C軸FB回転角度算出部36、主軸指令回転角度算出部37、または主軸FB回転角度算出部38は、ワーク回転軸の指令回転角度移動量Fcまたはフィードバック回転角度移動量Fcを前回の位置(回転角度)Cp’に加算し、新たな基準軸回転角度Cpを算出する(ステップS40)。
重畳座標系位置座標算出部32は、加減速処理部28が算出した重畳軸のX2軸およびY2軸にかかる移動量Fx、Fyを各軸の前回位置Xp’、Yp’に加算し、当該加算に求まる値を新たな重畳軸座標位置Xp、Ypとする(ステップS41)。
実座標変換部33は、基準軸回転角度Cpで重畳軸座標位置Xp,Ypを座標回転せしめるとともに、座標回転後の位置情報を座標変換データに基づいて機械座標系に変換し、X2−Y2平面座標上での実軸位置Xr,Yrを求める(ステップS42)。座標回転は、下に示す式2および式3を用いて実行される。
Xr=Xp×cos(Cp)−Yp×sin(Cp) ・・・(式2)
Yr=Xp×sin(Cp)+Yp×cos(Cp) ・・・(式3)
重畳軸実移動量算出部34は、算出した実軸位置Xr、Yrから前回算出した実軸位置Xr’,Yr’を減算することによって、重畳軸の実移動量を求める(ステップS43)。そして、重畳軸実移動量算出部34は、実軸位置Xr’,Yr’を実軸位置Xr、Yrで更新し(ステップS44)、ステップS26の処理は終了となる。なお、実移動量Xr’,Yr’の記録先は特に限定されない。例えば共有領域14に記録されるようにしてもよい。
ステップS26の処理の後、軸データ入出力部35は、算出された各軸の実移動量をサーボ制御部4a〜4fに出力し(ステップS27)、動作が終了となる。
以上述べたように、本発明の実施の形態によれば、NC装置300は、第一の刃物台120を用いて正面加工を行いながらワーク回転軸の回転を制御する基準軸プログラム210の指令に基づいてワーク回転軸を回転せしめると同時に、ワーク140に対する相対座標を用いて記述され、第二の刃物台130の位置制御を行う重畳軸プログラム220の指令に基づいて、前記相対座標上の第一の加工経路にワーク回転軸の回転を重畳した第二の加工経路で第二の刃物台130を位置制御する円弧重畳補間制御部29を備える、ように構成したので、ワークを回転させながら正面に対する加工を実行すると同時に、端面における偏心位置に加工を行うことができるようになる。
円弧重畳補間を行う場合において、ワーク回転軸を当該ワーク回転軸の最大許容速度で動かして重畳軸を駆動すると、重畳軸の速度が当該重畳軸の最大許容速度を超えてしまい、工具が折れたり、切削トルク不足で加工できなくなるという問題が生じる可能性がある。本発明の実施の形態によれば、NC装置300は、第二の刃物台130の重畳後の速度が予め設定された最大許容速度を越えないようにワーク回転軸の最大速度を算出する動作モード別最大速度計算部26と、動作モード別最大速度計算部26が算出した最大速度でワーク回転軸の回転速度をクランプする円弧重畳補間速度クランプ部21と、をさらに備えるように構成したので、上記問題の発生を抑制することができるようになる。
また、動作モード別最大速度計算部26は、第一の刃物台120の動作および第二の刃物台130の動作がともに早送りである場合のワーク回転軸の最大速度を、第二の刃物台130の最大速度が早送りにかかる最大許容速度に一致するワーク回転軸の速度とし、第一の刃物台120の動作が早送りであり、第二の刃物台130の動作が切削送りまたは停止である場合のワーク回転軸の最大速度を、第二の刃物台130の最大速度が切削送りにかかる最大許容速度に一致するワーク回転軸の速度とする、ように構成したので、基準軸が早送りを実行する場合には、基準軸および重畳軸の速度を可及的に大きくすることができるようになる。
なお、以上の説明においては、各場合の最大速度を、第二の刃物台130の最大速度が早送りまたは切削送りにかかる最大許容速度に一致するワーク回転軸の速度とするとして説明したが、各場合の最大速度を、第二の刃物台130の最大速度が早送りまたは切削送りにかかる最大許容速度を上限として定まる速度に一致するワーク回転軸の速度とするようにしてもよい。例えば、各場合の最大速度を、第二の刃物台130の最大速度が早送りまたは切削送りにかかる最大許容速度から所定のオフセット分だけ減算した速度に一致するワーク回転軸の速度とするようにしてもよい。
また、動作モード別最大速度計算部26は、第二の刃物台130の動作が早送り、切削送り、および停止のうちのいずれであっても、第一の刃物台120の動作が切削送りである場合のワーク回転軸の最大速度を、第二の刃物台130の最大速度が夫々の最大許容速度のうちの最小値に一致するワーク回転軸の速度とする、ように構成したので、重畳軸の動作に係わらずワーク回転軸の速度が一定となるので、第一の刃物台120を用いて加工している最中に重畳軸の動作が変化しても第一の刃物台120による加工面の品質を低下せしめることなく加工を行うことができるようになる。
また、円弧重畳補間指令は、第二の刃物台130の位置とワーク回転軸の位置とを記述を含み、NC装置300は、円弧重畳補間指令に記述されている両者の位置が一致したか否かを判定し、双方の位置が一致した後、円弧重畳補間の開始を許可する円弧重畳補間開始判定部25をさらに備える、ように構成したので、円弧重畳補間指令により重畳軸プログラム220で用いられている座標系と基準軸プログラム210で用いられている座標系との対応関係を決定することができるので、ワーク140の端面の所望の位置に所望の加工を行うことが可能となる。
NC装置300は、重畳軸プログラム220に基づいて重畳前の座標系における制御サイクル毎の移動量を算出する相対座標速度算出部(補間処理部22、加減速処理部28)をさらに備え、円弧重畳補間制御部29は、重畳前の座標系における制御サイクル毎の移動量を積算して第一の加工経路上の第二の刃物台130の指令位置を算出する重畳座標系位置座標算出部32と、ワーク回転軸の回転角度を算出する回転角度算出部(C軸指令回転角度算出部31、C軸FB回転角度算出部36、主軸指令回転角度算出部37、および主軸FB回転角度算出部38)と、第二の刃物台130の指令位置をワーク回転軸の回転角度だけ座標回転して第二の加工経路上の指令位置を算出する実座標変換部33と、をさらに備える、ように構成した。
また、回転角度算出部(C軸FB回転角度算出部36および主軸FB回転角度算出部38)は、モータ5a〜5fからのフィードバック情報に基づいてワーク回転軸の回転角度を算出する、ように構成したので、ワーク回転軸の指令された位置または速度の遅れを排除することができ、また、加工中に加工反力等でワーク回転軸の位置が変動しても第二の刃物台130の動作を当該変動に追従させることができるので、より高精度な加工を行うことが可能となる。
以上のように、本発明にかかる数値制御装置は、旋盤等、旋削加工を行なう工作機械を制御する数値制御装置に適用して好適である。
1 制御演算部
2 入力操作部
3 表示部
4a〜4f サーボ制御部
5a〜5f サーボモータ
6 入力制御部
7 データ設定部
8 記憶部
9 パラメータ格納領域
10 工具補正データ格納領域
11 加工プログラム格納領域
12 機械制御信号処理部
13 PLC
14 共有領域
15 画面表示データ格納領域
16 画面処理部
17 解析処理部
18 円弧重畳補間指令解析部
19 円弧重畳モード別最大速度データ格納領域
20 円弧重畳モード別座標変換データ格納領域
21 円弧重畳補間速度クランプ処理部
22 補間処理部
23 円弧重畳補間開始位置移動部
24 円弧重畳補間開始処理部
25 円弧重畳補間開始判定部
26 動作モード別最大速度計算部
27 円弧重畳補間座標設定部
28 加減速処理部
29 円弧重畳補間制御部
30 速度変動追従方式判定部
31 C軸指令回転角度算出部
32 重畳座標系位置座標算出部
33 実座標変換部
34 重畳軸実移動量算出部
35 軸データ入出力部
36 C軸FB回転角度算出部
37 主軸指令回転角度算出部
38 主軸FB回転角度算出部
100 旋盤
110 ワーク保持具
120 第一の刃物台
130 第二の刃物台
140 ワーク
200 加工プログラム
210 基準軸プログラム
220 重畳軸プログラム
300 NC装置

Claims (6)

  1. 被加工物を回転させる被加工物回転軸と、前記被加工物が回転している時に当該被加工物の正面を加工する第一の刃物台と、前記被加工物回転軸の軸方向を法線とする面上を駆動可能に構成され、前記被加工物の端面に対向する側から前記被加工物を加工する第二の刃物台と、を備える工作機械を制御する数値制御装置であって、
    前記第一の刃物台を用いて正面加工を行いながら前記被加工物回転軸の回転を制御する第1指令と、前記被加工物に対する相対座標を用いて記述され、前記第二の刃物台の位置制御を行う第2指令と、を含む加工プログラムを記憶する加工プログラム格納領域と、
    前記第1指令に基づいて前記被加工物回転軸を回転せしめると同時に、前記第2指令に基づく第一の加工経路に前記被加工物回転軸の回転を重畳した第二の加工経路で前記第二の刃物台を位置制御する円弧重畳補間制御部と、
    前記第二の刃物台が前記第二の加工経路上を移動する速度が予め設定された最大許容速度を越えないように前記被加工物回転軸の最大速度を算出する最大速度算出部と、
    前記最大速度算出部が算出した最大速度で前記被加工物回転軸の回転速度をクランプする速度クランプ部と、
    を備えることを特徴とする数値制御装置。
  2. 前記第二の刃物台の最大許容速度は、早送りおよび切削送りの夫々について予め設定されており、
    前記最大速度算出部は、
    前記第一の刃物台の動作および前記第二の刃物台の動作がともに早送りである場合の前記被加工物回転軸の最大速度を、前記第二の刃物台が前記第二の加工経路上を移動する最大速度が前記早送りにかかる最大許容速度を上限として定められる速度に一致する前記被加工物回転軸の速度とし、
    前記第一の刃物台の動作が早送りであり、前記第二の刃物台の動作が切削送りまたは停止である場合の前記被加工物回転軸の最大速度を、前記第二の刃物台が前記第二の加工経路上を移動する最大速度が前記切削送りにかかる最大許容速度を上限として定められる速度に一致する前記被加工物回転軸の速度とする、
    ことを特徴とする請求項に記載の数値制御装置。
  3. 前記第二の刃物台の最大許容速度は、早送りおよび切削送りの夫々について予め設定されており、
    前記最大速度算出部は、
    前記第二の刃物台の動作が早送り、切削送り、および停止のうちのいずれであっても、前記第一の刃物台の動作が切削送りである場合の前記被加工物回転軸の最大速度を、前記第二の刃物台が前記第二の加工経路上を移動する最大速度が前記夫々の最大許容速度のうちの最小値を上限として定められる速度に一致する前記被加工物回転軸の速度とする、
    ことを特徴とする請求項に記載の数値制御装置。
  4. 前記加工プログラムは、前記第二の刃物台の前記相対座標における第一の位置と前記被加工物回転軸の第二の位置とを指定する第3指令を含み、
    前記第二の刃物台の第一の位置と前記被加工物回転軸の第二の位置とが一致したか否かを判定し、双方の位置が一致した後、前記円弧重畳補間制御部に前記第1指令にかかる制御および前記第2指令にかかる位置制御の開始を許可する円弧重畳補間開始判定部、
    をさらに備えることを特徴とする請求項1に記載の数値制御装置。
  5. 前記第2指令に基づいて前記相対座標における制御サイクル毎の移動量を算出する相対座標速度算出部をさらに備え、
    前記円弧重畳補間制御部は、
    前記相対座標における制御サイクル毎の移動量を積算して前記第一の加工経路上の前記第二の刃物台の指令位置を算出する重畳座標系位置座標算出部と、
    前記被加工物回転軸の回転角度を算出する回転角度算出部と、
    前記第二の刃物台の指令位置を前記被加工物回転軸の回転角度だけ座標回転して前記第二の加工経路上の指令位置を算出する実座標変換部と、
    をさらに備える、
    ことを特徴とする請求項1乃至請求項のうちの何れか一項に記載の数値制御装置。
  6. 前記被加工物回転軸は、位置または速度をフィードバック情報として出力し、
    前記回転角度算出部は、前記フィードバック情報に基づいて前記被加工物回転軸の回転角度を算出する、
    ことを特徴とする請求項に記載の数値制御装置。
JP2012530443A 2011-10-27 2011-10-27 数値制御装置 Active JP5132842B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074825 WO2013061445A1 (ja) 2011-10-27 2011-10-27 数値制御装置

Publications (2)

Publication Number Publication Date
JP5132842B1 true JP5132842B1 (ja) 2013-01-30
JPWO2013061445A1 JPWO2013061445A1 (ja) 2015-04-02

Family

ID=47693053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530443A Active JP5132842B1 (ja) 2011-10-27 2011-10-27 数値制御装置

Country Status (6)

Country Link
US (1) US9507337B2 (ja)
JP (1) JP5132842B1 (ja)
CN (1) CN103890670B (ja)
DE (1) DE112011105698T5 (ja)
TW (1) TWI448853B (ja)
WO (1) WO2013061445A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383552B (zh) * 2012-11-21 2015-08-26 深圳市智信精密仪器有限公司 一种任意平面圆弧插补运动控制器及其控制方法
CN105334805A (zh) * 2014-08-05 2016-02-17 发那科株式会社 具有考虑插值后加减速的角路径生成功能的数值控制装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006637B4 (de) * 2013-02-22 2019-10-31 Mitsubishi Electric Corporation Numerische Steuervorrichtung und maschinelles Bearbeitungsverfahren
CN105247424B (zh) * 2013-04-30 2018-06-08 三菱电机株式会社 数控装置
JP6034835B2 (ja) 2014-08-26 2016-11-30 ファナック株式会社 サイクルタイムを短縮するための情報を提示する数値制御装置
DE112014006864B4 (de) * 2014-09-09 2020-09-03 Mitsubishi Electric Corporation Numerische Steuervorrichtung
US10359765B2 (en) 2014-10-07 2019-07-23 Citizen Watch Co., Ltd. Control device for machine tool with multi-system programs
JP6017509B2 (ja) * 2014-10-22 2016-11-02 ファナック株式会社 運転停止時に送り速度を円滑に変更する数値制御装置
JP6259412B2 (ja) * 2015-03-19 2018-01-10 ファナック株式会社 複合形固定サイクルの往復旋削を行う数値制御装置
JP6301979B2 (ja) * 2016-01-27 2018-03-28 ファナック株式会社 単系統用のプログラムで複数系統の軸を制御する数値制御装置およびそのシミュレーション装置
JP6538761B2 (ja) * 2017-06-22 2019-07-03 ファナック株式会社 数値制御装置
CN107272758B (zh) * 2017-08-01 2020-08-07 深圳市雷赛控制技术有限公司 绕线设备效率及平稳性的提升方法及装置
DE102018116553B4 (de) * 2018-07-09 2020-11-05 Exeron Gmbh Fräsverfahren
JP6871221B2 (ja) * 2018-11-14 2021-05-12 ファナック株式会社 数値制御装置
DE112020007477T5 (de) * 2020-07-29 2023-06-07 Mitsubishi Electric Corporation Numerisches Steuerungsgerät und numerisches Steuerungsverfahren
CN112031662B (zh) * 2020-08-20 2022-05-10 陕西海耐森石油科技有限公司 一种基于机床编程的pdc钻头加工方法
CN116710223A (zh) * 2021-01-21 2023-09-05 发那科株式会社 控制装置以及计算装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044239A (ja) * 1983-08-22 1985-03-09 Yamazaki Mazak Corp 複合加工工作機械
JPH117313A (ja) * 1997-06-18 1999-01-12 Fanuc Ltd 数値制御装置
JP2000117506A (ja) * 1998-10-14 2000-04-25 Citizen Watch Co Ltd 自動旋盤
JP2002361528A (ja) * 2001-06-07 2002-12-18 Okuma Corp 複合加工機
JP2005238379A (ja) * 2004-02-26 2005-09-08 Star Micronics Co Ltd 工作機械とnc自動旋盤
JP2007105820A (ja) * 2005-10-12 2007-04-26 Star Micronics Co Ltd 旋盤
JP2008126391A (ja) * 2006-11-24 2008-06-05 Towa Corp 構造物の加工方法及び装置
JP2009015464A (ja) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp 数値制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186529A (en) * 1977-06-28 1980-02-05 S. E. Huffman Corporation Programmably controlled method for grinding end cutting tools and the like
DD238868B1 (de) 1985-06-28 1989-04-19 Numerik Karl Marx Veb Schaltungsanordnung zur bahngeschwindigkeitsverminderung eines numerisch gesteuerten werkzeuges
FR2681546B1 (fr) * 1991-09-20 1995-12-08 Essilor Int Procede et machine d'usinage a commande numerique multi-axe.
TW207511B (en) * 1993-02-11 1993-06-11 Jinn Chang Ind Co Ltd Computer numerical control (CNC) automatic lathing compound processing machine
JP2929996B2 (ja) * 1996-03-29 1999-08-03 トヨタ自動車株式会社 工具点列発生方法
JP5005874B2 (ja) * 2000-09-22 2012-08-22 シチズンホールディングス株式会社 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法
KR100652258B1 (ko) * 2000-09-22 2006-11-30 시티즌 워치 콤파니, 리미티드 자동 선반
CN1241079C (zh) * 2000-10-26 2006-02-08 西铁城时计株式会社 加工程序的自动生成方法及其装置
JP3643098B2 (ja) 2001-10-16 2005-04-27 ファナック株式会社 数値制御装置
JP2003263208A (ja) * 2002-03-11 2003-09-19 Yoshiaki Kakino Ncプログラムの作成方法、nc装置及びコンピュータプログラム
JP3830475B2 (ja) 2003-08-05 2006-10-04 ファナック株式会社 制御装置
JP4702951B2 (ja) * 2006-04-05 2011-06-15 株式会社ソディック 数値制御単一刃具による輪郭面及び立体の加工方法
TW200920521A (en) * 2007-04-05 2009-05-16 Toshiba Machine Co Ltd Method and apparatus for machining surface of roll

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044239A (ja) * 1983-08-22 1985-03-09 Yamazaki Mazak Corp 複合加工工作機械
JPH117313A (ja) * 1997-06-18 1999-01-12 Fanuc Ltd 数値制御装置
JP2000117506A (ja) * 1998-10-14 2000-04-25 Citizen Watch Co Ltd 自動旋盤
JP2002361528A (ja) * 2001-06-07 2002-12-18 Okuma Corp 複合加工機
JP2005238379A (ja) * 2004-02-26 2005-09-08 Star Micronics Co Ltd 工作機械とnc自動旋盤
JP2007105820A (ja) * 2005-10-12 2007-04-26 Star Micronics Co Ltd 旋盤
JP2008126391A (ja) * 2006-11-24 2008-06-05 Towa Corp 構造物の加工方法及び装置
JP2009015464A (ja) * 2007-07-02 2009-01-22 Mitsubishi Electric Corp 数値制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383552B (zh) * 2012-11-21 2015-08-26 深圳市智信精密仪器有限公司 一种任意平面圆弧插补运动控制器及其控制方法
CN105334805A (zh) * 2014-08-05 2016-02-17 发那科株式会社 具有考虑插值后加减速的角路径生成功能的数值控制装置
US9829876B2 (en) 2014-08-05 2017-11-28 Fanuc Corporation Numerical controller having corner path generation function in consideration of post-interpolation acceleration/deceleration

Also Published As

Publication number Publication date
WO2013061445A1 (ja) 2013-05-02
JPWO2013061445A1 (ja) 2015-04-02
TWI448853B (zh) 2014-08-11
TW201317727A (zh) 2013-05-01
US20140236340A1 (en) 2014-08-21
DE112011105698T5 (de) 2014-07-17
CN103890670A (zh) 2014-06-25
US9507337B2 (en) 2016-11-29
CN103890670B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5132842B1 (ja) 数値制御装置
US9063533B2 (en) Multi-spindle translation control for multiple coordinate systems
JP4888619B1 (ja) 数値制御装置
JP5159997B1 (ja) 数値制御装置
CN102656529B (zh) 数控装置
US6597142B2 (en) Apparatus and method for setting control parameters of machining apparatus
JP5240412B1 (ja) 数値制御装置
JP5079165B2 (ja) 数値制御装置及び数値制御方法
US9529352B2 (en) Numerical control device
CN102027426A (zh) 数控方法及其装置
WO2014038002A1 (ja) 数値制御装置
JPS61156309A (ja) 速度段差平滑機能を備えた数値制御装置
JP4995976B1 (ja) 回転軸のインポジションチェックを行う数値制御装置
JP6444923B2 (ja) 数値制御装置
WO2015104840A1 (ja) 数値制御装置および工作機械
JP2007172325A (ja) 自由曲線加工法および数値制御装置
JPH07185901A (ja) 重畳加工制御方法及びその数値制御装置
JP2005157980A (ja) 機械加工方法
JP6423827B2 (ja) 数値制御装置および工具の移動制御方法
JPWO2014038101A1 (ja) 数値制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5132842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250