JP5123436B2 - 光学素子のための支持要素 - Google Patents

光学素子のための支持要素 Download PDF

Info

Publication number
JP5123436B2
JP5123436B2 JP2011528368A JP2011528368A JP5123436B2 JP 5123436 B2 JP5123436 B2 JP 5123436B2 JP 2011528368 A JP2011528368 A JP 2011528368A JP 2011528368 A JP2011528368 A JP 2011528368A JP 5123436 B2 JP5123436 B2 JP 5123436B2
Authority
JP
Japan
Prior art keywords
flexure
support
optical
connection
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011528368A
Other languages
English (en)
Other versions
JP2012504330A (ja
Inventor
クーグラー イェンス
ヴェーバー ウルリッヒ
ヴェンガート ニコライ
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2012504330A publication Critical patent/JP2012504330A/ja
Application granted granted Critical
Publication of JP5123436B2 publication Critical patent/JP5123436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

本発明は、光学素子のための支持要素及び光学素子を支持する方法に関する。本発明は、任意の光学装置又は光学結像法に関連して用いることができる。特に、本発明は、超小型回路の製造で用いられるマイクロリソグラフィに関連して用いることができる。
本出願に関して、2008年11月14日付けで出願された出願番号第61/114,540号の米国仮特許出願の米国特許法第119条(e)(1)による利益を主張する。208年9月30日付けで出願された出願番号10 2008 049 746.0のドイツ特許出願の優先権も主張する。
出願番号61/114,540の米国仮特許出願の内容及び出願番号10 2008 049 746.0のドイツ特許出願の内容のそれぞれが、本出願の一部であり、参照により本出願に含まれる。
本出願には、引用により含まれる引用文献及び本出願の一部を形成する引用文献が含まれる。本出願の明示的開示と引用により含まれる引用文献の開示との間に不一致がある場合、本出願の開示が優先されるものとする。
特にマイクロリソグラフィの分野において、最大限の精度を有するように設計される構成要素の使用のほかに、対応して高い結像品質を得るために、動作時に、結像装置の光学モジュール、したがって例えばレンズ、ミラー、及び格子等の光学素子を有するモジュール、さらには使用されるマスク及び基板の位置及び姿勢を、指定の設定値内でできる限り正確に設定すること、又はこのような構成要素を指定の位置又はジオメトリで安定させることが特に必要である(本発明の意味するところでは、光学モジュールという用語は、光学素子単独、及びそのような光学素子と例えばホルダ部品等のさらなる構成要素との組立体の両方を意味し得る)。
そのために、全6自由度で光学素子を位置決め及び姿勢決めするために、複数の支持要素が並列運動的に(in a parallel kinematic fashion)協働する支持構造が用いられることが多い。このようなパラレルキネマティクスの典型例は、いわゆるヘキサポッドであり、(普通は3つの対偶、いわゆるバイポッドの)6つの支持要素がリング形保持器の形態のより大きな支持ユニットに対して光学素子を位置決め及び姿勢決めする。多くの場合、支持要素として、例えば開示全体が参照により本明細書に含まれる特許文献1(柴崎)から既知であるように、単純な板ばね状要素がここでは用いられる。
これらの構成は、保持器の平面に対して垂直方向に比較的高さがあるため、光学素子間の所望の距離を保証するために、光学素子が密集している光学システムの構成においてマニピュレータを概して互いに入れ子状にしなければならないという欠点を有する。これには、光学素子を互いに対して(例えば、システムの光軸を中心に)限られた範囲で回転するようにしか装着することができないため、2つ以上の光学素子をそれらの結像誤差(例えば、光学系の変形により生じる)を互いに補償できるように組み合わせることが多くの場合に不可能であるという、さらなる欠点が伴う。
開示全体が参照により本明細書に含まれる特許文献2(柴崎)から、光軸の方向に薄型であるヘキサポッド構造が知られており、この構造では、光学素子が6つの支持部材により支持され、支持部材はそれぞれ、両端がボールジョイントの形態で作用するフレクシャ(flexure)により隣接する構成要素に接合されている。ここで、光学素子の調整は、光学素子に割り当てられた支持体の関節点を光学素子の光軸の方向に特に変位させるように、外部支持構造に割り当てられた支持部材の関節点を光学素子の周方向に対して接線方向に変位させることで行われる。
ボールジョイントの形態で用いられる関節の結果として、小さな面積内で所望の調整運動が達成される一方で、2つのフレクシャが比較的小さな断面積しか有さないため、特に動荷重下において(高加速度で)だが静荷重下だけでも、曲げ要素に比較的高い応力が生じるという問題がある。その結果、第1に、光学素子のマニピュレータの寿命が限られるか、又は比較的低い加速度しか許されないため(指定の調整範囲に関して)比較的小さな調整移動しか行わせることができない。より大きな調整範囲で移動を大きくする傾向を鑑みると、これは非常に不利である。
この構成のさらなる欠点は、ボールジョイントの領域で可能な傾斜動作が、光学素子に割り当てられた関節点の位置の光軸方向の歪み(falsification)につながり、ひいては位置決め精度の低下につながり得ることである。
国際公開第02/16993号 欧州特許第1632799号
したがって、本発明の目的は、上記欠点を有していないか又は少なくとも限られた程度までしか有しておらず、特に、大きな調整移動(したがって光学素子での高い加速度)での光学素子の位置決め及び姿勢決めで高い精度及び大きな制御帯域幅(control bandwidth)を得ると共に支持要素の寿命を延ばすことを単純な方法で可能にする、光学素子を支持するための支持要素及び方法を提供することである。
本発明は、支持要素のフレクシャがそれらの曲げ軸に対して横断方向に細長い曲げ要素として構成される場合、大きな調整移動での光学素子の位置決め及び姿勢決めで特に高い精度及び特に大きな制御帯域幅を得ると共に支持要素の寿命を延ばすことが可能であるという認識に基づく。このように単純な方法で、大きな動荷重でも比較的緩やかな応力が生じるように、各フレクシャの断面積が増大される。
この構成は、様々な自由度の移動が許容又は制限される領域に支持要素の明確に区別可能な領域を割り当てることができ、且つこれらの領域をより容易に把握する(capture)ことができるように、フレクシャを構成することができるという利点も有する。したがって、例えば、支持部材の領域における支持要素の移動度がいくつかの自由度内に有利に厳しく制限され得る一方で、支持部材の他の場所で他の自由度の動作分離(motion decoupling)が生じる。これにより、制御概念の複雑性が低減され、光学素子の位置決め及び姿勢決めの精度を高めることができる。
したがって、第1の態様によれば、本発明は、特にマイクロリソグラフィ用の光学素子のための支持要素であって、支持部材と、支持部材を外部支持ユニットに接続する第1の接続要素と、支持部材を光学素子に接続する第2の接続要素とを備える、支持要素に関する。支持要素は、6自由度で外部支持ユニットに対して光学素子を位置決め及び姿勢決めするためにさらなる支持要素と並列運動的に協働するように構成される。
支持部材は、複数の第1のフレクシャを含み、第1の接続要素及び/又は第2の接続要素は、少なくとも1つの第2のフレクシャを含み、第1のフレクシャ及び第2のフレクシャはそれぞれ、曲げ軸を規定する。支持ユニットに対する光学素子の動作制限を、複数の第1のフレクシャ及び第2のフレクシャにより最大2自由度で達成することができる。第1のフレクシャ及び第2のフレクシャはそれぞれ、曲げ軸に沿って細長く構成される。
さらなる態様によれば、本発明は、特にマイクロリソグラフィ用の光学素子のための支持要素であって、支持部材と、支持部材を外部支持ユニットに接続する第1の接続要素と、支持部材を光学素子に接続する第2の接続要素とを備え、6自由度で外部支持ユニットに対して光学素子を位置決め及び姿勢決めするためにさらなる支持要素と並列運動的に協働するように構成される、支持要素に関する。第1の接続要素は、支持部材に対する第2の接続要素の第2の接続領域の第2の方向の変位を発生させるために、第1の接続要素に対する第1の接続領域で支持部材に第1の方向の変位を加えるように構成される。支持部材は、複数の第1のフレクシャを含み、第1の接続要素及び/又は第2の接続要素は、少なくとも1つの第2のフレクシャを有する。第1のフレクシャは、第1の方向及び第2の方向により規定される動作平面内にある回転軸を中心とした第1の接続領域に対する第2の接続領域の回転を防止するように構成及び配置される。
さらなる態様によれば、本発明は、特にマイクロリソグラフィ用の光学モジュールであって、光学素子と、複数の支持要素と、外部支持ユニットとを備え、複数の支持要素は、6自由度で外部支持ユニットに対して並列運動的に光学素子を位置決め及び姿勢決めする、光学モジュールに関する。複数の支持要素の少なくとも1つは、本発明による支持要素である。
本発明のさらなる態様によれば、本発明は、光学モジュールであって、支持ユニットと、支持ユニットに対してマイクロリソグラフィ投影露光システムの光学素子を保持及び/又は位置決めする少なくとも1つのバイポッドとを備え、バイポッドは、2つのバイポッドブレースを含み、バイポットブレースはそれぞれ、第1の端でブレースフットが支持ユニットに直接的又は間接的に接続され、第2の端でブレースヘッドが光学素子に直接的又は間接的に接続されて、少なくとも一方のブレースヘッドと2つのブレースフットを接続する接続線とがバイポッド平面上に位置するようになっている、光学モジュールに関する。ここで、接続線に沿ったブレースフット間の間隔は、ブレースヘッド間の間隔よりも随意に大きくすることができる。代替的に、接続線に沿ったブレースフット間の間隔は、ブレースヘッド間の間隔以下であってもよい。さらに、ブレースフット間の間隔は、軸受上に保持されて接続ユニットを介して少なくとも一方のブレースフットと係合して少なくとも1つの動作方向に可動である、少なくとも1つのレバーにより調整することができ、レバーの少なくとも1つの動作方向は、バイポッド平面外にあり、接続ユニットは、厳密に1つの曲げ平面を有する少なくとも1つのフレクシャを有し、このフレクシャが曲げ平面に対して垂直方向に剛性構成を有するようになっている。
さらなる態様によれば、本発明は、特にマイクロリソグラフィ用の光学結像装置であって、照明装置と、投影パターンを備えるマスクを収容するマスク装置と、光学素子群を有する投影装置と、基板を収容する基板装置とを備える、光学結像装置に関する。照明装置は、投影パターンを照明するように構成され、光学素子群は、基板上に投影パターンを投影するように構成される。照明装置及び/又は投影装置は、本発明による光学モジュールを備える。
さらなる態様によれば、本発明は、特にマイクロリソグラフィ用の光学素子を支持する方法であって、光学素子は、複数の支持要素を介して外部支持ユニット上に支持され、6自由度で外部支持ユニットに対して並列運動的に位置決め及び姿勢決めされ、支持要素は、第1の接続要素を介して外部支持ユニットに接続されると共に第2の接続要素を介して光学素子に接続される支持部材を有する、方法に関する。支持部材は、複数の第1のフレクシャを含み、第1の接続要素及び/又は第2の接続要素は、少なくとも1つの第2のフレクシャを有し、第1のフレクシャ及び第2のフレクシャはそれぞれ、曲げ軸を規定する。複数の第1のフレクシャ及び第2のフレクシャを介して、支持ユニットに対する光学素子の動作制限を、最大2自由度で達成することができ、第1のフレクシャ及び第2のフレクシャのそれぞれで、曲げ軸に沿って細長く構成されるジョイントが用いられる。
さらなる態様によれば、本発明は最後に、特にマイクロリソグラフィ用の光学素子を支持する方法であって、光学素子は、複数の支持要素を介して外部支持ユニット上に支持され、6自由度で外部支持ユニットに対して並列運動的に位置決め及び姿勢決めされ、支持要素は、第1の接続要素を介して外部支持ユニットに接続されると共に第2の接続要素を介して光学素子に接続される支持部材を有する、方法に関する。第1の接続要素は、支持部材に対する第2の接続要素の第2の接続領域の第2の方向の変位を発生させるために、第1の接続要素の第1の接続領域で支持部材に第1の方向の変位を加える。支持部材は、複数の第1のフレクシャを含み、第1の接続要素及び/又は第2の接続要素は、少なくとも1つの第2のフレクシャを有する。第1のフレクシャを介して、第1の方向及び第2の方向により規定される動作平面内にある回転軸を中心とした第1の接続領域に対する第2の接続領域の回転が防止される。
本発明のさらなる好適な設計は、添付の特許請求の範囲又は添付図面を参照する好適な実施形態の以下の説明から明らかとなる。
光学素子を支持するための本発明による方法の好適な実施形態を実施することができる本発明による支持要素を備える、本発明による光学モジュールを備える、本発明による光学結像装置の好適な実施形態の概略図である。 図1の結像装置の本発明による光学モジュールの好適な実施形態の概略上面図である。 図2の光学モジュールの(図2の線III−IIIに沿った)概略断面図である。 図2の光学モジュールの(図2の線IV−IVに沿った)概略断面図である。 図2の光学モジュールで用いられる本発明による支持要素の好適な実施形態の一部の概略斜視断面図である。 図5の支持要素のさらなる部分の概略上面図である。 図5の支持要素のさらなる部分の概略上面図である。 図1の光学結像装置で実施することができる光学素子を支持するための本発明による方法の好適な実施形態のブロック図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略斜視図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略斜視図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略斜視図である。 図11Aの支持要素の(図11Aの線XIB−XIBに沿った)概略斜視断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略斜視図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略斜視図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。 図2の光学モジュールで用いることができる本発明による支持要素のさらなる好適な実施形態の一部の概略断面図である。
第1の実施形態
以下で図1〜図8を参照することにより、マイクロリソグラフィ用の本発明による光学結像装置の本発明による光学モジュールで用いられる本発明による光学支持要素の好適な実施形態を説明する。その際、以下の説明を簡略化するために、z方向が鉛直方向を示すxyz座標系を導入する。しかしながら、本発明の他の変形形態では、結像装置の構成要素の任意の他の空間的位置合わせを行うことができることが自明である。
図1は、193nmの波長を有するUV光で作動するマイクロリソグラフィ装置101の形態の本発明による光学結像装置の好適な実施形態の概略図を示す。
光学素子群の光学素子は、この例では、レンズ、プリズム、プレート等の形態の屈折光学素子である。しかしながら、本発明の他の変形形態では、それぞれ屈折光学素子、反射光学素子、及び/又は回折光学素子を単独で又は任意の組み合わせで用いることができることが自明である。
マイクロリソグラフィ装置101は、照明システム102と、マスク装置103と、対物レンズ104の形態の光学投影システムと、基板装置105とを備える。照明システム102は、マスク装置103のマスクテーブル103.2上に配置されているマスク103.1を投影光ビーム(より詳細には図示せず)で照明する。マスク103.1上には投影パターンがあり、投影パターンは、対物レンズ104内に配置されている光学素子群106の光学素子を介して、投影光ビームで基板装置105のウェーハテーブル105.2上に配置されているウェーハ105.1の形態の基板に投影される。
照明システム102は、光源102.1に加えて、特にさらなる光学素子群107を備え、光学素子群107を介して投影光ビームが形成及び誘導される。光学素子群106の光学素子106.1を用いて例として以下で説明するように、光学素子群106及び107の個々の又は全部の光学素子が、本発明による光学モジュール108内に保持される。
特に図2〜図4から推論できるように、光学モジュール108は、光学素子106.1のほかに、光学素子106.1用又は複数の構成要素からなる光学組立体106用の保持装置109を備え、これは、対物レンズハウジングに機械的に接続されるか、又は場合によっては対物レンズハウジングの一部を形成し、したがって、重量と光学素子106.1又は光学組立体106に作用する静荷重及び動荷重とが、床又は基礎構造により支えられる。
保持装置109は、外部リング110の形態の外部支持ユニットを備え、これは、本発明による複数の支持要素111を介して内部リング112の形態の内部支持ユニットと接続される。
外部リング110、支持要素111、及び内部リング112は、本例では互いに一体的に接合される。この目的で、これらは例えば、電食(wire erosion)及び必要であれば固体ブロックからのさらなる機械加工プロセスにより製造され得る。しかしながら、本発明の他の変形形態を用いて、複数の組立構成部品から(任意の適当な組立法を用いて)作られた他の保持装置を用いることができることが自明である。
本例の保持装置109は、それぞれがバイポッド109.1として2つ1組で分けられている6つの支持要素111を備える。このようにして形成された3つのバイポッド109.1は、光学素子106.1の周囲上で周方向Uに均一に分配されるため、ヘキサポッドの形態で並列運動的に構成された支持構造が得られ、これにより、光学素子106.1の静的に確定した支持が得られる。ここで、バイポッド109.1は、光学素子106.1によりそれぞれ規定される光軸(z方向)及び半径方向Rを含む、光学素子106.1により規定される半径方向平面に対して、(中立位置で)それぞれ対称に配置される。
支持要素111は、内部リング112に任意の従来の方法(ここではより詳細に説明しない)で固定されている光学素子106.1を、空間内の全6自由度でそれぞれ調整可能に(能動的且つ/又は受動的に)位置決め及び姿勢決めすることができるように構成される。そのために、各支持要素111は、外部リング110に接続されているレバー113の形態の第1の接続要素を有する。レバー113は、第1の接続領域で支持部材114の一端に接続され、支持部材114の他端は、第2の接続領域で第2の接続要素115と接続される。第2の接続領域115はさらに、内部リング112と接続される。
概して、本明細書に従った実施態様(execusions)の光学モジュール108は、支持ユニット110、好ましくは、例えば外部リング110等の外部支持ユニットを備える。光学モジュール108は、支持ユニット110に対してマイクロリソグラフィ投影露光システム101の光学素子106.1を保持及び/又は位置決めするための少なくとも1つのバイポッド109.1をさらに備え、バイポッド109.1は、支持部材114とも呼ばれる2つのバイポッドブレースを備え、バイポットブレースはそれぞれ、第1の端でブレースフットが支持ユニット110に直接的又は間接的に接続され、第2の端でブレースヘッドが光学素子106.1に直接的又は間接的に接続される。ブレースヘッド及びブレースフットの接続部は、少なくとも一方のブレースヘッドと2つのブレースフットを接続する接続線とがバイポッド平面上に位置するようになっており、接続線に沿ったブレースフット間の間隔は、ブレースヘッド間の間隔よりも大きく、ブレースフット間の間隔は、軸受(図6の113.1)上に保持されて接続ユニットを介して少なくとも一方のブレースフットと係合して少なくとも1つの動作方向に可動である、少なくとも1つのレバー113により調整することができる。ここで、レバーの少なくとも1つの動作方向は、バイポッド平面バイポッド平面外にある。さらに、ジョイントユニットは、厳密に1つの曲げ平面を有する少なくとも1つのフレクシャ(例えば、図5の114.1、114.2)を有し、フレクシャが曲げ平面に対して垂直方向に剛性構成を有するようになっている。
代替的に、接続線に沿ったブレースフット間の間隔は、ブレースヘッド間の間隔以下であってもよい。概して、これらにより規定されるバイポッドブレース間の間隔及び交点、又はバイポッドブレースに沿った線の交点は、並列運動的な(例えば、ヘキサポッドの形態の)複数のバイポッド要素が空間的に整列したプラットフォーム(又は部材)に作用する場合にプラットフォーム又は部材の傾斜をもたらす傾斜軸の場所を規定する。
光学モジュール108に関して説明する一般的な実施形態では、例として、バイポッドのバイポッドブレースが外部リング(又は支持ユニット)に直接接続され得るが、上述のように、バイポッドの第2のバイポッドブレースは、例えばレバー113を介して外部リング110と間接的に接続される。代替的に、両方のバイポッドブレースが、例えば各レバー113を介して(又は、概してアクチュエータを介して)外部リングと(支持ユニット110と)間接的に接続されてもよい。ここで、ブレースフット間の間隔及び/又は支持ユニット110に対するブレースフットの位置を変えるときに、バイポッドのブレースヘッドがブレースフットの位置に応じて複数の方向に移動可能であれば有利である。これは、光学素子が複数の自由度でブレースヘッドに直接的又は間接的に関節結合される可能性をもたらす。このとき、自由度の数は、光学素子を保持するさらなる取り付け要素に応じても変わる。好ましくは、光学モジュール108は、上述のようにヘキサポッドを形成する3つのバイポッドを備える。この場合、光学モジュール108は、少なくとも1つのバイポッドに対応する、好ましくはそれぞれ同一の構成の3つのバイポッドを備え、これらは、支持ユニットに対して光学素子を保持及び/又は位置決めするためにヘキサポッド構造を形成し、少なくとも1つのバイポッドに対応する各バイポッドにはそれぞれ対応するレバー及び接続ユニットが割り当てられる。光学素子を最大6自由度で概ね拘束力を受けずに位置決めできる、ヘキサポッドにより形成されるパラレルキネマティクスには、全てのアクチュエータ(レバー)が同じ移動プラットフォームに直接作用するという利点がある。ここでは、プラットフォームは、バイポッドのブレースヘッドと接続されるユニット又はモジュールである。これは例えば、光学素子自体(バイポッドブレースのブレースヘッドの直接接続の場合)、又は例えば、より詳細に後述する接続要素も備え得る光学素子用の内部保持リングであり得る。
パラレルキネマティクスの利点の1つは、各アクチュエータがそれぞれ付加質量を伴って各自の調整プラットフォームに作用するシリアルキネマティクスよりも小さな質量を有することである。付加質量に関して、パラレルキネマティクスの全体的質量が小さくなることで、最低固有振動数が通常はシリアルキネマティクスの最低固有振動数よりも著しく高い固有振動数スペクトルが有利に得られる。これは、後者が第一次近似として質量の逆数の平方根になるからである。固有振動数が高くなることで、光学モジュールの振動の励起が防止される。そうでなければ高い光学的分解能を得ることができないため、これはマイクロリソグラフィ投影露光システムで用いられるような光学モジュールで非常に重要である。質量が小さいことにより、パラレルキネマティクスは、シリアルキネマティクスよりも優れた動特性も有する。パラレルキネマティクスのさらなる利点は、移動電線が不要であるため、ケーブルからの拘束力を受けるおそれが生じないことである。さらに、パラレルキネマティクスは、シリアルキネマティクスよりも平坦でより小型に作ることができる。これは、特に屈折面及び/又は反射面として高価な自由形態面を有する光学素子が省かれる場合、このとき光学素子が互いに非常に接近して配置されることが多いため、マイクロリソグラフィ投影露光システムにおける決定的利点でもある。マイクロリソグラフィ投影露光システムで用いられる精密光学系におけるさらなる非常に重要な態様は、パラレルキネマティクスで、例えば上記ヘキサポッド等で、シリアルキネマティクスで生じるような付加的な誘導誤差が生じないことである。したがって、パラレルキネマティクスでは、光学モジュール108の光学素子に関して最大の位置精度が得られる。
光学モジュール108に関して説明する一般的な実施形態では、さらに、上記のように、1つのバイポッドブレースのヘッドが光学素子と直接係合し得る。代替的に、ブレースヘッドは、光学素子と間接的に係合し、ブレースヘッドと光学素子との間により詳細に後述する接続要素115が設けられてもよく、又は光学素子も保持器、例えば内部保持リング内に保持されてもよい。必須ではないが通常は、光学素子がヘキサポッドにより光学モジュール内に保持される場合、バイポッドの2つのブレースヘッドが同じ方法で光学素子と係合する。
光学モジュール108の一般的な実施態様では、レバーの少なくとも1つの移動方向が、バイポッド平面外に位置付けられ、モジュール108は、ブレースフットの接続線に対して垂直な方向により平坦に、したがってより小型に構成され得る。結果として、例えば上記ヘキサポッド等のパラレルキネマティクスの小型構成の利点がさらに最適化される。レバーの動作方向がバイポッド平面に対して垂直であれば、ブレースフット間の接続線に対して垂直な方向のレバーの動作が空間を一切必要としないため、最も小型の構造が得られる。
光学モジュール108の一般的な実施態様のブレースフット間の間隔が可変であるか又は調整可能であるようにするために、少なくとも1つのブレースフットが、ジョイントユニットを介して移動レバーと接続されなければならない。これは、特に、バイポッドブレースが通常は剛性構造を有する、すなわちそれらの長さがほぼ変わらないため、ブレースフット間の間隔の変化が、レバーにより移動させられるバイポッドブレースとレバー自体との間の角度の変化を必然的にもたらすからである。ここでは、ジョイントユニットは少なくとも1つの第1のフレクシャを含む。例えば固体ジョイント(solid state joints)等のフレクシャが用いられる場合の位置精度に関して、光学モジュール108により形成されるパラレルキネマティクスを十分に利用するために、フレクシャは厳密に1つの曲げ平面を有する。これにより、曲げ平面から逸れる方向のフレクシャの寄生的な屈曲が、ジョイントユニットと係合しているブレースフットを望ましくない寄生的な方向に変位させることが防止される。この変位は、バイポッドの関連のブレースヘッドにも望ましくない寄生的動作を行わせることにより、位置精度を低下させてしまう。フレクシャは、曲げ平面外の方向、例えば曲げ平面に対して垂直な方向に厳密に1つの曲げ平面を有するために、剛性構成を有さなければならない。
「剛性」という相対語は、フレクシャが曲げ平面の方向に第1の抵抗モーメントを有し、且つ曲げ平面に対して垂直方向に第2の抵抗モーメントを有し、第2の抵抗モーメントが第1の抵抗モーメントの大きさの少なくとも2倍であることを意味する。曲げ平面の方向の抵抗モーメントは、フレクシャが曲げ応力下にあるときに曲げ平面の方向に大きく働く(decisive)抵抗モーメントを意味する。同様に、第2の抵抗モーメントは、フレクシャが曲げ応力下にあるときに曲げ平面に対して垂直な方向に大きく働く抵抗モーメントを意味する。概して、第2の抵抗モーメントが大きいほど、曲げ平面に対して垂直な方向のフレクシャの構成の剛性が高まる。この考察は、いかなる方向にも概して当てはまり、曲げ平面に対して垂直な方向に限定されない。光学素子の必要な位置精度と、バイポッドのジオメトリ、特にさらなるフレクシャがあればそれを十分に考慮したバイポッドブレース及び光学素子とのそれらの連結部の長さに応じて、高剛性要件が生じ得る。したがって、第2の抵抗モーメントが第1の抵抗モーメントの少なくとも5倍よりも大きいか又は少なくとも10倍よりも大きい必要があり得る。
ここで、抵抗モーメントとは、軸方向の断面二次モーメント(すなわち面積慣性モーメント)とフレクシャの最外縁(extreme fiber)から中立軸(neutral fiber)までの最大距離との商を意味する。抵抗モーメントは、所与の曲げ応力で(所与の曲げモーメントで)曲げモーメントと抵抗モーメントとの商として最大の応力負荷を与える。ねじり歪みによる最大接線応力も考慮するために、抵抗極モーメント、又はねじり抵抗モーメントとも呼ばれるものが、抵抗モーメントの代わりとなる。
曲げ平面から逸れる方向、例えば曲げ平面に対して垂直な方向の上記剛性要件を満たすためには、多くの場合、フレクシャが曲げ平面に対して垂直に伸びた曲げ軸を有し、このとき曲げ軸の方向のフレクシャの長さが、曲げ軸に対して垂直に曲げ方向に延びる曲げユニットの少なくとも1つのフレクシャの最大断面寸法の少なくとも2倍であれば十分である。例えば、フレクシャが曲げ平面に対して垂直な正方形断面を有する板ばね状ジョイントとして形成される場合、この条件は満たされない。他方、フレクシャに曲げ平面に対して垂直な矩形断面が設けられ、矩形断面の長辺が曲げ平面に対して垂直である場合、矩形断面の縦横比が2であればこの条件が満たされる。
図2〜図4の本例における(バイポッドブレースを形成する)各支持部材114は、(各バイポッド109.1に割り当てられる半径方向平面の場所における光学素子106.1に対する接線により規定される)関連の接線方向Tに対して概ね平行に延びる。この実施態様では、各支持部材114は、第1の曲げ軸をそれぞれが規定する4つの第1のフレクシャ114.1〜114.4(図5)を有する。このとき、フレクシャ114.1及び114.3又は114.2及び114.4の曲げ軸は、対になって互いに平行に延びるが、2つの対114.1、114.3及び114.2、114.4の曲げ軸は、互いに対して横断方向(より厳密には、ここでは垂直に)延びる。
図5で図示及び説明されるように、光学モジュール108の一般的な実施態様のジョイントユニットは、少なくとも1つのフレクシャ114.1の曲げ平面に対して概ね垂直なさらなる曲げ平面を有するさらなるフレクシャ114.2を備え得る。さらなるフレクシャ114.2は、さらなる曲げ平面に対して垂直なさらなる曲げ軸を有することが好ましい。したがって、ジョイントユニットによりレバー113に接続されるバイポッド109.1のブレースフット114は、互いの回転軸が交差するフレクシャにより支持され、その結果、ブレースフット、したがって関連のバイポッドブレースは、2自由度で分離される。交差するフレクシャが適当に配置されている場合、特に、交差する回転軸間の間隔(spacing of the crossed axes of rotation)が曲げ軸に対して垂直なフレクシャの範囲内又はさらにそれよりも短ければ、これらによりボールジョイントに近似したものが得られる。
例えば固体ジョイント等のフレクシャの使用における位置精度に関して光学モジュール108により提供されるパラレルキネマティクスを十分に利用するために、さらなる曲げ平面に対して垂直なさらなるフレクシャ114.2も剛性構成を有することが好ましい。このとき、さらなるフレクシャは、さらなる曲げ平面の方向に第1の抵抗モーメントを有し、且つ曲げ平面に対して垂直方向に第2の抵抗モーメントを有し、第2の抵抗モーメントが第1の抵抗モーメントの大きさの少なくとも2倍である。剛性に関して少なくとも1つのフレクシャに関連して上述した説明は、さらなるジョイントにも同様に当てはまる。
バイポッドブレース114に、フレクシャのねじりを引き起こし得るねじり応力がかかる場合に、フレクシャに接続されているブレースフットの寄生動作をできる限り小さくするためにも、さらなる曲げ軸に対して垂直なねじり軸に対して、さらなるフレクシャ114.2は、このねじり軸に対する抵抗極モーメントがさらなる曲げ平面の方向の抵抗モーメントの少なくとも2倍になるように構成される。
光学モジュール108の一般的な実施態様では、これは、ジョイントユニットの少なくとも1つのフレクシャの曲げ平面が光学素子の対称面と平行であるか、又は投影露光システム内の光軸に対して垂直な平面と平行であるように構成され得る。この場合、フレクシャの曲げ軸は、光軸と平行に延びる。図2〜図5による実施態様では、そのようなフレクシャはジョイント114.1に相当する。この実施態様がさらなるフレクシャを有するジョイントユニットを備える光学モジュールを含む場合、さらなるフレクシャのさらなる曲げ平面が光学素子の対称面に対して好ましくは垂直であるか、又はさらなる曲げ平面が投影露光システム内の光軸と平行である。そのようなさらなるフレクシャは、図2〜図4による実施態様ではジョイント114.2である。ここで、特に光学モジュール108が上述のようなヘキサポッド構造を形成する場合、さらなるフレクシャのさらなる曲げ平面はバイポッド平面と平行である。
図6は、支持部材114にそれぞれ関連するレバー113が、第2のフレクシャ113.1を介して外部リング110に接続されていることを示す。第2のフレクシャ113.1は、(保持装置109の中立位置で)第2の曲げ軸、したがって光学素子106.1の光軸と平行に延びるレバー113の回転軸を規定する。
光学モジュール108においてフレクシャ113.1がこのような場所にあることで、バイポッド平面が光軸と平行に延びている場合、レバーの動作方向はバイポッド平面に対して垂直である。概して、光軸とは無関係に、レバーの動作方向はバイポッド平面に対して垂直であり得る。このとき、少なくとも1つのフレクシャ114.1の曲げ平面は、バイポッド平面に対して垂直である。少なくとも1つのフレクシャ114.1の曲げ軸は、このときバイポッド平面と平行である。
レバー113は、フレクシャ113.1により規定される回転軸を中心に調整装置116(より詳細に後述する)により回転させることができる。このとき、支持部材114の第1の接続領域114.5は、関連の接線方向T(x方向)に変位させられる。この動作は、光学素子1061の光軸の方向に変位する第1のフレクシャ114.2及び114.4の配置と、バイポッド109.1に割り当てられるさらなる支持要素111の当接力とにより、光学素子106.1の光軸方向(z方向)に少なくとも部分的に延びる第2の接続領域114.6の動作に変換される。
ここで説明される実施形態による光学モジュールでは、図5に示すように、ジョイントユニットの少なくとも1つのフレクシャ114.1又はさらなるフレクシャ114.2は板ばねとして構成される。さらに、各バイポッド109.1に割り当てられるレバー113の軸受は、レバー113を支持ユニット110に接合するフレクシャ113.1として構成され得る。
ここで、第1のフレクシャ114.1〜114.4及び第2のフレクシャ113.1はそれぞれ、最初引用した特許文献2(柴崎)とは対照的に、その曲げ軸に沿って細長い構成を有するように構成される。これには、フレクシャ114.1〜114.4又は113.1の断面積が拡大されることにより、各フレクシャ114.1〜114.4、113.1における動作の際に大きな荷重下でもフレクシャ114.1〜114.4、113.1内で穏やかな応力しか生じないという利点がある。
光学素子106.1の能動的位置決め/姿勢決めの場合の従来技術の構成と比較して、これは、フレクシャ114.1〜114.4又は113.1の(場合によっては長期の)過負荷を招くことなく、ジョイント114.1〜114.4における応力が小さいためより高い加速度が可能であり、したがって光学素子106.1の変位の指定の制御帯域幅でより大きな調整移動を行わせることができるという利点を提供する。
この構成のさらなる利点は、個別の自由度での動作が明確に区別されたフレクシャに割り当てられることである。これにより、各支持要素における調整動作の想定把握が容易になる。
最後に、第2のフレクシャ113.1の曲げ軸に対して横断方向に短い構成、したがって純粋な回転ジョイントとしての構成には、第2のフレクシャ113.1の曲げ軸を横断する軸を中心としたレバー113の傾斜がごくわずかにしか生じ得ないという利点がある。所望の位置からの逸れの原因となるような傾斜がなくなるため、これは、光学素子106.1の位置及び姿勢の精度と、動荷重下での光学素子106.1の位置及び姿勢の安定性とに大きな影響を及ぼす。
このような傾斜を減らすために、レバー113の軸受を構成するフレクシャ113.1は、厳密に1つの曲げ平面を有し得ることで、軸受のフレクシャがその曲げ平面に対して垂直方向に剛性構造を有するようになっている。この実施態様は、上述の利点により、光学モジュール108についてここで説明されている実施形態で特に好ましい。ここでも、「剛性」という用語は、軸受のフレクシャがその曲げ平面の方向に第1の抵抗モーメントを有し、且つその曲げ平面に対して垂直方向に第2の抵抗モーメントを有し、第2の抵抗モーメントが第1の抵抗モーメントの大きさの少なくとも2倍であることを意味する。軸受のフレクシャの剛性を得るために、フレクシャがその曲げ平面に対して垂直に伸びた曲げ軸を有し、軸受のフレクシャのその曲げ軸の方向の長さが、軸受の曲げ軸に対して垂直に曲げ方向に延びる軸受のフレクシャの最大断面寸法の少なくとも2倍であれば十分である。ここで説明されている実施形態による光学モジュール108では、軸受の曲げ軸113.1は、軸受により保持されるレバー113.1でバイポッドを調整することができるバイポッド平面と平行であり得る。
説明した傾斜の範囲をさらに小さくするために、本例の各レバー113は、支持ジョイントとして働くフレクシャ装置117を介して外部リングに接続される。フレクシャ装置117は、3つのさらなる第2のフレクシャ117.1を有する(xy平面で)実質的にU字形の支持アームとして構成され、第2のフレクシャ117.1の曲げ軸はそれぞれ、第2のフレクシャ113.1の曲げ軸と平行に延びる。これは、フレクシャ装置117がレバー113の回転動作に従うと同時に、上述のレバー113の傾斜に対する支持体としての役割を果たすことができることを意味する。
支持アーム117は、第1の接続領域114.5に関して第2のフレクシャ113.1の反対側に配置され、その結果、レバーの傾斜に対する特に良好な支持を得ることができる。しかしながら、レバーの傾斜に対する支持は、任意の他の適当な点に配置されてもよいことが自明である。
傾斜に対する特に良好な支持を得ようとする場合、必要であれば、図2に破線輪郭118で示すように、外部リング110のうち支持アーム117が配置される(事実上張り出し自在な)部分が、補強(例えば螺着)支持板を介して外部リング110のうちレバー113の他方の側に位置付けられる部分に接合されるようにすることもできる。
本発明の他の変形形態において、レバーの傾斜に対する追加支持を別の方法で構成することもできることも自明である。しかしながら、必要であれば、第2のフレクシャが予測される静荷重及び動荷重で十分な支持を保証する場合、これを完全に省くこともできる。
光学モジュール108について説明した実施形態における上述のレバー113の傾斜を減らすために、レバーは、支持ユニット110と接続される少なくとも1つのさらなるフレクシャを有し得る。このとき、レバーのさらなるフレクシャが、軸受のフレクシャ113.1の曲げ平面と平行な厳密に1つの曲げ平面を有すれば有利である。さらに、レバーのさらなるフレクシャは、その曲げ平面に対して垂直方向に剛性構造も有することが好ましい。さらなるフレクシャが、軸受から、レバーの支点・作用点間距離(load arm)の長さの2倍未満の距離に配置されればまた有利である。結果として、支点・力点間距離対支点・作用点間距離(force to load arm)の撓み比が通常は大きく、多くの場合は5よりも大きいことで、レバーを支持するさらなるフレクシャによるさらなるフレクシャにおける比較的小さな動作補償しか必要なく、こうした理由から、このさらなるフレクシャも同様に剛性構造を有し得る。概して、レバーは、第2種又は第1種てこ(single-sided or double-sided lever)として構成され得る。代替的又は付加的に、傾斜を減らすために、特にバイポッドブレース914がさらにフレクシャ913.2を介して支持ユニット110により支持される場合、レバーは、フレクシャ914.1を介してバイポッドブレース914に接合され得る(図16を参照)。
特に図7から推論できるように、レバー113は、支持体113に面していないその自由端が調整装置116に接続され、調整装置116を介してレバー113の回転軸を中心とした回転が設定され得る。図示の例では、これは、様々な手段(ねじ接続及び調整ワッシャ)によりレバーの回転の粗調整及び微調整を行うことができる一般的に既知の受動装置である。言及したようなこの受動調整装置に加えて、又はその代わりに、能動調整装置(任意の動作原理又は動作原理の組み合わせに従って作動する)が設けられてもよいことがここでは自明である。
しかしながら、本構成で特に有利であり、(例えば、最初に述べた特許文献2からの)既知の構成と異なるのは、レバー113の揺動面にレバー113用のプレテンション装置119が組み込まれることである。プレテンション装置119は、外部リング110とレバー113との間の隙間に組み込まれる単純な板ばねとしてここでは構成される。これには、プレテンション力により付加的な傾斜モーメントがレバー113に加わらないという利点がある。さらに、板ばね119自体が(その延長面で剛性が高いため)、レバー113の傾斜支持体としてなおも働くことができるか、又はレバー113を支持することができる。
ここで説明されている光学モジュール108のさらなる実施形態では、レバーは、例えば上述のようなプレテンション装置及び調整装置を備え得る。
特に図5から推論できるように、本例では、第1のフレクシャ114.1及び114.3が、それらの曲げ軸に対して横断方向に、短い、したがって純粋な回転ジョイントであるように構成される一方で、2つの第1のフレクシャ114.2及び114.4は、同じくそれらの曲げ軸に対して横断方向に、細長い板ばね要素として構成される。この構成は、2つの第1のフレクシャ114.2及び114.4がそれらの曲げ軸を横断する軸(ここではx軸)を中心としたねじりを吸収することもできることを意味する。
このように、例えば、光学素子106.1の光軸に対して横断方向に延びる軸を中心としたその傾斜が、支持要素111により補償され得る。したがって、本例では、支持部材114は、厳密に1自由度(すなわち、x方向の並進)での外部リングに対する光学素子106.1の動作制限をもたらす。
しかしながら、本発明の特定の変形形態では(例えば、光学素子の純粋な並進調整の場合)、そのような傾斜補償の可能性がなくてもよいことが自明である。そのような場合、例えば、4つの第1のフレクシャの全てが(短い曲げ軸に対して横断方向の)純粋な回転ジョイントとして実行され得る。この場合、外部リングに対する光学素子106.1の動作制限は、2自由度(すなわち、x方向の並進及びx方向を中心とした回転)で行われる。
図8は、マイクロリソグラフィ装置101で実行される光学素子106.1を支持するための本発明による方法の好適な変形形態のフロー図を示す。
最初に、ステップ120.1において、光学モジュール108の構成要素が上述したように利用可能となる。
続いて、ステップ120.2において、光学素子106.1及び保持装置109が互いに接続される。
続いて、ステップ120.3において、調整装置116を介して、光学素子の位置及び姿勢が上述の方法で設定される。
第2の実施形態
以下において、図1、図2、及び図9Aを参照して、本発明による支持要素211のさらなる好適な実施形態を説明する。支持要素211は、結像装置101における支持要素111の代わりに用いられ得る。支持要素211の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には100の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
図9Aは、支持部材214の領域の断面を示す。支持要素211と支持要素111との唯一の相違点は、支持要素214の第1のフレクシャ214.2及び214.4がx方向に対して横断方向に延びる板ばね要素として構成されることである。このようにして同様に、厳密に1自由度(すなわち、x軸を中心とした回転)での動作制限が生じるため、ここでも光学素子106.1の静的に確定した支持が得られる。
図9B〜図9Dは、第1のフレクシャ214.1〜214.4の配置及び構成のさらなる変形形態を示す。ここでは、フレクシャ214.1〜241.4の構成及び配置を基本的に任意に選択できることが自明である。したがって、例えば、図9Bは、フレクシャ214.1〜214.4が力の流れの方向に順序を換えた第1の実施形態の配置の変更形態を示す。
ここでのフレクシャの配置は、一般的に、作製及び/又は組立能力等の剛性に関係のない所望の運動又は条件に応じて決まる。特に、第1の接続領域214.5の変位と第2の接続領域241.6の変位との間の運動伝達比は、2つの第1のフレクシャ214.2及び214.4間の間隔に応じて決まる。
図9Cは、全てのフレクシャが曲げ軸に対して横断方向に短いジョイントとして実施される、したがって回転ジョイントとして実施される、第1の実施形態に関連してすでに上述した変形形態を示す。
図9Dからの変形形態では、2つの板ばね状フレクシャ214.2及び214.4が力の流れの方向Kに整列している。したがって、結果として、それらの曲げ軸は、力の流れの方向Kと同一平面上にあるように配置される。図9Cからの構成にも他の点で同じことが当てはまる。このように、最終的に、荷重下で生じる種類の応力の所望の分布又は設定(例えば、曲げ応力の低減、純粋な引張応力/圧縮応力の発生)が得られる。
ここで説明される実施形態による光学モジュール108では、バイポッドブレースは、それらの長手方向で支持ユニットの表面と平行に配置することができ、バイポッドブレースのブレースフット及びブレースヘッドはそれぞれ、それらの接続線が支持ユニットの表面と角度をなして交わるように少なくとも1つのフレクシャ214.2、214.4により直径方向に互いに接合される。
第3の実施形態
以下において、図1、図2、及び図10Aを参照して、本発明による支持要素311のさらなる好適な実施形態を説明する。支持要素311は、結像装置101における支持要素111の代わりに用いられ得る。支持要素311の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には200の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
図10Aは、支持部材314の領域の断面を示す。支持要素311と支持要素111との唯一の相違点は、支持要素314の第1のフレクシャ314.1が(x方向に延びる)板ばね要素として構成され、フレクシャ114.3と同様のフレクシャが省かれていることである。換言すれば、ここでは、フレクシャ314.1がまず2つの曲げ要素114.1及び114.3の機能を統合し、そのねじりによって光学素子106.1の(光軸に対して横断方向に延びる傾斜軸を中心とした)傾斜動作の分離も可能にする。このようにして同様に、厳密に1自由度(すなわち、x軸を中心とした回転)での動作制限が生じるため、ここでは光学素子106.1の静的に確定した支持が得られる。
図10Bは、長い板ばねの代わりに2つの短い板ばね314.1及び314.3が互いに直接隣接して配置される、図10Aからの構成と構成及び機能が同様の構成を示す。
第4の実施形態
以下において、図1、図2、図11A、及び図11Bを参照して、本発明による支持要素411のさらなる好適な実施形態を説明する。支持要素411は、結像装置101における支持要素111の代わりに用いられ得る。支持要素311の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には300の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
この構成では、支持部材414は、2つの第1のフレクシャ414.1及び414.3(それらの曲げ軸はy方向と平行に延びる)を有するにすぎないため、支持部材414の領域では、4自由度の動作制限が生じる。さらに2つの自由度の分離は、この変形形態では、第2の接続要素415の領域で生じる。そのために、この場合もそれらの曲げ軸に沿って細長い第2の接続要素415の2つの第2のフレクシャ415.1及び415.2が設けられる。フレクシャ415.1は、光軸に対して横断方向に延びる傾斜軸を中心とした光学素子106.1の傾斜動作を分離するが、フレクシャ415.2は、光学素子の光軸を中心としたその回転動作の分離を生じさせる。
この構成には、光学素子106.1の傾斜動作及び回転動作の分離が光学素子106.1のすぐ近傍で生じるため、それにより光学素子の位置がその設定値から逸れても、その逸れが力の流れの方向で光学素子106.1から遠く離れて分離要素が配置されている場合よりも小さいという利点がある。
ここで説明される光学モジュール108の実施形態は、第4の実施形態と同様に、バイポッドブレースのブレースヘッドを光学素子に直接的又は間接的に接続する少なくとも1つのジョイントユニットを備え、ジョイントユニットは、曲げ平面が対応するバイポッドのバイポッド平面と平行である少なくとも1つのフレクシャ414.3を含む。さらに、光学モジュール108では、代替的又は付加的に、光学素子を接続するジョイントユニットは、曲げ平面が対応するバイポッドのバイポッド平面に対して垂直である少なくとも1つのフレクシャを含んでいてもよい。
ここで説明される光学モジュール108のさらなる実施形態では、バイポッドのブレースヘッドが、光学素子を接続するジョイントユニットを介して、それぞれ接続要素415を介して光学素子を保持する保持要素112と接続され得る。ここで、保持要素112又は接続要素415は、少なくとも1つのさらなるフレクシャ415.1、415.2を備え得る。その際、さらなるフレクシャ415.1、415.2は、光学素子の光軸の方向のバイポッド平面に対して垂直な、且つ/又は光学素子の光軸に対して垂直方向のバイポッド平面に対して垂直な、曲げ平面を有し得る。
第5及び第6の実施形態
以下において、図1、図2、図12、及び図13を参照して、本発明による支持要素511及び611のさらなる好適な実施形態を説明する。支持要素611の511は、結像装置101における支持要素411の代わりに用いられ得る。支持要素511及び611の基本的構造及びその動作方法は、図11Aからの支持要素411に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には100又は200の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
支持要素511と支持要素411との相違点は、板ばね状の第2のフレクシャ515.1を介して3自由度の分離、すなわち、光学素子106.1の傾斜動作及び回転動作の分離のほかに光学素子106.1の半径方向動作(したがって、その半径方向の動作)の分離も提供されることである。
したがって、この構成では、支持部材514及び第2の接続要素515が、厳密に1自由度(すなわち、x方向の並進)での外部リング110に対する光学素子106.1の動作制限をもたらす。
同様の動作制限が図13からの支持要素611で得られ、ここでは、光学素子106.1のその光軸の周りでの回転動作の分離に関して板ばね615.1の剛性がより高くなっている。
第7の実施形態
以下において、図1、図2、及び図14Aを参照して、本発明による支持要素711のさらなる好適な実施形態を説明する。支持要素711は、結像装置101における支持要素の代わりに用いられ得る。支持要素711の基本的構造及びその動作方法は、図11Aからの支持要素411に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には300の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
支持要素711と支持要素411との相違点は、L字形の板ばね状の第2のフレクシャ715.1を介して3自由度の分離が提供される、すなわち、光学素子106.1の傾斜動作及び回転動作の分離のほかに光学素子106.1の半径方向動作(したがって、その半径方向の動作)の分離も生じることである。
図14B〜図14Dは、このフレクシャ715.2の構成のさらなる変形形態を示しており、ここではそれぞれ、曲げ軸に対して垂直な切断面でのフレクシャ715.2の断面の曲がった経路が、多分離を確保する決定的な特徴である。
図14Eには、x方向で光学素子に生じ得る寄生動作の問題を付加的な板ばね要素715.3により解決することができる、さらなる変形形態が示されている。
第8の実施形態、
以下において、図1、図2、図15Aを参照して、本発明による支持要素811のさらなる好適な実施形態を説明する。支持要素811は、結像装置101における支持要素111の代わりに用いられ得る。支持要素811の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には700の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
支持要素111との相違点は、ここでは、レバー813を外部リング110に接続する第2のフレクシャ813.1の構成にあるにすぎない。本例では、レバー813の傾斜支持を改善するために、フレクシャ813.1は2つの板ばね状要素により形成され、それらの軸が交わることでレバー813の回転動作の瞬間回転中心を規定する。
図15B〜図15Dは、フレクシャ813.1を構成する2つの板ばね状要素の配置が異なる、この構成のさらなる変形形態を示す。
ここで説明される光学モジュール108のさらなる実施形態では、軸受のフレクシャ813.1は、回転中心を構成する平行な曲げ平面をそれぞれが有する複数のフレクシャを含み得る。ここでは、回転中心を構成する曲げ要素が各自の曲げ平面に対して垂直方向に剛性であるように構成されることが好ましい。
第9の実施形態
以下において、図1、図2、図16を参照して、本発明による支持要素911のさらなる好適な実施形態を説明する。支持要素911は、結像装置101における支持要素111の代わりに用いられ得る。支持要素911の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には800の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
支持要素111との相違点は、ここでは、レバー913の付加的な傾斜支持の構成にある。本例では、レバー913が直接付加的に支持されるのではなく、付加的な板ばね状構成のフレクシャ913.2が設けられ、これを介して、(x軸を中心とした)レバー913の傾斜及びその結果としての支持部材114の傾斜を回避するために支持部材914も(z軸の方向に)支持される。
さらなる相違点は、第1のフレクシャ914.1が同様に板ばね状構成を有することである。板ばね状のフレクシャ914.1及び913の軸が交差するため、このようにして、レバー913の回転動作に関するレバー913と支持部材914との間の補償動作の瞬間回転中心が規定される。
第10の実施形態
以下において、図1、図2、図17Aを参照して、本発明による支持要素1011のさらなる好適な実施形態を説明する。支持要素1011は、結像装置101における支持要素111の代わりに用いられ得る。支持要素1011の基本的構造及びその動作方法は、図2からの支持要素111に対応するため、ここでは相違点のみを扱う。特に、同様の構成要素には900の値を加えた参照符号が付けてある。以下で別段の記載がない限り、構成要素の特徴に関しては上記の説明を特に参照されたい。
支持要素111との相違点は、レバー1013をプレテンションで衝突させるプレテンション装置1019の構成のみである。本例では、板ばね1019は、レバーを外部リング1100に接合するフレクシャ1013.1の領域に配置される。
図17Bは、プレテンション装置1019がフレクシャ1013.1に直接一体化されている、この構成のさらなる変形形態を示す。そのために、(xy平面で)U字形の断面を有する板ばね状要素がレバー1013に一体的に接合される。プレテンションは、外部リング110に接合される調整ねじ1019.1(又は同様の調整手段)により設定され得る。
本発明は、専ら193nmの波長の光でのマイクロリソグラフィの分野からの例を用いて詳細に説明されている。しかしながら、本発明が、特に結像に用いる光の任意の波長で、任意の他の用途又は結像方法にも等しく用いられ得ることが自明である。

Claims (25)

  1. 特にマイクロリソグラフィ用の光学素子のための支持要素であって、
    支持部材と、
    該支持部材を外部支持ユニットに接続する第1の接続要素と、
    前記支持部材を前記光学素子に接続する第2の接続要素と、
    を備え、
    該支持要素は、6自由度で前記外部支持ユニットに対して前記光学素子を位置決め及び姿勢決めするためにさらなる支持要素と並列運動的に協働するように構成され、
    前記第1の接続要素は、前記支持部材に対する前記第2の接続要素の第2の接続領域の第2の方向の変位を発生させるために、前記第1の接続要素に対する第1の接続領域で前記支持部材に第1の方向の変位を加えるように構成され、
    前記支持部材は、複数の第1のフレクシャを含み、
    前記第1の接続要素及び/又は前記第2の接続要素は、少なくとも1つの第2のフレクシャを有する、支持要素において、
    前記第1のフレクシャは、前記第1の方向及び前記第2の方向により規定される動作平面内にある回転軸を中心とした前記第1の接続領域に対する前記第2の接続領域の回転を防止するように構成及び配置されることを特徴とする、支持要素。
  2. 前記第1のフレクシャはそれぞれ、第1の曲げ軸を規定し、
    前記第1のフレクシャはそれぞれ、前記第1の曲げ軸に沿って細長い構成を有し、
    前記第1の曲げ軸は、前記動作平面に対して実質的に垂直方向に延びる
    ことを特徴とする、請求項に記載の支持要素。
  3. 前記複数の第1のフレクシャ及び前記第2のフレクシャを介して、前記支持ユニットに対する前記光学素子の動作制限が最大2自由度で、特に厳密に1自由度で達成可能であることを特徴とする、請求項1又は2に記載の支持要素。
  4. 前記第2のフレクシャは、第2の曲げ軸を規定し、該第2の曲げ軸に沿って細長く、特に板ばね状構成に構成されることを特徴とする、請求項1〜3のいずれか1項に記載の支持要素。
  5. 前記支持部材は、前記光学ユニットを支持するときに前記外部支持ユニットに作用する支持力の力流れ方向を規定し、
    前記第1のフレクシャは、それらの曲げ軸及び前記力流れ方向が実質的に同一平面上に配置されるように配置及び構成される
    ことを特徴とする、請求項1〜4のいずれか1項に記載の支持要素。
  6. 第1のフレクシャ及び第2のフレクシャの前記曲げ軸は、互いに対して横断方向に、特に互いに対して垂直方向に延びることを特徴とする、請求項1〜5のいずれか1項に記載の支持要素。
  7. 前記第2のフレクシャは、板ばねの形態に構成され互いに対して傾いている少なくとも2つのレッグを有し、
    前記第2のフレクシャは、特にその曲げ軸に対して垂直な断面で、L字形の断面を有する
    ことを特徴とする、請求項1〜6のいずれか1項に記載の支持要素。
  8. 前記第1の接続要素は、前記第2の曲げ軸に沿って細長い第2のフレクシャを介して前記外部支持ユニットに接続されることを特徴とする、請求項1〜7のいずれか1項に記載の支持要素。
  9. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャは、板ばねの形態に構成される少なくとも2つのレッグを有し、
    各レッグが、前記第2の曲げ軸と平行に延びる主延長面を画定する
    ことを特徴とする、請求項に記載の支持要素。
  10. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャは、前記第1の接続要素の回転軸を規定し、
    前記第1の要素及び/又は前記支持部材は、さらなる第2のフレクシャを介して前記外部支持ユニットに接続され、
    前記さらなる第2のフレクシャは、前記回転軸の方向で、前記外部支持ユニット上に前記第1の接続要素を支持する
    ことを特徴とする、請求項8又は9に記載の支持要素。
  11. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャと、前記さらなる第2のフレクシャとは、前記第1の接続要素への前記支持部材の接続部に関して互いに反対側に配置され、
    前記さらなる第2のフレクシャは、特に、前記第1の接続要素への前記支持部材の接続部の領域に配置される
    ことを特徴とする、請求項10に記載の支持要素。
  12. 前記さらなる第2のフレクシャは、板ばね状構成を有することを特徴とする、請求項10又は11に記載の支持要素。
  13. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャは、前記第1の接続要素の回転軸を規定し、
    前記第1の接続要素は、特に前記第2のフレクシャの隣に配置されているさらなる第2のフレクシャを介して、前記外部支持ユニットと接続され、
    前記さらなる第2のフレクシャは、前記第1の接続要素の前記回転軸の周りに作用するプリテンションモーメントを前記第1の接続要素にかけるように構成及び配置される
    ことを特徴とする、請求項8〜12のいずれか1項に記載の支持要素。
  14. 前記さらなる第2のフレクシャは、板ばねの形態に構成される少なくとも1つの部分を有し、
    前記さらなる第2のフレクシャは、第2の曲げ軸を規定し、特に、前記さらなる第2のフレクシャは、その第2の曲げ軸に対して垂直な平面で曲がった断面を有する部分、特に実質的にU字形の断面を有する部分を有する
    ことを特徴とする、請求項13に記載の支持要素。
  15. 前記さらなる第2のフレクシャは、プレテンション要素を介して前記外部支持ユニットと接続可能であり、
    前記プレテンション要素を介して、前記第1の接続要素の前記回転軸の周りに作用する前記プレテンションモーメントを調整可能である
    ことを特徴とする、請求項12又は13に記載の支持要素。
  16. 特にマイクロリソグラフィ用の光学モジュールであって、
    光学素子と、
    複数の支持要素と、
    外部支持ユニットと、
    を備え、前記複数の支持要素は、6自由度で前記外部支持ユニットに対して並列運動的に前記光学素子を位置決め及び姿勢決めし、
    前記複数の支持要素の少なくとも1つが、請求項1〜15のいずれか1項に記載の支持要素である、光学モジュール。
  17. 前記光学素子は、光軸を規定し、
    前記第1の接続要素は、前記支持部材に対する前記第2の接続要素の第2の接続領域の第2の方向の変位を発生させるために、前記第1の接続要素に対する第1の接続領域で前記支持部材に第1の方向の変位を加えるように構成され、
    前記第2の方向は、前記光軸と実質的に平行に延びる
    ことを特徴とする、請求項16に記載の光学モジュール。
  18. 前記光学素子は、半径方向を規定し、
    前記第1の方向は、前記光軸に対して実質的に垂直方向に延びる平面内に延び、
    且つ/又は
    前記第1の方向は、前記半径方向に対して実質的に横断方向に延びる
    ことを特徴とする、請求項17に記載の光学モジュール。
  19. 特にマイクロリソグラフィ用の光学結像装置であって、
    照明装置と、
    投影パターンを備えるマスクを収容するマスク装置と、
    光学素子群を有する投影装置と、
    基板を収容する基板装置と
    を備え、該照明装置は、前記投影パターンを照明するように構成され、
    前記光学素子群は、前記基板上に前記投影パターンを投影するように構成され、
    前記照明装置及び/又は前記投影装置は、請求項16〜18のいずれか1項に記載の光学モジュールを備える、光学結像装置。
  20. 特にマイクロリソグラフィ用の光学素子を支持する方法であって、
    前記光学素子は、複数の支持要素を介して外部支持ユニット上に支持され、6自由度で該外部支持ユニットに対して並列運動的に位置決め及び姿勢決めされ、
    支持要素が、第1の接続要素を介して前記外部支持ユニットに接続されると共に第2の接続要素を介して前記光学素子に接続される支持部材を有し、
    前記第1の接続要素は、前記支持部材に対する前記第2の接続要素の第2の接続領域の第2の方向の変位を発生させるために、前記第1の接続要素の第1の接続領域で支持部材に第1の方向の変位を加え、
    前記支持部材は、複数の第1のフレクシャを含み、
    前記第1の接続要素及び/又は前記第2の接続要素は、少なくとも1つの第2のフレクシャを有する、方法において、
    前記第1のフレクシャは、前記第1の方向及び前記第2の方向により規定される動作平面内にある回転軸を中心とした前記第1の接続領域に対する前記第2の接続領域の回転を防止することを特徴とする、方法。
  21. 前記複数の第1のフレクシャ及び前記第2のフレクシャを介して、前記支持ユニットに対する前記光学素子の動作制限が最大2自由度で、特に厳密に1自由度で達成されることを特徴とする、請求項20に記載の方法。
  22. 前記第1の接続要素は、前記第2の曲げ軸に沿って細長い第2のフレクシャを介して前記外部支持ユニットに接続されることを特徴とする、請求項20又は21に記載の方法。
  23. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャは、前記第1の接続要素の回転軸を規定し、
    前記第1の接続要素及び/又は前記支持部材は、さらなる第2の曲げ要素を介して、前記外部支持ユニットに接続され、
    前記さらなる第2のフレクシャは、前記回転軸の方向で、前記外部支持ユニット上に前記第1の接続要素を支持する
    ことを特徴とする、請求項20〜22のいずれか1項に記載の方法。
  24. 前記第1の接続要素を前記外部支持ユニットに接続する前記第2のフレクシャは、前記第1の接続要素の回転軸を規定し、
    前記第1の接続要素は、特に前記第2のフレクシャの隣に配置されているさらなる第2のフレクシャを介して、前記外部支持ユニットと接続され、
    前記さらなる第2のフレクシャは、前記第1の接続要素の前記回転軸の周りに作用するプリテンションモーメントを前記第1の接続要素にかける
    ことを特徴とする、請求項20〜23のいずれか1項に記載の方法。
  25. 前記さらなる第2のフレクシャは、プレテンション要素を介して前記外部支持ユニットと接続され、
    前記プレテンション要素を介して、前記第1の接続要素の前記回転軸の周りに作用する前記プレテンションモーメントが調整される
    ことを特徴とする、請求項24に記載の方法。
JP2011528368A 2008-09-30 2009-09-30 光学素子のための支持要素 Active JP5123436B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102008049746 2008-09-30
DE102008049746.0 2008-09-30
US11454008P 2008-11-14 2008-11-14
US61/114,540 2008-11-14
PCT/EP2009/062686 WO2010037778A1 (de) 2008-09-30 2009-09-30 Stützelemente für ein optisches element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012234822A Division JP5547261B2 (ja) 2008-09-30 2012-10-24 光学モジュール

Publications (2)

Publication Number Publication Date
JP2012504330A JP2012504330A (ja) 2012-02-16
JP5123436B2 true JP5123436B2 (ja) 2013-01-23

Family

ID=41795295

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011528368A Active JP5123436B2 (ja) 2008-09-30 2009-09-30 光学素子のための支持要素
JP2012234822A Active JP5547261B2 (ja) 2008-09-30 2012-10-24 光学モジュール
JP2014060303A Active JP6069247B2 (ja) 2008-09-30 2014-03-24 光学モジュール

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012234822A Active JP5547261B2 (ja) 2008-09-30 2012-10-24 光学モジュール
JP2014060303A Active JP6069247B2 (ja) 2008-09-30 2014-03-24 光学モジュール

Country Status (6)

Country Link
US (3) US8988654B2 (ja)
JP (3) JP5123436B2 (ja)
KR (2) KR101626180B1 (ja)
CN (1) CN102227662B (ja)
DE (1) DE102009044957A1 (ja)
WO (1) WO2010037778A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044957A1 (de) * 2008-09-30 2010-04-08 Carl Zeiss Smt Ag Stützelemente für ein optisches Element
DE102010018224A1 (de) * 2010-04-23 2012-02-16 Carl Zeiss Smt Gmbh Optisches Modul mit einem verstellbaren optischen Element
JP5917526B2 (ja) 2010-09-29 2016-05-18 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子を位置合わせするシステム及びその方法
DE102011088735A1 (de) * 2010-12-20 2012-06-21 Carl Zeiss Smt Gmbh Anordnung zur Halterung eines optischen Elementes, insbesondere in einer EUV-Projektionsbelichtungsanlage
JP5306393B2 (ja) * 2011-03-04 2013-10-02 三菱電機株式会社 鏡支持機構
DE102013204305A1 (de) 2013-03-13 2014-09-18 Carl Zeiss Smt Gmbh Anordnung zur Aktuierung wenigstens eines Elementes in einem optischen System
DE102014202737A1 (de) * 2014-02-14 2015-08-20 Carl Zeiss Smt Gmbh Lagerelement und system zum lagern eines optischen elements
US10030695B2 (en) * 2015-07-30 2018-07-24 Nec Corporation Multi-degree-of-freedom adjustment mechanism
FR3058424B1 (fr) * 2016-11-10 2022-06-10 Bnl Eurolens Installation de depot par evaporation d'un revetement sur des articles
DE102017204685B4 (de) * 2017-03-21 2021-11-11 Carl Zeiss Smt Gmbh Verfahren zur Lokalisierung von Montagefehlern sowie Projektionsbelichtungsanlage
US11175595B2 (en) 2017-03-21 2021-11-16 Carl Zeiss Smt Gmbh Method for localizing assembly errors
CN107664925A (zh) * 2017-11-15 2018-02-06 电子科技大学 一种对接触式光刻探针的双铰链夹持结构
US11187871B2 (en) 2017-12-18 2021-11-30 Raytheon Company 2D bi-pod flexure design, mount technique and process for implementation
CN111650816B (zh) * 2019-03-04 2021-07-23 上海微电子装备(集团)股份有限公司 柔性连接装置、测量系统及光刻机
CN111856884B (zh) * 2019-04-30 2021-11-05 上海微电子装备(集团)股份有限公司 镜片调整装置、可调式光学系统、光刻设备及定心单元
DE102020203713A1 (de) * 2020-03-23 2021-04-01 Carl Zeiss Smt Gmbh Entkopplungsgelenk zur mechanischen Lagerung eines optischen Elements
DE102021209393A1 (de) * 2021-08-26 2023-03-02 Dr. Johannes Heidenhain Gmbh Optische Empfangseinheit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773890B1 (fr) * 1998-01-22 2001-11-23 Aerospatiale Ensemble integre et compact de montage isostatique et de correction de position d'un organe, tel qu'un miroir, d'un telescope spatial
DE19825716A1 (de) * 1998-06-09 1999-12-16 Zeiss Carl Fa Baugruppe aus optischem Element und Fassung
JP4770090B2 (ja) * 2000-08-18 2011-09-07 株式会社ニコン 光学素子保持装置、鏡筒及び露光装置並びにマイクロデバイスの製造方法
KR100775796B1 (ko) 2000-08-18 2007-11-12 가부시키가이샤 니콘 광학소자 유지장치
JP4945864B2 (ja) * 2000-08-18 2012-06-06 株式会社ニコン 保持装置、光学素子保持装置、鏡筒及び露光装置並びにマイクロデバイスの製造方法
DE10115914A1 (de) * 2001-03-30 2002-10-02 Zeiss Carl Vorrichtung zur Lagerung eines optischen Elementes in einer Optik
JP2003337272A (ja) * 2002-03-12 2003-11-28 Nikon Corp 光学系の保持装置、光学素子の位置調整方法、鏡筒及び露光装置並びにデバイスの製造方法
JP4565261B2 (ja) 2002-06-24 2010-10-20 株式会社ニコン 光学素子保持機構、光学系鏡筒及び露光装置
ATE449978T1 (de) 2003-06-06 2009-12-15 Nikon Corp Halteeinrichtung für optische elemente, objektivtubus, belichtungseinrichtung und herstellungsverfahren für bauelemente
WO2005062100A1 (ja) * 2003-12-24 2005-07-07 Nikon Corporation 光学素子保持装置、鏡筒、露光装置、及びデバイスの製造方法
EP1577693B1 (de) * 2004-02-26 2011-07-13 Carl Zeiss SMT GmbH Objektiv mit wenigstens einem optischen Element
JP5199068B2 (ja) * 2005-05-09 2013-05-15 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学エレメント調整組立体
JP4886294B2 (ja) * 2005-12-28 2012-02-29 キヤノン株式会社 光学要素駆動装置、露光装置およびデバイス製造方法
JP2007206643A (ja) * 2006-02-06 2007-08-16 Canon Inc 光学素子駆動装置、露光装置およびデバイス製造方法
EP1901101A1 (en) * 2006-09-14 2008-03-19 Carl Zeiss SMT AG Optical element unit and method of supporting an optical element
CN101652698B (zh) * 2007-02-28 2012-03-07 康宁股份有限公司 可绕一个点枢转的光学安装件
DE102009044957A1 (de) 2008-09-30 2010-04-08 Carl Zeiss Smt Ag Stützelemente für ein optisches Element

Also Published As

Publication number Publication date
JP2012504330A (ja) 2012-02-16
JP2013047836A (ja) 2013-03-07
KR101626180B1 (ko) 2016-05-31
CN102227662A (zh) 2011-10-26
WO2010037778A1 (de) 2010-04-08
KR20110053285A (ko) 2011-05-19
JP2014160257A (ja) 2014-09-04
US20150316853A1 (en) 2015-11-05
JP6069247B2 (ja) 2017-02-01
US8988654B2 (en) 2015-03-24
KR20110056560A (ko) 2011-05-30
DE102009044957A1 (de) 2010-04-08
KR101449793B1 (ko) 2014-10-13
US20180024438A1 (en) 2018-01-25
US20120067833A1 (en) 2012-03-22
US9709895B2 (en) 2017-07-18
CN102227662B (zh) 2015-10-07
JP5547261B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5123436B2 (ja) 光学素子のための支持要素
US10133021B2 (en) Positioning unit and apparatus for adjustment of an optical element
US7692884B2 (en) Optical apparatus, barrel, exposure apparatus, and production method for device
US20070223116A1 (en) Holding and positioning apparatus for an optical element
US8199315B2 (en) Projection objective for semiconductor lithography
JP2010537415A (ja) 寄生負荷最小化光学素子モジュール
JP6728131B2 (ja) 光学素子の傾斜
US10274845B2 (en) Optical module with an adjustable optical element
JP5848470B2 (ja) 寄生負荷最小化光学素子モジュール
JP6240142B2 (ja) 寄生負荷最小化光学素子モジュール
JP5695011B2 (ja) 寄生負荷最小化光学素子モジュール

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250