JP5109934B2 - フレキシブル光電気混載基板及び電子機器 - Google Patents

フレキシブル光電気混載基板及び電子機器 Download PDF

Info

Publication number
JP5109934B2
JP5109934B2 JP2008286597A JP2008286597A JP5109934B2 JP 5109934 B2 JP5109934 B2 JP 5109934B2 JP 2008286597 A JP2008286597 A JP 2008286597A JP 2008286597 A JP2008286597 A JP 2008286597A JP 5109934 B2 JP5109934 B2 JP 5109934B2
Authority
JP
Japan
Prior art keywords
opto
electric hybrid
film
flexible
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008286597A
Other languages
English (en)
Other versions
JP2010113211A (ja
Inventor
敏裕 黒田
智章 柴田
成行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008286597A priority Critical patent/JP5109934B2/ja
Publication of JP2010113211A publication Critical patent/JP2010113211A/ja
Application granted granted Critical
Publication of JP5109934B2 publication Critical patent/JP5109934B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可撓性を有する光配線と電気配線を組み合わせた光電気混載基板及び該基板を用いた電子機器に関する。
近年、電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インタコネクションが検討されている。光の伝送路として加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。
特に、携帯電話やノート型パソコンなどに光導波路を用いることが検討されており、省スペース、薄型化に対応するため、光配線と電気配線を組み合わせた光電気混載基板が注目されている(特許文献1、図2参照)。
ところで、光電気混載基板の用途の一つである携帯電話などの電子機器においては、開閉可能な二つの機構部間の信号伝送にフレキシブル光電気混載基板を用いることが想定され、該フレキシブル光電気混載基板が二つの機構部の連結部(ヒンジ)を跨ぐことが考えられる。通常、ヒンジにフレキシブル電気配線基板側が接するように、該光電気混載基板は曲げられるが、屈曲によって、光導波路部分に割れやクラックが生じることがあった。特に、近年の電子機器の小型化の要請から、ヒンジにおいて、Rが1〜2mm程度の小さい曲げ半径で曲げることが要求されるため、ヒンジでの割れやクラックの発生が顕著になるという問題があった。
上記課題に対して、光導波路フィルムとフレキシブル電気配線板とが部分的に接合されており、少なくとも基板面が曲げられる箇所は接合されていないことを特徴とするフレキシブル光電気配線基板が提案されている(特許文献2、特許請求の範囲参照)。
しかしながら、上述のような態様をとっても、実際にヒンジによって屈曲がなされる場合には、光導波路部分に曲げ応力がかかり、結果として割れやクラックが発生するという問題を解決するには至っていない。特に、他の装置との接続及びコネクタの作製の容易さを考慮すると、フレキシブル電気配線板を外側に、光導波路フィルムを内側にして屈曲される態様が好ましいが、この場合に特に光導波路は外側のフレキシブル電気配線板より曲げ半径が小さくなるため、曲げ部に余長が発生し、この部分が局部的に曲げられることで、割れやクラックの発生が顕著になる。
特許第3193500号公報 特開2006−284925号公報
本発明は、前記の課題を解決するためになされたもので、曲げたり、折り曲げたりしても、割れやクラックが発生しない、光導波路フィルムとフレキシブル電気配線基板が接合されてなる光電気混載基板及び該光電気混載基板を用いてなる電子機器を提供することを目的とするものである。
本発明者らは鋭意検討を重ねた結果、光電気混載基板において、光導波路フィルムとフレキシブル電気配線基板を部分的に接合し、光導波路フィルムとフレキシブル電気配線基板の間に、光導波路フィルムに密着した補強層を配することで、飛躍的にその強度が増し、光導波路の部分に割れやクラックが発生しないことを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち、コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が部分的に接合されてなるフレキシブル光電気混載基板であって、光導波路フィルムとフレキシブル電気配線基板の間に、光導波路フィルムに密着又は接着された補強層を有し、該補強層の長さがフレキシブル光電気混載基板の全長に対して40〜80%であり、かつ該補強層の厚さがフレキシブル電気配線基板の厚さよりも薄いことを特徴とするフレキシブル光電気混載基板、及び該フレキシブル光電気混載基板を有してなる電子機器を提供するものである。
本発明の光電気混載基板及び該光電気混載基板を用いた電子機器は、長時間にわたって屈曲を繰り返しても、光電気混載基板に割れやクラックが発生しない、極めて良好な屈曲耐久性を有し、良好な通信機能を維持し得る。
本発明のフレキシブル光電気混載基板(以下、単に「光電気混載基板」という。)は、コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が部分的に接合されてなり、光導波路フィルムとフレキシブル電気配線基板の間に、光導波路フィルムに密着又は接着された補強層を有することを特徴とする。以下、図面を参照しつつ、詳細に説明する。
図1及び図2は本発明の光電気混載基板を説明する概念図である。本発明の光電気混載基板1は、図1及び図2に示すように、コアとクラッドを備えた光導波路フィルム3とフレキシブル電気配線基板2が、例えば接着フィルム4によって部分的に接合されてなり、光導波路フィルム3とフレキシブル電気配線基板2の間に、光導波路フィルム3に密着又は接着した補強層5を有する。
該補強層5を光導波路フィルムに密着又は接着させて補強することで、光電気混載基板は飛躍的にその強度が増し、光導波路の部分に割れやクラックが発生しない。
図1に示す態様では、接着フィルム4が光導波路フィルム3とフレキシブル電気配線基板2の接合部にのみ配された態様であり、補強層5は光導波路フィルム3と直接接しており、光導波路フィルム3とフレキシブル電気配線基板2の圧着、接合工程で密着するものである。補強層5とフレキシブル電気配線基板2は密着していてもよいし、離間可能な状態であってもよいが、より高い屈曲耐久性を付与するためには、接合していず、離間可能な状態であることが好ましい。
一方、図2に示す態様では、接着フィルム4が光導波路フィルム3とフレキシブル電気配線基板2の全体に配された態様であり、補強層5は光導波路フィルム3と接着フィルム4を介して接着される。図2に示す態様では、接着フィルム4が全体に配されるが、補強層5がある部分では、光導波路フィルム3とフレキシブル電気配線基板2が接合されない。また、補強層5とフレキシブル電気配線基板2の関係は、図1において記載したのと同様に、密着していてもよいし、離間可能な状態であってもよいが、より高い屈曲耐久性を付与するためには、接合していず、離間可能な状態であることが好ましい。
前記補強層5の長さxは、光電気混載基板の全長x’に対して、40〜80%であることが必要である。40%より短いと、光電気混載基板に十分な強度を付与することができない。また、図2に示す態様では、接着フィルム4の相対的な面積が大きくなり、必要以上に光導波路フィルム3とフレキシブル電気配線基板が接着するため好ましくない。
一方、80%を超えると、相対的に接着フィルム4の面積が狭くなり、光導波路フィルム3とフレキシブル電気配線基板2の接合部分における十分な接着性が得られない。以上の観点から、補強層5の長さxは、光電気混載基板の全長x’に対して、50〜70%であることがさらに好ましい。
なお、補強層5の幅yについては、本発明の効果を奏する範囲で特に制限はないが、補強層としての効果を十分に発揮させるためには、光電気混載基板の幅y’と同程度であることが好ましい。
また、補強層5の厚さは、フレキシブル電気配線基板2よりも薄いことが肝要である。フレキシブル電気配線基板2よりも厚いと、光電気混載基板を屈曲させることが困難となり、光電気混載基板の十分な可撓性を得ることができない。特にRが1〜2mm程度の小さい曲げ半径で曲げることが極めて難しくなる。通常、フレキシブル電気配線基板の厚さは12.5〜25μm程度であり、補強層5の厚さは2.5〜9μmの範囲であることが好ましく、4〜8μmの範囲がさらに好ましい。補強層5の厚さがこの範囲であると、光電気混載基板に十分な柔軟性を付与することができるとともに、光導波路フィルムに強度を付与することができる。
補強層5を構成する材料としては、高分子フィルムであることが好ましく、具体的には、アラミドフィルム、ポリイミドフィルム、ガラス繊維強化樹脂フィルム、カーボン繊維強化樹脂フィルムなどが挙げられる。これらのうち、高い弾性率を有し、光電気混載基板に高い屈曲耐久性を付与することができ、かつ薄膜化が容易で光電気混載基板に高い可撓性を付与することができる点から、アラミドフィルムが最も好ましい。これらの樹脂フィルムとしては各樹脂を単独で、又は二種以上を組み合わせた樹脂からなるフィルムを用いることもできる。
また、通常、フレキシブル電気配線基板2としては、ポリイミドフィルムに銅を用いて回路を形成したものが多用されるが、アラミドフィルムはポリイミドフィルムとの密着性が低いために、光導波路フィルム3とフレキシブル電気配線基板2を容易に離間させることができ、光電気混載基板に高い可撓性を付与することができる。さらに、アラミドフィルムは後に詳述する本発明で好適な光導波路フィルムとの密着性が高いため、接着フィルム4を有さなくても光導波路フィルム3と効果的に接着させることができ、光電気混載基板に高い屈曲耐久性を付与することができる。
本発明における補強層5は、光導波路フィルム3と密着又は接着(以下「密着等」と言う。)していることが重要である。密着等していることにより、光電気混載基板に十分な強度を付与することができる。なお、上述のように、図1に示す態様では、補強層5は光導波路フィルム3とは密着した状態であり、図2に示す態様では、補強層5と光導波路フィルム3は、接着フィルム4を介して接着した状態である。
本発明の光電気混載基板は、例えば、図3に示すように、ヒンジ6を中心に光電気混載基板の一部が回転方向に可動する構造を有する電子機器に好適に適用されるものである。本発明の光電気混載基板1は、図3に示すように、ヒンジ6に対して、光導波路2が内側であり、フレキシブル電気配線基板3が外側にある態様に特に有効である。補強層5はヒンジ6の近傍に存在することが好ましい。
より具体的には、図3に示すように、ヒンジに接して屈曲が始まる点を屈曲開始点X1、屈曲が終了する点を屈曲終了点X2とすると、X1及びX2に対する光導波路フィルム2とフレキシブル電気配線基板3の接する点Y1及びY2の間に補強層5が配されることが好ましい。
また、図4は電子機器がスライド構造を有する場合の例を示すものである。光電気混載基板1は屈曲部を中心に屈曲した状態で、例えば、上下に位置する光電気混載基板の直線部が、互いにほぼ平行に配置される構造をとる。そして、該屈曲状態を維持したまま光電気混載基板1の少なくとも一方の端部X0が水平方向(図4においては右方向)に移動し、該移動に伴って屈曲部が移動する構造を有する。すなわち、端部X0の動きに伴って屈曲開始点が移動することになる。このような場合には、最初の屈曲開始点X1に対するY1から、屈曲終了点X2に対するY2の間の全域、又は少なくともその一部に補強層5が配されることが好ましい。
なお、図4に示すようなスライド構造を有する電子機器においては、光電気混載基板が屈曲された状態において、ヒンジ6に相当する軸7(以下「屈曲軸」と称する)が回転しながら、又は無回転で水平方向に移動することによって、スライド構造を達成する。または、屈曲軸7が存在せずに、蓋体などで光電気混載基板1を上下から挟持し、該蓋体の移動によって、光電気混載基板1の端部X0を水平方向に移動させることで、スライド構造を達成してもよい。なお、光電気混載基板の逆側の端部は、通常固定されているが、端部X0と反対方向に動く構造であってもよい。
以下、本発明で用いられる光導波路フィルムとフレキシブル電気配線基板について説明する。
[光導波路フィルム]
本発明の光導波路フィルムは、コアとクラッドを備えたものであり、従来、光導波路フィルムとして用いられるものを利用することができる。例えば、(A)ベースポリマー、(B)光重合性化合物、及び(C)光重合開始剤を含有する樹脂組成物からなる光導波路形成用樹脂フィルムを用いることができる。
(A)ベースポリマーはフィルム等の硬化物を形成する場合に、その強度を確保するためのものであり、その目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。
(B)光重合性化合物は、紫外線等の光の照射によって重合するものであれば特に制限はないが、光に対する反応性の観点から、分子内にエチレン性不飽和基を有する化合物であることが好ましい。具体的には、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性のもののいずれをも用いることができる。
なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
(C)成分の光重合開始剤としては、特に制限はなく、例えば、ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1,2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等の芳香族ケトン;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド等のフォスフィンオキサイド類;9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体;N−フェニルグリシン、N−フェニルグリシン誘導体、クマリン系化合物などが挙げられる。
(A)ベースポリマーの配合量は、(A)成分及び(B)成分の総量に対して、10〜80質量%とすることが好ましい。この配合量が、10質量%以上であるとフィルムを形成する場合に、膜厚50μm以上の厚膜フィルムでも容易に製造することが可能であり、一方、80質量%以下であると、光硬化反応が十分に進行する。以上の観点から、(A)ベースポリマーの配合量は、20〜70質量%とすることがさらに好ましい。
(B)光重合性化合物の配合量は、(A)成分及び(B)成分の総量に対して、20〜90質量%とすることが好ましい。この配合量が、20質量%以上であると、ベースポリマーを絡み込んで硬化させることが容易にでき、一方、90質量%以下であると、厚膜のフィルムを容易に形成することできる。以上の観点から、(B)光重合性化合物の配合量は30〜80質量%とすることがさらに好ましい。
(C)光重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.1〜10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であれば、露光時に感光性樹脂組成物の表層での吸収が増大することがなく、内部の光硬化が十分となる。さらに、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)重合開始剤の配合量は、0.2〜5質量部とすることがさらに好ましい。
本発明の光導波路フィルムは、(A)〜(C)成分を含有する樹脂組成物を溶媒に溶解して、基材に塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、プロピレングリコールモノメチルエーテル等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は、通常30〜60質量%程度であることが好ましい。
本発明の光導波路フィルムの厚さについては特に限定されないが、乾燥後の厚さで、通常は10〜250μmである。10μm以上であると、受発光素子又は光ファイバーとの結合トレランスが拡大できるという利点があり、250μm以下であると、受発光素子又は光ファイバーとの結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜90μmの範囲であることが好ましい。
本発明の光導波路形成用樹脂フィルムの製造過程で用いる基材は、光導波路形成用フィルムを支持する支持体であって、その材料については特に限定されないが、後に光導波路形成用フィルムを剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。該基材の厚さは、5〜50μmの範囲であることが好ましい。5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、該基材の厚さは10〜40μmの範囲であることがより好ましく、20〜30μmであることが特に好ましい。
このようにして得られた基材上に設けられた光導波路形成用フィルムは、例えばロール状に巻き取ることによって容易に貯蔵することができる。また、必要に応じて、光導波路形成用フィルムの上に保護フィルムを設けることもできる。なお、上記基材及び保護フィルムは、後に光導波路形成用フィルムの剥離を容易とするため、帯電防止処理等が施されていてもよい。
上記のようにして得られた光導波路形成用樹脂フィルムを用いて光導波路を形成するための製造手法について以下説明する。その方法としては、例えば、基材から剥離された下部クラッドフィルムを、保護フィルムが存在する場合には、保護フィルムを除去後、基板上に加熱しながら圧着することにより積層する方法などが挙げられる。ここで、密着性及び追従性の見地から減圧下で積層することが好ましい。該樹脂フィルムの加熱温度は50〜130℃とすることが好ましく、圧着圧力は、0.1〜1.0MPa程度(1〜10kgf/cm2程度)とすることが好ましいが、これらの条件には特に制限はない。
下部クラッド層の厚さは、特に制限はないが、2〜50μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めるのが容易となり、50μm以下であると、光導波路1全体の厚さが大きすぎることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、下部クラッド層の厚さは2〜25μmの範囲であることがより好ましく、5〜20μmの範囲であることが特に好ましい。
なお、下部クラッド層の厚さとは、コア部と下部クラッド層との境界から下部クラッド層の下面までの値である。
次いで、下部クラッドフィルムを光又は加熱により硬化し、下部クラッドフィルムより屈折率の高いコアフィルムを同様な方法で積層する。このようにして積層した樹脂フィルムは、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線が画像状に照射される。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いることができる。
コア部2の高さについては、特に制限はないが、10〜150μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバーとの結合において位置合わせトレランスが小さくなることがなく、150μm以下であると、光導波路形成後の受発光素子又は光ファイバーとの結合において、結合効率が小さくなることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、コア部の高さは30〜120μmの範囲であることがより好ましく、40〜70μmの範囲であることが特に好ましい。
次いで、露光後、ウエット現像、ドライ現像等で未露光部を除去して現像し、コアパターンを製造する。ウエット現像の場合は、有機溶剤、アルカリ性水溶液、水系現像液等の前記樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。
現像液としては、有機溶剤、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが好ましく用いられる。前記有機溶剤系現像液としては、例えば、1,1,1−トリクロロエタン、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、シクロヘキサノン、メチルイソブチルケトン、γ−ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1〜20質量%の範囲で水を添加してもよい。
上記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。また、現像に用いるアルカリ性水溶液としては、例えば、0.1〜5質量%炭酸ナトリウムの希薄溶液、0.1〜5質量%炭酸カリウムの希薄溶液、0.1〜5質量%水酸化ナトリウムの希薄溶液、0.1〜5質量%四ホウ酸ナトリウムの希薄溶液等が好ましく挙げられる。また、現像に用いるアルカリ性水溶液のpHは9〜14の範囲とすることが好ましく、その温度は、感光性樹脂組成物の層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。
上記水系現像液としては、水又はアルカリ水溶液と一種以上の有機溶剤とからなる。ここでアルカリ物質としては、前記物質以外に、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2ーアミノ−2−ヒドロキシメチル−1、3−プロパンジオール、1、3−ジアミノプロパノール−2、モルホリン等が挙げられる。現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8〜12とすることが好ましく、pH9〜10とすることがより好ましい。上記有機溶剤としては、例えば、三アセトンアルコール、アセトン、酢酸エチル、炭素数1〜4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。有機溶剤の濃度は、通常、2〜90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。また、水系現像液中には、界面活性剤、消泡剤等を少量混入することもできる。
また、必要に応じて2種類以上の現像方法を併用してもよい。現像の方式としては、例えば、ディップ方式、バトル方式、高圧スプレー方式等のスプレー方式、ブラッシング、スラッピング等が挙げられる。
現像後の処理として、必要に応じて60〜250℃程度の加熱又は0.1〜1000mJ/cm2程度の露光を行うことによりコアパターンをさらに硬化して用いてもよい。
次いで、コアフィルムより屈折率の低い上部クラッドフィルムを同様の方法で積層し、光導波路を作製する。上部クラッド層の厚さは、コア部を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚さで、2〜50μmであることが好ましく、小さい曲げ半径での屈曲耐久性を満足するとの観点から、その厚さは2〜25μmの範囲であることがより好ましく、5〜20μmの範囲であることが特に好ましい。上部クラッド層の厚さは、最初に形成される下部クラッド層の厚さと同一であっても異なってもよい。なお、ここで示す上部クラッド層の厚さとは、コア部と上部クラッド層との境界から上部クラッド層の上面までの値である。
[フレキシブル電気配線基板]
フレキシブル電気配線基板としては、FPC(Flexible Printed Circuit)基板を好適に用いることができる。FPC基板の基板材料としては、ポリイミド、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマーなどが用いられるが、一般的には耐熱性や入手のしやすさの観点からポリイミドが用いられる。市販品としては、例えばカプトン(東レ・デュポン株式会社製)を用いたFPC基板が挙げられる。
ここで、フレキシブル電気配線基板を構成する基板の厚さについては特に制限はないが、前述のように、補強材と基板の厚さの比が、屈曲耐久性の観点から4:1〜1:4の範囲であることが好ましく、この範囲を満足するように基板の厚さを選定することが好ましい。さらには、光電気混載基板自体に求められる厚さから、該基板の厚さは適宜決定されるものであり、具体的には、5〜50μmの範囲が好ましい。
[光電気混載基板]
上記光導波路フィルム及びフレキシブル電気配線基板を接合して、本発明の光電気混載基板は製造される。
光導波路フィルムとフレキシブル電気配線基板の接合に際しては、必要に応じて、接着剤を使用することができる。接着剤の種類としては、光導波路フィルム及びフレキシブル電気配線基板の材質に応じて、適宜決定することができる。
光電気混載基板に可撓性を持たせるためには、接着剤が硬化後に柔軟性を有することが好ましく、具体的には、硬化後において、弾性率が700MPa以下であることが好ましく、600MPa以下であることがさらに好ましく、500MPa以下であることが特に好ましい。また、接着剤としての強度の点から、1MPa以上であることが好ましく、5MPa以上であることがより好ましい。
接着剤の種類としては、アクリルゴム系接着剤や市販品としては、日立化成工業株式会社製高耐熱接着絶縁材KS7003(弾性率700MPa)、日立化成ポリマー株式会社製フレキシブル印刷配線板用接着剤ハイボン808(弾性率50MPa)などが好適に例示される。
光導波路フィルムとフレキシブル電気配線基板の接合方法については特に制限はないが、密着性、気泡巻き込み防止の観点から、ロールラミネータ、または平板型ラミネータを用いる方法が好ましい。ロールラミネータでのラミネート温度は、室温(25℃)〜100℃の範囲とすることが好ましい。室温(25℃)以上であると、光導波路との密着性が向上し、100℃以下であると、接着剤層が流動することなく、必要とする膜厚が得られる。以上の観点から、40〜100℃の範囲がより好ましい。圧力は0.2〜1.0MPa(1〜10kgf/cm2)が好ましく、ラミネート速度は0.1〜3m/minが好ましいが、これらの条件には特に制限はない。
また、平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、50〜100℃とすることが好ましく、圧着圧力は、0.1〜1.0MPa(1〜10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
上述のようにして、製造された光電気混載基板に対して、本発明の特徴である補強材が貼付される。該補強材の貼付方法としては、特に制限はないが、接着剤を介して貼付する方法が簡便である。用い得る接着剤としては、光導波路フィルムとフレキシブル電気配線基板の接合に用いるのと同様のものを用いることができる。
以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に何ら制限されるものではない。
(評価方法)
(1)屈曲耐久試験
各実施例及び比較例で製造された光電気混載基板について、図4に示すようなスライド式の屈曲耐久試験機を用いて、屈曲耐久試験を行った。試験は各実施例及び比較例で得られた光電気混載基板を、屈曲軸7に対して光導波路フィルムを内側に配置した場合と外側に配置した場合の両方について行った。また、曲げ半径についても、1.5mmの条件及び1.0mmの条件の2種類について行い、スライド速度80mm/秒、X1〜X2間の距離20mmの条件で試験を行った。評価については、実施例1、比較例1及び参考例1については1万回毎に、比較例2については1000回毎に、破断の有無を観察して破断しない最大回数を求めた。
(2)引張弾性率及び引張強度
測定対象のフィルムから、幅10mm、長さ70mmのサンプルを得、引張試験機((株)オリエンテック製「RTM−100」)を用い、JIS−K7127に準拠して、以下の条件で測定した。
条件:つかみ具間距離50mm、温度25℃、引張り速度50mm/min
引張弾性率は、引張り応力―ひずみ曲線の初めの直線部分を用いて以下に示す式により算出した。また、引張り応力―ひずみ曲線において、破断するまでの最大強度を引張強度とした。
引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷光導波路フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
実施例1
(1−1)光導波路フィルムの作製
〔クラッド層形成用樹脂フィルムの作製〕
(A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、旭電化工業株式会社製)2質量部、増感剤として、SP−100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM−MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層及び上部クラッド層ともに20μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
(A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[光導波路フィルムの作製]
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM−1172)にて樹脂側(基材フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層を形成した。
次に、該下部クラッド層上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、次いで平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、コア層を形成した。
次に、幅50μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
次いで、上記と同様なラミネート条件にて、上部クラッド層として上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を形成し基材フィルムが外側に配置されたフレキシブル光導波路を作製した。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、基材フィルムを除去したフレキシブル光導波路を作製した。
なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。また、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに株式会社アドバンテスト製、Q82214を用い、カットバック法(測定導波路長10、5、3、2cm、入射ファイバー;GI−50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI−114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
また、得られた光導波路フィルムの引張弾性率及び引張強度を上記方法により測定した結果、引張弾性率が2,000MPa、引張強度が70MPaであった。
(1−2)シート状接着剤の作製
HTR−860P−3(帝国化学産業株式会社製、商品名、グリシジル基含有アクリルゴム、分子量100万、Tg−7℃)100質量部、YDCN−703(東都化成株式会社製、商品名、o−クレゾールノボラック型エポキシ樹脂、エポキシ当量210)5.4質量部、YDCN−8170C(東都化成株式会社製、商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量157)16.2質量部、プライオーフェンLF2882(大日本インキ化学工業株式会社製、商品名、ビスフェノールAノボラック樹脂)15.3質量部、NUCA−189(日本ユニカー株式会社製、商品名、γ−メルカプトプロピルトリメトキシシラン)0.1質量部、NUCA−1160(日本ユニカー株式会社製、商品名、γ‐ウレイドプロピルトリエトキシシラン)0.3質量部、A−DPH(新中村化学工業株式会社製、商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、イルガキュア369(チバ・スペシャリティ・ケミカルズ社製、商品名、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1−オン:I−369)1.5質量部、シクロヘキサノンを加えて攪拌混合し、真空脱気した。この接着剤ワニスを、厚さ75μmの表面離型処理ポリエチレンテレフタレート(帝人株式会社製、テイジンテトロンフィルム:A−31)上に塗布し、80℃で30分間加熱乾燥し粘接着シートを得た。この粘接着シートに、厚さ80μmの光透過性の支持基材(サーモ株式会社製、低密度ポリエチレンテレフタレート/酢酸ビニル/低密度ポリエチレンテレフタレート三層フィルム:FHF−100)をあわせてラミネートすることにより保護フィルム(表面離型処理ポリエチレンテレフタレート)、粘接着剤層、及び光透過性の支持基材からなるシート状接着剤を作製した。粘接着剤層の厚さは10μmとした。
このように作製したシート状接着剤の粘接着剤層を160℃で1時間硬化し、光線透過率を株式会社日立ハイテクノロジーズ製、U−3310紫外可視分光光度計にて測定したところ、波長850nmにおいて98%以上の高い透過率を有しており、0.1dB以下相当の透過損失であった。
なお、屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて1.505であった。
また、得られたシート状接着剤の引張弾性率を上記方法により測定した結果、引張弾性率は350MPaであった。
(1−3)光電気混載基板の作製
フレキシブル光導波路に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、保護フィルムを剥がしたシート状接着剤をラミネートした。続いてダイシングソー(株式会社ディスコ製、DAD−341)を用いて、導波路を短冊状(長さ120mm、幅2mm)に加工し、支持基材側から紫外線(365nm)を250mJ/cm2照射し、粘接着剤層と支持基材界面の密着力を低下させ支持基材を剥がして接着剤付き光導波路を得た。
次に、補強層として、アラミド樹脂フィルム(東レ・デュポン(株)製「ミクトロンML、厚さ4μm、引張強度;600MPa)を長さ75mmに切断して、該接着剤層の上に載置した(光電気混載基板の全長に対して60%)。
その上に、電気配線を有するフレキシブル電気配線基板(長さ125mm、幅2mm、基材:カプトン100EN(上記方法により測定した引張強度は370MPaであった。)、基板厚さ:25μm、銅回路厚さ:12μm)の所定の箇所に接着剤付き光導波路を、紫外線露光機(株式会社大日本スクリーン製,MAP−1200−L)付随のマスクアライナー機構を利用して位置決めし、同ロールラミネータを用い圧力0.4MPa、温度80℃、ラミネート速度0.2m/minの条件で仮圧着した後、クリンオーブン中で160℃、1時間加熱しフレキシブル光導波路と電気配線基板を接着して、光電気混載基板を得た。
ここでフレキシブル電気配線板の基材であるカプトンENの光線透過率を株式会社日立ハイテクノロジーズ製、U−3310分光光度計にて測定したところ、波長850nmにおいて86%であった。これは0.7dB相当の透過損失であり、前述の粘接着剤層と合算しても電気配線板を透過する際の光損失は1dB未満と低損失であるため、本実施例では、光透過用スルーホールを設けない構造とした。
比較例1
実施例1において、フレキシブル光導波路の端部にのみ、実施例1と同様の条件でシート状接着剤をラミネートし、補強層を配置せずに、中央部分を接合しなかったこと以外は、実施例1と同様にして光電気混載基板を作製した。実施例1と同様に評価した結果を第1表に示す。
比較例2
実施例1において、補強層を用いなかったこと以外は実施例1と同様にして光電気混載基板を作製した。実施例1と同様に評価した結果を第1表に示す。
参考例1
実施例1で作製した光導波路単体を用いて、実施例1の光電気混載基板と同様に屈曲耐久試験を行った。結果を第1表に示す。
Figure 0005109934
第1表に示すように、本発明の光電気混載基板は屈曲耐久試験において優れた効果を示すことが明らかとなった。すなわち、本発明の光電気混載基板は、参考例1との比較から明らかなように、光導波路フィルムを内側に配し、曲げ半径1.0mmという最も厳しい条件を除いて、光導波路フィルム自体が有する屈曲耐久最大回数が10万回を満足するものである。また、上記最も厳しい条件においても、比較例との比較において、極めて高い屈曲耐久性を有することは明らかである。
一方、光導波路フィルムとフレキシブル電気配線基板が、基板面が曲げられる箇所において接合されてない比較例1の光電気混載基板は、光導波路フィルムを外側に配置した場合には、参考例1に示す様に光導波路フィルム自体が有する屈曲耐久性を維持する。しかしながら、光導波路フィルムを内側に配置した場合には、屈曲耐久性は劣るものとなる。これは、比較例1の光電気混載基板は、内側に光導波路フィルムを配すると、該光導波路フィルムが局部的に過度の曲げ状態となり、破断すると推察される。
本発明のフレキシブル光電気混載基板は、長時間にわたって屈曲を繰り返しても、光導波路フィルム部分に割れやクラックが発生しない、極めて良好な屈曲耐久性を有する。従って、本発明のフレキシブル光電気混載基板は携帯電話などの電子機器に好適に用いることができ、ヒンジ部分において、Rが1.0〜2mm程度の小さい曲げ半径で曲げることが要求される場合であっても、長期間にわたって良好な通信機能を維持することができ、電子機器自体の高い信頼性、及び耐久性を達成することができる。
本発明のフレキシブル光電気混載基板の一例を示す概念図である。 本発明のフレキシブル光電気混載基板の他の一例を示す概念図である。 電子機器が屈曲構造を有する場合の光電気混載基板の使用態様を示す概念図である。 電子機器がスライド構造を有する場合の光電気混載基板の使用態様を示す概念図である。
符号の説明
1.フレキシブル光電気混載基板
2.光導波路フィルム
3.フレキシブル電気配線基板
4.接着フィルム
5.補強層
6.ヒンジ
7.屈曲軸

Claims (7)

  1. コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が部分的に接合されてなるフレキシブル光電気混載基板であって、光導波路フィルムとフレキシブル電気配線基板の間に、光導波路フィルムに密着又は接着された補強層を有し、該補強層の長さがフレキシブル光電気混載基板の全長に対して40〜80%であり、かつ該補強層の厚さがフレキシブル電気配線基板の厚さよりも薄いことを特徴とするフレキシブル光電気混載基板。
  2. 前記補強層がアラミドフィルムからなる請求項1に記載のフレキシブル光電気混載基板。
  3. 前記補強層の厚さが2.5〜9μmである請求項1又は2に記載のフレキシブル光電気混載基板。
  4. 光導波路フィルムとフレキシブル電気配線基板の接合が接着フィルムによりなされる請求項1〜3のいずれかに記載のフレキシブル光電気混載基板。
  5. 前記接着フィルムが光導波路フィルム及びフレキシブル電気配線基板の全面に配される請求項4に記載のフレキシブル光電気混載基板。
  6. 光電気混載基板及び該光電気混載基板を屈曲させるためのヒンジを有する電子機器であって、該ヒンジを中心に光電気混載基板の一部が回転方向に可動する構造を有し、かつ該光電気混載基板が請求項1〜5のいずれかに記載のフレキシブル光電気混載基板であることを特徴とする電子機器。
  7. 光電気混載基板を有し、該光電気混載基板は屈曲部を中心に屈曲した状態を維持したまま光電気混載基板の少なくとも一方の端部が水平方向に移動し、該移動に伴って屈曲部が移動する構造を有する電子機器であって、該光電気混載基板が請求項1〜5のいずれかに記載のフレキシブル光電気混載基板であることを特徴とする電子機器。
JP2008286597A 2008-11-07 2008-11-07 フレキシブル光電気混載基板及び電子機器 Expired - Fee Related JP5109934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286597A JP5109934B2 (ja) 2008-11-07 2008-11-07 フレキシブル光電気混載基板及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286597A JP5109934B2 (ja) 2008-11-07 2008-11-07 フレキシブル光電気混載基板及び電子機器

Publications (2)

Publication Number Publication Date
JP2010113211A JP2010113211A (ja) 2010-05-20
JP5109934B2 true JP5109934B2 (ja) 2012-12-26

Family

ID=42301803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286597A Expired - Fee Related JP5109934B2 (ja) 2008-11-07 2008-11-07 フレキシブル光電気混載基板及び電子機器

Country Status (1)

Country Link
JP (1) JP5109934B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228467A (ja) * 2012-04-24 2013-11-07 Nippon Mektron Ltd 光電気混載フレキシブルプリント配線板、及びその製造方法
JP6036127B2 (ja) * 2012-10-02 2016-11-30 住友ベークライト株式会社 光配線部品、光電気混載部材および電子機器
JP6474060B2 (ja) 2013-10-31 2019-02-27 日東電工株式会社 光電気混載基板
US11508797B2 (en) * 2018-02-22 2022-11-22 Sharp Kabushiki Kaisha Display device including island-shaped inorganic films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222965A (ja) * 2004-02-03 2005-08-18 Shin Kobe Electric Mach Co Ltd プリント配線板
JP2007165417A (ja) * 2005-12-09 2007-06-28 Matsushita Electric Works Ltd フレキシブルプリント配線板
CN101421648B (zh) * 2006-05-12 2010-12-15 三井化学株式会社 光电混载薄膜以及收放了它的电子设备
JP4096988B1 (ja) * 2006-12-22 2008-06-04 富士ゼロックス株式会社 光電複合配線モジュールおよび情報処理装置
WO2009096067A1 (ja) * 2008-02-01 2009-08-06 Hitachi Chemical Company, Ltd. 光電気混載基板及び電子機器

Also Published As

Publication number Publication date
JP2010113211A (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
WO2009096067A1 (ja) 光電気混載基板及び電子機器
WO2010058476A1 (ja) 光電気混載基板及び電子機器
WO2011046115A1 (ja) 光導波路基板及びその製造方法
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
JP4894348B2 (ja) フレキシブル光導波路及びその製造方法
JP5212141B2 (ja) フレキシブル光導波路の製造方法
JP2009258612A (ja) 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP5109934B2 (ja) フレキシブル光電気混載基板及び電子機器
KR101665740B1 (ko) 광도파로의 제조방법, 광도파로 및 광전기 복합배선판
JP2011082765A (ja) 電子機器、送受信部間の接続方法及びフィルム状配線
JP5228947B2 (ja) フレキシブル光導波路及びその製造方法
WO2009125735A1 (ja) 電子機器
JP5131114B2 (ja) 光導波路の製造方法
JP2010164654A (ja) 複合光導波路
JP2010197985A (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP2010271371A (ja) フレキシブル光導波路
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板
TWI434087B (zh) 光電混載基板及電子機器
JP2010271369A (ja) フレキシブル光導波路
JP2010271370A (ja) フレキシブル光導波路
JP2009260231A (ja) 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP2010079058A (ja) 光電気複合基板の製造方法
JP2009258611A (ja) 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP2010286674A (ja) 光導波路及び光電気複合配線板
JP2011017993A (ja) 光導波路及び光電気複合配線板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees