WO2010058476A1 - 光電気混載基板及び電子機器 - Google Patents

光電気混載基板及び電子機器 Download PDF

Info

Publication number
WO2010058476A1
WO2010058476A1 PCT/JP2008/071202 JP2008071202W WO2010058476A1 WO 2010058476 A1 WO2010058476 A1 WO 2010058476A1 JP 2008071202 W JP2008071202 W JP 2008071202W WO 2010058476 A1 WO2010058476 A1 WO 2010058476A1
Authority
WO
WIPO (PCT)
Prior art keywords
opto
hybrid board
optical waveguide
electric hybrid
film
Prior art date
Application number
PCT/JP2008/071202
Other languages
English (en)
French (fr)
Inventor
敏裕 黒田
智章 柴田
成行 八木
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US13/130,383 priority Critical patent/US9069128B2/en
Priority to PCT/JP2008/071202 priority patent/WO2010058476A1/ja
Priority to JP2009525813A priority patent/JPWO2010058476A1/ja
Priority to KR1020117011646A priority patent/KR20110089408A/ko
Publication of WO2010058476A1 publication Critical patent/WO2010058476A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • G02B6/4293Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements hybrid electrical and optical connections for transmitting electrical and optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Definitions

  • the present invention relates to an opto-electric hybrid board in which flexible optical wiring and electrical wiring are combined, and an electronic device using the board.
  • an electronic device such as a mobile phone, which is one of the uses of an opto-electric hybrid board
  • a flexible opto-electric hybrid board is used for signal transmission between two mechanisms that can be opened and closed.
  • the mixed substrate straddles the connecting portion (hinge) of the two mechanism portions.
  • the opto-electric hybrid board is bent so that the flexible electric wiring board side is in contact with the hinge, but the bending may cause a crack or a crack in the optical waveguide portion.
  • the hinge due to the recent demand for downsizing of electronic devices, it is required that the hinge be bent with a small bending radius of about 1.5 to 2 mm. There was a problem.
  • the present inventors have a structure in which the optical waveguide film and the flexible electrical wiring board are partially separated, and particularly when the bending is performed by the hinge, the electronic apparatus has a slide structure, and the photoelectric In a state where the mixed substrate is bent around the bent portion and the bent portion moves with the slide, the optical waveguide is easily displaced laterally with respect to the adhesive surface with the flexible electrical wiring board, It has been found that due to such a lateral shift, the optical waveguide moves while being deformed when it slides, so that there is a problem that it is easily broken. This tendency is particularly remarkable when the opto-electric hybrid board is long.
  • the present invention has been made to solve such a problem, and it does not generate cracks or cracks even if it is bent or bent, and is an optical waveguide film and a flexible electrical wiring board joined together. It is an object of the present invention to provide an electric hybrid board and an electronic device using the photoelectric hybrid board.
  • the portion that is stressed when bent by the hinge is greatly affected by the electric wiring such as a copper wire constituting the electric wiring board, and concentrated on the core portion of the optical waveguide. Focused on the points to do.
  • the elastic modulus of the metal material used for the electrical wiring is extremely high compared to other materials, so that the stress center is biased toward the electrical wiring portion, so that stress is concentrated on the core portion of the optical waveguide, and the optical waveguide is It was assumed that it was easy to break.
  • the above problem can be solved by arranging the core of the optical waveguide in the bent portion and the electric wiring of the flexible electric wiring board so as not to overlap each other on the projection surface.
  • an opto-electric hybrid board in which an optical waveguide film having a core and a clad and a flexible electric wiring board are joined, and the core of the optical waveguide and the electric wiring of the flexible electric wiring board in the bent portion overlap on the projection surface. It is an object of the present invention to provide an opto-electric hybrid board and an electronic device having the opto-electric hybrid board.
  • the opto-electric hybrid board and the electronic device using the opto-electric hybrid board according to the present invention have extremely good bending durability in which no cracks or cracks are generated in the opto-electric hybrid board even when bending is repeated for a long time. , Good communication function can be maintained.
  • the opto-electric hybrid board according to the present invention is formed by joining an optical waveguide film having a core and a clad and a flexible electric wiring board, and the core of the optical waveguide at the bent part and the electric wiring of the flexible electric wiring board are on the projection surface. It is characterized by not overlapping.
  • the core portion and the electric wiring need not overlap on the projection surface, and may or may not overlap at a portion other than the bent portion, for example, at the end portion.
  • the core portion and the electric wiring overlap each other on the projection plane at least at one end, preferably at both ends (at least a part other than the bent portion).
  • the opto-electric hybrid board 1 of the present invention is formed by joining an optical waveguide film 2 having a core and a clad and a flexible electric wiring board 3. In consideration of adhesiveness, it is preferable that the bonding is performed over the entire surface.
  • the term “bonding” refers to adhesion or adhesion, and refers to having adhesiveness and adhesion that do not peel off when the opto-electric hybrid board is bent.
  • the opto-electric hybrid board according to the present invention is an electronic device having a structure in which a part of the opto-electric hybrid board is movable in the rotation direction around the hinge 4, or as shown in FIG. It is applied to an electronic device having
  • the bent portion in the present invention means a portion that is bent or bent in a general sense, that is, from a bending start point to a bending end point.
  • the bent portion in the present invention refers to a portion in contact with the hinge and its outer edge in a state where the opto-electric hybrid board is bent. More specifically, as shown in FIG. 4 which is an enlarged view of the hinge portion, the optical waveguide with respect to the bending start point X 1 where the bending starts in contact with the hinge and the bending end points X 2 , X 1 and X 2 where the bending ends.
  • a portion 6 surrounded by a, b, c, and d is further extended outward from the portion surrounded by the film side portions Y 1 and Y 2 .
  • the distance between a and X 1 in the expanded portion is not particularly limited as long as the effect of the present invention can be created, but is about 1 to 10% of the distance between X 1 and X 2 . Further, in the electronic apparatus having the slide structure as shown in FIG.
  • the bent portion refers to a portion in contact with the bending axis and an outer edge thereof when an axis 7 corresponding to the hinge 4 (hereinafter referred to as a “bending axis”) is assumed in a state where the opto-electric hybrid board is bent.
  • the definition is obtained by replacing the hinge 4 with the bending shaft 7 in the above description of the bent portion.
  • the bending axis actually exists, and the bending structure may be achieved by moving the bending axis 7 in the horizontal direction while rotating or without rotation, or the bending axis 7 does not exist.
  • the slide structure can be achieved by holding the opto-electric hybrid board 1 from above and below with a lid and moving the end X 0 of the opto-electric hybrid board 1 in the horizontal direction by moving the lid.
  • the reverse side of the end portion of the opto-electric hybrid board has been normally fixed, or may be a structure that moves in the direction opposite to the end portion X 0.
  • the opto-electric hybrid board 1 has a structure in which, for example, the linear portions of the flexible opto-electric hybrid board positioned above and below are arranged substantially parallel to each other in a state of being bent around the bent portion. Then, at least one end X 0 of the opto-electric hybrid board 1 moves in the horizontal direction (rightward in FIG. 3) while maintaining the bent state, and the bent part moves along with the movement. . That is, the bending start point moves with the movement of the end X 0 . Even in such a case, the effect of the present invention can be achieved by preventing the core portion of the optical waveguide and the electric wiring of the flexible electric wiring board from overlapping on the projection surface in the bent portion.
  • the opto-electric hybrid board 1 of the present invention is characterized in that the core of the optical waveguide and the electric wiring of the flexible electric wiring board do not overlap on the projection plane in the bent portion.
  • 5 and 6 show one of the embodiments of the opto-electric hybrid board according to the present invention.
  • FIG. 5 is a perspective view
  • FIG. 6 is a projected view seen from the direction a in FIG.
  • the electric wiring 31 is arranged on both outer sides of the opto-electric hybrid board 1, the core part 21 is arranged in the center, and they are arranged so as not to overlap each other on the projection plane.
  • FIG. 7 is a projection view showing another aspect of the opto-electric hybrid board of the present invention.
  • the electric wiring 31 draws a curve in both outer directions, and the core portion 21 is linear between both ends. In the bent portion, the electrical wiring 31 and the core portion 21 do not overlap but overlap at the end portion.
  • FIG. 8 is a projection view showing still another aspect of the opto-electric hybrid board according to the present invention, in which the electric wiring 31 draws a curve in both outer directions, and the core portion 21 draws a curve in the inner direction. . In the bent portion, the electric wiring 31 and the core portion 21 do not overlap each other, and both end portions overlap each other.
  • the optical waveguide film of the present invention includes a core and a clad, and those conventionally used as optical waveguide films can be used.
  • a resin film for forming an optical waveguide comprising a resin composition containing (A) a base polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator can be used.
  • the base polymer is for securing the strength when forming a cured product such as a film, and is not particularly limited as long as the object can be achieved.
  • Phenoxy resin, epoxy resin, examples thereof include (meth) acrylic resins, polycarbonate resins, polyarylate resins, polyether amides, polyether imides, polyether sulfones and the like, and derivatives thereof. These base polymers may be used alone or in combination of two or more.
  • the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, but is a compound having an ethylenically unsaturated group in the molecule from the viewpoint of reactivity to light. Is preferred. Specific examples include (meth) acrylate, vinylidene halide, vinyl ether, vinylpyridine, vinylphenol, etc. Among them, (meth) acrylate is preferable from the viewpoint of transparency and heat resistance. As the (meth) acrylate, any of monofunctional, bifunctional, and trifunctional can be used. Here, (meth) acrylate means acrylate and methacrylate.
  • the photopolymerization initiator of the component (C) is not particularly limited.
  • 2,4,5-triarylimidazole dimer bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide
  • Phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • Examples include acridine derivatives such as phenylacridine and 1,7-bis (9,9'-acridinyl) heptane; N-phenylglycine, N-phenylglycine derivatives, and coumarin compounds.
  • the blending amount of the (A) base polymer is preferably 10 to 80% by mass with respect to the total amount of the (A) component and the (B) component.
  • the blending amount is 10% by mass or more, a thick film having a film thickness of 50 ⁇ m or more can be easily produced when a film is formed.
  • photocuring is performed. The reaction proceeds sufficiently.
  • the blending amount of the (A) base polymer is more preferably 20 to 70% by mass.
  • the blending amount of the (B) photopolymerizable compound is preferably 20 to 90% by mass with respect to the total amount of the component (A) and the component (B).
  • the blending amount is 20% by mass or more, the base polymer can be easily entangled and cured, and when it is 90% by mass or less, a thick film can be easily formed.
  • the blending amount of the photopolymerizable compound (B) is more preferably 30 to 80% by mass.
  • the blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). If the blending amount is 0.1 parts by mass or more, the photosensitivity is sufficient. On the other hand, if it is 10 parts by mass or less, absorption at the surface layer of the photosensitive resin composition does not increase during exposure, and the internal Is sufficiently cured. Furthermore, it is preferable that the propagation loss does not increase due to the light absorption effect of the polymerization initiator itself. From the above viewpoint, the blending amount of the (C) polymerization initiator is more preferably 0.2 to 5 parts by mass.
  • the optical waveguide film in the present invention can be easily produced by dissolving a resin composition containing the components (A) to (C) in a solvent, applying the solution to a substrate, and removing the solvent.
  • the solvent used here is not particularly limited as long as it can dissolve the resin composition.
  • a solvent such as acetamide or propylene glycol monomethyl ether or a mixed solvent thereof can be used.
  • the solid content concentration in the resin solution is usually preferably about 30 to 60% by mass.
  • the thickness of the optical waveguide film in the present invention is not particularly limited, but the thickness after drying is usually 10 to 250 ⁇ m. When it is 10 ⁇ m or more, there is an advantage that the coupling tolerance with the light emitting / receiving element or the optical fiber can be increased, and when it is 250 ⁇ m or less, there is an advantage that the coupling efficiency with the light emitting / receiving element or the optical fiber is improved. From the above viewpoint, the thickness of the film is preferably in the range of 40 to 90 ⁇ m.
  • the substrate used in the production process of the optical waveguide forming resin film in the present invention is a support for supporting the optical waveguide forming film, and the material thereof is not particularly limited, but the optical waveguide forming film is peeled off later. From the viewpoints of being easy to handle and having heat resistance and solvent resistance, polyesters such as polyethylene terephthalate, polypropylene, polyethylene and the like are preferable.
  • the thickness of the substrate is preferably in the range of 5 to 50 ⁇ m. When it is 5 ⁇ m or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 ⁇ m or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed.
  • the thickness of the base material is more preferably in the range of 10 to 40 ⁇ m, and particularly preferably 20 to 30 ⁇ m.
  • the film for forming an optical waveguide provided on the substrate thus obtained can be easily stored, for example, by winding it into a roll.
  • a protective film can also be provided on the optical waveguide forming film as necessary.
  • the base material and the protective film may be subjected to an antistatic treatment or the like in order to facilitate later peeling of the optical waveguide forming film.
  • a manufacturing method for forming an optical waveguide using the resin film for forming an optical waveguide obtained as described above will be described below.
  • the method include a method of laminating the lower clad film peeled off from the base material by applying pressure while heating on the substrate after removing the protective film when the protective film is present. .
  • the heating temperature of the resin film is preferably 50 to 130 ° C.
  • the pressing pressure is preferably about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). There is no particular limitation.
  • the thickness of the lower cladding layer is not particularly limited, but is preferably 2 to 50 ⁇ m. If it is 2 ⁇ m or more, it becomes easy to confine the propagating light inside the core, and if it is 50 ⁇ m or less, the thickness of the entire optical waveguide 1 is not too large.
  • the thickness of the lower cladding layer is more preferably in the range of 2 to 20 ⁇ m, and particularly preferably in the range of 5 to 15 ⁇ m, from the viewpoint of satisfying bending durability with a particularly small bending radius. .
  • the thickness of the lower cladding layer is a value from the boundary between the core portion and the lower cladding layer to the lower surface of the lower cladding layer.
  • the lower clad film is cured by light or heating, and a core film having a higher refractive index than that of the lower clad film is laminated in the same manner.
  • the resin film thus laminated is irradiated with actinic rays in an image form through a negative or positive mask pattern called an artwork.
  • the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps.
  • those that effectively emit visible light such as a photographic flood bulb and a solar lamp, can be used.
  • the height of the core part 31 is not particularly limited, but is preferably 10 to 150 ⁇ m.
  • the height of the core part is 10 ⁇ m or more, the alignment tolerance is not reduced in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed, and when it is 150 ⁇ m or less, the light emitting / receiving element after the optical waveguide is formed.
  • the coupling efficiency does not decrease in coupling with an optical fiber.
  • the height of the core part is more preferably in the range of 30 to 120 ⁇ m, particularly preferably in the range of 50 to 90 ⁇ m, from the viewpoint of satisfying bending durability with a particularly small bending radius.
  • the unexposed portion is removed and developed by wet development, dry development, or the like to produce a core pattern.
  • a developer corresponding to the composition of the resin film such as an organic solvent, an alkaline aqueous solution, or an aqueous developer, is used, for example, a known method such as spraying, rocking immersion, brushing, or scraping.
  • a developer an organic solvent, an alkaline aqueous solution or the like that is safe and stable and has good operability is preferably used.
  • organic solvent developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone. It is done. These organic solvents may be added with water in the range of 1 to 20% by mass in order to prevent ignition.
  • Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide, alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate, potassium phosphate, and phosphoric acid.
  • Alkali metal phosphates such as sodium and alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate are used.
  • Examples of the alkaline aqueous solution used for development include a dilute solution of 0.1 to 5% by mass of sodium carbonate, a dilute solution of 0.1 to 5% by mass of potassium carbonate, and a dilute solution of 0.1 to 5% by mass of sodium hydroxide.
  • Preferred examples include solutions and dilute solutions of 0.1 to 5% by mass sodium tetraborate.
  • the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 14, and the temperature is adjusted in accordance with the developability of the layer of the photosensitive resin composition.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • the aqueous developer comprises water or an alkaline aqueous solution and one or more organic solvents.
  • the alkaline substance include borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, , 3-diaminopropanol-2, morpholine and the like.
  • the pH of the developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8 to 12, more preferably pH 9 to 10.
  • organic solvent examples include triacetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono And butyl ether. These are used alone or in combination of two or more.
  • concentration of the organic solvent is usually preferably 2 to 90% by mass, and the temperature can be adjusted according to the developability. Further, a small amount of a surfactant, an antifoaming agent or the like can be mixed in the aqueous developer.
  • the core pattern may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
  • an upper clad film having a refractive index lower than that of the core film is laminated by the same method to produce an optical waveguide.
  • the thickness of the upper clad layer is not particularly limited as long as the core portion can be embedded. However, the thickness after drying is preferably 2 to 50 ⁇ m, and the bending durability with a small bending radius. From the viewpoint of satisfying the above, the thickness is more preferably in the range of 2 to 20 ⁇ m, and particularly preferably in the range of 5 to 15 ⁇ m.
  • the thickness of the upper cladding layer may be the same as or different from the thickness of the lower cladding layer formed first. Note that the thickness of the upper cladding layer shown here is a value from the boundary between the core portion and the upper cladding layer to the upper surface of the upper cladding layer.
  • an FPC (Flexible Printed Circuit) board can be suitably used.
  • a substrate material for the FPC substrate polyimide, polyamide, polyetherimide, polyethylene terephthalate, liquid crystal polymer, and the like are used.
  • polyimide is used from the viewpoint of heat resistance and availability.
  • Kapton made by Toray DuPont Co., Ltd.
  • the thickness of the substrate constituting the flexible electrical wiring board is not particularly limited, and the thickness of the board is appropriately determined from the thickness required for the opto-electric hybrid board itself. Is preferably in the range of 5 to 50 ⁇ m.
  • it is important that the electrical wiring in the flexible electrical wiring board is wired so as not to overlap the core portion at the bent portion when joining with the optical waveguide.
  • the opto-electric hybrid board of the present invention is manufactured by bonding the optical waveguide film and the flexible electric wiring board.
  • an adhesive can be used as necessary.
  • the type of the adhesive can be appropriately determined according to the materials of the optical waveguide film and the flexible electric wiring board.
  • the adhesive preferably has flexibility after curing. Specifically, after curing, the elastic modulus is preferably 700 MPa or less, and 600 MPa or less. It is more preferable that it is 500 MPa or less.
  • acrylic rubber adhesives and commercially available products include high-heat-resistant adhesive insulating material KS7003 (elastic modulus 700 MPa) manufactured by Hitachi Chemical Co., Ltd., and adhesive highbons for flexible printed wiring boards manufactured by Hitachi Chemical Polymer Co., Ltd. 808 (elastic modulus 50 MPa) etc. are illustrated suitably.
  • the laminating temperature in the roll laminator is preferably in the range of room temperature (25 ° C.) to 100 ° C.
  • room temperature (25 ° C.) or higher adhesion to the optical waveguide is improved, and when it is 100 ° C. or lower, the required film thickness is obtained without flowing the adhesive layer.
  • the range of 40 to 100 ° C. is more preferable.
  • the pressure is preferably 0.2 to 1.0 MPa (1 to 10 kgf / cm 2 ) and the laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
  • the flat plate laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate.
  • a vacuum pressurizing laminator can be suitably used.
  • the heating temperature here is preferably 50 to 100 ° C.
  • the pressing pressure is preferably 0.1 to 1.0 MPa (1 to 10 kgf / cm 2 ), but these conditions are particularly limited. There is no.
  • the bending radius was also tested under the conditions of 1.5 mm and 1.0 mm, and the test was performed under the conditions of a slide speed of 80 mm / second and a distance between X 1 and X 2 of 20 mm.
  • the maximum number of times of fracture was determined by observing the presence or absence of fracture every 10,000 times for Example 1, Comparative Example 1 and Reference Example 1, and every 1000 times for Comparative Example 2.
  • Example 1 (1-1) Production of Optical Waveguide Film [Production of Clad Layer Forming Resin Film]
  • A 48 parts by mass of phenoxy resin (trade name: Phenotote YP-70, manufactured by Tohto Kasei Co., Ltd.) as the binder polymer
  • B alicyclic diepoxycarboxylate (trade name: KRM) as the photopolymerizable compound -2110, molecular weight: 252, manufactured by Asahi Denka Kogyo Co., Ltd.) 49.6 parts by mass
  • C As a photopolymerization initiator, triphenylsulfonium hexafluoroantimonate salt (trade name: SP-170, Asahi Denka Kogyo Co., Ltd.) 2 parts by mass, SP-100 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) as a sensitizer, 0.4 parts by mass, and 40 parts by mass of propylene glycol monomethyl
  • the resin varnish A for forming a clad layer obtained above is coated on a corona-treated surface of a polyamide film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 ⁇ m) (Multicoater TM-MC, Inc. It is applied using Hirano Tech Seed, dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then as a protective film, a release PET film (trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) ) was attached so that the release surface was on the resin side to obtain a resin film for forming a cladding layer.
  • a polyamide film trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 ⁇ m
  • a release PET film trade name: Purex A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
  • the thickness after curing is 20 ⁇ m for the lower cladding layer and 70 ⁇ m for the upper cladding layer. Adjusted.
  • the core layer-forming resin varnish B obtained above is applied to the non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 ⁇ m) in the same manner as in the above production example.
  • a release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 ⁇ m) is applied as a protective film so that the release surface is on the resin side, and a core layer forming resin A film was obtained.
  • the gap of the coating machine was adjusted so that the film thickness after curing was 50 ⁇ m.
  • the lower clad layer was formed by irradiating ultraviolet rays (wavelength 365 nm) with 1 J / cm 2 from the opposite side of the material film and then heat-treating at 80 ° C. for 10 minutes.
  • a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.) is used under the conditions of pressure 0.4 MPa, temperature 50 ° C., laminating speed 0.2 m / min.
  • a forming resin film is laminated, and then a vacuum pressurization type laminator (manufactured by Meiki Seisakusho Co., Ltd., MVLP-500) is used as a flat plate type laminator. After vacuuming to 500 Pa or less, a pressure of 0.4 MPa, a temperature of 50 ° C. is applied.
  • a core layer was formed by thermocompression bonding under a pressure time of 30 seconds.
  • the core portion using a negative photomask having a width 50 ⁇ m so that the shape as shown in FIG. 7, ultraviolet (wavelength 365nm) 0.6J / cm 2 was irradiated by the ultraviolet exposure machine, followed by 80 After exposure at 5 ° C. for 5 minutes, heating was performed. Thereafter, the PET film as the support film was peeled off, and the core pattern was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide 8/2, mass ratio). Then, it wash
  • the resin film for forming a clad layer was laminated as an upper clad layer under the same laminating conditions as described above. Further, after irradiation with a total of 25 J / cm 2 on both surfaces with ultraviolet rays (wavelength 365 nm), heat treatment is performed at 160 ° C. for 1 hour to form a flexible optical waveguide in which an upper cladding layer is formed and a base film is disposed outside. did. Furthermore, in order to peel the polyamide film, the flexible optical waveguide was treated under high temperature and high humidity conditions of 85 ° C./85% for 24 hours to produce a flexible optical waveguide from which the base film was removed.
  • the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm.
  • the propagation loss of the manufactured optical waveguide was determined by using a cut-back method using a surface-emitting laser (850 nm, manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214, manufactured by Advantest Corporation as a light receiving sensor.
  • This adhesive varnish was applied onto a 75 ⁇ m-thick surface release-treated polyethylene terephthalate (manufactured by Teijin Ltd., Teijin Tetron film: A-31) and dried by heating at 80 ° C. for 30 minutes to obtain an adhesive sheet. .
  • This adhesive sheet is laminated together with a light-transmitting supporting base material having a thickness of 80 ⁇ m (manufactured by Thermo Corporation, low density polyethylene terephthalate / vinyl acetate / low density polyethylene terephthalate three-layer film: FHF-100).
  • a sheet-like adhesive composed of a protective film (surface release-treated polyethylene terephthalate), an adhesive layer, and a light-transmitting support substrate was produced.
  • the thickness of the adhesive layer was 10 ⁇ m.
  • the adhesive layer of the sheet-like adhesive thus prepared was cured at 160 ° C. for 1 hour, and the light transmittance was measured with a U-3310 UV-visible spectrophotometer manufactured by Hitachi High-Technologies Corporation. It had a high transmittance of 98% or more at 850 nm, and a transmission loss equivalent to 0.1 dB or less.
  • the refractive index was measured with a Metricon prism coupler (Model 2010) and found to be 1.505 at a wavelength of 830 nm.
  • the tensile elastic modulus was 350 MPa.
  • a flexible electric wiring board having electric wiring (length 120 mm, width 2 mm, base material: Kapton 100EN (tensile strength measured by the above method was 370 MPa), board thickness: 25 ⁇ m, copper circuit thickness : 12 ⁇ m)
  • a mask aligner mechanism attached to an ultraviolet exposure machine (Dainippon Screen Co., Ltd., MAP-1200-L), and use the roll laminator
  • the flexible optical waveguide and the electric wiring board are bonded by heating in a clean oven at 160 ° C.
  • Example 1 both the core part 21 and the electrical wiring 31 are linear, and the same as in Example 1 except that the core part 21 and the electrical wiring 31 in the bent part overlap on the projection surface. An opto-electric hybrid board was obtained.
  • Comparative Example 2 In Comparative Example 1, the sheet-like adhesive was laminated only on the end portion of the flexible optical waveguide under the same conditions as in Example 1 and the central portion was not joined. A mixed substrate was produced. The results of evaluation in the same manner as in Example 1 are shown in Table 1.
  • the bending durability of the opto-electric hybrid board is drastically improved by preventing the core part of the optical waveguide at the bent part and the electric wiring of the flexible electric wiring board from overlapping on the projection surface.
  • the opto-electric hybrid board of the present invention has a very good bending durability that does not cause cracks or cracks in the optical waveguide film even when the bending is repeated for a long time. Therefore, the opto-electric hybrid board according to the present invention can be suitably used for an electronic device such as a cellular phone, and it is a case where the hinge portion is required to be bent with a small bending radius of about 1.5 to 2 mm. However, it is possible to maintain a good communication function over a long period of time, and to achieve high reliability and durability of the electronic device itself.

Abstract

 コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が接合されてなるフレキシブル光電気混載基板であって、屈曲される部分の光導波路フィルム側の少なくとも一部に補強材を配することを特徴とするフレキシブル光電気混載基板、及び該フレキシブル光電気混載基板を用いた電子機器である。  曲げたり、折り曲げたりしても、割れやクラックが発生しない、光導波路フィルムとフレキシブル電気配線基板が接合されてなる光電気混載基板及び該光電気混載基板を用いてなる電子機器を提供することができる。

Description

光電気混載基板及び電子機器
 本発明は、可撓性を有する光配線と電気配線を組み合わせた光電気混載基板及び該基板を用いた電子機器に関する。
 近年、電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インタコネクションが検討されている。光の伝送路として加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。
 特に、携帯電話やノート型パソコンなどに光導波路を用いることが検討されており、省スペース、薄型化に対応するため、光配線と電気配線を組み合わせた光電気混載基板が注目されている(特許文献1、図2参照)。
 ところで、光電気混載基板の用途の一つである携帯電話などの電子機器においては、開閉可能な二つの機構部間の信号伝送にフレキシブル光電気混載基板を用いることが想定され、該フレキシブル光電気混載基板が二つの機構部の連結部(ヒンジ)を跨ぐことが考えられる。通常、ヒンジにフレキシブル電気配線基板側が接するように、該光電気混載基板は曲げられるが、屈曲によって、光導波路部分に割れやクラックが生じることがあった。特に、近年の電子機器の小型化の要請から、ヒンジにおいて、Rが1.5~2mm程度の小さい曲げ半径で曲げることが要求されるため、ヒンジでの割れやクラックの発生が顕著になるという問題があった。
 上記課題に対して、光導波路フィルムとフレキシブル電気配線板とが部分的に接合されており、少なくとも基板面が曲げられる箇所は接合されていないことを特徴とするフレキシブル光電気配線基板が提案されている(特許文献2、特許請求の範囲参照)。
特許第3193500号公報 特開2006-284925号公報
 しかしながら、本発明者らは、光導波路フィルムとフレキシブル電気配線板とが部分的に分離した構造であると、実際にヒンジによって屈曲がなされる場合、特に電子機器がスライド構造を有し、光電気混載基板が屈曲部を中心に屈曲した状態で、スライドに伴って屈曲部が移動する構造を有する場合には、光導波路がフレキシブル電気配線板とのその接着面に対して横方向にずれやすく、このような横ずれによって、光導波路はスライドする際に、変形しながら移動することになるため破断しやすいという問題があることを見出した。特に、光電気混載基板が長い場合には、この傾向が顕著である。なお、このような、光導波路の横方向へのずれを防ぐためにサイドガイド機構を設けることもできるが、非常に煩雑であるし、コンパクト化を求められる電子機器においては極めて不利である。
 すなわち、特許文献2に開示されるような分離構造を有する光電気混載基板では、結局、光導波路部分に応力がかかり、結果として割れやクラックが発生するという問題を解決するには至っていない。
 そこで、本発明は、このような課題を解決するためになされたもので、曲げたり、折り曲げたりしても、割れやクラックが発生しない、光導波路フィルムとフレキシブル電気配線基板が接合されてなる光電気混載基板及び該光電気混載基板を用いてなる電子機器を提供することを目的とするものである。
 本発明者らは、光電気混載基板において、ヒンジで曲げられた際に応力のかかる部分が、電気配線基板を構成する銅線などの電気配線に大きく影響を受け、光導波路のコア部分に集中する点に着目した。すなわち、電気配線に用いられる金属材料の弾性率が他の材料に比較して極めて高いことにより、応力中心が電気配線部分に偏ることで、光導波路のコア部に応力が集中し、光導波路が破断しやすいと推察した。そして、鋭意検討を重ねた結果、屈曲部における光導波路のコアとフレキシブル電気配線基板の電気配線が、投影面において重ならないように配置することによって、上記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち、コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が接合されてなる光電気混載基板であって、屈曲部における光導波路のコアとフレキシブル電気配線基板の電気配線が、投影面において重ならないことを特徴とする光電気混載基板、及び該光電気混載基板を有してなる電子機器を提供するものである。
 本発明の光電気混載基板及び該光電気混載基板を用いた電子機器は、長時間にわたって屈曲を繰り返しても、光電気混載基板に割れやクラックが発生しない、極めて良好な屈曲耐久性を有し、良好な通信機能を維持し得る。
光電気混載基板を示す概念図である。 光電気混載基板が屈曲された状態を示す概念図である。 電子機器がスライド構造を有する場合の光電気混載基板の一例を示す概念図である。 図2におけるヒンジ部分の拡大図である。 本発明の光電気混載基板の一例を示す斜視図である。 図5に示す本発明の光電気混載基板をa方向から見た投影図である。 本発明の光電気混載基板の他の一例を示す投影図である。 本発明の光電気混載基板の他の一例を示す投影図である。
符号の説明
1.光電気混載基板
2.光導波路フィルム
3.フレキシブル電気配線基板
4.ヒンジ
6.屈曲部
7.屈曲軸
21.コア部
31.電気配線
 本発明の光電気混載基板は、コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が接合されてなり、屈曲部における光導波路のコア部とフレキシブル電気配線基板の電気配線が、投影面において重ならないことを特徴とする。本発明では、屈曲部において、コア部と電気配線が、投影面において重ならなければよく、屈曲部以外の部分、例えば端部においては重なっていても、重なっていなくてもよい。但し、本発明の光電気混載基板を用いる電子機器のコンパクト化の点、端部の電気接点は配線路よりも数倍幅広くすることで結合裕度を取る必要があり、光通信用のコアは電気配線とは層が異なることから、少なくとも一方の端部、好ましくは両端部(屈曲部以外の少なくとも一部分)において、コア部と電気配線が投影面において重なっていた方が好ましい。
 以下、図面を参照しつつ、詳細に説明する。
 本発明の光電気混載基板1は、図1に示すように、コアとクラッドを備えた光導波路フィルム2とフレキシブル電気配線基板3が接合されてなり、光導波路フィルム2とフレキシブル電気配線基板3の接着性を考慮すると、接合は全面にわたってなされていることが好ましい。ここで、接合とは、接着又は密着を示し、光電気混載基板を屈曲させた場合に剥がれない程度の接着性、密着性を有することをいう。
 本発明の光電気混載基板は、図2に示すように、ヒンジ4を中心に光電気混載基板の一部が回転方向に可動する構造を有する電子機器、又は図3に示すように、スライド構造を有する電子機器に適用されるものである。
 ここで、本発明における屈曲部とは、一般的意味で屈曲する部分又は屈曲される部分、すなわち、屈曲開始点から屈曲終了点までをいう。例えば、ヒンジを用いて光電気混載基板を屈曲させる場合には、本発明における屈曲部とは、光電気混載基板が屈曲された状態において、ヒンジと接する部分及びその外縁部をいう。より具体的にはヒンジ部の拡大図である図4に示すように、ヒンジに接して屈曲が始まる屈曲開始点X1、屈曲が終了する屈曲終了点X2、X1及びX2に対する光導波路フィルム側部位Y1及びY2で囲まれた部分に、さらに該部分から外側に拡張された、a、b、c及びdで囲まれた部分6をいう。ここで、拡張された部分のa-X1間の距離は、本発明の効果を創出し得る範囲で特に限定されないが、X1-X2間距離の1~10%程度である。
 また、図3に示すようなスライド構造を有する電子機器において、ヒンジを用いない場合であっても、上記ヒンジを有する場合と同様に、屈曲中心に対して光電気混載基板を屈曲させる場合には、屈曲部とは光電気混載基板が屈曲された状態において、ヒンジ4に相当する軸7(以下「屈曲軸」と称する)を仮想した場合に、該屈曲軸と接する部分及びその外縁部をいい、その定義は上述の屈曲部の説明において、ヒンジ4を屈曲軸7に置き換えたものである。該屈曲軸は実際に存在し、該屈曲軸7が回転しながら、又は無回転で水平方向に移動することによって、スライド構造を達成するものであってもよいし、屈曲軸7が存在せずに、蓋体などで光電気混載基板1を上下から挟持し、該蓋体の移動によって、光電気混載基板1の端部X0を水平方向に移動させることで、スライド構造を達成してもよい。なお、光電気混載基板の逆側の端部は、通常固定されているが、端部X0と反対方向に動く構造であってもよい。
 本発明は、特に図3に示すようなスライド構造を有する電子機器に好適に適用されるものである。すなわち、光電気混載基板1は屈曲部を中心に屈曲した状態で、例えば、上下に位置するフレキシブル光電気混載基板の直線部が、互いにほぼ平行に配置される構造をとる。そして、該屈曲状態を維持したまま光電気混載基板1の少なくとも一方の端部X0が水平方向(図3においては右方向)に移動し、該移動に伴って屈曲部が移動する構造を有する。すなわち、端部X0の動きに伴って屈曲開始点が移動することになる。このような場合においても、屈曲部において、光導波路のコア部とフレキシブル電気配線基板の電気配線が、投影面において重ならないようにすることによって、本発明の効果を奏するものである。
 本発明の光電気混載基板1は、上述のように、屈曲部において、光導波路のコアとフレキシブル電気配線基板の電気配線が、投影面において重ならないことを特徴とする。
 図5及び図6は、本発明の光電気混載基板の態様の一つを示すものである。図5は斜視図、図6は図5におけるa方向から見た投影図である。図5及び図6に示す態様では、光電気混載基板1の両外側に電気配線31を配し、中央部にコア部21を配して、投影面において互いに重ならないように配置されている。
 次に、図7は本発明の光電気混載基板の他の態様を示す投影図である。電気配線31は両外側方向に曲線を描き、コア部21は両端間で直線状である。屈曲部では、電気配線31とコア部21が重ならず、端部では重なる態様である。
 また、図8は、本発明の光電気混載基板のさらに他の態様を示す投影図であり、電気配線31は両外側方向に曲線を描き、コア部21は内側方向に曲線を描くものである。屈曲部では、電気配線31とコア部21が重ならず、端部では両者が一部重なる態様である。
 以下、本発明で用いられる光導波路フィルムとフレキシブル電気配線基板について説明する。
[光導波路フィルム]
 本発明の光導波路フィルムは、コアとクラッドを備えたものであり、従来、光導波路フィルムとして用いられるものを利用することができる。例えば、(A)ベースポリマー、(B)光重合性化合物、及び(C)光重合開始剤を含有する樹脂組成物からなる光導波路形成用樹脂フィルムを用いることができる。
 (A)ベースポリマーはフィルム等の硬化物を形成する場合に、その強度を確保するためのものであり、その目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。
 (B)光重合性化合物は、紫外線等の光の照射によって重合するものであれば特に制限はないが、光に対する反応性の観点から、分子内にエチレン性不飽和基を有する化合物であることが好ましい。具体的には、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、1官能性のもの、2官能性のもの、3官能性のもののいずれをも用いることができる。
 なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
(C)成分の光重合開始剤としては、特に制限はなく、例えば、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等の芳香族ケトン;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のフォスフィンオキサイド類;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物などが挙げられる。
 (A)ベースポリマーの配合量は、(A)成分及び(B)成分の総量に対して、10~80質量%とすることが好ましい。この配合量が、10質量%以上であるとフィルムを形成する場合に、膜厚50μm以上の厚膜フィルムでも容易に製造することが可能であり、一方、80質量%以下であると、光硬化反応が十分に進行する。以上の観点から、(A)ベースポリマーの配合量は、20~70質量%とすることがさらに好ましい。
 (B)光重合性化合物の配合量は、(A)成分及び(B)成分の総量に対して、20~90質量%とすることが好ましい。この配合量が、20質量%以上であると、ベースポリマーを絡み込んで硬化させることが容易にでき、一方、90質量%以下であると、厚膜のフィルムを容易に形成することできる。以上の観点から、(B)光重合性化合物の配合量は30~80質量%とすることがさらに好ましい。
 (C)光重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.1~10質量部とすることが好ましい。この配合量が0.1質量部以上であると、光感度が十分であり、一方10質量部以下であれば、露光時に感光性樹脂組成物の表層での吸収が増大することがなく、内部の光硬化が十分となる。さらに、重合開始剤自身の光吸収の影響により伝搬損失が増大することもなく好適である。以上の観点から、(C)重合開始剤の配合量は、0.2~5質量部とすることがさらに好ましい。
 本発明における光導波路フィルムは、(A)~(C)成分を含有する樹脂組成物を溶媒に溶解して、基材に塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、プロピレングリコールモノメチルエーテル等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は、通常30~60質量%程度であることが好ましい。
 本発明における光導波路フィルムの厚さについては特に限定されないが、乾燥後の厚さで、通常は10~250μmである。10μm以上であると、受発光素子又は光ファイバーとの結合トレランスが拡大できるという利点があり、250μm以下であると、受発光素子又は光ファイバーとの結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに40~90μmの範囲であることが好ましい。
 本発明における光導波路形成用樹脂フィルムの製造過程で用いる基材は、光導波路形成用フィルムを支持する支持体であって、その材料については特に限定されないが、後に光導波路形成用フィルムを剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。該基材の厚さは、5~50μmの範囲であることが好ましい。5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、該基材の厚さは10~40μmの範囲であることがより好ましく、20~30μmであることが特に好ましい。
 このようにして得られた基材上に設けられた光導波路形成用フィルムは、例えばロール状に巻き取ることによって容易に貯蔵することができる。また、必要に応じて、光導波路形成用フィルムの上に保護フィルムを設けることもできる。なお、上記基材及び保護フィルムは、後に光導波路形成用フィルムの剥離を容易とするため、帯電防止処理等が施されていてもよい。
 上記のようにして得られた光導波路形成用樹脂フィルムを用いて光導波路を形成するための製造手法について以下説明する。その方法としては、例えば、基材から剥離された下部クラッドフィルムを、保護フィルムが存在する場合には、保護フィルムを除去後、基板上に加熱しながら圧着することにより積層する方法などが挙げられる。ここで、密着性及び追従性の見地から減圧下で積層することが好ましい。該樹脂フィルムの加熱温度は50~130℃とすることが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm2程度)とすることが好ましいが、これらの条件には特に制限はない。
 下部クラッド層の厚さは、特に制限はないが、2~50μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めるのが容易となり、50μm以下であると、光導波路1全体の厚さが大きすぎることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、下部クラッド層の厚さは2~20μmの範囲であることがより好ましく、5~15μmの範囲であることが特に好ましい。
 なお、下部クラッド層の厚さとは、コア部と下部クラッド層との境界から下部クラッド層の下面までの値である。
 次いで、下部クラッドフィルムを光又は加熱により硬化し、下部クラッドフィルムより屈折率の高いコアフィルムを同様な方法で積層する。このようにして積層した樹脂フィルムは、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線が画像状に照射される。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いることができる。
 コア部31の高さについては、特に制限はないが、10~150μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバーとの結合において位置合わせトレランスが小さくなることがなく、150μm以下であると、光導波路形成後の受発光素子又は光ファイバーとの結合において、結合効率が小さくなることがない。本発明では、特に小さい曲げ半径での屈曲耐久性を満足するとの観点から、コア部の高さは30~120μmの範囲であることがより好ましく、50~90μmの範囲であることが特に好ましい。
 次いで、露光後、ウエット現像、ドライ現像等で未露光部を除去して現像し、コアパターンを製造する。ここで、コアパターンは、後にフレキシブル電気配線基板と接合するに際し、屈曲部において電気配線と重ならないようにすることが肝要である。
 現像に関して、ウエット現像の場合は、有機溶剤、アルカリ性水溶液、水系現像液等の前記樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。
 現像液としては、有機溶剤、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが好ましく用いられる。前記有機溶剤系現像液としては、例えば、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1~20質量%の範囲で水を添加してもよい。
 上記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。また、現像に用いるアルカリ性水溶液としては、例えば、0.1~5質量%炭酸ナトリウムの希薄溶液、0.1~5質量%炭酸カリウムの希薄溶液、0.1~5質量%水酸化ナトリウムの希薄溶液、0.1~5質量%四ホウ酸ナトリウムの希薄溶液等が好ましく挙げられる。また、現像に用いるアルカリ性水溶液のpHは9~14の範囲とすることが好ましく、その温度は、感光性樹脂組成物の層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。
 上記水系現像液としては、水又はアルカリ水溶液と一種以上の有機溶剤とからなる。ここでアルカリ物質としては、前記物質以外に、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2ーアミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1、3-ジアミノプロパノール-2、モルホリン等が挙げられる。現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12とすることが好ましく、pH9~10とすることがより好ましい。上記有機溶剤としては、例えば、三アセトンアルコール、アセトン、酢酸エチル、炭素数1~4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。有機溶剤の濃度は、通常、2~90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。また、水系現像液中には、界面活性剤、消泡剤等を少量混入することもできる。
 また、必要に応じて2種類以上の現像方法を併用してもよい。現像の方式としては、例えば、ディップ方式、バトル方式、高圧スプレー方式等のスプレー方式、ブラッシング、スラッピング等が挙げられる。
 現像後の処理として、必要に応じて60~250℃程度の加熱又は0.1~1000mJ/cm2程度の露光を行うことによりコアパターンをさらに硬化して用いてもよい。
 次いで、コアフィルムより屈折率の低い上部クラッドフィルムを同様の方法で積層し、光導波路を作製する。上部クラッド層の厚さは、コア部を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚さで、2~50μmであることが好ましく、小さい曲げ半径での屈曲耐久性を満足するとの観点から、その厚さは2~20μmの範囲であることがより好ましく、5~15μmの範囲であることが特に好ましい。上部クラッド層の厚さは、最初に形成される下部クラッド層の厚さと同一であっても異なってもよい。なお、ここで示す上部クラッド層の厚さとは、コア部と上部クラッド層との境界から上部クラッド層の上面までの値である。
[フレキシブル電気配線基板]
 フレキシブル電気配線基板としては、FPC(Flexible Printed Circuit)基板を好適に用いることができる。FPC基板の基板材料としては、ポリイミド、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマーなどが用いられるが、一般的には耐熱性や入手のしやすさの観点からポリイミドが用いられる。市販品としては、例えばカプトン(東レ・デュポン株式会社製)を用いたFPC基板が挙げられる。
 ここで、フレキシブル電気配線基板を構成する基板の厚さについては特に制限はなく、光電気混載基板自体に求められる厚さから、該基板の厚さは適宜決定されるものであり、具体的には、5~50μmの範囲が好ましい。
 また、フレキシブル電気配線基板における電気配線は、光導波路と接合するに際し、屈曲部においてコア部と重ならないように配線することが肝要である。
[光電気混載基板]
 上記光導波路フィルム及びフレキシブル電気配線基板を接合して、本発明の光電気混載基板は製造される。
 光導波路フィルムとフレキシブル電気配線基板の接合に際しては、必要に応じて、接着剤を使用することができる。接着剤の種類としては、光導波路フィルム及びフレキシブル電気配線基板の材質に応じて、適宜決定することができる。
 光電気混載基板に可撓性を持たせるためには、接着剤が硬化後に柔軟性を有することが好ましく、具体的には、硬化後において、弾性率が700MPa以下であることが好ましく、600MPa以下であることがさらに好ましく、500MPa以下であることが特に好ましい。また、接着剤としての強度の点から、1MPa以上であることが好ましく、5MPa以上であることがより好ましい。
 接着剤の種類としては、アクリルゴム系接着剤や市販品としては、日立化成工業株式会社製高耐熱接着絶縁材KS7003(弾性率700MPa)、日立化成ポリマー株式会社製フレキシブル印刷配線板用接着剤ハイボン808(弾性率50MPa)などが好適に例示される。
 光導波路フィルムとフレキシブル電気配線基板の接合方法については特に制限はないが、密着性、気泡巻き込み防止の観点から、ロールラミネータ、または平板型ラミネータを用いる方法が好ましい。ロールラミネータでのラミネート温度は、室温(25℃)~100℃の範囲とすることが好ましい。室温(25℃)以上であると、光導波路との密着性が向上し、100℃以下であると、接着剤層が流動することなく、必要とする膜厚が得られる。以上の観点から、40~100℃の範囲がより好ましい。圧力は0.2~1.0MPa(1~10kgf/cm2)が好ましく、ラミネート速度は0.1~3m/minが好ましいが、これらの条件には特に制限はない。
 また、平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、50~100℃とすることが好ましく、圧着圧力は、0.1~1.0MPa(1~10kgf/cm2)とすることが好ましいが、これらの条件には特に制限はない。
 以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に何ら制限されるものではない。
(評価方法)
1.引張弾性率及び引張強度
 測定対象のフィルムから、幅10mm、長さ70mmのサンプルを得、引張試験機(株式会社オリエンテック製「RTM-100」)を用い、JIS-K7127に準拠して、以下の条件で測定した。
条件:つかみ具間距離50mm、温度25℃、引張り速度50mm/min
 引張弾性率は、引張り応力―ひずみ曲線の初めの直線部分を用いて以下に示す式により算出した。また、引張り応力―ひずみ曲線において、破断するまでの最大強度を引張強度とした。
引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷光導波路フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
2.屈曲耐久試験
 各実施例及び比較例で製造された光電気混載基板について、図3に示すような光電気混載基板をスライドさせる形式の屈曲耐久試験機を用いて、屈曲耐久試験を行った。試験は各実施例及び比較例で得られた光電気混載基板を、屈曲軸7に対して光導波路フィルムを内側に配置した場合について行った。また、曲げ半径についても、1.5mmの条件及び1.0mmの条件の2種類について行い、スライド速度80mm/秒、X1~X2間の距離20mmの条件で試験を行った。評価については、実施例1、比較例1及び参考例1については1万回毎に、比較例2については1000回毎に、破断の有無を観察して破断しない最大回数を求めた。
実施例1
(1-1)光導波路フィルムの作製
〔クラッド層形成用樹脂フィルムの作製〕
 (A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM-2110、分子量:252、旭電化工業株式会社製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP-170、旭電化工業株式会社製)2質量部、増感剤として、SP-100(商品名、旭電化工業株式会社製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋株式会社製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
 上記で得られたクラッド層形成用樹脂ワニスAを、ポリアミドフィルム(商品名:ミクトロン、東レ株式会社製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM-MC、株式会社ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド層20μm、上部クラッド層70μmとなるように調節した。
〔コア層形成用樹脂フィルムの作製〕
 (A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP-70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A-BPEF、新中村化学工業株式会社製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA-1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法および条件で加圧濾過さらに減圧脱泡した。
 上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が50μmとなるよう、塗工機のギャップを調整した。
[光導波路フィルムの作製]
 上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機(株式会社オーク製作所製、EXM-1172)にて樹脂側(基材フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、下部クラッド層を形成した。
 次に、該下部クラッド層上に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムをラミネートし、次いで平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP-500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度50℃、加圧時間30秒の条件にて加熱圧着して、コア層を形成した。
 次に、コア部が図7に示すような形状となるように幅50μmのネガ型フォトマスクを用い、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱をいった。
 その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥した。
 次いで、上記と同様なラミネート条件にて、上部クラッド層として上記クラッド層形成用樹脂フィルムをラミネートした。さらに、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を形成し基材フィルムが外側に配置されたフレキシブル光導波路を作製した。さらにポリアミドフィルム剥離のため、該フレキシブル光導波路を85℃/85%の高温高湿条件で24時間処理し、基材フィルムを除去したフレキシブル光導波路を作製した。
 なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。また、作製した光導波路の伝搬損失を、光源に850nmの面発光レーザー((EXFO社製、FLS-300-01-VCL)を、受光センサに株式会社アドバンテスト製、Q82214を用い、カットバック法(測定導波路長10、5、3、2cm、入射ファイバー;GI-50/125マルチモードファイバー(NA=0.20)、出射ファイバー;SI-114/125(NA=0.22))により測定したところ、0.05dB/cmであった。
 また、得られた光導波路フィルムの引張弾性率及び引張強度を上記方法により測定した結果、引張弾性率が2,000MPa、引張強度が70MPaであった。
(1-2)シート状接着剤の作製
 HTR-860P-3(帝国化学産業株式会社製、商品名、グリシジル基含有アクリルゴム、分子量100万、Tg-7℃)100質量部、YDCN-703(東都化成株式会社製、商品名、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量210)5.4質量部、YDCN-8170C(東都化成株式会社製、商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量157)16.2質量部、プライオーフェンLF2882(大日本インキ化学工業株式会社製、商品名、ビスフェノールAノボラック樹脂)15.3質量部、NUCA-189(日本ユニカー株式会社製、商品名、γ-メルカプトプロピルトリメトキシシラン)0.1質量部、NUCA-1160(日本ユニカー株式会社製、商品名、γ‐ウレイドプロピルトリエトキシシラン)0.3質量部、A-DPH(新中村化学工業株式会社製、商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、イルガキュア369(チバ・スペシャリティ・ケミカルズ社製、商品名、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-オン:I-369)1.5質量部、シクロヘキサノンを加えて攪拌混合し、真空脱気した。この接着剤ワニスを、厚さ75μmの表面離型処理ポリエチレンテレフタレート(帝人株式会社製、テイジンテトロンフィルム:A-31)上に塗布し、80℃で30分間加熱乾燥し粘接着シートを得た。この粘接着シートに、厚さ80μmの光透過性の支持基材(サーモ株式会社製、低密度ポリエチレンテレフタレート/酢酸ビニル/低密度ポリエチレンテレフタレート三層フィルム:FHF-100)をあわせてラミネートすることにより保護フィルム(表面離型処理ポリエチレンテレフタレート)、粘接着剤層、及び光透過性の支持基材からなるシート状接着剤を作製した。粘接着剤層の厚さは10μmとした。
 このように作製したシート状接着剤の粘接着剤層を160℃で1時間硬化し、光線透過率を株式会社日立ハイテクノロジーズ製、U-3310紫外可視分光光度計にて測定したところ、波長850nmにおいて98%以上の高い透過率を有しており、0.1dB以下相当の透過損失であった。
 なお、屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて1.505であった。
 また、得られたシート状接着剤の引張弾性率を上記方法により測定した結果、引張弾性率は350MPaであった。
(1-3)光電気混載基板の作製
 フレキシブル光導波路に、ロールラミネータ(日立化成テクノプラント株式会社製、HLM-1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、保護フィルムを剥がしたシート状接着剤をラミネートした。続いてダイシングソー(株式会社ディスコ製、DAD-341)を用いて、導波路を短冊状(長さ120mm、幅2mm)に加工し、支持基材側から紫外線(365nm)を250mJ/cm2照射し、粘接着剤層と支持基材界面の密着力を低下させ支持基材を剥がして接着剤付き光導波路を得た。
 次に、電気配線を有するフレキシブル電気配線基板(長さ120mm、幅2mm、基材:カプトン100EN(上記方法により測定した引張強度は370MPaであった。)、基板厚さ:25μm、銅回路厚さ:12μm)の所定の箇所に接着剤層付き光導波路を、紫外線露光機(株式会社大日本スクリーン製,MAP-1200-L)付随のマスクアライナー機構を利用して位置決めし、同ロールラミネータを用い圧力0.4MPa、温度80℃、ラミネート速度0.2m/minの条件で仮圧着した後、クリンオーブン中で160℃、1時間加熱しフレキシブル光導波路と電気配線基板を接着して、図7に投影図を示すような光電気混載基板を得た。
 ここでフレキシブル電気配線板の基材であるカプトンENの光線透過率を株式会社日立ハイテクノロジーズ製、U-3310分光光度計にて測定したところ、波長850nmにおいて86%であった。これは0.7dB相当の透過損失であり、前述の粘接着剤層と合算しても電気配線板を透過する際の光損失は1dB未満と低損失であるため、本実施例では、光透過用スルーホールを設けない構造とした。上記方法にて評価した結果を第1表に示す。
比較例1
 実施例1において、コア部21及び電気配線31のいずれもが直線状であり、屈曲部におけるコア部21と電気配線31が、投影面において重なっていること以外は、実施例1と同様にして光電気混載基板を得た。
比較例2
 比較例1において、フレキシブル光導波路の端部にのみ、実施例1と同様の条件でシート状接着剤をラミネートし、中央部分を接合しなかったこと以外は、比較例1と同様にして光電気混載基板を作製した。実施例1と同様に評価した結果を第1表に示す。
参考例1
 実施例1で作製した光導波路単体を用いて、実施例1の光電気混載基板と同様に屈曲耐久試験を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 第1表に示すように、屈曲部における光導波路のコア部とフレキシブル電気配線基板の電気配線が、投影面において重ならないようにすることで、光電気混載基板の屈曲耐久性が飛躍的に向上することがわかる。
 本発明の光電気混載基板は、長時間にわたって屈曲を繰り返しても、光導波路フィルム部分に割れやクラックが発生しない、極めて良好な屈曲耐久性を有する。したがって、本発明の光電気混載基板は携帯電話などの電子機器に好適に用いることができ、ヒンジ部分において、Rが1.5~2mm程度の小さい曲げ半径で曲げることが要求される場合であっても、長期間にわたって良好な通信機能を維持することができ、電子機器自体の高い信頼性、及び耐久性を達成することができる。

Claims (5)

  1.  コアとクラッドを備えた光導波路フィルムとフレキシブル電気配線基板が接合されてなる光電気混載基板であって、屈曲部における光導波路のコア部とフレキシブル電気配線基板の電気配線が、投影面において重ならないことを特徴とする光電気混載基板。
  2.  光導波路フィルムとフレキシブル電気配線基板の接合が全面においてなされる請求項1に記載の光電気混載基板。
  3.  屈曲部以外の少なくとも一部分において、光導波路のコア部とフレキシブル電気配線基板の電気配線が、投影面において重なる請求項1又は2に記載の光電気混載基板。
  4.  請求項1~3のいずれかに記載の光電気混載基板及び該光電気混載基板を屈曲させるためのヒンジを有する電子機器であって、該ヒンジを中心に該光電気混載基板の一部が回転方向に可動する構造を有することを特徴とする電子機器。
  5.  請求項1~3のいずれかに記載の光電気混載基板を有し、該光電気混載基板は屈曲部を中心に屈曲した状態を維持したまま光電気混載基板の少なくとも一方の端部が水平方向に移動し、該移動に伴って屈曲部が移動する構造を有することを特徴とする電子機器。
PCT/JP2008/071202 2008-11-21 2008-11-21 光電気混載基板及び電子機器 WO2010058476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/130,383 US9069128B2 (en) 2008-11-21 2008-11-21 Opto-electric combined circuit board and electronic devices
PCT/JP2008/071202 WO2010058476A1 (ja) 2008-11-21 2008-11-21 光電気混載基板及び電子機器
JP2009525813A JPWO2010058476A1 (ja) 2008-11-21 2008-11-21 光電気混載基板及び電子機器
KR1020117011646A KR20110089408A (ko) 2008-11-21 2008-11-21 광전기 혼재기판 및 전자기기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071202 WO2010058476A1 (ja) 2008-11-21 2008-11-21 光電気混載基板及び電子機器

Publications (1)

Publication Number Publication Date
WO2010058476A1 true WO2010058476A1 (ja) 2010-05-27

Family

ID=42197923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071202 WO2010058476A1 (ja) 2008-11-21 2008-11-21 光電気混載基板及び電子機器

Country Status (4)

Country Link
US (1) US9069128B2 (ja)
JP (1) JPWO2010058476A1 (ja)
KR (1) KR20110089408A (ja)
WO (1) WO2010058476A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731410A1 (en) 2012-11-08 2014-05-14 Nitto Denko Corporation Opto-electric hybrid board
US8761558B2 (en) 2011-03-02 2014-06-24 Hitachi Metals, Ltd. Photoelectric transmission module
JP2014132365A (ja) * 2014-04-09 2014-07-17 Hitachi Metals Ltd 光伝送モジュール

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717961B2 (ja) * 2009-12-24 2015-05-13 日本メクトロン株式会社 フレキシブル回路基板の製造方法
US20130188324A1 (en) * 2010-09-29 2013-07-25 Posco Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate
KR102272216B1 (ko) * 2015-02-13 2021-07-02 삼성디스플레이 주식회사 타일드 표시 장치
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
US10141215B2 (en) 2016-11-03 2018-11-27 Rohinni, LLC Compliant needle for direct transfer of semiconductor devices
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10471545B2 (en) 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
US10062588B2 (en) 2017-01-18 2018-08-28 Rohinni, LLC Flexible support substrate for transfer of semiconductor devices
CN110998386B (zh) * 2017-08-16 2022-10-28 Agc株式会社 聚合物光波导
US10410905B1 (en) 2018-05-12 2019-09-10 Rohinni, LLC Method and apparatus for direct transfer of multiple semiconductor devices
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150660A (ja) * 2003-11-20 2005-06-09 Nikon Corp 両面フレキシブル配線板
JP2006042307A (ja) * 2004-03-12 2006-02-09 Matsushita Electric Ind Co Ltd 携帯機器
JP2006284925A (ja) * 2005-03-31 2006-10-19 Mitsui Chemicals Inc フレキシブル光電気混載基板およびこれを用いた電子機器
JP2007305936A (ja) * 2006-05-15 2007-11-22 Nippon Mektron Ltd 両面可撓性回路基板
JP2008158090A (ja) * 2006-12-21 2008-07-10 Hitachi Cable Ltd 光配線基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300141B (en) * 2005-06-30 2008-08-21 Mitsui Chemicals Inc Optical waveguide film and optoelectrical hybrid film
JP4711895B2 (ja) 2006-02-03 2011-06-29 ホシデン株式会社 光電フレキシブル配線板の接続構造、並びにコネクタ及び光電フレキシブル配線板
CN101421648B (zh) 2006-05-12 2010-12-15 三井化学株式会社 光电混载薄膜以及收放了它的电子设备
JP2008122908A (ja) * 2006-10-16 2008-05-29 Hitachi Chem Co Ltd 接着層付き光回路基板の製造方法及び接着層付き光回路基板
WO2008136285A1 (ja) * 2007-04-27 2008-11-13 Hitachi Chemical Company, Ltd. 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP2009058923A (ja) 2007-04-27 2009-03-19 Hitachi Chem Co Ltd 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
KR20100110350A (ko) 2008-02-01 2010-10-12 히다치 가세고교 가부시끼가이샤 광전기 혼재기판 및 전자기기
JP2008262244A (ja) 2008-08-05 2008-10-30 Mitsui Chemicals Inc フレキシブル光電気混載基板およびこれを用いた電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150660A (ja) * 2003-11-20 2005-06-09 Nikon Corp 両面フレキシブル配線板
JP2006042307A (ja) * 2004-03-12 2006-02-09 Matsushita Electric Ind Co Ltd 携帯機器
JP2006284925A (ja) * 2005-03-31 2006-10-19 Mitsui Chemicals Inc フレキシブル光電気混載基板およびこれを用いた電子機器
JP2007305936A (ja) * 2006-05-15 2007-11-22 Nippon Mektron Ltd 両面可撓性回路基板
JP2008158090A (ja) * 2006-12-21 2008-07-10 Hitachi Cable Ltd 光配線基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIHIRO KURODA ET AL.: "Hikari Haisen'yo no Film-gata Hikari Doharo Zairyo", CONVERTECH, vol. 36, no. 10, 15 October 2008 (2008-10-15), pages 77 - 81 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761558B2 (en) 2011-03-02 2014-06-24 Hitachi Metals, Ltd. Photoelectric transmission module
EP2731410A1 (en) 2012-11-08 2014-05-14 Nitto Denko Corporation Opto-electric hybrid board
US9274273B2 (en) 2012-11-08 2016-03-01 Nitto Denko Corporation Opto-electric hybrid board
JP2014132365A (ja) * 2014-04-09 2014-07-17 Hitachi Metals Ltd 光伝送モジュール

Also Published As

Publication number Publication date
US9069128B2 (en) 2015-06-30
US20110274389A1 (en) 2011-11-10
JPWO2010058476A1 (ja) 2012-04-12
KR20110089408A (ko) 2011-08-08

Similar Documents

Publication Publication Date Title
WO2010058476A1 (ja) 光電気混載基板及び電子機器
WO2009096067A1 (ja) 光電気混載基板及び電子機器
EP2159262B1 (en) Optical waveguide comprising a resin film
WO2011046115A1 (ja) 光導波路基板及びその製造方法
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
JP2007128028A (ja) フレキシブル光導波路及びその製造方法
JP5212141B2 (ja) フレキシブル光導波路の製造方法
JP5109934B2 (ja) フレキシブル光電気混載基板及び電子機器
KR101665740B1 (ko) 광도파로의 제조방법, 광도파로 및 광전기 복합배선판
JP5228947B2 (ja) フレキシブル光導波路及びその製造方法
JP2010164654A (ja) 複合光導波路
WO2009125735A1 (ja) 電子機器
JP2010197985A (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP2010271371A (ja) フレキシブル光導波路
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板
TWI434087B (zh) 光電混載基板及電子機器
JP2010271370A (ja) フレキシブル光導波路
JP2010271369A (ja) フレキシブル光導波路
JP2010286674A (ja) 光導波路及び光電気複合配線板
JP2012155036A (ja) ミラー付き光導波路及びその製造方法、ミラー付きフレキシブル導波路及びその製造方法、ミラー付き光ファイバコネクタ及びその製造方法
JP2010079058A (ja) 光電気複合基板の製造方法
JP2011017993A (ja) 光導波路及び光電気複合配線板
JP2011017992A (ja) 光導波路及び光電気複合配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009525813

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011646

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13130383

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08878273

Country of ref document: EP

Kind code of ref document: A1