しかしながら、特許文献3から5に記載されたトランジスタの遮光構造によれば、半導体膜の高濃度不純物領域において、データ線及び画素電極と電気的に接続される部分の側面について、この側面の側から進行してくる光を遮光することは困難であるという技術的問題点がある。ここに、半導体膜において、特に画素電極と電気的に接続される側のLDD領域は、データ線と電気的に接続される側のLDD領域と比較して、相対的に光リーク電流が発生し易い傾向にある。従って、画素電極と電気的に接続される側において、高濃度不純物領域における画素電極との電気的な接続部分の側から、その側面に向かって進行してくる光がLDD領域に照射されることにより、光リーク電流が発生し易くなり、トランジスタの誤動作等の不具合が生じ得る。
ここに、特許文献6に開示された遮光構造によれば、半導体膜の高濃度不純物領域において、データ線及び画素電極と電気的に接続される部分の側面について、この側面の側から進行してくる光を遮光する。しかしながら、かかる側面側の遮光は、走査線とは別層に設けられ、コンタクトホール内にまで延設された遮光膜による。従って、かかる遮光構造を形成するための製造プロセスがより煩雑となるおそれがあるという技術的問題点がある。
本発明は上記問題点等に鑑みてなされたものであり、LDD構造を有するトランジスタにおける光リーク電流をより有効に且つより簡易な構成により低減することが可能な遮光構造を有する電気光学装置、及びこのような電気光学装置を具備してなる電子機器を提供することを課題とする。
本発明の電気光学装置は上記課題を解決するために、基板と、前記基板上の表示領域で互いに交差するデータ線及び走査線と、前記データ線及び前記走査線の交差に対応して設けられた画素電極と、(i)前記走査線より第1絶縁膜を介して上層側に配置され、前記表示領域における一の方向に沿ったチャネル長を有するチャネル領域と、前記データ線に電気的に接続されたデータ線側ソースドレイン領域と、前記画素電極に電気的に接続された画素電極側ソースドレイン領域と、前記チャネル領域及び前記データ線側ソースドレイン領域間に形成された第1の接合領域と、前記チャネル領域及び前記画素電極側ソースドレイン領域間に形成された第2の接合領域とを有する半導体膜と、(ii)該半導体膜より上層側に配置され、前記チャネル領域に重なるゲート電極とを含むトランジスタと、前記ゲート電極より第2絶縁膜を介して上層側に配置され、前記基板上で平面的に見て、前記ゲート電極及び前記第2の接合領域と少なくとも部分的に重なるように形成されると共に前記ゲート電極と電気的に接続された遮光部とを備え、前記第1及び第2絶縁膜には、前記遮光部と前記ゲート電極とを電気的に接続する第1部分と、該第1部分から前記一の方向に交わる他の方向に沿って延在し、前記半導体膜の脇で前記遮光部と前記走査線とを電気的に接続する第2部分とを有するコンタクトホールが形成される。
本発明の電気光学装置では、例えば、データ線から画素電極への画像信号の供給が画素毎に制御され、所謂アクティブマトリクス方式による画像表示が可能となる。画像信号は、データ線及び画素電極間に電気的に接続されたスイッチング素子であるトランジスタが、走査線から供給される走査信号に基づいてオンオフされることによって、所定のタイミングでデータ線からトランジスタを介して画素電極に供給される。画素電極は、データ線及び走査線の交差に対応して、基板上において表示領域となるべき領域にマトリクス状に複数設けられる。
トランジスタは、チャネル領域、データ線側ソースドレイン領域及び画素電極側ソースドレイン領域を有する半導体膜、及びチャネル領域に重なるゲート電極を含む。
チャネル領域は、表示領域における一の方向に沿ったチャネル長を有する。本発明に係る「一の方向」とは、例えば基板上でマトリクス状に規定された複数の画素の行方向、即ち複数のデータ線が配列される配列方向或いは複数の走査線の各々が延びる方向(即ちX方向)、又は例えば基板上でマトリクス状に規定された複数の画素の列方向、即ち複数の走査線が配列される配列方向或いは複数のデータ線の各々が延びる方向(即ちY方向)を意味する。
データ線側ソースドレイン領域はデータ線と互いに電気的に接続され、画素電極側ソースドレイン領域は画素電極と互いに電気的に接続される。更に、半導体膜のチャネル領域とデータ線側ソースドレイン領域との間には第1の接合領域が形成され、半導体膜のチャネル領域と画素電極側ソースドレイン領域との間には第2の接合領域が形成される。第1及び第2の接合領域は、例えば、トランジスタがLDD構造を有する場合におけるLDD領域(即ち、例えばイオンインプランテーション法等の不純物打ち込みによって半導体膜にソースドレイン領域よりも少量の不純物を打ち込んでなる領域)を意味する。また、この場合、データ線側及び画素電極側ソースドレイン領域は夫々、LDD領域よりも高濃度の不純物領域として形成される。
トランジスタは、走査線より上層側に配置され、第1絶縁膜により層間絶縁される。走査線は、基板上で平面的に見て半導体膜に重なるように配置されることにより、半導体膜に対して下層側から進行してくる光を遮光することが可能となる。
また、遮光部は、トランジスタより上層側に配置され、第2絶縁膜により層間絶縁される。遮光部は、基板上で平面的に見て、トランジスタに対して、ゲート電極及び半導体膜の第2の接合領域の一例である画素電極側LDD領域と少なくとも部分的に重なるように配置される。従って、第2の接合領域に対して、走査線によって下層側から進行してくる光を遮光すると共に、遮光部によって上層側から進行してくる光を遮光することが可能となる。遮光部はゲート電極と重なる部分において、ゲート電極と電気的に接続される。
第1及び第2絶縁膜には、ゲート電極及び遮光部ならびに遮光部及び走査線を電気的に接続するコンタクトホールが開口される。コンタクトホールの一部は、第1部分として第2絶縁膜に開口され、コンタクトホールの他部には第1及び第2絶縁膜に開口される第2部分が含まれる。第1部分は、半導体膜のチャネル領域上においてゲート電極と重なるように開口される。遮光部は、ゲート電極と、第1部分を介して電気的に接続される。第2部分は、第1部分から、表示領域における一の方向に交わる他の方向に沿って延在する。遮光部は、半導体膜の脇において走査線と第2部分を介して電気的に接続される。遮光部は、典型的には、半導体膜よりも下層側の走査線を第1の走査線とし、これに対して第2部分を介して電気的に接続されると共に一の方向に沿って延在する第2の走査線の一部として形成される。
ここに、第2部分は、チャネル領域上の第1部分からその脇に延設され、更に、第2の接合領域から画素電極側ソースドレイン領域の画素電極と接続される部分にまで、半導体膜に沿って延設されるのが好ましい。このように構成すれば、第2部分内に導電膜(例えば、遮光部の一部)が成膜されることで、チャネル領域の少なくとも一部から、第2の接合領域及び画素電極側ソースドレイン領域の画素電極と電気的に接続される部分を含む領域において、半導体膜の側面に向かって進行してくる光を少なくとも部分的に遮光することができる。
従って、本発明の電気光学装置では、遮光部を、ゲート電極及び走査線の各々に対して、共通のコンタクトホールを介して電気的に接続することができる。よって、遮光部を、ゲート電極及び走査線の各々と、別個のコンタクトホールを介して電気的に接続する構成と比較して、製造プロセスをより簡略化させることができる。
また、本発明の電気光学装置では、半導体膜において、第1の接合領域より相対的に光リーク電流の生じ易い傾向にある第2の接合領域に向かって、走査線及び遮光部によって下層側及び上層側から進行してくる光を遮光すると共に、第2部分の存在により、側面側から進行してくる光を遮光することもできる。更には、第2部分において、画素電極側ソースドレイン領域及び該領域の画素電極と電気的に接続される部分の側から、その側面に向かって進行してくる光を遮光することができる。これにより、第2の接合領域に向かって、画素電極側ソースドレイン領域、特に当該領域の画素電極と電気的に接続される部分の側から進行し、その側面に照射される光をより低減できる。よって、第2の接合領域に対する遮光性をより向上させることが可能となる。
従って、以上説明したような本発明の電気光学装置においては、トランジスタにおける光リーク電流をより確実に低減することができ、トランジスタの誤動作やフリッカ等の表示不良を防止して、電気光学装置における表示品位を向上させることが可能となる。また、第2部分内に、遮光部として例えば下層側の第1の走査線に対して二重配線された上層側の走査線の一部が延設される。この場合、第2の走査線とは別途に、上述したような半導体膜の側面側を遮光するための遮光膜を形成なくてもよいため、より簡易な構成でトランジスタに対する遮光構造を設けることができる。
本発明の電気光学装置の一態様では、前記ゲート電極は、前記第1及び第2絶縁膜より、前記コンタクトホールを形成する際のエッチング処理におけるエッチングレートが小さくなるような導電材料により形成される。
この態様では、電気光学装置の製造プロセスにおいて、コンタクトホールは、第1及び第2絶縁膜に対して例えばエッチング処理を施すことにより開口される。この場合、ゲート電極は、第1及び第2絶縁膜よりエッチング処理におけるエッチングレートが小さくなるような導電材料により形成するとよい。これにより、ゲート電極上にコンタクトホールの第1部分を開口する際に、ゲート電極がエッチング処理により損傷し、更には半導体膜のチャネル領域まで損傷する事態を防止することができる。
本発明の電気光学装置の他の態様では、前記第2部分は、前記基板上で平面的に見て、前記半導体膜における、前記第2の接合領域と、前記画素電極側ソースドレイン領域のうち前記画素電極と電気的に接続される第1接続部分とを含む第1部分領域に対して、前記半導体膜に沿って延在する第1延在部分を有する。
この態様によれば、第2部分の第1延在部分において、半導体膜における第1部分領域に対してその側面に向かって進行してくる光を少なくとも部分的に遮光することができる。第1延在部分は、第2部分における、半導体膜の第1部分領域に沿って延在する一部を構成する。第1部分領域には、第2の接合領域、更には画素電極側ソースドレイン領域及び画素電極側ソースドレイン領域の第1接続部分が含まれる。尚、第1接続部分において、画素電極側ソースドレイン領域は画素電極と電気的に接続される。
特に、第1延在部分が、画素電極側ソースドレイン領域に沿い、第1接続部分の脇にまで延設されることで、第1接続部分の側から、その側面に向かって進行してくる光を少なくとも部分的に遮光することができ、かかる光を低減して、第2の接合領域に照射されるのをより確実に防止することができる。
この、第2部分が第1延在部分を有する態様では、前記第1延在部分は、前記基板上で平面的に見て、前記半導体膜の両脇のうち一方から他方へ前記第1部分領域を囲うように、前記半導体膜の周囲に部分的且つ連続的に形成されるように構成してもよい。
このように構成すれば、コンタクトホールにおいて、基板上で平面的に見て、半導体膜の両脇に第2部分が形成される。第2部分において、第1延在部分は、半導体膜の両脇のうち一方から他方へ、基板上で平面的に見て、半導体膜の周囲に部分的且つ連続的に形成される。よって、基板上で平面的に見て、半導体膜の第1部分領域に対して、その両脇の一方から他方へ連続的に第1延在部分が当該領域を囲うように形成される。
従って、半導体膜の両脇において、チャネル領域に対して側面側から進行してくる光を少なくとも部分的に遮光すると共に、第1延在部分によって、第2の接合領域に対して側面側から進行してくる光を遮光することが可能となる。また、画素電極側ソースドレイン領域については、その両脇の一方から他方に向かって連続的に、側面側から進行してくる光を遮光することが可能となる。よって、第1延在部分は、半導体膜の周囲における、画素電極側ソースドレイン領域の第1接続部分を囲う一部にまで形成される。従って、第1接続部分の側面に向かって進行してくる光を、より広い領域で遮光することができるため、かかる光をより確実に低減することが可能となる。
本発明の電気光学装置の他の態様では、前記第2部分は、前記基板上で平面的に見て、前記半導体膜における、前記第1の接合領域と、前記データ線側ソースドレイン領域のうち前記データ線と電気的に接続される第2接続部分とを含む第2部分領域に対して、前記半導体膜に沿って延在する第2延在部分を有する。
この態様では、基板上で平面的に見て、コンタクトホールの第2部分は、チャネル領域上の第1部分からその脇に延設され、更に、データ線と電気的に接続される側にまで半導体膜に沿って延設される。より具体的には、第2部分は第2延在部分を有し、第2延在部分は、半導体膜において第2部分領域に対して沿うように延設される。第2部分領域には、第1の接合領域の一例としてデータ線側LDD領域、更にはデータ線側ソースドレイン領域及びデータ線側ソースドレイン領域の第2接続部分が含まれる。第2接続部分において、データ線側ソースドレイン領域はデータ線と電気的に接続される。
従って、この態様では、第2延在部分が、半導体膜における第2部分領域の脇に延設され、導電膜が第2延在部分内に形成されることで、第2部分領域に対して、その側面側から進行してくる光を少なくとも部分的に遮光することができる。よって、第1の接合領域について、その側面側から進行してくる光を遮光することが可能となる。また、データ線側ソースドレイン領域の第2接続部分の脇にまで第2延在部分が延設されることで、第2接続部分について、その側面に向かって進行してくる光を少なくとも部分的に遮光することができる。
ここに、基板上で平面的に見て、半導体膜の周囲において、第2部分に第1延在部分に加えて第2延在部分が形成されるようにすれば、半導体膜の側面に向かって進行する光を、より広い領域で遮光することが可能となる。よって、半導体膜の側面に向かって進行し、その側面側から照射される光をより低減できる。
この、第2部分が第2延在部分を有する態様では、前記第2延在部分は、前記基板上で平面的に見て、前記半導体膜の両脇に形成されるように構成してもよい。
このように構成すれば、基板上で平面的に見て第2部分領域の両脇において、側面側から進行してくる光を遮光することが可能となる。よって、第1の接合領域の両脇に加えて、データ線側ソースドレイン領域の第2接続部分の両脇においても、側面側から進行してくる光を遮光することが可能となる。従って、第1の接合領域からデータ線側ソースドレイン領域の第2接続部分にかけて、その側面に向かって進行し、側面側から照射される光をより低減することが可能となる。
この、第2延在部分が半導体膜の両脇に形成される態様では、前記第2延在部分は、前記基板上で平面的に見て、前記半導体膜の両脇のうち一方から他方へ前記第2部分領域を囲うように、前記半導体膜の周囲に部分的且つ連続的に形成されるように構成してもよい。
このように構成すれば、データ側ソースドレイン領域について、その両脇の一方から他方に向かって連続的に、側面側から進行してくる光を遮光することが可能となる。この場合、第2延在部分は、半導体膜の周囲における、データ線側ソースドレイン領域の第2接続部分を囲う一部にまで形成される。従って、第2接続部分の側面に向かって進行してくる光を、より広い領域で遮光することができるため、かかる光をより確実に低減することが可能となる。
本発明の電気光学装置の他の態様では、前記遮光部は、前記ゲート電極と少なくとも部分的に重なると共に、前記コンタクトホールにおける前記第1部分内にまで連続的に形成され、前記ゲート電極と電気的に接続される第3接続部分と、該第3接続部分から延設され、前記コンタクトホールにおける前記第2部分内にまで連続的に形成され、前記走査線と電気的に接続される第4接続部分とを有する。
この態様では、コンタクトホール内には遮光部の第3及び第4接続部分が連続的に延設されることで、遮光部とは別途、上述したような半導体膜の側面側を遮光するための遮光膜を形成しなくてもよいため、より簡易な構成でトランジスタに対する遮光構造を設けることができる。
本発明の電気光学装置の他の態様では、前記遮光部より上層側に、下部容量電極と、該下部容量電極に誘電体膜を介して対向する上部容量電極とを有する蓄積容量を備える。
この態様では、蓄積容量は、トランジスタ及び画素電極間に、画素電極と電気的に並列に接続されて形成される。これにより、蓄積容量は、画像信号の供給に応じて各画素電極の電位を一時的に保持する保持容量として機能し得る。従って、画素電極における電位保持特性が向上し、コントラスト向上やフリッカの低減といった表示特性の向上が可能となる。
また、蓄積容量は、トランジスタの上層側に遮光部と共に配置される。よって、下部容量電極又は上部容量電極が少なくとも部分的に遮光性を有する導電材料により形成されることで、トランジスタの半導体膜に対して上層側から進行してくる光を遮光することが可能となる。
この、蓄積容量を備える態様では、前記下部容量電極及び前記上部容量電極のうちの少なくとも一方の電極は遮光性を有する導電材料により形成されるように構成してもよい。
このように構成すれば、トランジスタの半導体膜に対して上層側から進行してくる光を遮光することが可能となる。従って、半導体膜において、チャネル領域に加えて、第2の接合領域から画素電極側ソースドレイン領域の第1接続部分、更には第1の接合領域からデータ線側ソースドレイン領域の第2接続部分に対して、それよりも上層側から進行してくる光を遮光し、かかる光をより低減できる。
この、下部又は上部容量電極が遮光性を有する態様では、前記少なくとも一方の電極は、前記第1部分領域を少なくとも部分的に覆うように形成されるように構成してもよい。
このように構成すれば、半導体膜において、第2の接合領域から画素電極側ソースドレイン領域の第1接続部分に対して、それよりも上層側から進行してくる光をより確実に低減できる。
本発明の電気光学装置の他の態様では、前記遮光部は、遮光性を有する導電材料により形成されており、前記走査線を第1の走査線とし、該第1の走査線に対して前記他の方向に沿って並走する第2の走査線として形成される。
この態様では、第1及び第2の走査線が表示領域において他の方向に沿って二重配線されるため、走査線の電気的な抵抗を全体的に低くすることが可能となる。また、第1及び第2の走査線の一方に断線等の不具合が生じても、他方を冗長的に機能させることができるため、電気光学装置の信頼性を向上させることができる。
本発明の電子機器は上記課題を解決するために、上述した本発明の電気光学装置(但し、その各種態様も含む)を具備してなる。
本発明の電子機器によれば、上述した本発明の電気光学装置を具備してなるので、高品位な表示を行うことが可能な、投射型表示装置、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネルなどの各種電子機器を実現できる。
本発明のこのような作用及び他の利得は次に説明する実施するための最良の形態から明らかにされる。
以下図面を参照しながら、本発明の電気光学装置及び電子機器の各実施形態を説明する。尚、本実施形態では、電気光学装置の一例として、駆動回路内蔵型のTFTアクティブマトリクス駆動方式の液晶装置を例に挙げる。
<第1実施形態>
先ず、本実施形態に係る液晶装置の全体構成について、図1及び図2を参照して説明する。ここに図1は、TFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た液晶装置の平面図であり、図2は、図1のH−H’線断面図である。
図1及び図2において、本実施形態に係る液晶装置では、TFTアレイ基板10と対向基板20とが対向配置されている。TFTアレイ基板10は例えば石英基板、ガラス基板、シリコン基板等の透明基板である。対向基板20も好ましくはTFTアレイ基板10と同様に透明基板である。TFTアレイ基板10と対向基板20との間に液晶層50が封入されている。TFTアレイ基板10と対向基板20とは、画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。尚、本発明に係る「表示領域」の一例が、画像表示領域10aに相当する。
シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。シール材52中には、TFTアレイ基板10と対向基板20との間隔(即ち、基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。本実施形態に係る液晶装置は、プロジェクタのライトバルブ用として小型で拡大表示を行うのに適している。
シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。
周辺領域のうち、シール材52が配置されたシール領域の外側に位置する領域には、データ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられている。走査線駆動回路104は、この一辺に隣接する2辺に沿い、且つ、額縁遮光膜53に覆われるようにして設けられている。更に、このように画像表示領域10aの両側に設けられた二つの走査線駆動回路104間をつなぐため、TFTアレイ基板10の残る一辺に沿い、且つ、額縁遮光膜53に覆われるようにして複数の配線105が設けられている。
対向基板20の4つのコーナー部に対して、両基板間において上下導通材106が配置されている。他方、TFTアレイ基板10にはこれらのコーナー部に対向する領域において上下導通端子が設けられている。これらにより、TFTアレイ基板10と対向基板20との間で電気的な導通をとることができる。
図2において、TFTアレイ基板10上には、駆動素子である画素スイッチング用のTFTや走査線、データ線等の配線が作り込まれた積層構造が形成されている。画像表示領域10aには、画素スイッチング用TFTや走査線、データ線等の配線の上層に画素電極9aがマトリクス状に設けられている。画素電極9a上には、配向膜(図2中、図示省略)が形成されている。他方、対向基板20におけるTFTアレイ基板10との対向面上に、遮光膜23が形成されている。遮光膜23は、例えば遮光性金属膜等から形成されており、対向基板20上の画像表示領域10a内で、例えば格子状等にパターニングされている。そして、遮光膜23上(図2中、遮光膜23より下側)に、ITO(Indium Tin Oxide)等の透明材料からなる対向電極21が複数の画素電極9aと対向してベタ状に形成されている。対向電極21上(図2中、対向電極21より下側)には配向膜が形成されている(図2中、図示省略)。また、液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
尚、図1及び図2に示したTFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等の駆動回路に加えて、画像信号線上の画像信号をサンプリングしてデータ線に供給するサンプリング回路、複数のデータ線に所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
次に、本実施形態に係る液晶装置の画素部の電気的な構成について、図3を参照して説明する。ここに図3は、本実施形態に係る液晶装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図である。
図3において、画像表示領域10aを構成するマトリクス状に形成された複数の画素の夫々には、画素電極9a及び本発明に係る「トランジスタ」の一例としてのTFT30が形成されている。TFT30は、画素電極9aに電気的に接続されており、液晶装置の動作時に画素電極9aをスイッチング制御する。画像信号が供給されるデータ線6aは、TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
TFT30のゲートに走査線11が電気的に接続されており、本実施形態に係る液晶装置は、所定のタイミングで、走査線11にパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snが所定のタイミングで書き込まれる。画素電極9aを介して電気光学物質の一例としての液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板に形成された対向電極との間で一定期間保持される。
液晶層50(図2参照)を構成する液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として液晶装置からは画像信号に応じたコントラストをもつ光が出射される。
ここで保持された画像信号がリークすることを防ぐために、画素電極9aと対向電極21(図2参照)との間に形成される液晶容量と並列に蓄積容量70が付加されている。蓄積容量70は、画像信号の供給に応じて各画素電極9aの電位を一時的に保持する保持容量として機能する容量素子である。蓄積容量70の一方の電極は、画素電極9aと並列してTFT30のドレインに接続され、他方の電極は、定電位となるように、電位固定の容量線300に接続されている。蓄積容量70によれば、画素電極9aにおける電位保持特性が向上し、コントラスト向上やフリッカの低減といった表示特性の向上が可能となる。尚、蓄積容量70は、後述するように、TFT30へ入射する光を遮る内蔵遮光膜としても機能する。
次に、上述の動作を実現する画素部の具体的な構成について、図4及び図5を参照して説明する。ここに図4は、相隣接する複数の画素部の平面図であり、図5は、図4のA−A’線断面図である。尚、図4及び図5では、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。この点については、後述する各図についても同様である。図4及び図5では、説明の便宜上、画素電極9aより上側に位置する部分の図示を省略している。
図4において、画素電極9aは、TFTアレイ基板10上に、マトリクス状に複数設けられている。尚、図4中には、任意の一画素に着目して、かかる画素における画素電極9aの構成を概略的に図示してある。画素電極9aの縦横の境界にそれぞれ沿って、データ線6a及び走査線11が設けられている。即ち、走査線11は、X方向に沿って延びており、データ線6aは、走査線11と交差するように、Y方向に沿って延びている。尚、走査線11は、下側遮光膜を兼ねる第1の走査線11aと、第1の走査線11aの上層側に形成された第2の走査線11bとを含み、X方向に沿って二重配線されてなる。走査線11及びデータ線6aが互いに交差する個所の各々には画素スイッチング用のTFT30が設けられている。このように、第1の走査線11a及び第2の走査線11bが二重配線されるため、走査線11の電気的な抵抗を全体的に低くすることが可能となる。また、第1の走査線11a及び第2の走査線11bの一方に断線等の不具合が生じても、他方を冗長的に機能させることができるため、液晶装置の信頼性を向上させることができる。
走査線11、データ線6a、蓄積容量70、TFT30、及び中継層93は、TFTアレイ基板10上で平面的に見て、画素電極9aに対応する各画素の開口領域(即ち、各画素において、表示に実際に寄与する光が透過又は反射される領域)を囲む非開口領域内に配置されている。即ち、これらの走査線11、データ線6a、蓄積容量70、TFT30、及び中継層93は、表示の妨げとならないように、各画素の開口領域ではなく、非開口領域内に配置されている。
以下、TFTアレイ基板10上の画素部の積層構造について第1層から順に、説明する。
第1層には、導電性ポリシリコン等により、例えば200nmの膜厚で第1の走査線11aが設けられている。第1の走査線11aは、図4に示すようにX方向に沿って延びる部分と共に、該部分からTFT30のチャネル領域1a'と重なるようにY方向に沿って延在する部分を有している。
第1の走査線11aは、図4に示すように、TFT30のチャネル領域1a'、データ線側LDD領域1b及び画素電極側LDD領域1c、並びにデータ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eに対向する領域を含むように、好ましくは形成される。よって、第1の走査線11aによって、TFTアレイ基板10における裏面反射や、複板式のプロジェクタ等で他の液晶装置から発せられ合成光学系を突き抜けてくる光などの、戻り光に対してTFT30のチャネル領域1a'を殆ど或いは完全に遮光できる。即ち、第1の走査線11aは、走査信号を供給する配線として機能すると共に戻り光に対するTFT30の下側遮光膜として機能することが可能である。
図5において、第1層の第1の走査線11a及び第2層のTFT30間は、下地絶縁膜12によって絶縁されている。下地絶縁膜12は、本発明に係る「第1絶縁膜」の一例である。下地絶縁膜12は、第1の走査線11aからTFT30を絶縁する機能の他、TFTアレイ基板10の全面に形成されることにより、TFTアレイ基板10の表面の研磨時における荒れや、洗浄後に残る汚れ等で画素スイッチング用のTFT30の特性の劣化を防止する機能を有する。
第2層は、2層構造となっている。第2層の1層目に、半導体膜1a及びゲート電極3aを含むTFT30が設けられると共に、第2層の2層目には、第2の走査線11bが設けられている。
まず、第2層の1層目のTFT30の構成について説明する。図4又は図5に示すように、半導体膜1aは、例えばポリシリコンから膜厚が55nmとして形成され、Y方向に沿ったチャネル長を有するチャネル領域1a'、データ線側LDD領域1b及び画素電極側LDD領域1c、並びにデータ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eからなる。即ち、TFT30はLDD構造を有している。尚、データ線側LDD領域1bは、本発明に係る「第1の接合領域」の一例であり、画素電極側LDD領域1cは、本発明に係る「第2の接合領域」の一例である。
データ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eは、チャネル領域1a'を基準として、Y方向に沿ってほぼミラー対称に形成されている。データ線側LDD領域1bは、チャネル領域1a'及びデータ線側ソースドレイン領域1d間に形成されている。画素電極側LDD領域1cは、チャネル領域1a'及び画素電極側ソースドレイン領域1e間に形成されている。データ線側LDD領域1b、画素電極側LDD領域1c、データ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eは、例えばイオンインプランテーション法等の不純物打ち込みによって半導体膜1aに不純物を打ち込んでなる不純物領域である。データ線側LDD領域1b及び画素電極側LDD領域1cはそれぞれ、データ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eよりも不純物の少ない低濃度な不純物領域として形成される。このような不純物領域によれば、TFT30の非動作時において、データ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eに流れるオフ電流を低減し、且つTFT30の動作時に流れるオン電流の低下を抑制できる。尚、TFT30は、LDD構造を有することが好ましいが、データ線側LDD領域1b、画素電極側LDD領域1cに不純物打ち込みを行わないオフセット構造であってもよいし、ゲート電極をマスクとして不純物を高濃度に打ち込んでデータ線側ソースドレイン領域及び画素電極側ソースドレイン領域を形成する自己整合型であってもよい。
ゲート電極3aは、半導体膜1aより上層側に平面的に見てチャネル領域1a'に重なるように配置され、半導体膜1aとゲート絶縁膜2によって絶縁されている。ゲート電極3aは、例えば膜厚が50nmとして形成される。
第2層の2層目には、本発明に係る「遮光部」の一例である第2の走査線11bが設けられている。第2の走査線11bは、例えば導電性ポリシリコンとタングステンシリサイド(WSi)とを夫々膜厚が60nmとして積層することにより形成される。第2の走査線11bは、図4に示すように、平面的に見てチャネル領域1a'上にゲート電極3aと重なってY方向に沿って延在する部分と、該部分から第1の走査線11aに並走してX方向に延在する部分とを有している。第2の走査線11bにおいて、平面的に見て、Y方向に沿って延在する部分は、ゲート電極3a及び画素電極側LDD領域1cと少なくとも部分的に重なるように形成される。
図5において、第2層及び第3層間には、互いを層間絶縁する層間絶縁膜41が設けられる。層間絶縁膜41は、第2層の1層目及び2層目間を層間絶縁する、下層側の絶縁膜41aと、第2層の2層目及び第3層間を層間絶縁する、上層側の絶縁膜41bとから構成される。
層間絶縁膜41のうち、下層側の絶縁膜41aは、本発明に係る「第2絶縁膜」の一例に相当し、膜厚が例えば300nm程度として形成される。下層側の絶縁膜41a及び下地絶縁膜12には、コンタクトホール801が開口されている。図5において、コンタクトホール801は、平面的に見てゲート電極3aに重なり、下層側の絶縁膜41aに開口される第1部分801aと、該第1部分801aから図4に示すX方向に沿って半導体膜1aの脇に延設され、下層側の絶縁膜41aを貫通して下地絶縁膜12にまで開口される第2部分801bとを有する。
図4又は図5に示すように、第2の走査線11bにおいて、ゲート電極3aと少なくとも部分的に重なる一部が第3接続部分111aとして第1部分801a内にまで連続的に形成され、ゲート電極3aと電気的に接続される。また、第2の走査線11bにおいて、第3接続部分111aから連続的に第4接続部分111bが第2部分801b内にまで連続的に形成され、第2部分801b内で第1の走査線11aと電気的に接続される。
また、層間絶縁膜41のうち、上層側の絶縁膜41bは、膜厚が例えば300nm程度として形成される。尚、下層側及び上層側の絶縁膜41a及び41bには、画素電極側ソースドレイン領域1eと蓄積容量70の下部容量電極71とを電気的に接続するためのコンタクトホール83が開口されると共に、データ線側ソースドレイン領域1dとデータ線6aとを電気的に接続するためのコンタクトホール81も、開口される。
層間絶縁膜41より上層側の第3層には、下部容量電極71、及び誘電体膜75を介して下部容量電極71と対向する上部容量電極300を有する蓄積容量70が形成される。
上部容量電極は、容量線300と一体的に形成される。容量線300は、例えば、膜厚が夫々50nmの2層の窒化チタン(TiN)膜間に、膜厚が150nmのアルミニウム(Al)膜が挟持されてなる3層構造を有している。尚、2層の窒化チタン(TiN)膜のうち一方は、膜厚が例えば100nmとして形成されてもよい。
容量線300は、その詳細な構成については図示を省略してあるが、画素電極9aが配置された画像表示領域10aからその周囲に延設され、定電位源と電気的に接続され、固定電位に維持される。容量線300は、図4において、半導体膜1a上において、チャネル領域1a'と、データ線側及び画素電極側LDD領域1b及び1cと、画素電極側ソースドレイン領域1eとに重なるように、Y方向に沿って延在する部分と、該部分からX方向に沿って延在する部分を有する。容量線300において、Y方向に沿って延在する部分と、下部容量電極71と重なる、X方向に沿って延在する一部が上部容量電極として機能する。よって、上部容量電極は固定電位に維持される、固定電位側容量電極として機能する。
下部容量電極71は、図4において、Y方向及びX方向の各々に、上部容量電極300と重なるように延在する部分を有している。そして、Y方向に延在する部分において、画素電極側ソースドレイン領域1eと重なると共に、コンタクトホール83を介して電気的に接続される。また、下部容量電極71は、X方向に延在する部分において、容量線300の配置を避けて、Y方向に延在し、容量線300より露出する部分を有する。下部容量電極71は、このように容量線300より露出する部分において、コンタクトホール84を介して第4層目の中継層93と電気的に接続される。中継層93は、コンタクトホール85を介して画素電極9aと電気的に接続される。従って、下部容量電極71は、画素電位に維持される、画素電位側容量電極として機能する。
誘電体膜75は、例えばHTO(High Temperature Oxide)膜、LTO(Low Temperature Oxide)膜等の酸化シリコン膜、或いは窒化シリコン膜等から構成された単層構造、或いは多層構造を有している。
図5において、蓄積容量70より上層側には、第3層及び第4層間を層間絶縁する層間絶縁膜42が形成される。コンタクトホール84は層間絶縁膜42を貫通して、下部容量電極71の表面に達するように開口され、コンタクトホール81は、層間絶縁膜42及び41、更にはゲート絶縁膜2を貫通して開口され、半導体膜1aの表面に達する。
図4及び図5において、第4層には、データ線6a及び中継層93が設けられている。
図5において、データ線6aは、コンタクトホール81を介して、半導体膜1aのデータ線側ソースドレイン領域1dと電気的に接続されている。また、中継層93は、コンタクトホール84を介して下部容量電極71と電気的に接続されている。データ線6a及び中継層93は、例えば金属膜等の導電材料で構成される薄膜を層間絶縁膜42上に薄膜形成法を用いて形成しておき、当該薄膜を部分的に除去、即ちパターニングすることによって相互に離間させた状態で形成される。従って、データ線6a及び中継層93を同一工程で形成できるため、装置の製造プロセスを簡便にできる。尚、例えばデータ線6a及び中継層93は夫々、膜厚が20nmのチタン(Ti)膜、膜厚が50nmのTiN膜、膜厚が350nmのAl膜、膜厚が150nmのTiN膜を積層してなる4層構造を有する。
ここに、半導体膜1aにおいてチャネル領域1a'、データ線側LDD領域1b及び画素電極側LDD領域1c、並びにデータ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eに対向する領域に、Y方向に沿ってデータ線6aが配線されている。よって、半導体膜1aにおける、これらの各領域に対して上層側から進行する光を、データ線6aによって遮光することが可能となる。
図5において、データ線6a及び中継層93より上層側には、第4層及び第5層間を層間絶縁する層間絶縁膜43が形成されている。コンタクトホール85は、層間絶縁膜43を貫通して開口され、中継層93の表面に達する。
図4及び図5において、第5層には、画素電極9aが形成されている。図5に示すように、画素電極9aは、中継層93及び下部容量電極71によって、コンタクトホール85、84及び83を介して中継されつつ、半導体膜1aの画素電極側ソースドレイン領域1eに電気的に接続されている。図2を参照して既に説明したように、画素電極9aの上側表面には、ラビング処理等の所定の配向処理が施された配向膜が設けられている。
以上に説明した画素部の構成は、図4に示すように、各画素部に共通である。画像表示領域10a(図1参照)には、かかる画素部が周期的に形成されている。
次に、本実施形態において特徴的なTFT30の半導体膜1aに対する遮光構造について、図6から図9を参照してより詳細に説明する。ここに図6は、画素部の積層構造における第1層から第3層までに着目して、その配置関係を示す平面図である。図7は、図6におけるB0−B0'線の断面部分の構成を示す断面図であり、図8は、図6におけるB1−B1'線の断面部分の構成を示す断面図であり、図9は、図6におけるB2−B2'線の断面部分の構成を示す断面図である。
図5を参照して説明したように、層間絶縁膜41のうち下層側の絶縁膜41a及び下地絶縁膜12には、第1部分801a及び第2部分801bを有するコンタクトホール801が開口されている。
図5及び図6に示すように、コンタクトホール801の第1部分801aは、平面的に見て、ゲート電極3aと重なる。
図6において、コンタクトホール801の第2部分801bは、平面的に見て、第1部分801aからX方向に沿って半導体膜1aの脇に延設され、更には第1部分領域110dに対して半導体膜1aに沿って延在している。第2部分801bにおいて、第1部分領域110dに対して半導体膜1aに沿って延在する部分が、第1延在部分811として形成されている。第1部分領域110dには、画素電極側LDD領域1c、更には画素電極側ソースドレイン領域1eの第1接続部分1ecが含まれる。第1接続部分1ecでは、コンタクトホール83を介して下部容量電極71に、画素電極側ソースドレイン領域1eが電気的に接続される。上述したように、下部容量電極71は画素電極側ソースドレイン領域1e及び画素電極9a間の電気的接続を中継する。
図6において、本実施形態では、コンタクトホール801の第2部分801bは、平面的に見て半導体膜1aの両脇に形成されている。第2部分801bにおいて、第1延在部分811は、半導体膜1aの両脇のうち一方から他方へ、半導体膜1aの周囲に部分的且つ連続的に形成されている。よって、半導体膜1aの第1部分領域110dに対して、その両脇の一方から他方へ連続的に第1延在部分811が当該領域を囲うように形成されている。
図6及び図7において、第2の走査線11bにおいて、第3接続部分111aが第1部分801a内にまで連続的に形成され、ゲート電極3aと電気的に接続されている。また、第2の走査線11bにおいて、第4接続部分111bは、図6から図9に示すように、第3接続部分111aと連続的に、第2部分801bの第1延在部分811内にまで連続的に形成され、第1の走査線11aと電気的に接続される。従って、第2部分801bでは、半導体膜1aの両脇において、チャネル領域1a'の少なくとも一部から、画素電極側LDD領域1c及び画素電極側ソースドレイン領域1eの第1接続部分1ecを含む領域において、半導体膜1aの側面に向かって進行してくる光を少なくとも部分的に遮光することができる。
よって、図7において、半導体膜1aの両脇において、同図中、例えば矢印P2で示される方向から、チャネル領域1a'の側面に向かって進行してくる光を、第2部分801bにおいて少なくとも部分的に遮光することが可能となる。更に、図8において、半導体膜1aの両脇において、例えば矢印P2で示される方向に沿い、画素電極側LDD領域1cの側面に向かって進行してくる光を、第1延在部分811において少なくとも部分的に遮光することが可能となる。
加えて、図4及び図5を参照して説明したように、第2の走査線11bのY方向に延在する部分は、画素電極側LDD領域1cと少なくとも部分的に重なるように形成されている。従って、画素電極側LDD領域1cに対して、図8中、例えば矢印P0で示される方向に沿い、上層側から進行してくる光を、第2の走査線11bによって遮光することができる。
また、図6において、半導体膜1aの第1部分領域110dにおける、画素電極側ソースドレイン領域1eについては、その両脇の一方から他方に向かって連続的に、第1延在部分811によって、側面側から進行してくる光を遮光することが可能となる。よって、第1延在部分811は、半導体膜1aの周囲における、第1接続部分1ecを囲う一部にまで形成される。これにより、図9において、例えば矢印P2で示される方向に沿って、第1接続部分1ecの側面に向かって進行してくる光を、第1延在部分811において、第1接続部分1ecの周囲のより広い領域で遮光することができる。
また、図6から図9において、第1の走査線1aは、既に説明したように、TFT30のチャネル領域1a'、データ線側LDD領域1b及び画素電極側LDD領域1c、並びにデータ線側ソースドレイン領域1d及び画素電極側ソースドレイン領域1eに対して、図7から図9中に示すように、例えば矢印P1で示される方向に沿って、下層側から進行してくる光を遮光することができる。
本実施形態では、蓄積容量70において、下部容量電極71及び容量線300のうち少なくとも上部容量電極を構成する一部の一方が、遮光性を有する導電材料により、少なくとも部分的に形成されるのが好ましい。この場合、TFT30のチャネル領域1a'、データ線側LDD領域1b及び画素電極側LDD領域1c、並びに画素電極側ソースドレイン領域1eに対して、例えば図7中に矢印P0で示す方向に沿って、それよりも上層側から進行してくる光を遮光することが可能となる。尚、下部及び上部容量電極71及び300のうち、少なくとも一方は、第1部分領域110dを平面的に見て少なくとも部分的に覆うように形成されるのが好ましい。このように構成すれば、図8又は図9中に示すように、例えば矢印P0で示される方向に沿って、画素電極側LDD領域1cから画素電極側ソースドレイン領域1eの第1接続部分1ecを含む領域に、それよりも上層側から進行してくる光をより確実に低減できる。
従って、本実施形態では、図7において、半導体膜1aのチャネル領域1a'に対して、下層側、上層側及び側面側から進行してくる光を低減できる。また、図8において、データ線側LDD領域1bよりも相対的に光リーク電流の生じ易い傾向にある画素電極側LDD領域1cに向かって、下層側、上層側及び側面側から進行してくる光を低減できる。更には、図9において、画素電極側ソースドレイン領域1eに向かって、下層側、上層側及び側面側から進行してくる光を低減できる。特には、画素電極側ソースドレイン領域1eを第1接続部分1ecの周囲まで、第1延在部分811によって囲うようにすることで、第1接続部分1ecの側から、その側面に向かって進行してくる光を低減して、かかる光が画素電極側LDD領域1cに照射されるのをより確実に防止することができる。尚、第1延在部分811は、第1接続部分1ecの周囲の全部又は一部を囲うように形成されてもよいし、第1接続部分1ecの側面に向かって進行してくる光を低減するために必要な部分だけに留めるように形成されてもよい。言い換えれば、第1延在部分811は、少なくとも第1接続部分1ecの側面の全部又は一部に沿うように形成された部分を有していればよく、半導体膜1aの両脇のうち一方から他方へ、第1接続部分1ecを囲うように部分的且つ連続的に形成されていないように構成してもよい。
よって、画素電極側LDD領域1cに対する遮光性をより向上させることができ、TFT30における光リーク電流をより確実に低減することが可能となる。これにより、トランジスタの誤動作やフリッカ等の表示不良を防止して、液晶装置における表示品位を向上させることが可能となる。
また、第2部分801b内に、第2の走査線11bの第4接続部分111bが延設されることで、これとは別に、上述したような半導体膜1aの側面側を遮光するための遮光膜を形成しなくてもよいため、より簡易な構成でTFT30に対する遮光構造を設けることができる。従って、例えば特許文献6に開示された遮光構造と比較して、液晶装置の製造プロセスをより簡略化することが可能となる。
更に、本実施形態では、第2の走査線11bにおいて、第3接続部分111a及び第4接続部分111bを、ゲート電極3a及び第1の走査線11aの各々に対して、共通のコンタクトホール801を介して電気的に接続することができる。よって、第3接続部分111a及び第4接続部分111bを夫々、ゲート電極3a及び第1の走査線11aの各々と、別個のコンタクトホールを介して電気的に接続する構成と比較して、製造プロセスをより簡略化させることができる。
尚、液晶装置の製造プロセスにおいて、コンタクトホール801は、下地絶縁膜12及び層間絶縁膜41の下層側の絶縁膜41aに対して夫々例えばエッチング処理を施すことにより開口される。ゲート電極3aは、下地絶縁膜12及び層間絶縁膜41の下層側の絶縁膜41aより、エッチング処理におけるエッチングレートが小さくなるような導電材料により形成されるのが好ましい。これにより、ゲート電極3a上にコンタクトホール801の第1部分801aを開口する際に、ゲート電極3aがエッチング処理により損傷し、更には半導体膜1aのチャネル領域1a'まで損傷する事態を防止することができる。
<第2実施形態>
次に、本発明の第2実施形態について、図10から図12を参照して説明する。
第2実施形態では、コンタクトホールの第2部分は第2延在部分を有する点が、第1実施形態とは異なっている。従って、以下では、第1実施形態と異なる点についてのみ図を参照して説明し、第1実施形態と同様の構成については、図1から図9を参照して説明すると共に、図10から図12において同一の符号を付して示し、重複する説明を省略することもある。
図10は、第2実施形態について、画素部の積層構造における第1層から第3層までに着目して、その配置関係を示す平面図である。また、図11は、図10におけるC0−C0'線の断面部分の構成を示す断面図であり、図12は、図10におけるC1−C1'線の断面部分の構成を示す断面図である。
図10において、下地絶縁膜12及び層間絶縁膜41の下層側の絶縁膜41aにおいて、コンタクトホール801の第2部分801bは、平面的に見て、第1延在部分811とは反対側に、半導体膜1aにおいてデータ線6aと電気的に接続される側にまで延設されている。より具体的には、第2部分801bは、第1延在部分811とは反対側に、半導体膜1aに沿って延在する第2延在部分812を有している。第2延在部分812は、半導体膜1aの両脇において第2部分領域110sに対して沿うように延設される。第2部分領域110sには、データ線側LDD領域1b、更にはデータ線側ソースドレイン領域1dの第2接続部分1dcが含まれる。第2接続部分1dcにおいて、データ線側ソースドレイン領域1dは、コンタクトホール81を介してデータ線6aと電気的に接続される。
ここに、第2の走査線11bにおいて、第4接続部分111bは、第3接続部分111aから連続的に、コンタクトホール801の第2延在部分812内にまで延設される。従って、半導体膜1aの両脇において、第2部分領域110sに対してその側面側から進行してくる光を、第2延在部分812において少なくとも部分的に遮光することができる。
よって、図11において、データ線側LDD領域1bの両脇において、同図中、例えば矢印P2で示される方向に沿って、その側面側から進行してくる光を、第2延在部分812において遮光することができる。尚、第2の走査線11bにおける第4接続部分111bがY方向に沿って、データ線側LDD領域1bと少なくとも部分的に重なるように形成されることで、図11中、例えば矢印P0で示される方向に沿い、データ線側LDD領域1bの上層側から進行してくる光を、第4接続部分111bによって遮光することが可能となる。
更に、図12において、データ線側ソースドレイン領域1dの両脇において、同図中、例えば矢印P2で示される方向に沿って、その側面側から進行してくる光を、第2延在部分812において遮光することができる。特に、第2延在部分812が、第2接続部分1dcの脇にまで延設されることで、第2接続部分1dcに向かって、側面側から進行してくる光を少なくとも部分的に遮光することができる。
従って、第2実施形態では、第2延在部分812が形成されることで、半導体膜1aにおいて、データ線側LDD領域1bからデータ線側ソースドレイン領域1dの第2接続部分1dcを含む領域にまで、その側面に向かって進行し、側面側から照射される光をより低減することが可能となる。
また、コンタクトホール801の第2部分801bにおいて、第1延在部分811、及び平面的に見て第1延在部分811とは反対側に第2延在部分812が形成されることで、半導体膜1aの側面に向かって進行する光を、半導体膜1aの周囲におけるより広い領域で遮光することが可能となる。よって、半導体膜1aの側面に向かって進行し、その側面側から照射される光をより低減できる。
尚、第2実施形態では、コンタクトホール801の第2部分801bにおける第2延在部分812は次のように形成されてもよい。図13は、第2実施形態の変形例について、画素部の積層構造における第1層から第3層までに着目して、その配置関係を示す平面図である。
図13において、第2延在部分812は、平面的に見て、半導体膜1aの両脇のうち一方から他方へ第2部分領域110sを囲うように、半導体膜1aの周囲に部分的且つ連続的に形成されている。よって、データ側ソースドレイン領域1dについて、その両脇の一方から他方に向かって連続的に、側面側から進行してくる光を遮光することが可能となる。この場合、第2延在部分812は、半導体膜1aの周囲における、データ線側ソースドレイン領域1dの第2接続部分1dcを囲う一部にまで形成されている。従って、第2接続部分1dcの側面に向かって進行してくる光を、より広い領域で遮光することができるため、かかる光をより確実に低減することが可能となる。
<電子機器>
次に、上述した電気光学装置である液晶装置を各種の電子機器に適用する場合について説明する。ここに図14は、プロジェクタの構成例を示す平面図である。以下では、この液晶装置をライトバルブとして用いたプロジェクタについて説明する。
図14に示されるように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1104内に配置された4枚のミラー1106及び2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶パネル1110R、1110B及び1110Gに入射される。
液晶パネル1110R、1110B及び1110Gの構成は、上述した液晶装置と同等であり、画像信号処理回路から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。そして、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、R及びBの光が90度に屈折する一方、Gの光が直進する。従って、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。
尚、図14を参照して説明した電子機器の他にも、モバイル型のパーソナルコンピュータや、携帯電話、液晶テレビ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた装置等が挙げられる。そして、これらの各種電子機器に適用可能なのは言うまでもない。
また、本発明は上述の各実施形態で説明した液晶装置以外にも反射型液晶装置(LCOS)等にも適用可能である。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置、及び該電気光学装置を備えた電子機器もまた本発明の技術的範囲に含まれるものである。
1a…半導体膜、1a'…チャネル領域、1b…データ線側LDD領域、1c…画素電極側LDD領域、1d…データ線側ソースドレイン領域、1e…画素電極側ソースドレイン領域、1ec…第1接続部分、3a…ゲート電極、6a…データ線、9a…画素電極、10…TFTアレイ基板、10a…画像表示領域、11a…第1の走査線、11b…第2の走査線、12…下地絶縁膜、110d…第1部分領域、41a…層間絶縁膜41の下層側の絶縁膜、801…コンタクトホール、801a…第1部分、801b…第2部分