JP5102731B2 - 微細構造体 - Google Patents

微細構造体 Download PDF

Info

Publication number
JP5102731B2
JP5102731B2 JP2008247275A JP2008247275A JP5102731B2 JP 5102731 B2 JP5102731 B2 JP 5102731B2 JP 2008247275 A JP2008247275 A JP 2008247275A JP 2008247275 A JP2008247275 A JP 2008247275A JP 5102731 B2 JP5102731 B2 JP 5102731B2
Authority
JP
Japan
Prior art keywords
basic
mold
microstructure
fine structure
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247275A
Other languages
English (en)
Other versions
JP2010080670A5 (ja
JP2010080670A (ja
Inventor
直人 佐藤
雅彦 荻野
長谷川  満
昭浩 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2008247275A priority Critical patent/JP5102731B2/ja
Publication of JP2010080670A publication Critical patent/JP2010080670A/ja
Publication of JP2010080670A5 publication Critical patent/JP2010080670A5/ja
Application granted granted Critical
Publication of JP5102731B2 publication Critical patent/JP5102731B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、金型の表面に形成された微細な凹凸パターンを、被転写体の表面に転写して得られた微細構造体に関する。
従来、微細なパターンの形成には、半導体製造プロセスで一般に用いられるフォトリソグラフィ技術や電子線描画法が適用されてきた。その微細加工を実現するためのパターン転写技術の一つであるフォトリソグラフィ法は、パターンの微細化に伴い加工寸法が光露光の光源の波長に近づいてきたためリソグラフィ技術の限界を迎えつつある。そのため、更なる微細化、高精度化を進めるために、荷電粒子線装置の一種である電子線描画(EB描画)装置が用いられるようになった。しかし、パターンの微細化及び描画数の増加が図られる一方で装置の大型化や高精度に制御する機構が必要になる等、装置の製造コストが高くなるという欠点があった。
一方、微細な凹凸パターンの形成を低コストで行うための技術が特許文献1及び2、非特許文献1等において開示されている。これは、基板上に形成したい凹凸パターンを反転させた反転凹凸パターンを有する金型を、被転写体の表面に形成されたレジスト膜層に対して型押しすることで所定の凹凸パターンを転写するものである。特に、特許文献2や非特許文献1に記載のナノインプリント技術によれば、シリコンウエハを金型として用いて25nm以下の微細な凹凸パターンを転写により形成することが可能である。
近年においては、例えば液晶ディスプレイに代表されるように光学部品の大面積化、かつ高性能化が望まれている。液晶ディスプレイで画像を見るための構造としては、その内部に光の屈折率を調整するための導光板、位相差フィルム等を内層したものが挙げられる。そして、これらの導光板、位相差フィルム等には、微細な凹凸パターンをその表面に転写した微細構造体を使用することが考えられる。
そして、これらにこの微細構造体を適用しようとすると、一体物で継ぎ目がない大面積の微細構造体が必要となる。しかしながら、一体物で大面積の微細構造体が製造可能な装置は未だ存在しないことから、このような微細構造体は、例えば、基材上に複数の個片の微細構造体(基本微細構造体)同士を並べて配置したものが使用されることとなる。
ところで、特許文献3には、金型上で樹脂層を形成し、この樹脂層を基材に接着させた後に金型から分離する方法が記載されている。
特許文献4には、光メモリ素子を対象にした微細構造体を複層体にする形成方法が記載されている。この特許文献4の形成方法も、特許文献3と同様に、金型上で樹脂層を形成し、基材に接着させてから金型を分離するものである。
特許文献5には、個片の金型或いは個片の微細構造体を基板上に複数個並べて多面付けしてから、これを使用して被転写体へ微細な凹凸パターンを転写する方法が記載されている。
非特許文献2には、基材上に樹脂層を形成し、この樹脂層に金型の反転凹凸パターンを転写する工程を繰り返して行う方法が記載されている。
したがって、前記した大面積の微細構造体は、これらの特許文献3、4及び5、並びに非特許文献2に記載された転写技術で得られた複数の個片の微細構造体(基本微細構造体)を並べて相互に繋ぎ合わせることで製造できるようにも考えられる。
米国特許5259926号明細書 米国特許5772905号明細書 特開2007−320071号公報 特開2002−120286号公報 特開2005−103991号公報 S.Y.Chou et al.、Appl.Phys.Lett.、vol.67、 p.3314 (1995) Ian McMackin, Philip Schumaker, Daniel Babbs, Jin Choi, Wenli Collison, S.V. Sreenivasan, Norman Schumaker, Michael Watts, Ronald Voisin. SPIE Microlithography Conference, February (2003)
しかしながら、これらの従来の転写技術では、端部の樹脂形状の状態を制御しておらず、複数の個片の微細構造体(基本微細構造体)を高い精度で繋ぎ合わせることができないという問題がある。ここで参照する図10(a)から(g)は、従来の転写方法で得られた個片の微細構造体を繋ぎ合わせて大面積の微細構造体を製造する方法を説明する工程図である。
従来の微細構造体同士を繋ぎ合わせる方法としては、図10(a)に示すように、基材2に、例えばインクジェット装置12から噴射された光硬化性樹脂で樹脂層13が塗布される。
次に、図10(b)に示すように、樹脂層13が形成された基材2上に反転凹凸パターン4bを有する金型11が載置されると共に、金型11が樹脂層13に押し付けられる。
そして、図10(c)に示すように、凹凸パターン4aが転写された樹脂層13は、露光器16からの光照射によって基材2上で硬化する。
そして、凹凸パターンが転写されて硬化した樹脂層13から金型11が取り除かれると、図10(d)に示すように、基材2上には、個片の微細構造体である基本微細構造体23が得られる。
次に、この転写方法では、図10(e)に示すように、先の図10(d)に示す工程で基材2上に形成した基本微細構造体23に対して隣接する位置に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が再び形成される。
次に、図10(f)に示すように、先の図10(e)に示す工程で形成された樹脂層13上に金型11が載置されると共に、この金型11が樹脂層13に押し付けられる。そして、この樹脂層13は、先の図10(c)に示す工程と同様に、ここでは図示しない露光器からの光照射によって硬化する。
そして、硬化した樹脂層13から金型11が取り除かれることで、図10(g)に示すように、基材2上には、2つの基本微細構造体23,23が並んで配置されて大面積の微細構造体21が得られる。
しかしながら、このような従来の製造方法では、図10(c)に示すように、基材2上の未硬化の樹脂層13に金型11の反転凹凸パターン4b(図10(b)参照)を密着させ、樹脂層13に凹凸パターン4aを転写する際に、樹脂層13の光硬化性樹脂が金型11と基材2の間からはみ出る。そして、はみ出た光硬化性樹脂は光照射によって硬化し、図10(d)に示す突起Pを形成する。
この突起Pは、図10(g)に示すように、凹凸パターン4aから上方向(基材2から離れる方向)に突出すると共に、基本微細構造体23,23同士をより近接して配置することを妨げる。つまり、従来の微細構造体の製造方法では、はみ出た光硬化性樹脂で形成される突起P,Pが不定形であることから、基本微細構造体23,23同士の距離(具体的には、凹凸パターン4aの端同士の距離D)が変動する。そのために、従来の微細構造体21の製造方法では、基本微細構造体23,23同士を可能な限り近接させて、しかも高精度に位置決めすることが極めて困難となっていた。
また、基材2に光硬化性樹脂を塗布する塗布面積を、金型11の接触面積(表面積)に等しくすると、この樹脂層13に金型11を正確に位置決めして載置することが困難となる。そのため、金型11の接触面積よりも広めの塗布面積となるように樹脂層13を形成することとなって、基本微細構造体23,23のそれぞれの凹凸パターン4a同士を相互に近接させて配置することが困難となっていた。
そこで、本発明は、表面に微細な凹凸パターンを形成した基本微細構造体を基材上に複数並べて配置した微細構造体において、基本微細構造体同士を可能な限り近接させて、しかもこの基本微細構造体を高精度に位置決めした微細構造体を提供することを課題とする。
前記課題を解決する本発明は、表面に微細な凹凸パターンを形成した基本微細構造体を基材上に接着層を介して複数並べて配置した微細構造体において、相互に隣接し合う前記基本微細構造体同士の前記凹凸パターンの端同士の距離が下記関係式(1)で示される距離(D)を満足して前記基本微細構造体同士が配置可能となるように、前記基本微細構造体の端部が整形され、前記基本微細構造体が光硬化性樹脂で形成され、前記基本微細構造体の端部の形状は、前記基材上でアンダーカットとなっていることを特徴とする微細構造体である。
≦ADMIN・・・・・(1)
(但し、式(1)中、DMINは前記凹凸パターンにおいて山部の幅及び谷部の幅のうちその最小値であり、Aは20以下の正数である)
≦ADMIN・・・・・(1)
(但し、式(1)中、DMINは前記凹凸パターンにおいて山部の幅及び谷部の幅のうちその最小値であり、Aは20以下の正数である)
本発明によれば、光学部品をはじめ、ディスプレイデバイス、さらにはバイオデバイスやストレージメディア等に使用できる大面積の微細構造体を提供することができると共に、微細構造体を構成する複数の基本微細構造体を基材上に可能な限り近接させて、しかもこの基本微細構造体を高精度に位置決めした微細構造体を提供することができる。
以下に、本発明の微細構造転写用スタンパの実施形態について図を参照しながら詳細に説明する。参照する図面において、図1(a)は、本実施形態に係る微細構造体の平面図、図1(b)は、図1(a)のX−X断面において基本微細構造体同士の間の様子を示す部分拡大断面図である。
図1(a)に示すように、本実施形態に係る微細構造体1は、基材2上に基本微細構造体3を複数並べて配置したものであって、ここでは平面視で略矩形の2つの基本微細構造体3が相互に近接して配置されたものである。この基本微細構造体3は、その表面に微細な凹凸パターンが形成されており、この凹凸パターンは、後記するように、ナノインプリント法で成形加工されたものである。なお、凹凸パターンの形状としては、特に制限はなく、微細な山部と谷部を複数有するものであればよい。また、凹凸パターンは、山部の幅又は谷部の幅が、10〜1000nmとなっている。
そして、この基本微細構造体3は、図1(b)に示すように、基材2上に接着層5を介して接合されている。
このような微細構造体1においては、後記するように、基本微細構造体3の端部が高い精度で整形されていることから、相互に隣接し合う凹凸パターン4a,4aの端同士の距離(D)を極めて短くすることが可能となっている。具体的には、この距離(D)は、次式(1)で示される関係式を満足する値となっている。
≦ADMIN・・・・・(1)
但し、式(1)中、DMINは、図1(b)に示すように、凹凸パターン4aにおいて山部T及び谷部Uの幅のうちその最小値であり、Aは20以下の正数である。
なお、図1(b)に示す凹凸パターン4aは、作図の便宜上、基本微細構造体3の端部Eに山部Tが配置されているが、凹凸パターン4aはこれに限定されるものではなく、端部Eに谷部Uが配置されていてもよい。
このような距離(D)で近接し合う基本微細構造体3の端部Eの形状は、図1(b)に示すように、基材2上でアンダーカットとなっている。
このような微細構造体1においては、基本微細構造体3が樹脂で形成されている。この樹脂としては、光硬化性樹脂、熱可塑性樹脂等が挙げられ、中でも光硬化性樹脂が望ましい。
基材2としては、樹脂製シート、石英、シリコン、ニッケル等からなるものが挙げられ、中でも、可撓性を有するもの、光透過性を有するものが望ましく、具体的には、これらの性質を示す樹脂製シートが望ましい。
以上のような微細構造体1によれば、基本微細構造体3同士を可能な限り近接させて、しかもこの基本微細構造体3が高精度に位置決めされたものとなるので、光学部品をはじめ、ディスプレイデバイス、さらにはバイオデバイスやストレージメディア等にこれを適用するにあたって、高い精度を維持しながらも大面積化を図ることができる。
また、微細構造体1では、基本微細構造体3の端部Eの形状が、基材2上でアンダーカットとなっているので、基本微細構造体3を後記するように基材2に対して接合する際に、たとえ基本微細構造体3と基材2との間から接着層5がはみ出たとしても、凹凸パターン4a,4aの端同士の距離(D)がはみ出た部分で影響を受けることが回避される。
次に、本実施形態に係る微細構造体の製造方法について説明する。参照する図面において、図2(a)から(h)は、本実施形態に係る微細構造体の製造方法を説明するための工程図である。
本実施形態に係る微細構造体1は、前記したように、ナノインプリント法で形成され、前記した基本微細構造体3の凹凸パターン4aは、これを反転させた反転凹凸パターンを有する金型が形押しされて形成される。
金型の表面に形成される反転凹凸パターンは、その形成方法に制限はなく、例えば、フォトリソグラフィ、電子線描画法等が挙げられる。
金型の材料としては、例えば、Si、SiC、SiN、多結晶Si、Ni、Cr、Cu等の各種金属類、ガラス、石英、セラミック、プラスチック等が挙げられる。中でも、石英は紫外線透過性に優れるので望ましい。また、Siは耐熱性に優れ半導体関係で実績がある。また、Niは成形しやすく、耐薬品性に優れている。
図2(a)に示すように、この製造方法では、架台18上に載置された金型11の反転凹凸パターン4b側に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が形成される。つまり、樹脂層13は、液体の状態の光硬化性樹脂が金型11上に塗布されて形成される。この工程は、特許請求の範囲にいう「樹脂層形成工程」に相当する。
なお、樹脂層13の形成はインクジェット装置12に限らなくとも良い。
次に、図2(b)に示すように、樹脂層13が形成された金型11は、光硬化装置の架台18に載置されると共に、樹脂層13上にはフォトマスク14が更に配置される。このとき、フォトマスク14は、反転凹凸パターン4bを有しない金型11の非パターン形成領域R2に形成された樹脂層13を遮光し、反転凹凸パターン4bを有するパターン形成領域R1に形成された樹脂層13が露光されるように配置される。
なお、図2(b)中、符号15は、バックアッププレートであり、フォトマスク14に背圧を掛けて樹脂層13に対するフォトマスク14の密着性を高めている。また、架台18上で金型11に樹脂層13が押し付けられることで、光硬化性樹脂からなる樹脂層13には、凹凸パターン4a(図1(b)参照)が転写される。そして、露光器16からの光照射によって、反転凹凸パターン4bを有するパターン形成領域R1に形成された樹脂層13が露光されて硬化する。また、フォトマスク14で遮光された非パターン形成領域R2に形成された樹脂層13は未露光となる。つまり、図2(c)に示すように、樹脂層13には、パターン形成領域R1に形成された硬化部17aと非パターン形成領域R2に形成された未硬化部17bとが選択的に発現することとなる。この工程は、特許請求の範囲にいう「硬化部形成工程」に相当する。
次に、図2(d)に示すように、樹脂層13の未硬化部17b(図2(c)参照)が除去されると、金型11のパターン形成領域R1には硬化部17aからなる基本微細構造体3が形成される。この工程は、特許請求の範囲にいう「基本成形工程」に相当する。なお、この「基本成形工程」においては、未硬化部17bを除去する際に、硬化部17aの端部の形状を図1(b)に示す基本微細構造体3の端部Eの形状(アンダーカットの形状)とすることができる。このような形状とする方法としては、例えば、未硬化部17bを溶剤で除去する際に、硬化部17aの金型11の反対側の端角部を恣意的に溶剤で面取りするように溶解することで形成することができる。
次に、図2(e)に示すように、この製造方法では、別途に準備した基材2側に、基本微細構造体3を金型11と共に移動させる。そして、基材2と基本微細構造体3とは、接着層5を介して接合される。この接着層5としては、光硬化性樹脂からなるものが望ましい。また、基材2は、カップリング処理をすると良く、基材2に対する基本微細構造体3の接合強度を高めることができる。なお、このカップリング剤としては、KBM-5103(信越シリコーン社製)等の公知のカップリング剤を用いることができる。
この図2(e)に示す工程は、特許請求の範囲にいう「移動工程」に相当する。
次に、図2(f)に示すように、基材2に移動させた基本微細構造体3から金型11(図2(e)参照)が除去される。なお、金型11の反転凹凸パターン4bが形成された面には、離型処理が施されていることが望ましい。例えば、金型11に離型剤を施しておくことで、基本微細構造体3からの金型11の除去がより容易となる。この離型剤としては、例えば、シリコーン系やフッ素系の離型剤等が挙げられる。この工程は、特許請求の範囲にいう「金型除去工程」に相当する。
そして、この製造方法では、図2(a)から(d)に示す前記した樹脂層形成工程、硬化部形成工程、及び基本成形工程が再び行われて、金型11上に基本微細構造体3が再び形成される。
次に、図2(g)に示すように、この製造方法では、基材2に既に配置されている基本微細構造体3に隣接するように、金型11上に再び形成した基本微細構造体3を移動する。この際、基本微細構造体3同士の位置決めは、CCD等の光学的手段を使用して行うことができる。そして、金型11上の基本微細構造体3は、接着層5を介して基材2と接合される。
次に、図2(h)に示すように、基材2に移動させた基本微細構造体3から金型11(図2(g)参照)が除去されることで、本実施形態に係る微細構造体1が完成する。
以上のような微細構造体1の製造方法によれば、図2(b)に示すように、金型11のパターン形成領域R1に形成された樹脂層13のみ露光によって硬化し、非パターン形成領域R2に形成された樹脂層13は、図2(d)に示すように、未硬化のまま除かれる。そのため、図2(f)に示すように、基材2上に移動された基本微細構造体3の端部は、高い精度で整形されることとなる。つまり、本実施形態に係る製造方法は、前記した従来の製造方法のように突起P(図6(c)参照)が形成されることもない。
また、このような微細構造体1の製造方法によれば、図2(d)に示すように、硬化した光硬化性樹脂からなる基本微細構造体3を基材2側に移動させて微細構造体1するので、未硬化のものを基材側に移動させる従来の製造方法(図6(e)参照)と異なって、基材2と金型11との間から光硬化性樹脂がはみ出ることがない。
したがって、このような微細構造体1の製造方法は、従来の製造方法のように不定形な突起Pによって凹凸パターン4aの端同士の距離D(図6(g)参照)が変動することもなく、図1(b)に示す凹凸パターン4aの端同士の距離Dは、前記関係式(1)を満足する程度に極めて短くすることができ、基本微細構造体3同士を基材2上に可能な限り近接させて、しかもこの基本微細構造体3の配置を高精度に位置決めすることができる。
また、このような微細構造体1の製造方法によれば、集積化された微細な凹凸パターン4aを効率良く転写でき、フォトリソグラフィ法やEB描画法等を使用した製造方法と比較して簡単にかつ安価に大面積の微細構造体を製造することができる。
また、このような微細構造体1の製造方法によれば、ピラー形成のような複雑な形状の凹凸パターン4aを形成することができるので、各種バイオデバイス、DNAチップ等の免疫系分析装置、使い捨てのDNAチップ、半導体多層配線、プリント基板、RF MEMS、光又は磁気ストレージ、導波路、回折格子、マイクロレンズ、偏光素子等の光デバイス、フォトニック結晶、有機EL照明用基板、LCDディスプレイ、FEDディスプレイ、太陽電池や燃料電池等のエネルギー関連デバイス等の広い分野で適用可能な微細構造体1を製造することができる。
以上、本実施形態について説明したが、本発明は前記実施形態に限定されず種々の形態で実施することができる。以下に他の実施形態について図面を参照しながら説明する。参照する図3及び図4は、本実施形態に係る微細構造体の製造方法において使用する金型の変形例を示す模式図である。図5は、型用微細構造体を使用した電鋳による微細構造体の製造方法を説明する工程図である。なお、ここで参照する図3から図5において、前記実施形態と同様の構成要素には同じ符号を付してその詳細な説明は省略する。そして、図3から図5中、符号1は微細構造体であり、符号5は接着層である。
図3に示すように、金型11のパターン形成領域R1は、非パターン形成領域R2から基本微細構造体3側に向かって突出するように形成されており、パターン形成領域R1と、非パターン形成領域R2とは段差Saを有していてもよい。そして、この金型11(以下、「多段状金型11」ということがある)においては、段差Saは、反転凹凸パターン4bの凹凸高さよりも大きいことが望ましい。
また、図4に示すように、金型11のパターン形成領域R1は、非パターン形成領域R2から基本微細構造体3側に向かって突出するように形成されており、非パターン形成領域R2は、パターン形成領域R1側から離れるにしたがって、基本微細構造体3側から徐々に遠ざかるテーパ部Sbで形成されていてもよい。
このようなテーパ部Sbを有する金型(以下、「テーパ状金型11」ということがある)及び前記多段状金型11(図3参照)は、基材2に既に形成された基本微細構造体3に隣接するように次の基本微細構造体3を並べて配置する際に、これらの金型11が、既に形成された基本微細構造体3に接触することがより確実に防止される。
なお、このような多段状金型11及びテーパ状金型11においては、段差Saの非パターン形成領域R2、及びテーパ部Sbの非パターン形成領域R2がフォトマスク24で遮光されることで、基本微細構造体3の端部はより精度良く整形されることとなる。
また、多段状金型11又はテーパ状金型11を使用すると共にフォトマスク14(図2(b)参照)を使用した製造方法では、フォトマスク14側に突出したパターン形成領域R1よりも非パターン形成領域R2がフォトマスク14から、より離れて位置することとなる。その結果、フォトマスク14からより離れた部分では、近い部分よりも幅広になって硬化するので、露光されて硬化した硬化部17a(基本微細構造体3)が基材2に接合されると(図2(f)参照)、図1(b)に示すように、基本微細構造体3の端部Eには、前記したと同様に、アンダーカットが形成されることとなる。
なお、多段状金型11及びテーパ状金型11を使用した製造方法においては、必ずしもフォトマスク24を使用しなくても基本微細構造体3の端部を整形することもできる。
また、本発明は、前記実施形態で製造した微細構造体1を型として微細構造体を製造するものであってもよい。つまり、この製造方法で使用される型用微細構造体は、前記した図2(a)から(h)で示す工程を経て得られたものである。
この製造方法では、図5(a)に示すように、基材2上に2つの基本微細構造体3が接合された微細構造体を型用微細構造体1aとし、この型用微細構造体1aに電鋳層30が形成される。この工程は、特許請求の範囲にいう「電鋳工程」に相当する。
そして、電鋳層30は、図5(b)に示すように、所定の厚さまで形成された後に、図5(c)に示すように、型用微細構造体1aから剥離される。この工程は、特許請求の範囲にいう「剥離工程」に相当する。
このように剥離した電鋳層30は、図5(d)に示すように、微細構造体1となる。そして、剥離した電鋳層30からなる微細構造体1は、例えば、Niめっき等で電鋳層30を形成することによって、成形しやすく耐薬品性に優れたものとなる。また、この電鋳層30からなる微細構造体1は、型用微細構造体として使用することができ、この型用微細構造体は、樹脂からなるものと比較して一段と耐久性に優れたものとなる。
また、前記実施形態では、樹脂層13(図2(a)参照)を形成する樹脂として、光硬化性樹脂を使用したが、本発明は熱可塑性樹脂からなる樹脂層13を使用する製造方法であってもよい。この製造方法では、金型11上に、熱可塑性樹脂が層状に配置されるか、或いはシート状の熱可塑性樹脂が配置される。
そして、この熱可塑性樹脂がガラス転移温度(Tg)以上となる温度のもとに、金型11がこの樹脂層13にプレスされる。その結果、この樹脂層13には、凹凸パターン4aが転写されることとなる。そして、この樹脂層13が冷却された後に、金型11から剥離されて微細構造体1が得られる。
また、前記実施形態では、基材2上に2つの基本微細構造体3が配置されて微細構造体1が形成されたが、本発明は3つ以上の基本微細構造体3が配置されて微細構造体1が形成されてもよい。このような微細構造体1は、図2(a)から(g)に示す工程が3回以上繰り返されて製造される。
次に、実施例を示しながら本発明をさらに具体的に説明する。
(実施例1)
本実施例では、図2(a)から(h)に示す工程で微細構造体1が製造された。
まず、図2(a)に示すように、架台18上に載置された金型11の反転凹凸パターン4b側に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が形成された。
金型11としては、非透明なシリコンウエハ(Siウエハ)に、微細な反転凹凸パターン4bが形成されたものを用いた。この金型11は、外径8インチ(20.3cm)で、厚さ0.525mmのものから切り出した小片金型を使用した。そして、反転凹凸パターン4bは、内径が180nmで、深さが200nm、ピッチが360nmのドットが複数配置されたものを使用した。なお、反転凹凸パターン4bは、パターン形成領域R1が平面視で2cm×2cmの正方形となるように形成され、その周囲が非パターン形成領域R2となるように形成された。そして、この金型11は、ピラニア溶液で洗浄された後に離型処理が施された。離型剤には、オプツール(ダイキン工業製)が使用された。
光硬化性樹脂は、液状のラジカル重合性モノマー組成物が使用され、金型11の全表面に樹脂層13が形成された。なお、金型11の全表面当りの光硬化性樹脂の塗布量は、0.8ng/mmであった。
次に、図2(b)に示すように、樹脂層13が形成された金型11は、光硬化装置の架台18に載置されると共に、光硬化性樹脂上にはフォトマスク14が更に配置された。このとき、フォトマスク14は、金型11のパターン形成領域R1(2cm×2cm)を区画する4辺から内側に5mm入った1cm×1cmの正方形の領域のみを露光するようになっている。露光器16からの光の照射条件は、照度が50mW/cm、露光量が3000mJ/cmに設定された。
そして、図2(c)に示すように、樹脂層13からフォトマスク14(図2(b)参照)が取り外された後に、未硬化部17bが除去されて、金型11上には図2(d)に示す基本微細構造体3が得られた。なお、本実施例では、アセトン洗浄によって未硬化部17bが除去された。
次に、図2(e)に示すように、本実施例では、別途に基材2として準備したポリカーボネート製のシートに、基本微細構造体3が金型11と共に移動され、基本微細構造体3が光硬化性樹脂からなる接着層5を介して基材2に接合された。なお、接着層5の厚さは100nm以下とした。
次に、図2(f)に示すように、基材2に移動させた基本微細構造体3から金型11(図2(e)参照)が除去される。
そして、本実施例では、図2(g)に示すように、基材2に既に配置されている基本微細構造体3に隣接するように、金型11上に再び形成された基本微細構造体3が配置された。この際、基本微細構造体3同士の位置決めは、CCDにより行われた。そして、金型11上の基本微細構造体3は、接着層5を介して基材2と接合された。
次に、図2(h)に示すように、基材2に移動した基本微細構造体3から金型11(図2(g)参照)が除去されることで、本実施例に係る微細構造体1が完成した。
本実施例においては、製造した微細構造体1について、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13や接着層5に使用した光硬化性樹脂のはみ出し量を、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)を使用して測定した。また、ここでは凹凸パターン4aの転写状態を観察してその評価を併せておこなった。
その結果、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)は、2μm以下(光硬化性樹脂の流出幅1μm以下)であった。そして、前記関係式(1)のAは、20以下であった。つまり、この微細構造体1によれば、基本微細構造体3を基材2上に可能な限り近接させて、しかもこの基本微細構造体3を高精度に位置決め可能であることが確認された。
また、基材2上に1回目に配置した基本微細構造体3に転写されたパターン形成領域R1の寸法、及び2回目に配置した基本微細構造体3のそれは、金型11のパターン形成領域R1の寸法と比較した差が僅か1%程度であった。
そして、測定した光硬化性樹脂のはみ出し量は、「樹脂の流出幅」として表1に示した。また、凹凸パターン4aの転写状態は、凹凸パターン4aが消失している部分の幅の測定値を「パターン無し領域」として表1に示した。この「パターン無し領域」においては、後記する比較例2を除いて、隣接し合う基本微細構造体3同士の両方の「樹脂の流出幅」を合算した幅で凹凸パターン4aが消失している。また、表1の判定は、D≦ADMINの関係を満足するものを「○」として表1に記し、D≦ADMINの関係を満足しないものを「×」として表1に記した。
なお、表1には、使用した金型の種類、金型形状、基本微細構造体3同士の接合法、及び被転写物の種類を併記した。ここで表1の金型形状のうち、「平坦状」は、図2(a)から(h)の工程で使用したものを表し、「多段状」は、図3に示す金型11を表し、「テーパ状」は、図4に示す金型11を表す。また、接合法は、基本微細構造体3の端部同士が突き合せられるものを「突き合せ」として表1に記し、後記する比較例2のように、基本微細構造体23の端部に、未硬化の樹脂層13が重ね合わせられるものを「重ね合せ」として表1に記した。また、「凹凸パターンにおいて相互に隣接する山部同士の間隔及び相互に隣接する谷部同士の間隔のうちその最小値(DMIN)」を「凹凸パターン寸法最小値(DMIN)」として表1に記した。
Figure 0005102731
そして、本実施例では、金型11上で基本微細構造体3を形成した精度に関して、フォトマスク14(図2(b)参照)を用いて、図2(c)の未硬化部17bを溶剤(例えばアセトン)で除去することで得られる基本微細構造体3の側面の精度を把握する必要がある。
そこで、本実施例では、フォトマスク14の照射枠の精度と、フォトマスク14を用いて得られた基本微細構造体3の側面形状を測定した。その結果、フォトマスク14の照射枠の側面凹凸粗さの標準偏差σは0.4μmであり、基本微細構造体3の側面凹凸粗さの標準偏差σは0.6μmであった。基本微細構造体3の側面は、僅かな凹凸形状を有するほぼ直線状であることが確認された。このことから本実施例では、基本微細構造体3同士の隣接配置による間隔を2μm以下とすることができた。ちなみに、基本微細構造体3の側面の精度については、フォトマスク14の照射枠の更なる高精度加工や、樹脂層13を形成する樹脂の選択によりさらに高精度になるものと考えられる。
(実施例2)
本実施例では、金型11を、図3に示した金型11(多段状金型11)とした以外は、実施例1と同様に微細構造体1を製造した。
そして、製造した微細構造体1について、実施例1と同様に、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13や接着層5に使用した光硬化性樹脂のはみ出し量が、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)で測定された。また、ここでは凹凸パターン4aの転写状態の評価が併せて行われた。
その結果、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)は、2μm以下(光硬化性樹脂の流出幅1μm以下)であった。そして、前記関係式(1)のAは、20以下(DMIN:180nm)であった。つまり、この微細構造体1によれば、基本微細構造体3を基材2上に可能な限り近接させて、しかもこの基本微細構造体3を高精度に位置決め可能であることが確認された。
また、基材2上に1回目に配置した基本微細構造体3に転写されたパターン形成領域R1の寸法、及び2回目に配置した基本微細構造体3のそれは、金型11のパターン形成領域R1の寸法と比較した差が僅か1%程度であった。
(実施例3)
本実施例では、金型11として、透明な石英製であって、図4に示す金型11(テーパ状金型11)が使用された。この金型11としては、外径が4インチ(10.15cm)で、厚さが0.525mmパターンのものから切り出した小片金型が使用された。なお、この金型11は、形成領域R1の外周がテーパ状に形成されたものである。そして、反転凹凸パターン4bは、内径が180nmで、深さが200nm、ピッチが360nmのドットが複数配置されたものであった。なお、反転凹凸パターン4bは、パターン形成領域R1が平面視で2cm×2cmの正方形となるように形成され、その周囲が非パターン形成領域R2となるように形成された。そして、この金型11が使用され、そして、図2(b)の樹脂層13に対する光照射が、透明な金型11側から行われた以外は、実施例1と同様に微細構造体1が製造された。
そして、製造した微細構造体1について、実施例1と同様に、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13や接着層5に使用した光硬化性樹脂のはみ出し量が、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)で測定された。また、ここでは凹凸パターン4aの転写状態の評価が併せて行われた。
その結果、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)は、2μm以下(光硬化性樹脂の流出幅1μm以下)であった。そして、前記関係式(1)のAは、20以下(DMIN:180nm)であった。つまり、この微細構造体1によれば、基本微細構造体3を基材2上に可能な限り近接させて、しかもこの基本微細構造体3を高精度に位置決め可能であることが確認された。
また、基材2上に1回目に配置した基本微細構造体3に転写されたパターン形成領域R1の寸法、及び2回目に配置した基本微細構造体3のそれは、金型11のパターン形成領域R1の寸法と比較した差が僅か1%程度であった。
(実施例4)
本実施例では、実施例1で得られた微細構造体1を型用微細構造体1a(図5(a)参照)として使用して電鋳層30からなる微細構造体1が製造された。
ここでは先ず、型用微細構造体1aの表面にパラジウム触媒層(PM-A200:日鉱金属社製)を形成した後、この型用微細構造体1aを無電解Niメッキ液(トップケミアロイ66、奥野製薬工業社製)に浸漬することで、図5(a)に示す電鋳層30(無電解Niめっき層)が形成された。このときのめっき浴の温度は60℃であり、浸漬時間は1分間であった。
次に、図5(b)に示すように、電鋳層30の厚さを増加させた。ここでは電気Niめっきが施された。めっき浴は、スルファミン酸Ni60%水溶液にホウ酸、塩化Ni、及びピットレスS(日本化学産業社製、ピット防止剤)を混合して調製した。なお、これらの混合量は、調製しためっき浴1L当りで、ホウ酸が40g、塩化Niが5g、ピットレスSが5mLであった。そして、この電気Niめっきは、めっき浴の温度を50℃に設定し、0.5A/dmで20分間、1.5A/dmで60分間、3.0A/dmで60分間行った。
製造した微細構造体1(図5(d)参照)の厚さは、50μmであった。
製造した微細構造体1について、実施例1と同様に、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13や接着層5に使用した光硬化性樹脂のはみ出し量が、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)で測定された。また、ここでは凹凸パターン4aの転写状態の評価が併せて行われた。
距離(D)は、実施例1の微細構造体1(型用微細構造体1a)よりも短い1.94μm以下となっていた。そして、前記関係式(1)のAは、20以下(DMIN:180nm)であった。
(比較例1)
本比較例では、図6(a)から(g)に示す工程で微細構造体が製造された。ここで参照する図6(a)から(g)は、硬化部形成、基本成形及び移動の工程をせずに得られた個片の微細構造体を突き合せて大面積の微細構造体を製造する方法を説明する工程図である。
この比較例1では、図6(a)に示すように、架台18上に載置された金型11の反転凹凸パターン4b側に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が塗布された。
次に、図6(b)に示すように、樹脂層13が形成された金型11は、光硬化装置の架台18に載置されると共に、この架台18上で基材2が樹脂層13に押し付けられた。このとき樹脂層13には、凹凸パターン4aが転写された。そして、樹脂層13は、露光器16からの光照射によって硬化して基本微細構造体23となった。
次に、図6(c)に示すように、基本微細構造体23から金型11(図6(b)参照)が取り除かれることで、基材2上には、個片の微細構造体である基本微細構造体23が得られた。
そして、この転写方法では、図6(d)に示すように、架台18上に載置された金型11の反転凹凸パターン4b側に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が再び形成された。
次に、樹脂層13が形成された金型11は、図6(e)に示すように、光硬化装置の架台18に載置されると共に、基材2上に形成した基本微細構造体23と隣接して並ぶように、樹脂層13が基材2に押し付けられた。このとき樹脂層13には、凹凸パターン4aが転写された。この樹脂層13は、図示しない露光器からの光照射によって硬化した。
そして、図6(f)に示すように、基本微細構造体23から金型11(図6(e)参照)が取り除かれることで、基材2上には、2つの基本微細構造体23,23が突き合せられて並ぶように配置されて大面積の微細構造体21が得られた。
以上のように、本比較例では、硬化部形成及び基本成形の工程を実施せずに微細構造体21が製造された。ここで使用した金型11及び基材2は、実施例1と同様のものが使用された。そして、金型11に対する光硬化性樹脂の塗布条件を実施例1と同じにして金型11に樹脂層13(図6(a)参照)が形成された。
得られた微細構造体21には、基材2上で光硬化性樹脂が金型11からはみ出したことによる突起P(図6(f)参照)が形成されていた。
そして、得られた微細構造体21について、実施例1と同様に、図6(g)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13に使用した光硬化性樹脂のはみ出し量を、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)を使用して測定した。また、ここでは凹凸パターン4aの転写状態を観察してその評価を併せておこなった。
その結果、距離(D)は、20μm以上(光硬化性樹脂の流出幅10μm以上)であった。そして、前記関係式(1)のAは、20を超える値であった。つまり、この微細構造体21では、基本微細構造体23を基材2上に本実施例ほど近接させて配置することが困難であることが確認された。
また、凹凸パターン4a面から突出する突起Pの高さは5μmであり、この突起Pによって得られた基本微細構造体23の平坦性が阻害されていた。
(比較例2)
本比較例では、硬化部形成、基本成形及び移動の工程をせずに次の微細構造体が製造された。ここで参照する図7(a)から(f)は、硬化部形成、基本成形及び移動の工程をせずに重ね合せて微細構造体を製造する方法の工程図である。図8は、図7(a)の工程で金型に光硬化性樹脂を塗布した範囲を示す平面図である。図9は、図7(e)の工程で基本微細構造体に樹脂層が重ね合わされた様子を示す概念図であって、図7(e)の金型側から基本微細構造体及び樹脂層を見た様子を示す図である。なお、ここで使用した金型11、基材2及び光硬化性樹脂は、実施例1と同様のものが使用された。
本比較例では、硬化部形成、基本成形及び移動の工程をせずに基本微細構造体の端部同士を重ね合わせることで、相互の凹凸パターンを近接して配置することができるか否かが検討された。
ここでは先ず、図7(a)に示すように、架台18上に載置された金型11の反転凹凸パターン4b側に、インクジェット装置12から噴射された光硬化性樹脂で樹脂層13が形成された。
金型11に塗布された光硬化性樹脂の範囲は、図8に示すように、樹脂層13が金型11の内側に形成される範囲とした。具体的には、金型11の周縁から3mm内側の矩形の領域に光硬化性樹脂が塗布された。光硬化性樹脂の塗布量は、金型11の塗布面積当りで、0.8ng/mmであった。
次に、図7(b)に示すように、樹脂層13が形成された金型11は、光硬化装置の架台18に載置されると共に、この架台18上で基材2が樹脂層13に押し付けられた。このとき樹脂層13には、凹凸パターン4aが転写された。そして、樹脂層13は、露光器16からの光照射によって硬化して基本微細構造体23となった。
次に、図7(c)に示すように、基本微細構造体23から金型11(図7(b)参照)が取り除かれることで、基材2上には、個片の微細構造体である基本微細構造体23が得られた。
そして、本比較例では、図7(d)に示すように、金型11に光硬化性樹脂で樹脂層13が再び形成された。
次に、樹脂層13が形成された金型11は、図7(e)に示すように、光硬化装置の架台18に載置されると共に、基材2上に既に形成した基本微細構造体23の端部と、樹脂層13の端部とが所定の幅で相互に重なり合うようにこの樹脂層13が基材2に押し付けられた。このとき樹脂層13には、凹凸パターン4aが転写された。そして、樹脂層13は、露光器16からの光照射によって硬化した。
そして、図7(f)に示すように、基本微細構造体23から金型11(図7(e)参照)が取り除かれることで、基材2上には、一部が重なり合って相互に基本微細構造体23が2つ並んだ大面積の微細構造体21が得られた。
得られた微細構造体21について、実施例1と同様に、図1(b)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13や接着層5に使用した光硬化性樹脂のはみ出し量が、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)で測定された。また、ここでは凹凸パターン4aの転写状態の評価が併せて行われた。
その結果、微細構造体21は、図7(f)に示す基本微細構造体23同士が重なり合った部分40は、凹凸パターンが消失しており、その消失幅は40μm以上であった。
このことは、図9に示すように、基材2上に既に形成された基本微細構造体23の端部に、樹脂層13の端部を重ね合わせる工程(図7(e)参照)で、樹脂層13からの光硬化性樹脂が、基本微細構造体23の端部33に形成された凹凸パターンに流れ込んだことによる。
したがって、本比較例では、基本微細構造体の端部同士を重ね合わせて微細構造体21を形成しても、その重なり合った部分40(図7(f)参照)で相互の凹凸パターンが消失するために、相互の凹凸パターン同士を近接して配置することができないことが確認された。
(比較例3)
本比較例では、前記した図10(a)から(g)に示す従来の連続転写による方法を使用して微細構造体21が製造された。ここで使用した金型11は実施例3と同様の石英を使用した。また,塗布量、照射条件は実施例1と同様である。
光硬化性樹脂の塗布は基材2側にし、塗布された箇所に金型11を精密に載置し樹脂層13に押し付け、照射することで基材2上に基本微細構造体23を得た。そして、樹脂のはみ出しによる突起Pを避けて隣接して繰り返し転写することで基本微細構造体23,23を得た。
得られた微細構造体21には、基材2上で光硬化性樹脂が金型11からはみ出したことによる突起P(図10(f)参照)が形成されていた。
そして、得られた微細構造体21について、実施例1と同様に、図10(g)に示す凹凸パターン4a,4aの端同士の距離(D)、及び樹脂層13に使用した光硬化性樹脂のはみ出し量を、拡大顕微鏡観察及びAFM(Nanoscope D5000:Veeco社製)を使用して測定した。また、ここでは凹凸パターン4aの転写状態を観察してその評価を併せておこなった。
その結果、距離(D)は、30μm以上(光硬化性樹脂の流出幅15μm以上)であった。そして、前記関係式(1)のAは、20を超える値であった。つまり、この微細構造体21では、基本微細構造体23を基材2上に本実施例ほど近接させて配置することが困難であることが確認された。
また、凹凸パターン4a面から突出する突起Pの高さは4μmであり、この突起Pによって得られた基本微細構造体23の平坦性が阻害されていた。
したがって、従来の転写法により基本微細構造体21を形成しても、樹脂のはみ出しが発生し、相互の凹凸パターン同士を近接して配置することができないことが確認された。
(a)は、本実施形態に係る微細構造体の平面図、(b)は、(a)のX−X断面において基本微細構造体同士の間の様子を示す部分拡大断面図である。 (a)から(h)は、本実施形態に係る微細構造体の製造方法を説明するための工程図である。 本実施形態に係る微細構造体の製造方法において使用する金型の変形例を示す模式図である。 本実施形態に係る微細構造体の製造方法において使用する金型の変形例を示す模式図である。 型用微細構造体を使用した電鋳による微細構造体の製造方法を説明する工程図である。 (a)から(g)は、硬化部形成、基本成形及び移動の工程をせずに得られた個片の微細構造体を突き合せて大面積の微細構造体を製造する方法を説明する工程図である。 (a)から(f)は、硬化部形成、基本成形及び移動の工程をせずに重ね合せて微細構造体を製造する方法の工程図である。 図7(a)の工程で金型に光硬化性樹脂を塗布した範囲を示す平面図である。 図7(e)の工程で基本微細構造体に樹脂層が重ね合わされた様子を示す概念図であって、図7(e)の金型側から基本微細構造体及び樹脂層を見た様子を示す図である。 (a)から(g)は、従来の転写方法で得られた個片の微細構造体を突き合せて大面積の微細構造体を製造する方法を説明する工程図である。
符号の説明
1 微細構造体
1a 型用微細構造体
2 基材
3 基本微細構造体
4a 凹凸パターン
4b 反転凹凸パターン
5 接着層
11 金型
13 樹脂層
14 フォトマスク
17a 硬化部
17b 未硬化部
24 フォトマスク
30 電鋳層
R1 パターン形成領域
R2 非パターン形成領域
T 山部
U 谷部
Sa 段差
Sb テーパ部

Claims (3)

  1. 表面に微細な凹凸パターンを形成した基本微細構造体を基材上に接着層を介して複数並べて配置した微細構造体において、
    相互に隣接し合う前記基本微細構造体同士の前記凹凸パターンの端同士の距離が下記関係式(1)で示される距離(D)を満足して前記基本微細構造体同士が配置可能となるように、前記基本微細構造体の端部が整形され
    前記基本微細構造体が光硬化性樹脂で形成され、
    前記基本微細構造体の端部の形状は、前記基材上でアンダーカットとなっていることを特徴とする微細構造体。
    ≦ADMIN・・・・・(1)
    (但し、式(1)中、DMINは前記凹凸パターンにおいて山部の幅及び谷部の幅のうちその最小値であり、Aは20以下の正数である)
  2. 前記基材は可撓性を有することを特徴とする請求項1に記載の微細構造体。
  3. 前記基材は光透過性を有することを特徴とする請求項1に記載の微細構造体。
JP2008247275A 2008-09-26 2008-09-26 微細構造体 Expired - Fee Related JP5102731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247275A JP5102731B2 (ja) 2008-09-26 2008-09-26 微細構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247275A JP5102731B2 (ja) 2008-09-26 2008-09-26 微細構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012110205A Division JP5102910B2 (ja) 2012-05-14 2012-05-14 微細構造体の製造方法

Publications (3)

Publication Number Publication Date
JP2010080670A JP2010080670A (ja) 2010-04-08
JP2010080670A5 JP2010080670A5 (ja) 2010-05-20
JP5102731B2 true JP5102731B2 (ja) 2012-12-19

Family

ID=42210785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247275A Expired - Fee Related JP5102731B2 (ja) 2008-09-26 2008-09-26 微細構造体

Country Status (1)

Country Link
JP (1) JP5102731B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002905A1 (ja) 2021-07-21 2023-01-26 東洋製罐グループホールディングス株式会社 細胞培養容器の製造方法、及び細胞培養容器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648362B2 (ja) * 2010-08-10 2015-01-07 住友電気工業株式会社 ナノインプリント用モールドの製造方法、ナノインプリント法による樹脂パターンの製造方法、及び、ナノインプリント用モールド
JP2012069687A (ja) * 2010-09-22 2012-04-05 Toshiba Corp パターンの形成方法、電子デバイスの製造方法、および電子デバイス
JP5760412B2 (ja) * 2010-12-08 2015-08-12 大日本印刷株式会社 インプリント方法およびインプリント装置
JP5709558B2 (ja) * 2011-02-01 2015-04-30 キヤノン株式会社 検査方法、インプリント装置及び物品の製造方法
WO2012164824A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 微細構造体の製造方法および微細構造金型
JP2012253303A (ja) * 2011-06-07 2012-12-20 Hitachi High-Technologies Corp 微細構造転写用スタンパ及びこれを搭載した微細構造転写装置
JP6623058B2 (ja) * 2015-12-18 2019-12-18 デクセリアルズ株式会社 反射防止光学体の形成方法およびディスプレイパネル
WO2020036173A1 (ja) * 2018-08-14 2020-02-20 Scivax株式会社 微細構造体製造方法
JP7288247B2 (ja) * 2018-12-07 2023-06-07 日産化学株式会社 インプリント用レプリカモールド及びその作製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580530A (ja) * 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP2002120286A (ja) * 2000-08-11 2002-04-23 Mitsubishi Chemicals Corp 光透過性スタンパ及びその製造方法並びに光メモリ素子の製造方法及び光メモリ素子
JP4295592B2 (ja) * 2003-09-30 2009-07-15 大日本印刷株式会社 複製版の製造方法
JP2007320071A (ja) * 2006-05-30 2007-12-13 Asahi Glass Co Ltd テンプレートおよび転写微細パターンを有する処理基材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002905A1 (ja) 2021-07-21 2023-01-26 東洋製罐グループホールディングス株式会社 細胞培養容器の製造方法、及び細胞培養容器

Also Published As

Publication number Publication date
JP2010080670A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5102731B2 (ja) 微細構造体
JP4340086B2 (ja) ナノプリント用スタンパ、及び微細構造転写方法
JP4815464B2 (ja) 微細構造転写スタンパ及び微細構造転写装置
JP5411557B2 (ja) 微細構造転写装置
US8113816B2 (en) Imprint device and imprint method
JP4712370B2 (ja) インプリント・リソグラフィのための複合スタンパ
JP4478164B2 (ja) 微細構造転写装置、スタンパおよび微細構造の製造方法
US8096802B2 (en) Nanoimprint stamper and a fine-structure transfer apparatus using the stamper
JP4317375B2 (ja) ナノプリント装置、及び微細構造転写方法
KR101229100B1 (ko) 중간 스탬프를 갖는 패턴 복제
JP4886400B2 (ja) インプリント装置およびインプリント方法
JP5164589B2 (ja) インプリント装置
KR20100056483A (ko) 임프린트 방법 및 기판 가공 방법
KR20080059538A (ko) 몰드, 임프린트 장치, 임프린트방법 및 구조체의 제조방법
JP2012190877A (ja) ナノインプリント方法およびそれに用いられるナノインプリント装置
JP5102910B2 (ja) 微細構造体の製造方法
WO2010001538A1 (ja) 微細構造体およびインプリント用スタンパ
JP2009006620A (ja) インプリント用スタンパとその製造方法
JP5416420B2 (ja) 微細構造転写装置
JP5011222B2 (ja) インプリント用スタンパおよびインプリント方法
JP4944158B2 (ja) ナノプリント用スタンパ、及び微細構造転写方法
JP2013000961A (ja) ロール金型の製造方法と光学フィルムの製造方法、並びに、ロール金型と光学フィルム
JP7326876B2 (ja) 樹脂製モールド、レプリカモールドの製造方法、及び光学素子の製造方法
JP5298175B2 (ja) インプリント用スタンパおよびインプリント方法
JP7378824B2 (ja) 微細パターン成形方法、インプリント用モールド製造方法およびインプリント用モールド並びに光学デバイス

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees