JP5076733B2 - 積層型圧電素子 - Google Patents

積層型圧電素子 Download PDF

Info

Publication number
JP5076733B2
JP5076733B2 JP2007218635A JP2007218635A JP5076733B2 JP 5076733 B2 JP5076733 B2 JP 5076733B2 JP 2007218635 A JP2007218635 A JP 2007218635A JP 2007218635 A JP2007218635 A JP 2007218635A JP 5076733 B2 JP5076733 B2 JP 5076733B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
piezoelectric element
unit
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007218635A
Other languages
English (en)
Other versions
JP2009054711A (ja
Inventor
浩章 浅野
秀和 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007218635A priority Critical patent/JP5076733B2/ja
Priority to DE102008041061.6A priority patent/DE102008041061B4/de
Publication of JP2009054711A publication Critical patent/JP2009054711A/ja
Application granted granted Critical
Publication of JP5076733B2 publication Critical patent/JP5076733B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電体層と電極配設層とを交互に積層してなる圧電ユニットを複数積層してなる積層型圧電素子に関する。
近年、積層型圧電素子の変位量を向上させるために、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層91と、内部電極を構成する電極部921(又は922)を含む電極配設層92とを交互に積層してなる圧電ユニット90を、接合材層95を介して複数積層してなる積層型圧電素子9が開発されている(図43参照)。通常、積層型圧電素子9の側面には、隣り合う2つの電極部921、922に交互に導通する一対の側面電極931、932が形成されている。また、一般に、上記積層型圧電素子9は、これを積層方向に透視した場合に、すべての電極部921、922が重合する領域である圧電活性領域910と、少なくとも一部の電極部921、922しか重合しない、あるいは全く重合しない領域である圧電不活性領域911とを有する。
図43及び図44に示すごとく、上記積層型圧電素子9に電圧を印加してこれを作動させると、上記圧電活性領域910は伸縮するが上記圧電不活性領域911はほとんど伸縮しない。例えば圧電活性領域911が図44中の矢印aの方向に伸長しても、圧電不活性領域911はほとんど伸長しないため、圧電活性領域910と圧電不活性領域911との境界において応力集中が起こる。圧電ユニット90の接合面の全面に接合材層95を形成して圧電ユニット90同士を接合させた場合には、接合面の中心に圧縮応力が、その周辺に引張り応力がそれぞれ作用し、これらの力学的な歪みによって、圧電体層91と電極配設層92との間、又は圧電体層91自体にクラック99が発生するおそれがあった。
これに対し、図45に示すごとく、上記圧電ユニット90の接合面の中央部に接着剤を塗布して部分接着部951を形成し、その周辺部には接着剤を形成しない非接着部950を設けた積層型圧電素子9が開発されている(特許文献1及び2参照)。かかる積層型圧電素子9においては、圧電ユニット90の外周から内側に後退した領域(例えば上述の圧電活性領域910)に接着剤からなる部分接着部951が形成され、その周囲(上述の圧電不活性領域911)に接着剤が形成されていない非接着部950が形成される。
図46に示すごとく、非接着部950を有する積層型圧電素子9においては、その駆動時に、非接着部950における圧電ユニット90間の隙間がその体積を比較的大きく変えることができる。そのため、上述の力学的な歪みを緩和することが可能になると考えられていた。
しかしながら、積層型圧電素子9においては、その側面に側面電極931、932を形成する際や、側面をろう付け材(図示略)等でコーティングする際(特許文献3参照)に、該側面電極931、932の電極成分、及びろう付け材の成分等が上記非接着部950に滲入するおそれがあった(図47参照)。具体的には、図47に示すごとく、例えば側面電極931、932を導電性樹脂で形成すると、その樹脂成分が非接着部950から圧電ユニット90間の接合部に滲入するおそれがあった。また、側面電極931,932を半田で形成すると、やに成分が非接着部950から接合部に滲入するおそれがあった。さらに、コーティング材で上記積層型圧電素子の側面をコーティングすると(図示略)、その樹脂成分が滲入するおそれがあった。
このように、非接着部950から側面電極931、932やコーティング材の成分が圧電ユニット90間の接合部に滲入すると圧電ユニット90同士が非接着部950においても固着し、上述の応力集中を緩和することができなくなるおそれがある。その結果、圧電ユニット90の内部に、クラック99が発生してしまうおそれがあった。
特開平3−270085号公報 特開平11−274590号公報 特開平7−106653号公報
本発明はかかる従来の問題点に鑑みてなされたものであって、側面電極の形成時等に圧電ユニット間の接合部への側面電極成分の滲入を防止することができると共に、上記圧電ユニット内におけるクラックの発生を抑制することができる積層型圧電素子を提供しようとするものである。
本発明の一態様は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層と、内部電極を構成する電極部を含む電極配設層とを交互に積層してなる圧電ユニットを、接合材層を介設して複数積層してなり、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極を有する積層型圧電素子において、
上記積層型圧電素子は、該積層型圧電素子を積層方向に透視した場合に、すべての上記電極部が重合する領域である圧電活性領域と、少なくとも一部の上記電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有し、
上記接合材層は、上記圧電ユニット同士の接合面の全面に形成された接着剤からなり、
上記接合材層は、上記積層型圧電素子の駆動時に、上記圧電不活性領域の少なくとも一部において離間する離間部を有し、
該離間部は、上記接合材層が上記圧電不活性領域の少なくとも一部で破断してなり、
上記離間部は、上記接合材層の内部、あるいは上記接合材層と上記圧電ユニットとの境界部で上記接合材層が破断してなり
上記離間部は、上記圧電ユニットにおける上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、及び上記圧電体層の破断強度よりも、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が5MPa以上小さくなる上記接着剤で、上記圧電ユニット間を上記接合面の全面で接合してなる積層体を少なくとも1回以上駆動させることにより形成してあることを特徴とする積層型圧電素子にある(請求項1)。
上記積層型圧電素子において、上記圧電ユニット同士を接合する上記接合材層は、上記接合面の全面に形成された接着剤からなる。
そのため、上記積層型圧電素子の側面に上記導電性材料からなる上記側面電極を形成する際には、上記導電性材料の成分が上記接合材層に滲入することを防止することができる。
上記のように接合材層が接合面の全面に形成された積層型圧電素子においては、一般に該積層型圧電素子を作動させると、圧電活性領域と不活性領域との境界において応力集中が発生し、その結果圧電ユニットの内部にクラックが発生し易くなる。
上記積層型圧電素子においては、上記接合材層が上記圧電不活性領域の少なくとも一部で破断してなる上記離間部が形成されており、該離間部は、上記積層型圧電素子の駆動時に上記圧電不活性領域において離間することができる。そのため、上記圧電活性領域と上記圧電不活性領域との境界における上述の応力集中を緩和することができる。それ故、上記圧電ユニットの内部、即ち、上記圧電体層の内部、上記圧電体層と上記電極部との間、及び上記圧電体層同士の間等にクラックが発生することを防止することができる。そのため、上記積層型圧電素子は、高い信頼性で駆動させることができる。
第1の参考発明は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層と、内部電極を構成する電極部を含む電極配設層とを交互に積層してなる圧電ユニットを複数積み重ねてなり、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極を有する積層型圧電素子において、
上記積層型圧電素子は、該積層型圧電素子を積層方向に透視した場合に、すべての上記電極部が重合する領域である圧電活性領域と、少なくとも一部の上記電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有し、
上記圧電ユニット同士は、その接合部における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合部における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を上記圧電ユニット間に形成するか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持され、上記圧電ユニット同士の接合部には、上記積層型圧電素子の側面に開口する隙間部が形成されており、
上記側面電極が配設される側面に開口する上記隙間部における上記圧電不活性領域の少なくとも一部には、上記側面電極を構成する上記導電性材料と上記圧電ユニットの上記接合面との接着を抑制する接着阻害層が形成されていることを特徴とする積層型圧電素子にある
上記第1の参考発明の積層型圧電素子において、上記圧電ユニット同士は、該圧電ユニット間に形成された上記部分接着部と上記非接着部とを有する上記接合材層により保持されるか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持されている。かかる構成の積層型圧電素子においては、一般に導電性材料からなる側面電極を形成する際に、導電性材料の成分が接合部の側面に露出する隙間から滲入してしまうおそれがある。
しかし、上記第1の参考発明の積層型圧電素子においては、上記側面電極が配設される側面に開口する上記隙間部における上記圧電不活性領域の少なくとも一部に、上記側面電極を構成する上記導電性材料と上記圧電ユニットの上記接合面との接着を抑制する接着阻害層が形成されている。そのため、上記側面電極の形成時に上記圧電ユニット間の上記隙間部に上記導電性材料の成分が滲入しても、上記接着阻害層が上記導電性材料の上記接合部への接着を抑制し、またその接着力を弱めることができる。その結果、上記導電性材料によって上記圧電ユニット同士が上記圧電不活性領域において固着することを防止することができる。そのため、上記積層型圧電素子の駆動時には、上記隙間部を圧電不活性領域において、充分に離間させることが可能になる。それ故、上記積層型圧電素子の駆動時に、上記圧電活性領域と上記圧電不活性領域との境界における応力集中を充分に緩和することができる。その結果、上記圧電ユニットの内部、即ち、上記圧電体層の内部、上記圧電体層と上記電極部との間、及び上記圧電体層同士の間等にクラックが発生することを防止することができる。
第2の参考発明は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層と、内部電極を構成する電極部を含む電極配設層とを交互に積層してなる圧電ユニットを複数積み重ねてなり、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極を有する積層型圧電素子において、
上記積層型圧電素子は、該積層型圧電素子を積層方向に透視した場合に、すべての上記電極部が重合する領域である圧電活性領域と、少なくとも一部の上記電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有し、
上記圧電ユニット同士は、その接合部における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合部における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を上記圧電ユニット間に形成するか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持され、
上記圧電ユニット同士の接合部における少なくとも上記側面電極が配設される側面には、上記接合部の隙間が側面に開口する開口部を塞ぐマスキング部材が形成されていることを特徴とする積層型圧電素子にある
上記第2の参考発明の積層型圧電素子において、上記圧電ユニット同士は、該圧電ユニット間に形成された上記部分接着部と上記非接着部とを有する上記接合材層により保持されるか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持されている。かかる構成の積層型圧電素子においては、一般に、導電性材料からなる側面電極を形成する際に、導電性材料の成分が接合部の側面に露出する開口部から滲入してしまうおそれがある。
しかし、上記第2の参考発明においては、上記圧電ユニット同士の接合部の側面であって、少なくとも上記側面電極が配設される側面に、上記接合部の側面に露出する開口部を塞ぐ上記マスキング部材が形成されている。そのため、該マスキング部材によって、上記側面電極の形成時における上記導電性材料の滲入を防止することができる。そのため、上記圧電ユニット同士が上記接合部の上記圧電不活性領域において固着することを防止することができる。それ故、上記積層型圧電素子の駆動時には、上記圧電ユニット同士の上記接合部における隙間を上記圧電不活性領域において部分的に充分に離間させることが可能になる。それ故、上記積層型圧電素子の駆動時に、上記圧電活性領域と上記圧電不活性領域との境界における応力集中を充分に緩和することができる。その結果、上記圧電ユニットの内部、即ち、上記圧電体層の内部、上記圧電体層と上記電極部との間、及び上記圧電体層同士の間等にクラックが発生することを防止することができる。
第3の参考発明は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層と、内部電極を構成する電極部を含む電極配設層とを交互に積層してなる圧電ユニットを複数積み重ねてなり、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極を有する積層型圧電素子において、
上記積層型圧電素子は、該積層型圧電素子を積層方向に透視した場合に、すべての上記電極部が重合する領域である圧電活性領域と、少なくとも一部の上記電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有し、
上記圧電ユニット同士は、その接合部における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合部における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を上記圧電ユニット間に形成するか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持されており、上記圧電ユニット同士の接合部には、該接合部の隙間が上記積層型圧電素子の側面に開口する開口部を有し、
上記側面電極は、各圧電ユニット内において隣り合う2つの上記内部電極に交互に電気的に導通し、かつ各圧電ユニットの積層方向の両端部には露出しない一対のユニット側面電極と、上記圧電ユニット間の上記ユニット側面電極同士を電気的に導通させる一対の外部側面電極とを有し、
該外部側面電極は、上記ユニット側面電極に埋設されていることを特徴とする積層型圧電素子にある
上記第3の参考発明の積層型圧電素子において、上記圧電ユニット同士は、該圧電ユニット間に形成された、上記部分接着部と上記非接着部とを有する上記接合材層により保持されるか、あるいは上記圧電ユニット同士を少なくとも積層方向に加圧することにより保持されている。かかる構成の積層型圧電素子においては、一般に、圧電ユニット同士の接合部に該接合部の隙間が積層型圧電素子の側面に開口する開口部が形成され、導電性材料からなる側面電極を形成する際に、導電性材料の成分が開口部から接合部に滲入してしまうおそれがある。
しかし、上記第3の参考発明の積層型圧電素子においては、上記側面電極として、各圧電ユニットの積層方向の両端部には露出していない上記ユニット側面電極と、該ユニット側面電極に埋設された上記外部側面電極が形成されている。そのため、上記積層型圧電素子においては、その作製時に、例えば上記接合部の側面に露出する上記開口部上に導電性材料を塗布して上記側面電極を形成する必要性を回避することができる。
即ち、上記ユニット側面電極は、上記積層型圧電素子の側面における上記接合部上には形成されない。また、上記外部側面電極は、例えば固形の上記外部側面電極を上記ユニット側面電極に埋設させて形成することができる。
そのため、上記ユニット側面電極及び上記外部側面電極の形成時に、これらを構成する上記導電性材料の成分が上記接合部の上記開口部から滲入することを防止することができる。それ故、上記圧電ユニット同士が上記接合部の上記圧電不活性領域において固着することを防止することができる。
その結果、上記積層型圧電素子は、駆動時に、上記圧電ユニット同士の上記接合部における隙間を上記圧電不活性領域において部分的に充分に離間させることが可能になる。そのため、駆動時における上記圧電活性領域と上記圧電不活性領域との境界における応力集中を充分に緩和することができる。したがって、上記圧電ユニットの内部、即ち、上記圧電体層の内部、上記圧電体層と上記電極部との間、及び上記圧電体層同士の間等にクラックが発生することを防止することができる。
次に、本発明及び参考発明の好ましい実施の形態について説明する。
まず、本発明について説明する。
本発明の積層型圧電素子において、上記離間部は、上記積層型圧電素子の作製時において上記側面電極を形成した後に形成することができる。
この場合には、上記側面電極の形成時における上記導電性材料の上記接合部への滲入をより確実に防止することができる。上記離間部は、後述のように、例えば上記側面電極形成後の積層型圧電素子を少なくとも1回以上駆動させることにより形成させることができる。
上記離間部は、上記接合材層の内部、あるいは上記接合材層と上記圧電ユニットとの境界部で上記接合材層が破断してなることが好ましい
この場合には、後述のように、上記側面電極形成後の積層型圧電素子を少なくとも1回以上駆動させて上記離間部を容易に形成させることができる。
上記離間部は、上記圧電ユニットにおける上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、及び上記圧電体層の破断強度よりも、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が小さくなる上記接着剤で、上記圧電ユニット間を上記接合面の全面で接合してなる積層体を少なくとも1回以上駆動させることにより形成してあるが好ましい
この場合には、上述の駆動時に、上記離間部を容易に形成させることができると共に、上記接合材層における上述の応力集中が解消される適切な部位に上記離間部を形成させることができる。そのため、上記圧電活性領域と圧電不活性領域との境界部における応力集中をより充分に緩和することができる。
本明細書においては、以下適宜、上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、及び上記圧電体層の破断強度を「圧電ユニットの破断強度」といい、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度を「接合材層の破断強度」という。
上記圧電ユニットの破断強度と上記接合材層の破断強度との比較は、例えば次のような「引張試験」にて行うことができる。
「引張試験」
図41に示すごとく、所定寸法(例えば縦7mm×横7mm×高さ(積層方向の高さ)1.8mm)の圧電ユニット15と、圧電ユニット15同士の接着に用いる上記接着剤を準備する。次いで、圧電ユニット15同士の接合面151の全面に接着剤を塗布し、2つの圧電ユニット15を接着させる。その結果、2つの圧電ユニット15間には、接合材層10が形成される。次いで、2つの圧電ユニット15が積層されてなる積層体199の積層方向の上下面に一対の六角ナット160を高強度の接着剤により接着する。その後、積層体199の積層方向であって圧電ユニット15が伸長する向き(矢印bの向き)に六角ナット160をそれぞれ引張る。このとき、例えば速度0.5mm/分で、2つの圧電ユニット15からなる積層体199が破断するまで圧電ユニット15を引張る。そして、破断時に破断した部位を観察する。
積層体199が接合材層10と圧電ユニット15との界面で破断(剥離)している場合、又は接合材層10が破断している場合には、上記接合材層10の破断強度が上記圧電ユニット15の破断強度よりも小さくなっていると判断することができる。また、このとき、破断時の引張応力を測定することにより、接合材層10の破断強度を求めることができる。破断強度は、破断時の引張り応力を圧電ユニットの断面積(上述の寸法例においては49mm2)で除することにより算出できる。引張応力は、例えば、島津製作所製の精密万能試験機(AGS−100B)等により測定することができる。
これに対し、圧電ユニット15が破断している場合、即ち上記圧電体層同士が剥離している場合、上記電極部と上記圧電体層とが剥離している場合、又は上記圧電体層が破断している場合には、上記接合材層10の破断強度が上記圧電ユニット15の破断強度よりも大きくなっていると判断することができる。また、このとき、破断時の引張応力を測定することにより、圧電ユニット15の破断強度を求めることができる。これは、上述と同様の装置により測定することができる。
また、例えば、下記の試験方法により、圧電ユニット15の破断強度を求めることもできる。
即ち、図42に示すように、所定寸法(例えば縦7mm×横7mm×高さ(積層方向の高さ)1.8mm)の圧電ユニット15の積層方向の上下面に一対の六角ナット160を高強度の接着剤により接着する。次いで、圧電ユニット15の積層方向であって圧電ユニット15が伸長する向き(矢印bの向き)に六角ナット160をそれぞれ引張る。このとき、例えば速度0.5mm/分で、2つの圧電ユニット15が破断するまで圧電ユニット15を引張る。そして、破断時の引張応力を測定することにより、圧電ユニット15の破断強度、即ち、圧電ユニット15における上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、又は上記圧電体層の破断強度を求めることができる。破断強度は、上述のごとく、破断時の引張り応力を圧電ユニットの断面積で除することにより算出することができる。
上記接着剤としては、上述の引張試験により、上記接合材層の破断強度が上記圧電ユニットの破断強度よりも小さくなる接着剤を採用することができる。これにより、駆動時に上記接合材層に上記離間部を形成させることができる。
また、上記接着剤としては、上記圧電ユニットにおける上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、及び上記圧電体層の破断強度よりも、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が5MPa以上小さくなる接着剤が採用されていることが好ましい即ち、圧電ユニットの破断強度(MPa)−接合材層の破断強度(MPa)≧5(MPa)となる接着剤が採用されていることが好ましい。
この場合には、上記積層型圧電素子を少なくとも一回以上駆動させることにより、上記離間部をより確実に上記接合材層に形成させることができる。さらに、この場合には、より少ない駆動回数で上述の応力集中を充分に緩和しうる上記離間部を形成させることができる。より好ましくは、上記圧電ユニットの破断強度よりも上記接着材層の破断強度が10MPa以上小さくなる接着剤が採用されていることがよい。
上記接着剤としては、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が1〜25MPaとなる接着剤が採用されていることが好ましい(請求項)。
一般に、上記圧電ユニットの破断強度は、30〜100MPa程度である。
したがって、上記のごとく、上記接合材層の破断強度が1〜25MPaとなる上記接着剤を採用することにより、上記積層型圧電素子の駆動時に、上記離間部をより一層確実に上記接合材層に形成させることができる。さらにより一層少ない駆動回数で上述の応力集中を充分に緩和しうる上記離間部を形成させることができる。
上記接着剤としては、例えばシリコーン樹脂系接着剤、破断強度1〜25MPaのウレタン樹脂系接着剤、破断強度1〜25MPaのポリエステル樹脂系接着剤、破断強度1〜25MPaのポリイミド樹脂系接着剤、破断強度1〜25MPaのポリアミドイミド樹脂系接着剤、及び破断強度1〜25MPaのエポキシ樹脂系接着剤等を採用することができる。
上記に列挙した接着剤のうち、ウレタン樹脂系接着剤、ポリエステル樹脂系接着剤、ポリイミド樹脂系接着剤、ポリアミドイミド樹脂系接着剤、及びエポキシ樹脂系接着剤は、接着剤の種類によって、25MPaを超える接着剤もある。これらの内、上記破断強度が1〜25MPaとなる接着剤を選択することにより、上述のごとく上記接合材層に上記離間部をより確実に形成させることができる。
上記離間部は、上記接着剤で上記圧電ユニット間を上記接合面の全面で接合してなる積層体を、上記接着剤が完全に硬化する前に少なくとも1回以上駆動させることにより形成してあることが好ましい
この場合にも、駆動時に上記接着材層に上記離間部を容易に形成させることができる。また、この場合には、接合材層の形成に、硬化時の破断強度が例えば圧電ユニットの破断強度よりも大きな接着剤を採用することができる。即ち、接着剤は、完全に硬化する前においては、破断強度は、硬化後に比べて非常に小さい。この段階で、上記のごとく、積層型圧電素子を少なくとも一回以上駆動させることにより、上述の離間部を形成させることができる。
上記接合材層と上記圧電ユニットとの境界部における上記圧電不活性領域の少なくとも一部に、上記接合材層と上記圧電ユニットとの接着を抑制する離型剤層が形成されていることが好ましい
この場合には、上記離型材層によって、上記接合材層を、該接合材層と上記圧電ユニットとの境界部で破断させることができる。したがって、上記離間部を容易に形成させることができる。
上記離型材層は、シリコーン樹脂又はフッ素樹脂を含有する離型剤を上記境界部における上記圧電不活性領域の少なくとも一部に塗布し硬化させてなることが好ましい
この場合には、上記離型材層は、優れた離型作用を発揮することができる。そのため、上記接合材層と上記圧電ユニット(上記圧電体層)との接着をより確実に抑制し、上記接合材層と上記圧電ユニットとの境界に上記離間部を確実に形成させることができる。
また、上記圧電体層は、平均粒径1〜3μmの上記圧電セラミックの粒子で構成されていることが好ましい(請求項)。
通常、圧電体層の圧電セラミックは、5〜10μm程度の粒子からなる。上記のごとく、上記圧電セラミックを構成する粒子の平均粒径を1〜3μmにすることにより、上記圧電ユニットの破断強度を大きくすることができる。そのため、上記圧電ユニットに対する上記接合材層の相対的な破断強度を小さくすることができる。その結果、上記離間部の形成が容易になる。
上記圧電セラミックの粒子の平均粒径が3μmを超える場合には、圧電ユニットの破断強度を大きくするという上述の効果が充分に得られなくなるおそれがある。一方、平均粒径が1μm未満の場合には、上記圧電体層の変位量が小さくなり、上記積層型圧電素子の変位が不十分になるおそれがある。
上記平均粒径1〜3μmのセラミック粒子よりなる上記圧電体層は、焼成による該圧電体層の形成時に、例えば完全に焼結させる焼成温度よりも低い温度又は短い焼成時間で焼成を行うこと等により実現することできる。
粒径を上述の範囲にすることにより、上記圧電ユニット内の破断強度を3〜10%程度向上させることができ、上述のごとく上記圧電ユニットに対する上記接合材層の破断強度を相対的に小さくすることができる。
上記圧電体層の圧電セラミック粒子の平均粒径は、走査型電子顕微鏡(SEM)により測定することができる。
即ち、圧電体層の断面をSEMにより観察し、例えば任意の0.01mm2の領域について10個の圧電セラミック粒子の粒径を測定し、その平均を求めることにより算出することができる。
上記側面電極は、例えば導電性樹脂、半田、導電性金属、又は導電性硝子材料からなることが好ましい(請求項)。
この場合には、例えばペースト状の上記導電性樹脂、半田、導電性金属、又は導電性硝子材料を上記積層型圧電素子の側面に塗布し硬化させることにより上記側面電極を簡単に形成することができる。
また、上記側面電極としては、各圧電ユニット内における隣り合う2つの上記内部電極に交互に電気的に導通する一対のユニット側面電極と、上記圧電ユニット間の上記ユニット側面電極同士を電気的に導通させる一対の外部側面電極とが形成されていることが好ましい(請求項)。
この場合には、上記内部電極への電気的な導通をより確実に行うことができると共に、上記ユニット側面電極あるいは上記外部側面電極が部分的に破断しても、両者がその他の部分で電気的に導通していれば、上記圧電ユニット内の上記内部電極に導通させることができる。そのため、上記側面電極の耐久性を向上させることができる。
上記積層型圧電素子の側面は、絶縁樹脂によりコーティングされていることが好ましい(請求項)。
この場合には、上記絶縁樹脂が上記積層型圧電素子の接合部に滲入することを防止することができる。即ち、本発明において、上記圧電ユニット間には、接合面の全面に接着剤を塗布し硬化させてなる上記接合材層が形成されている。そのため、接合部の側面は完全に塞がれている。したがって、上記のごとく絶縁樹脂によりコーティングする場合においては、絶縁樹脂が接合部に滲入することを防止し、絶縁樹脂により接合部が固着することを防止することができる。
上記絶縁樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ウレタン樹脂、及びシリコーン樹脂から選ばれる1種以上を含有することができる(請求項)。
特に、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、及びウレタン樹脂を含有する上記絶縁樹脂を用いると、破断強度の大きなコーティングが形成されるため、接着剤を接合面の全面に形成してなる上記接合材層を形成する有意性が高まる。
次に、上記第1の参考発明について説明する。
上記第1の参考発明の積層型圧電素子において、上記圧電ユニット間には、上記圧電ユニット同士の接合面における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合面における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を形成することができる。この場合には、上記接着阻害層は、上記非接着部に形成することができる。
また、上記圧電ユニット同士を少なくとも積層方向に加圧することにより上記圧電ユニット間を接合することもできる。
上記部分接着部は、例えば、シリコーン樹脂系接着剤、ウレタン樹脂系接着剤、ポリエステル樹脂系接着剤、ポリイミド樹脂系接着剤、ポリアミドイミド樹脂系接着剤、又はエポキシ樹脂系接着剤等により形成することができる。
上記接着阻害層は、シリコーン樹脂又はフッ素樹脂を含有する離型剤を上記隙間部における上記圧電不活性領域の少なくとも一部に塗布し硬化させてなることが好ましい
この場合には、上記側面電極を構成する導電性材料と上記圧電ユニットの接合面との接着を充分に阻害する上記接着阻害層を形成することができる。また、この場合には、上記接着阻害層は、優れた接着阻害作用を示すことができる。したがって、上記接着阻害層は、上記導電性材料と上記圧電ユニットの接合面との接着だけでなく、その他の樹脂材料と上記圧電ユニットの接合面との接着に対する阻害作用をも発揮することができる。その結果、例えば後述のように上記積層型圧電素子の側面に絶縁樹脂をコーティングする場合においても、該絶縁樹脂が上記接合部に固着することを防止することができる。
上記接着阻害層は、上記隙間部における上記圧電不活性領域の全体に形成されていることが好ましい
この場合には、上記導電性材料と上記圧電ユニットの接合面との接着をより確実に防止ることができる。さらに、後述のごとく、例えば上記積層型圧電素子の側面に絶縁樹脂をコーティングする場合においては、該絶縁樹脂が上記接合部に固着することを確実に防止することができる。
上記積層型圧電素子の側面は、絶縁樹脂によりコーティングされていることが好ましい
この場合には、上記接着阻害層は、上記絶縁樹脂に対しても上記圧電ユニットの接合面に対する接着阻害効果を示すことができる。上記側面電極の上記導電性材料と同様に、上記絶縁樹脂によりコーティングする場合においても、該絶縁樹脂が上記接合部の上記隙間部に滲入すると、上記圧電ユニット間の接合部を固着してしまうおそれがある。上記のごとく、例えばシリコーン樹脂又はフッ素樹脂を含有する上記接着阻害層を形成することにより、該接着阻害層は、上記絶縁樹脂に対しても接着阻害効果を発揮することができる。そのため、上記圧電ユニット間の接合部が固着することを防止することができる。
上記絶縁樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ウレタン樹脂、及びシリコーン樹脂から選ばれる1種以上を含有することができる
特に、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、及びウレタン樹脂を含有する上記絶縁樹脂を用いると、破断強度の大きなコーティングが形成されるため、上記接着阻害層を形成する有意性が高まる。
上記側面電極は、導電性樹脂、半田、導電性金属、又は導電性硝子材料からなることが好ましい
この場合には、上記側面電極の成分が上記接合部に滲入したときに、上記接着阻害層により、確実に上記圧電ユニット同士の固着を防止することができる。
上記側面電極としては、各圧電ユニット内における隣り合う2つの上記内部電極に交互に電気的に導通する一対のユニット側面電極と、上記圧電ユニット間の上記ユニット側面電極同士を電気的に導通させる一対の外部側面電極とが形成されていることが好ましい
この場合には、上記内部電極への電気的な導通をより確実に行うことができると共に、上記ユニット側面電極あるいは上記外部側面電極が部分的に破断しても、両者がその他の部分で電気的に導通していれば、上記圧電ユニット内の上記内部電極に導通させることができる。そのため、上記側面電極の耐久性を向上させることができる。また、この場合には、特に、上記外部側面電極の形成時に、上記積層型圧電素子の側面から上記圧電ユニット同士の接合部内に導電性材料の成分が滲入するおそれが生じるが、上記第1の参考発明においては、上記導電性材料が滲入してもその成分の固着を上記接着阻害層によって防止することができる。
次に、上記第2の参考発明について説明する。
上記第2の参考発明において、上記圧電ユニット間には、上記圧電ユニット同士の接合面における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合面における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を形成することができる。また、上記圧電ユニット同士を少なくとも積層方向に加圧することにより上記圧電ユニット間を接合することもできる。
上述の部分接着部による接合、又は加圧による接合においては、接合部の側面に露出する開口部が形成される。上記第2の参考発明においては、上記該接合部の上記開口部を、少なくとも上記側面電極が配設される側面で塞ぐマスキング部材が形成されている。
上記部分接着部は、例えば、シリコーン樹脂系接着剤、ウレタン樹脂系接着剤、ポリエステル樹脂系接着剤、ポリイミド樹脂系接着剤、ポリアミドイミド樹脂系接着剤、又はエポキシ樹脂系接着剤等により形成することができる。
上記マスキング部材は、上記接合部における上記開口部全体を塞いであることが好ましい
この場合には、上記側面電極形成時における上記開口部からの上記導電性材料の成分の滲入をより確実に防止することができる。また、この場合には、例えば上記積層型圧電素子の側面に絶縁樹脂をコーティングする場合に、該絶縁樹脂の上記接合部への滲入も防止することができる。
上記積層型圧電素子の側面は、絶縁樹脂によりコーティングされていることが好ましい
この場合には、上記マスキング部材により、上記絶縁樹脂の上記接合部への滲入も防止することができる。上記絶縁樹脂によりコーティングする場合においても、上記側面電極の上記導電性材料と同様に、該絶縁樹脂が上記開口部から上記接合部に滲入すると、上記圧電ユニット間の接合部を固着してしまうおそれがあるが、上記第3の発明においては、上記マスキング部材を配設してあるため、上記絶縁樹脂の滲入も防止することができる。そのため、絶縁樹脂によりコーティングを施した場合においても上記圧電ユニット間の接合部が固着することを防止することができる。
上記絶縁樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ウレタン樹脂、及びシリコーン樹脂から選ばれる1種以上を含有することができる
特に、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、及びウレタン樹脂を含有する上記絶縁樹脂を用いると、破断強度の大きなコーティングが形成されるため、上記マスキング部材を形成する有意性が高まる。
上記積層型圧電素子は、上記側面電極として、各圧電ユニット内における隣り合う2つの上記内部電極に交互に電気的に導通する一対のユニット側面電極と、上記圧電ユニット間の上記ユニット側面電極同士を電気的に導通させる一対の外部側面電極とを有し、該外部側面電極は上記マスキング部材の上から形成されていることが好ましい
この場合には、上記ユニット側面電極及び上記外部側面電極により、上記内部電極への電気的な導通をより確実に行うことができる。そしてこの場合には、特に、上記外部側面電極の形成時に、上記積層型圧電素子の側面から上記圧電ユニット同士の接合部内に導電性材料が滲入するおそれが生じるが、上記第2の参考発明においては、上記マスキング部材により上記積層型圧電素子の側面に露出する上記接合部の開口部が塞がれているため、上記導電性材料の滲入を防止することができる。
また、この場合には、上記マスキング部材の積層方向の形成幅を大きくすることが可能になり、より確実に側面電極形成時における導電性材料の接合部への滲入を防止することができる。
即ち、上記側面電極を上記ユニット側面電極と上記外部側面電極とに分割して形成せず、単一の電極で形成すると、上記マスキング部材の上から上記側面電極を形成することになるため、全ての内部電極と側面電極とを電気的に導通させるためには、上記マスキング部材の積層方向の形成幅を小さくする必要が生じる。例えば、上記接合部を挟む隣り合う二つの上記電極配設層(内部電極)間の間隔よりも小さな幅で上記マスキング部材を形成する必要が生じる。
これに対し、上記のごとく、上記側面電極として、上記ユニット側面電極と上記外部側面電極とを形成すると、これらの電極が少なくとも一部で電気的に接続すれば、上記に導通する全ての内部電極に導通することが可能になる。そのため、上記導電性材料の滲入を確実に防止するために、上記積層型圧電素子の積層方向における上記マスキング部材の形成幅を大きくしても、すべての内部電極と側面電極とを導通させることが可能になる。
上記ユニット側面電極は、導電性樹脂、半田、導電性金属、又は導電性硝子材料からなることが好ましい
この場合には、例えばペースト状の上記導電性樹脂、半田、導電性金属、又は導電性硝子材料を上記圧電ユニットの側面に塗布し硬化させることにより、上記ユニット側面電極を簡単に形成することができる。
また、上記外部側面電極は、導電性樹脂、半田、導電性金属、又は導電性硝子材料からなることが好ましい
この場合には、例えばペースト状の上記導電性樹脂、半田、導電性金属、又は導電性硝子材料を上記積層型圧電素子の側面に塗布し硬化させることにより、上記外部側面電極を簡単に形成することができる。
上記マスキング部材は、上記接合部を挟む上下3層以内の圧電体層の領域において上記ユニット側面電極を覆うように形成されていることが好ましい
上記マスキング部材の形成領域が上記接合部を挟む上下3層を超える圧電体層の領域にまで及ぶ場合には、上記ユニット側面電極と上記外部側面電極との接触面積が小さくなるおそれがある。その結果、上記外部側面電極と上記ユニット側面電極との間の電気抵抗が高くなり、より多くの電気エネルギーが熱として失われてしまうおそれがある。また、発熱により、圧電ユニット、電極、コーティング材等が劣化したり、これらの耐久性が低下したりするおそれがある。
上記マスキング部材は、シリコーン粘着材又はアクリル粘着材からなることが好ましい
この場合には、上記接合部の上記開口部を確実に塞ぐことができ、上記導電性材料の滲入をより確実に防止することができる。
上記マスキング部材は、フッ素樹脂又はポリイミド樹脂からなる樹脂基材と、該樹脂基材上に形成されたシリコーン粘着材又はアクリル粘着材からなる粘着層とを有するマスキングテープからなることが好ましい
この場合には、上記マスキングテープを上記接合部の上記開口部を覆うように貼付することにより簡単かつ確実に上記接合部の上記開口部を塞ぐことができる。これにより、簡単かつ確実に上記接合部の開口部から上記導電性材料が滲入することを防止することができる。
次に、上記第3の参考発明について説明する。
上記第3の参考発明において、上記圧電ユニット間には、上記圧電ユニット同士の接合面における上記圧電活性領域の少なくとも一部で上記圧電ユニット同士が接着剤によって接着された領域である部分接着部と、上記接合面における上記圧電不活性領域の少なくとも一部で上記圧電ユニット同士が接着されていない領域である非接着部とを有する接合材層を形成することができる。また、上記圧電ユニット同士を少なくとも積層方向に加圧することにより上記圧電ユニット間を接合することもできる。
上記部分接着部は、シリコーン樹脂系接着剤、ウレタン樹脂系接着剤、ポリエステル樹脂系接着剤、ポリイミド樹脂系接着剤、ポリアミドイミド樹脂系接着剤、又はエポキシ樹脂系接着剤等により形成することができる。
上記側面電極は、上記圧電ユニットの側面にペースト状の導電性材料を塗布し、未硬化又は半硬化状態の上記導電性材料中に固形の上記外部側面電極を埋設し、上記導電性材料を硬化させて上記ユニット側面電極を形成すると共に該ユニット側面電極に上記外部側面電極を保持させてなることが好ましい
この場合には、上記ユニット側面電極に上記外部側面電極を容易に埋設させてなる上記側面電極を容易に形成することができる。
ペースト状の上記導電性材料の表面自由エネルギーを1としたとき、上記圧電セラミックの表面自由エネルギーは0.8以下であることが好ましい
この場合には、ペースト状の上記導電性材料を上記圧電ユニットの側面に塗布したときに、該圧電ユニットの側面で上記導電性材料が濡れ広がることを抑制することができる。そのため、ペースト状の上記導電性材料が上記圧電ユニットの側面で濡れ広がって上記接合部に到達することを防止するこができる。したがって、この場合には、上記接合部の開口部から上記導電性材料が滲入することをより一層防止することできる。
上記表面自由エネルギーは、次のようにして測定することができる。
即ち、表面自由エネルギーが既知の数種類の液体に対する接触角を測定し、下記の式(1)、及び式(2)より、固体の表面自由エネルギーを算出する。
γS=γSL+γLcosθ・・・・(1)
γSL=γS+γL−2(γS dγL d)1/2−2(γS pγL p)1/2−2(γS hγL h)1/2・・・・(2)
ここで、γLは液体の表面自由エネルギー、γSは固体の表面自由エネルギー、γSLは液体−固体間の表面自由エネルギー、θは液体と固体表面のなす接触角である。また、γ=γd+γp+γhであり、γdは表面自由エネルギーの分散力成分、γpは表面自由エネルギーの極性力成分、γhは表面自由エネルギーの水素結合成分である。ここでは、表面自由エネルギーが既知の液体として、水、ジヨードメタン、αブロモナフタレンを用いた。本測定手法は、所謂「Kitazaki−Hata理論」として知られている。
上記ユニット側面電極は、上記圧電ユニットの側面上に形成された第1側面電極と、該第1側面電極上に積層形成された第2側面電極とからなることが好ましい
この場合には、上記第2側面電極に上記外部側面電極を埋設させることができる。
また、上記圧電ユニットは、一般に、上記第1側面電極が形成された状態で供給される場合がある。このとき、該第1側面電極は既に完全に硬化しているため、上記外部側面電極を埋設させることができない。上記のごとく、該第1側面電極上に上記第2側面電極を積層形成すると、第2側面電極の形成時に上記外部側面電極を埋設させることができる。その結果、上記第1側面電極が予め形成された圧電ユニットに対しても、上記外部側面電極を埋設させることができる。
したがって、上記側面電極は、上記圧電ユニットの側面に、上記第1側面電極を形成し、該第1側面電極上にペースト状の導電性材料を塗布し、未硬化又は半硬化状態の上記導電性材料中に上記外部側面電極を埋設し、上記導電性材料を硬化させて上記第2側面電極を形成すると共に該第2側面電極に上記外部側面電極を保持させてなることが好ましい
上記第2側面電極の形成に用いるペースト状の上記導電性材料の表面自由エネルギーを1としたとき、上記第1側面電極の表面自由エネルギーが0.8以下であることが好ましい
この場合には、ペースト状の上記導電性材料を上記第1側面電極上に塗布したときに、該第1側面電極上で濡れ広がることを抑制することができる。そのため、ペースト状の上記導電性材料を塗布したときに、上記第1側面電極上で濡れ広がって上記導電性材料が上記接合部の開口部に到達することを防止することができる。それ故、この場合には、上記接合部の上記開口部から上記導電性材料が滲入することをより一層防止することできる。
表面自由エネルギーは上述と同様の方法により測定することができる。
上記第1側面電極は導電性金属を上記圧電ユニットの側面に焼付けてなり、上記第2側面電極は導電性樹脂よりなることが好ましい
この場合には、上記第2側面電極の形成時に該第2側面電極を構成する導電性樹脂を上記導電性金属を焼付けてなる上記第1側面電極に浸透させることができる。そのため、上記第2側面電極の形成時に、上記導電性樹脂を上記第1側面電極上に塗布したときに、上記導電性樹脂が上記第1側面電極上で濡れ広がって上記導電性樹脂が上記接合部の開口部に到達することを防止することができる。それ故この場合には、上記接合部の上記開口部から上記導電性樹脂が滲入することをより一層防止することができる。
上記導電性金属としては、例えば銀等を用いることができる。また、上記導電性樹脂としては、例えば樹脂と銀との混合物等を用いることができる。
上記外部側面電極は、導電性の金属メッシュからなることが好ましい
この場合には、上記外部側面電極を上記ユニット側面電極に埋設させることが容易になる。即ち、この場合には、例えば、上記外部側面電極を上記ユニット側面電極に埋設させる際に、上記ユニット側面電極の形成パターンをほとんど変形させることなく、上記外部側面電極を埋設させることが可能になる。
次に、本発明及び上記第1〜第3の参考発明において、上記電極配設層は、上記電極部の外周端部が上記圧電ユニットの外周測面に対して内方に控えた控え部を有することが好ましい。この場合には、上記圧電活性領域と上記圧電不活性領域とが形成されると共に、隣り合う2つの内部電極に交互に電気的に導通する上記側面電極の形成が容易になる。
また、上記圧電ユニット内における上記圧電体層の積層数は10〜100層であることが好ましい。
上記圧電体層の積層数が10層未満の場合には、上記積層型圧電素子において、上記圧電ユニットの最上層と最下層に形成される内部電極に挟まれてない層の割合が大きくなるため、変位発生効率が低下するおそれがある。また、各圧電ユニットの変位量が小さくなり、圧電ユニット内において上記圧電活性領域と上記圧電不活性領域との境界に発生する応力集中が小さくなる。そのため、本発明及び上記第1〜上記第3の参考発明によってもたらされる応力集中を緩和できるという上述の作用効果の影響が小さくなるおそれがある。一方、積層数が100層を超える場合には、積層型圧電体素子を複数の圧電ユニットから構成せず、1つの圧電ユニットで構成する方がよくなる場合が多い。また、100層を超える場合は、発生する応力が大きくなる。そのため、本発明及び上記第1〜第3の参考発明により、上述の応力集中に対する緩和効果は得られるが、その効果が不十分になってしまうおそれがある。より好ましくは、上記圧電ユニット内における上記圧電体層の積層数は20層〜80層がよい。
本発明及び上記第1〜第3の参考発明の上記積層型圧電素子は、例えば車両用エンジン等の燃料噴射用インジェクタの駆動源として用いることができる。
(実施例1)
次に、本発明の実施例につき、説明する。
図1〜図3に示すごとく、本例の積層型圧電素子1は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131を含む電極配設層12、13とを交互に積層してなる圧電ユニット15を、接合材層10を介設して複数積層してなる。また、積層型圧電素子1は、隣り合う2つの内部電極121、131に交互に電気的に導通する導電性材料からなる一対の側面電極17、18を有する。
図2及び図3に示すごとく、積層型圧電素子1は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。
また、接合材層10は、圧電ユニット15同士の接合面151の全面に形成された接着剤からなる。接合材層10の圧電不活性領域192の少なくとも一部には、積層型圧電素子1の駆動時に離間する離間部100を有する。離間部100は、接合材層10が圧電不活性領域192の少なくとも一部で破断してなる。
以下、本例の積層型圧電素子1について、さらに説明する。
図1〜図3に示すごとく、各圧電ユニット15において、電極配設層12、13は、それぞれ導電性を有する内部電極を構成する電極部121、131と、該電極部121、131の外周端部が圧電ユニット15の外周側面よりも内方に所定の距離で控えた控え部122、132とを有している。電極配設層12、13は、電極部121、131においていずれか一方の側面電極17、18に交互に電気的にそれぞれ接続している。
また、電極配設層12、13には、控え部122、132が形成されているため、積層型圧電素子1は、これを積層方向に透視した場合に、上述のごとく、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する(図2及び図3参照)。
側面電極17、18としては、各圧電ユニット15内における隣り合う2つの電極部121、131に交互に電気的に導通する一対のユニット側面電極171、181と、圧電ユニット15間のユニット側面電極171、181同士を電気的に導通させる外部側面電極172、182とが形成されている。ユニット側面電極171、181は、Agを焼付けてなり、外部側面電極172,182は、エポキシ樹脂とAgとを含有する導電性樹脂からなる。
接合材層10は、シリコーン樹脂系接着剤を硬化させてなり、本例においては、シリコーン樹脂系接着剤として、硬化後の破断強度が20MPaとなる接着剤を採用した。
また、本例において、圧電ユニット15の破断強度、即ち圧電体層11同士の接着、電極部121、122と圧電体層11との接着、又は圧電体層11自体が破断する強度のうちの最も小さい破断強度は45MPaである。
これらの破断強度は、上述の引張試験により求めることができる。
次に、本例の積層型圧電素子1の製造方法につき、図1〜図11を用いて説明する。
本例においては、まず、以下のグリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニットを作製する。
以下、圧電ユニットの作製を各工程ごとに説明する。
<グリーンシート作製工程>
まず、圧電材料となるジルコン酸チタン酸鉛(PZT)等のセラミック原料粉末を準備した。具体的には、出発原料として酸化鉛、酸化ジルコニウム、酸化チタン、酸化ニオブ、炭酸ストロンチウム等を準備し、これらを目的組成のPZTとなるように秤量した。このとき、鉛の蒸発を考慮して、酸化鉛などを目的組成の化学量論比よりも1〜2%程度リッチになるように配合した。これを混合機により乾式混合し、その後温度800℃〜950℃で仮焼した。
次いで、仮焼紛に純水、分散剤等を加えてパールミルにより湿式粉砕した。粉砕物を乾燥し、粉脱脂した後、溶剤、バインダー、可塑剤、分散剤等を加えてボールミルにより混合した。その後、スラリーを真空装置内で撹拌機により撹拌しながら真空脱泡、粘度調整をした。
次いで、ドクターブレード装置により、スラリーを一定の厚みのグリーンシートに成形した。さらにグリーンシートをプレス機で打ち抜くか、あるいは切断機により切断することにより、所定の大きさに成形した。
なお、グリーンシートの成形方法としては、本例で用いたドクターブレード法の他、押出成形法やその他種々の方法を採用することができる。
<電極印刷工程>
次に、図4及び図5に示すごとく、グリーンシート110上に電極配設層の電極部となる電極材料120、130を印刷し、第1電極印刷シート125及び第2電極印刷シート135の2種類のシートを形成した。
以下に、電極印刷シート125、135の形成についてさらに説明する。
第1電極印刷シート125の形成に当たっては、図4に示すごとく、グリーンシート110上の印刷領域141において、最終的に電極配設層12の電極部121となる部分(図1及び図2参照)に電極材料120を印刷した。これにより、第1電極印刷シート125を形成した。
また、図5に示すごとく、第2電極印刷シート135の形成に当たっては、第1電極印刷シートと同様に、グリーンシート110上の印刷領域141において、電極配設層13の電極部13となる部分に電極材料130を印刷した。これにより、第2電極印刷シート135を形成した。
第1電極印刷シート125及び第2電極印刷シート135においては、後述の積層体切断工程における切断時に、グリーンシート110上に形成された電極材料120、130が中間積層体のそれぞれ異なる側面に露出するような形成パターンで電極材料120、130を印刷した。
また、電極印刷工程では、後工程のユニット切断工程において切断される部分を避けるように間隙142を空けて、電極材料120、130の印刷を行った。つまり、グリーンシート110上の隣接する印刷領域141の間に間隙142を設けて印刷を行った。
なお、本例では、電極材料130、140として、Ag及びPdをAg/Pd=7/3(重量比)で含有するペースト状の電極材料を用いた。
<圧着工程>
次に、図6に示すごとく、形成した第1電極印刷シート125と第2電極印刷シート135とを交互に所望の枚数で積層した。
このとき、第1電極印刷シート125と第2電極印刷シート135とは電極材料120と電極材料130とが交互に印刷領域の対向する端面に露出するように積層した。
また、積層するシートの上端には、電極材料を印刷を施していないグリーンシート110を積層した。
そして、このようにして積層したシートを100℃で加熱すると共に積層方向に50MPaで加圧し、予備積層体199を形成した。なお、図6においては、図面作成の便宜のため、実際の積層数を省略した形式で予備積層体199を示してある。
<積層体切断工程>
次に、図7〜図9に示すごとく、形成した予備積層体199を切断位置143に沿って積層方向に切断し、中間積層体190を形成した。
なお、予備積層体199の切断は、各中間積層体190ごとに切断してもよいし、複数の中間積層体190を含んで切断してもよい。本例においては、各中間積層体190ごとに切断した。
なお、図8及び図9においては、図面作成の便宜のため、実際の積層数を省略した形式で予備積層体199及び中間積層体190を示してある。
<焼成工程>
次に、中間積層体190のグリーンシート110に含有されているバインダ樹脂を90%以上加熱除去した(脱脂)。加熱は、80時間かけて徐々に500℃まで昇温し、5時間保持することにより行った。
次に、脱脂した中間積層体190を焼成し、図10に示すごとく、圧電ユニット15を作製した。焼成は、温度1100℃まで12時間かけて徐々に昇温させ、2時間保持後、徐々に冷却することにより行った。図10に示すごとく、作製された圧電ユニット15は、グリーンシート110(図9参照)が焼結してなる圧電セラミック層11と、電極材料120(図9参照)により形成された電極部121を有する電極配設層12及び電極材料130(図9参照)により形成された電極部131を有する電極配設層13とが交互に積層されてなる。
そして、焼成後、全面研磨を行って縦7mm×横7mm×高さ1.8mmの圧電ユニット15を作製し、さらに、圧電ユニット15の対向する両側面を挟むように、Agを焼付け、一対のユニット側面電極171、181を形成した。各電極部121、131は、それぞれ交互に異なる側面のユニット側面電極171、181に電気的に接続させた。
このようにして、一対のユニット側面電極171、181が形成された圧電ユニット15を複数作製した。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子を作製する。
具体的には、図11に示すごとく、まず、圧電ユニット15の接合面151の全面に接着剤101を塗布した。次いで、これらの圧電ユニット15を複数積層し、その接合部155を接着した。本例においては、接着剤としてシリコーン樹脂系接着剤を用いた。このシリコーン樹脂系接着剤は、上述の引張試験による硬化時の破断強度が20MPaであり、圧電ユニット15の破断強度(45MPa)よりも充分に小さいことを予め確認している。次いで、接合部155の接着剤を硬化させ、圧電ユニット15間の接合部155に、接着剤からなる接合材層10(図1〜図3参照)を形成させた。なお、図11は、図面作成の便宜のため、実際の圧電体層、電極配設層、及び圧電ユニットの積層数を省略した形で示してある。
次に、図11に示すごとく、接着材層により接合された圧電ユニット15における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。具体的には、エポキシ樹脂とAgとを含有するペースト状の導電性樹脂(樹脂銀)を準備し、これをユニット側面電極171(又は181)上に塗布した。このとき、導電性樹脂は、圧電ユニット15同士の接合部155の側面における各ユニット側面電極171(又は181)間の隙間を埋めるように形成した。次いで、導電性樹脂を硬化させることにより、外部側面電極172(又は182)を形成した。同様にして、対向するもう一方の側面にも外部側面電極182(又は172)を形成した。
このようにして得られた積層型圧電素子の外部側面電極172、182に電圧を印加し、積層型圧電素子を少なくとも1回以上駆動させた。駆動時に、圧電活性領域191は積層方向に伸長するが、圧電不活性領域192は伸長しないため、圧電不活性領域192における接合材層10が破断し、離間部100が形成される(図3参照)。本例においては、接合材層10の形成に、圧電ユニット15よりも破断強度の小さな接着剤を用いているため、破断は接合材層10に起こる。
以上のようにして、図1〜図3に示すごとく、積層型圧電素子1を得た。
以下、本例の積層型圧電素子の作用効果につき、説明する。
図1〜図3に示すごとく、本例の積層型圧電素子1において、圧電ユニット15同士を接合する接合材層10は、接合面151の全面に形成された接着剤からなる。そのため、積層型圧電素子1の側面に導電性材料からなる側面電極(外部側面電極172、182)を形成する際に、導電性材料の成分が圧電ユニット15間の接合部155に滲入することを防止することができる。そのため、導電性材料の成分によって圧電ユニット15の接合部155が固着することを防止することができる。したがって、接合部155の固着によって圧電ユニット15内に発生するクラックを防止することができる。また、この場合には、導電性材料の滲入を防止できるため、強度の高い導電性材料により、外部側面電極を形成することが可能になる。その結果、駆動時に側面電極が破断することを防止することができる。
また、本例の積層型圧電素子1は、接合材層10が圧電不活性領域192の少なくとも一部で破断してなる離間部100を有している。図12に示すごとく、離間部100は、積層型圧電素子1の駆動時に圧電不活性領域192において離間することができる。そのため、圧電活性領域191と圧電不活性領域192との境界における応力集中を緩和することができる。それ故、圧電ユニット15の内部、即ち、圧電体層11の内部、圧電体層11と電極部121、131との間、及び圧電体層11同士の間等にクラックが発生することを防止することができる。そのため、積層型圧電素子1は、高い信頼性で駆動させることができる。
また、本例においては、圧電ユニット15における圧電体層11同士の接着の破断強度、電極部121、131と圧電体層11との接着の破断強度、及び圧電体層11自体の破断強度よりも、圧電体層11と接合材層10との接着の破断強度及び接合材層10自体の破断強度が小さくなる接着剤で、圧電ユニット15間をその接合面151の全面で接合してなる積層体を少なくとも1回以上を駆動させることにより離間部100を形成してある。
そのため、駆動時に、離間部100を容易に形成させることができると共に、接合材層10における上述の応力集中が解消される適切な部位に離間部100を形成させることができる。そのため、圧電活性領域191と圧電不活性領域192との境界部における応力集中をより充分に緩和することができる。
また、本例においては、接着材層10を形成するために、圧電ユニット10の破断強度(45MPa)よりも10MPa以上小さな破断強度のシリコーン樹脂系接着剤(破断強度20MPa)を用いた。
そのため、少ない駆動回数で離間部100を確実に接合材層10に形成させることができる。
また、図13に示すごとく、積層型圧電素子1の最外側面には、例えばポリエステル樹脂等からなる絶縁樹脂からなるコーティング層19を形成することができる。コーティング層19は積層型圧電素子1の側面全体を覆うように形成することができる。
これにより、積層型圧電素子1の側面の絶縁性を確保することができる。また、本例において、接合材層10は、接着剤を圧電ユニット15間の接合面151の全面に形成してなり、接合部155の側面は完全に塞がれているため、絶縁樹脂が積層型圧電素子1の接合部155に滲入することを防止することができる。したがって、絶縁樹脂によりコーティング層19を形成する場合においても、絶縁樹脂により接合部155が固着することを防止することができる。
本例においては、破断強度の小さな接着剤を用いて離間部100を形成したが、破断強度の大きな接着剤を用いて離間部100を形成することもできる(図3参照)。
例えば、接着剤で上記圧電ユニット間を上記接合面の全面で接合してなる積層型圧電素子を、上記接着剤が完全に硬化する前に少なくとも1回以上駆動させることにより離間部を形成することができる。
接着剤は、一般に硬化する前の初期状態は液体であり、加熱や化学反応によって徐々に硬化し、完全に硬化させることにより最終的に固体となってその接着機能を発揮する。完全に硬化したときの破断強度が高い接着剤であっても、硬化中は弾性を有し破断強度も低い。そこで、硬化中、即ち破断強度が圧電ユニットの破断強度よりも小さい状態において、積層型圧電素子を駆動させることにより、駆動時の素子の変形力を利用して接合材層を破断させて上記離間部を形成させることもできる。
また、圧電体層の破断強度を大きくすることにより、相対的に接合材層の破断強度を小さくすることもできる。
即ち、本例においては、温度1100℃まで12時間かけて徐々に昇温させ、その温度で2時間保持することにより焼成を行っている。この場合には、平均粒径が約5μm程度の圧電セラミック粒子からなる圧電体層が形成されている。
焼成温度を5〜30%程度低下させたり、焼成時間を3〜20%程度短くさせたりすることにより、圧電セラミック粒子の平均粒径を小さくすることが可能になる。これにより例えば平均粒径2.5μmの圧電セラミック粒子からなる圧電体層を形成すると、例えば圧電ユニットの破断強度が55MPaの圧電ユニットを形成することができる。この圧電ユニット同士を積層し、その接合面をエポキシ樹脂系接着剤(破断強度50MPa)で接合して積層型圧電素子を作製すると、その接合材層の破断強度は、圧電ユニットに対して相対的に小さくなる。したがって、この積層型圧電素子を駆動させることにより、上記と同様な離間部を接着材層の圧電不活性領域に形成させることができる。
このように、破断強度が比較的大きな接着剤を用いても上記離間部を接合材層の圧電不活性領域に形成することができる。この場合においても、離間部は、積層型圧電素子の駆動時に上記圧電不活性領域において離間し、圧電活性領域と圧電不活性領域との境界における応力集中を緩和することができる。そのため、圧電ユニットの内部にクラックが発生することを防止することができる。
参考例1
本例は、接合材層と圧電ユニットとの境界部に離型材層を形成することにより、離間部を有する積層型圧電素子を作製する例である。
図14に示すごとく、本例の積層型圧電素子2は、接合材層10と圧電ユニット15との境界部における圧電不活性領域192の少なくとも一部に、離型剤層25を有している。本例において、離型材層25は、シリコーン樹脂を含有する離型剤を硬化させてなり、接合材層10と圧電ユニット15(圧電体層11)との接着を抑制することができる。
接合材層10は、実施例1と同様に圧電ユニット15の接合面全面に形成された接着剤からなる。圧電ユニット15等のその他の構成は、実施例1と同様である。
以下、本例の積層型圧電素子の作製方法につき、説明する。
本例においては、まず、実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニット15を作製した(図15参照)。この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなるものである。圧電ユニット15の破断強度は45MPaであり、圧電ユニットの側面には、対向する側面を挟む一対のユニット側面電極171、181が形成されている。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子2を作製する。
具体的には、図15に示すごとく、まず、圧電ユニット15の接合面151に、離型剤を塗布し乾燥硬化させて離型材層25を形成した。同図に示すごとく、本例においては、シリコーン樹脂を含有する離型剤を接合面151における圧電不活性領域に塗布し、離型材層25を接合面151における圧電ユニット15の外周近傍に形成した。次いで、圧電ユニットの接合面151の全面に接着剤101を塗布した。このとき、離型材層25を形成した領域にも接着剤101を塗布した。その結果、離型材層25を形成した領域においては、離型材層25上に接着剤101が積層される。本例においては、接着剤としてエポキシ樹脂系接着剤を用いた。このエポキシ樹脂系接着剤の破断強度は、50MPaであることを引張試験により予め確認している。
次いで、図15に示すごとく、これらの圧電ユニット15を複数積層し、その接合部155接合面に塗布した接着剤101により接着した。次いで、接合部155の接着剤を硬化させ、圧電ユニット15間の接合部155に、接着剤からなる接合材層10(図14参照)を形成した。なお、図15、並びに後述の図19、図24、図30、図36、及び図40は、図面作成の便宜のため、実際の圧電体層、電極配設層、及び圧電ユニットの積層数を省略した形成で示してある。
次に、図15に示すごとく、接着材層により接合された圧電ユニット15における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。外部側面電極172、182は、実施例1と同様に形成した。このようにして積層型圧電素子2を作製した。
図14及び図16に示すごとく、積層型圧電素子2は、接合材層10と圧電ユニット15(圧電体層11)との接着を抑制する離型剤層25を有している。そのため、例えば積層型圧電素子2を少なくとも1回以上駆動させると、接合材層10が離型剤層25で破断し、離間部100が形成される(図16参照)。本例において、接合材層10の破断は接合材層10と圧電ユニット15(離型材層25)との境界で起きる。
本例においては、接合材層10の形成に、強度の高いエポキシ樹脂系接着剤を用いた。エポキシ樹脂系接着剤を用いて接合材層10を形成した場合、接合材層10の破断強度は、約50MPaとなり、圧電ユニット15の破断強度(約45MPa)より大きくなってしまう。その結果、積層型圧電素子2の駆動時に圧電ユニット15の内部にクラックが発生するおそれがあるが、本例の積層型圧電素子2においては、離型材層25により離間部100が形成されているため、クラックの発生を回避することができる。
即ち、本例の積層型圧電素子2においては、圧電不活性領域192に離型材層25が形成されており、この領域における圧電ユニット15と接合材層100との接着力が著しく低下している(図14参照)。その結果、図16に示すごとく、積層型圧電素子2の駆動時にその内部に生じる応力集中により、圧電不活性領域192における接合材層10と圧電ユニット15との間(接合材層10と離型材層25との間)に離間部100が形成される。離間部100は、積層型圧電素子2の駆動時に圧電不活性領域192において離間し、圧電活性領域191と圧電不活性領域192との境界における応力集中を緩和することができる。そのため、圧電ユニット15の内部にクラックが発生することを防止することができる。
また、実施例1と同様に、本例の積層型圧電素子においても、その側面に、例えばポリエステル樹脂等からなる絶縁樹脂をコーティングすることができる。本例の積層型圧電素子も、実施例1と同様に、接合材層は、接着剤を圧電ユニット間の全面に形成してなるため、接合部の側面は完全に塞がれている。したがって、絶縁樹脂が接合部に滲入することを防止し、絶縁樹脂により接合部が固着することを防止することができる。
参考例2
本例は、圧電ユニット同士の接合部に、側面に開口する隙間部を有し、該隙間部の特定領域に圧電ユニットと側面電極の導電材料成分との接着を阻害する接着阻害層が形成された積層型圧電素子の例である。
図17及び図18に示すごとく、本例の積層型圧電素子3は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131及び控え部122、132を含む電極配設層12、13とを交互に積層してなる圧電ユニット15を複数積み重ねてなる。積層型圧電素子3は、隣り合う2つの内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極17、18を有する。また、積層型圧電素子3は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。
圧電ユニット15同士は、その接合面151における圧電活性領域191の少なくとも一部で圧電ユニット15同士が接着剤によって接着された領域である部分接着部301と、接合面151における圧電不活性領域192の少なくとも一部で圧電ユニット同士15が接着されていない領域である非接着部302とを有する接合材層30を圧電ユニット15間に形成することにより保持されている。
圧電ユニット15同士の接合部355には、積層型圧電素子3の側面に開口する隙間部350が形成されている。側面電極17、18が配設される側面に開口する隙間部350における圧電不活性領域192の少なくとも一部には、側面電極17、18を構成する導電性材料と圧電ユニット15の接合面151との接着を抑制する接着阻害層35が形成されている。
本例の積層型圧電素子3において、接着材層30の部分接着部301は、エポキシ樹脂系接着剤を硬化させてなる。
また、接着阻害層35は、シリコーン樹脂を含有する離型剤を硬化させてなる。
側面電極17、18としては、実施例1と同様に、各圧電ユニット15内における隣り合う2つの電極部121、131に交互に電気的に導通する一対のユニット側面電極171、181と、圧電ユニット15間のユニット側面電極171、181同士を電気的に導通させる外部側面電極172、182とが形成されている。ユニット側面電極171、181は、Agを焼付けてなり、外部側面電極172,182は、エポキシ樹脂とAgとを含有する導電性樹脂からなる。
また、本例の積層型圧電素子3は、その側面全体を覆うポリエステル樹脂からなるコーティング層19を有している。
なお、図17、並びに後述の図22、図27、図34、及び図37においては、図面作成の便宜のため、実際の圧電体層11、電極配設層12、13、及び圧電ユニット15の積層数を省略した形で、積層型圧電素子を示してある。また、コーティング層19は、実際には積層型圧電素子の側面全面に形成されているが、後述の図22、図27、及び図34においては、圧電体層11及び電極配設層12、13等の構成を示すために、コーティング層19の一部を省略した形で積層型圧電素子を示してある。
以下、本例の積層型圧電素子の作製方法につき、説明する。
本例においては、まず、実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニット15を作製した。この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなるものである。圧電ユニット15の破断強度は45MPaであり、圧電ユニットの側面には、対向する側面を挟む一対のユニット側面電極171、181が形成されている。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子1を作製する。
具体的には、図19に示すごとく、まず、圧電ユニット15の接合面151に、シリコーン樹脂を含有する離型剤を塗布し乾燥硬化させて接着阻害層35を形成した。同図に示すごとく、本例においては、シリコーン樹脂を含有する離型剤を接合面151における圧電不活性領域に塗布し、接着阻害層35を接合面151においける圧電ユニット15の外周近傍に形成した。
次いで、圧電ユニット15の接合面151の圧電活性領域に接着剤301を塗布した。このとき、接着剤301は、接着阻害層35を形成していない領域に塗布される。
本例においては、接着剤としてエポキシ樹脂系接着剤を用いた。このエポキシ樹脂系接着剤の破断強度は、50MPaであることを引張試験により予め確認している。
次いで、図19に示すごとく、これらの圧電ユニット15を複数積層し、その接合部355の接合面に塗布した接着剤301を硬化させ、図18に示すごとく、圧電ユニット15間の接合部355に、部分接着部301を形成した。このとき部分接着部301の周囲には、圧電ユニット15同士が接着されていない非接着部302が形成される。その結果、圧電ユニット間の接合部355には、上記非接着部302において隙間部350が形成される。この隙間部350は圧電ユニット15の積層体の側面に開口する。また、接着阻害層350は、非接着部302(隙間部355)に形成される。
次に、図19に示すごとく、接着材層により接合された圧電ユニット15における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。外部側面電極172、182は、実施例1と同様に形成した。
次に、図17及び図18に示すごとく、積層体の側面の全面に、ポリエステル樹脂をコーティングモールドし、コーティング層19を形成した。
このようにして、積層型圧電素子3を作製した。
図18に示すごとく、本例の積層型圧電素子3において、圧電ユニット15同士は、圧電活性領域191に形成された部分接着部301により接合されており、該部分接着部301の周囲(圧電不活性領域192)には、接着剤が形成されていない非接着部302が形成されている。非接着部302においては、圧電ユニット15同士は接着剤により接着されておらず、圧電ユニット15間に隙間部350が形成される。この隙間部350は、積層型圧電素子3の駆動時にその体積を変化させることができるため、圧電活性領域191と圧電不活性領域192との境界部に発生する応力集中を緩和することができる。このような、隙間部350を有しているため、本例においては、上述のごとく、比較的破断強度の高いエポキシ樹脂系接着剤等の接着剤により部分接着部301を形成することができる。
また、隙間部350を有しているため、上述の側面電極17、18の形成時、本例においては特に外部側面電極172、182の形成時には、側面電極を構成する導電性材料の成分が隙間部350に滲入し易く、この導電性材料成分により圧電ユニット15同士が固着してしまうおそれがある。その結果、非接着部302においても、導電性材料により圧電ユニット15同士が接着し、上述の応力集中を充分に緩和できなくなるおそれがある。
本例の積層型圧電素子3においては、接着阻害層35が形成されており、該接着阻害層35が隙間部350中に滲入した導電性材料の成分と圧電ユニット15の接合面151との接着を阻害することができる。そのため、非接着部302において圧電ユニット15同士が接着してしまうことを防止することができる。それ故、図20に示すごとく、上記積層型圧電素子3の駆動時には、非接着部302(隙間部350)は、圧電不活性領域192においてその体積を充分に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。その結果、圧電ユニット15の内部にクラックが発生することを防止することができる。
また、本例の積層型圧電素子3は、その側面にコーティング層19が形成されている。コーティング層19の形成時においては、図21に示すごとく、圧電ユニット15同士の隙間部350に絶縁樹脂の成分が滲入し易い。本例の積層型圧電素子3においては、圧電不活性領域192に、シリコーン樹脂を含有する接着阻害層35が形成されており、該接着阻害層35は、隙間部350中に滲入した絶縁樹脂と圧電ユニット15の接合面151との接着をも阻害することができる。そのため、非接着部302において、コーティング層の絶縁樹脂により圧電ユニット15同士が接着してしまうことを防止することができる。それ故、積層型圧電素子3の駆動時には、非接着部302(隙間部350)は、圧電不活性領域192においてその体積を比較的容易に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。
次に、本例においては、圧電ユニット同士を少なくとも積層方向に加圧することにより保持してなる積層型圧電素子に接着阻害層を形成した例についても説明する。
図22及び図23に示すごとく、この積層型圧電素子4は、実施例1と同様に、圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131及び控え部122、132を含む電極配設層13とを交互に積層してなる圧電ユニット15を複数積み重ねてなる。。積層型圧電素子4は、隣り合う2つの内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極17、18を有する。側面電極17、18としては、実施例1と同様に、ユニット側面電極171、181と、外部側面電極172、182とが形成されている。
また、積層型圧電素子4は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。
また、本例の積層型圧電素子4は、その側面全体を覆うポリエステル樹脂からなるコーティング層19を有している。
積層型圧電素子4において、圧電ユニット15同士は、これらを少なくとも積層方向に加圧することにより保持されている。具体的には、本例においては、積層型圧電素子4の積層方向の両端に保持治具49を配置し、これら保持治具49によって積層型圧電素子4を積層方向(図22における矢印Y方向)に加圧することにより保持されている。
圧電ユニット15同士の接合部455には、積層型圧電素子4の側面に開口する隙間部450が形成される。側面電極17、18が配設される側面に開口する隙間部450における圧電不活性領域192の少なくとも一部には、側面電極17、18を構成する導電性材料と圧電ユニット15の接合面151との接着を抑制する接着阻害層35が形成されている。
以下、本例の積層型圧電素子4の作製方法につき、説明する。
本例においては、まず、実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニット15を作製した。この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなるものである。圧電ユニット15の側面には、対向する側面を挟む一対のユニット側面電極171、181が形成されている。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子4を作製する。
具体的には、図24に示すごとく、まず、各圧電ユニット15の接合面151に、シリコーン樹脂を含有する離型剤を塗布し乾燥硬化させて接着阻害層35を形成した。同図に示すごとく、本例においては、シリコーン樹脂を含有する離型剤を接合面151における圧電不活性領域に塗布し、接着阻害層35を接合面151における圧電ユニット15の外周近傍に形成した。
次いで、これらの圧電ユニット15を複数積層し、積層方向の両端に、各圧電ユニット15を加圧保持するための保持治具49を配置した。
次に、保持治具49により保持された圧電ユニット15の積層体における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。外部側面電極172、182は、実施例1と同様に形成した。
次に、積層体の側面の全面に、ポリエステル樹脂をコーティングモールドし、コーティング層19を形成した(図22及び図23参照)。
このようにして、図22及び図23に示すごとく、積層型圧電素子4を作製した。
図22及び図23に示すごとく、本例の積層型圧電素子3において、圧電ユニット15同士は、積層方向に加圧保持されており、接合部455には、接着剤等からなる接合材層は形成されていない。そのため、圧電ユニット15同士の接合部には、積層型圧電素子4の側面に開口する隙間部450が形成される。かかる隙間部450は、積層型圧電素子4の駆動時にその体積を変えることができるため、圧電活性領域191と圧電不活性領域192との境界における応力集中を緩和することができる(図25参照)。
側面電極の形成時、本例においては、特に外部側面電極172、182の形成時においては、側面に開口する隙間部450に、側面電極を構成する導電性材料の成分が滲入し、この導電性材料成分により圧電ユニット15同士が圧電不活性領域192において固着してしまうおそれがある。
本例の積層型圧電素子4においては、隙間部450の圧電不活性領域に、接着阻害層35が形成されており、該接着阻害層35が隙間部450中に滲入した導電性材料の成分と圧電ユニット15の接合面151との接着を阻害することができる。そのため、隙間部450の圧電不活性領域192において、圧電ユニット15同士が接着してしまうことを防止することができる。
それ故、図25に示すごとく、上記積層型圧電素子4の駆動時には、隙間部450は、圧電不活性領域192においてその体積を比較的容易に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。その結果、圧電ユニット15の内部にクラックが発生することを防止することができる。
また、本例の積層型圧電素子4は、その側面にコーティング層19が形成されている。コーティング層19の形成時においては、図26に示すごとく、圧電ユニット15同士の隙間部450に絶縁樹脂の成分が滲入し易い。本例の積層型圧電素子4においては、隙間部450の圧電不活性領域192に、上述のごとく、シリコーン樹脂を含有する接着阻害層35が形成されており、該接着阻害層35は、隙間部450中に滲入した絶縁樹脂と圧電ユニット15の接合面151との接着をも阻害することができる。そのため、隙間部450の圧電不活性領域192において、コーティング層19の絶縁樹脂により圧電ユニット15同士が接着してしまうことを防止することができる。
それ故、本例の積層型圧電素子4は、駆動時に、隙間部450の圧電不活性領域192においてその体積を容易に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。
参考例3
本例は、圧電ユニット同士の接合部に隙間部を有し、該隙間部が側面に開口する開口部を塞ぐマスキング部材が形成された積層型圧電素子の例である。
図27〜図29に示すごとく、本例の積層型圧電素子5は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131及び控え部122、132を含む電極配設層とを交互に積層してなる圧電ユニットを複数積み重ねてなる。
積層型圧電素子5は、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極17、18を有する。側面電極17、18としては、実施例1と同様に、各圧電ユニット15内における隣り合う2つの電極部121、131に交互に電気的に導通する一対のユニット側面電極171、181と、圧電ユニット15間のユニット側面電極171、181同士を電気的に導通させる外部側面電極172、182とが形成されている。ユニット側面電極171、181は、Agを焼付けてなり、外部側面電極172,182は、エポキシ樹脂とAgとを含有する導電性樹脂からなる。
また、積層型圧電素子5は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。
圧電ユニット15同士は、その接合面151における圧電活性領域191の少なくとも一部で圧電ユニット15同士を接着剤によって接着する領域である部分接着部501と、接合面151における圧電不活性領域192の少なくとも一部で圧電ユニット15同士を接着しない領域である非接着部502とを有する接合材層50により保持されている。非接着部502においては、圧電ユニット151同士間に隙間部550が形成されている。圧電ユニット15同士の接合部555における少なくとも側面電極17、18が配設される側面には、隙間部が側面に開口する開口部559を塞ぐマスキング部材55が形成されている。本例においては、マスキング部材55は、接合部55における開口部559全体を塞いである。即ち、マスキング部材55は、接合部555の外周側面全体を囲むように形成されている。
また、積層型圧電素子5は、その側面全体を覆うポリエステル樹脂からなるコーティング層19を有している。
以下、本例の積層型圧電素子5の製造方法につき、説明する。
本例においては、まず、実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニット15を作製した。この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなり、側面に焼付け銀からなるユニット側面電極171、181を有するものである。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子5を作製する。
具体的には、図30に示すごとく、まず、圧電ユニット15の接合面151の圧電活性領域に接着剤501を塗布した。接着剤としてエポキシ樹脂系接着剤を用いた。
次いで、図30に示すごとく、これらの圧電ユニット15を複数積層し、その接合部555の接合面に塗布した接着剤501を硬化させ、図28及び図29に示すごとく、圧電ユニット15間の接合部555に、部分接着部501を形成した。このとき部分接着部501の周囲には、圧電ユニット15同士が接着されていない非接着部502が形成される。その結果、圧電ユニット15間の接合部555には、非接着部502において隙間部550が形成される。
次に、接合部555において隙間部550が積層体側面に開口する開口部を塞ぐマスキング部材55を配設した。マスキング部材55としては、樹脂基材と粘着層とを有するマスキングテープを用い、これを積層体の側面に沿って周方向に巻き付け接合部555の開口部を塞いだ。次に、圧電ユニット15の積層体における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。外部側面電極172、182は、実施例1と同様に形成した。
次に、図27〜図29に示すごとく、積層体の側面の全面に、ポリエステル樹脂をコーティングモールドし、コーティング層19を形成した。このコーティング層19は最も外側の側面に形成した。
このようにして、積層型圧電素子5を作製した。
図18に示すごとく、本例の積層型圧電素子5において、圧電ユニット15同士は、圧電活性領域191に形成された部分接着部501により接合されており、この部分接着部501の周囲(圧電不活性領域192)には、接着剤が形成されていない非接着部502が形成されている。非接着部502においては、圧電ユニット15同士は接着剤により接着されておらず、圧電ユニット15間に隙間部550が形成される。この隙間部550は、積層型圧電素子5の駆動時にその体積を変化させることができるため、圧電活性領域191と圧電不活性領域192との境界部に発生する応力集中を緩和することができる。このような、隙間部550を有しているため、本例においては、上述のごとく、比較的破断強度の高いエポキシ樹脂系接着剤等の接着剤により部分接着部501を形成することができる。
また、隙間部550を有しているため、上述の側面電極17、18の形成時、本例においては特に外部側面電極172、182の形成時に、側面電極を構成する導電性材料の成分が開口部559から隙間部550に滲入し、この導電性材料成分により圧電ユニット15同士が固着してしまうおそれがある。その結果、非接着部502(圧電不活性領域192)においても、導電性材料により圧電ユニット15同士が接着し、上述の応力集中を充分に緩和できなくなるおそれがある。
本例の積層型圧電素子5においては、隙間部550の開口部559がマスキング部材55により塞がれている。そのため、開口部559から隙間部550へ導電性材料が滲入することを防止することができる。それ故、図31に示すごとく、上記積層型圧電素子3の駆動時に、非接着部502における隙間部350は、圧電不活性領域192においてその体積を充分に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。その結果、圧電ユニット15の内部にクラックが発生することを防止することができる。
また、本例の積層型圧電素子5は、その側面にコーティング層19が形成されている。コーティング層19の形成時においても、上述の側面電極の場合と同様に、圧電ユニット15同士の隙間部550に開口部559から絶縁樹脂の成分が滲入し易いが、本例の積層型圧電素子5は、上記のごとく、開口部559を塞ぐマスキング部材を有しているため、絶縁樹脂の滲入も防止することができる。そのため、非接着部502において、コーティング層の絶縁樹脂により圧電ユニット15同士が接着してしまうことを防止することができる。それ故、積層型圧電素子5の駆動時には、非接着部502における隙間部550は、圧電不活性領域192においてその体積を比較的容易に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。
本例においては、マスキング部材55は、ユニット側面電極171、181を被覆しないように形成した(図29参照)。
マスキング部材55は、図33に示すごとく、ユニット側面電極171、181の一部を覆うように形成することができる。同図に示すごとく、マスキング部材55は、圧電ユニット15間の接合部555における隙間部550が側面に開口する開口部559を塞ぐと共に、ユニット側面電極171、181を部分的に覆うように形成することができる。この場合には、開口部559から隙間部550への導電性材料の滲入をより確実に防止することができる。
このとき、マスキング部材55は、接合部555を挟む上下3層以内の圧電体層11の領域においてユニット側面電極171、181を覆うように形成することができる。上下3層以内の領域を超える場合には、ユニット側面電極171、181と外部側面電極172、182との接触面積が小さくなりすぎて、外部側面電極172、182とユニット側面電極171、181との間の電気抵抗が高くなり、より多くの電気エネルギーが熱として失われてしまうおそれがある。また、発熱により、圧電ユニット15、電極171、172、181、182、コーティング層19等が劣化したり、これらの耐久性が低下したりするおそれがある。
次に、本例においては、圧電ユニット同士を少なくとも積層方向に加圧することにより保持してなる積層型圧電素子にマスキング部材を形成した例についても説明する。
図34及び図35に示すごとく、この積層型圧電素子6は、実施例1と同様に、圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131及び控え部122、132を含む電極配設層13とを交互に積層してなる圧電ユニット15を複数積み重ねてなる。積層型圧電素子6は、隣り合う2つの内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極17、18を有する。側面電極17、18としては、実施例1と同様に、ユニット側面電極171、181と、外部側面電極172、182とが形成されている。
また、積層型圧電素子6は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。また、本例の積層型圧電素子6は、その側面全体を覆うポリエステル樹脂からなるコーティング層19を有している。
積層型圧電素子6において、各圧電ユニット15同士は、これらを少なくとも積層方向に加圧することにより保持されている。具体的には、本例においては、積層型圧電素子6の積層方向の両端に保持治具69を配置し、これら保持治具69によって積層型圧電素子6を積層方向(図34における矢印Y方向)に加圧することにより保持されている。圧電ユニット15同士の接合部655には、積層型圧電素子6の側面に開口する隙間部650が形成される。圧電ユニット15同士の接合部655における少なくとも側面電極17、18が配設される側面には、隙間部650が側面に開口する開口部559を塞ぐマスキング部材65が形成されている。
以下、積層型圧電素子6の作製方法につき、説明する。
実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、図36に示すごとく、圧電ユニット15を作製した。この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなるものである。圧電ユニット15の側面には、対向する側面を挟む一対のユニット側面電極171、181が形成されている。
次に、上記のようにして作製した圧電ユニット15を複数積層し、積層型圧電素子6を作製する。
具体的には、図36に示すごとく、まず、各圧電ユニット15を複数積層し、積層方向の両端に、各圧電ユニット15を加圧保持するための保持治具69を配置した。このとき、圧電ユニット15間の接合部には、積層体の積層体の側面に開口する隙間部650が形成される(図35参照)。
次に、図36に示すごとく、接合部655において隙間部が積層体側面に開口する開口部を塞ぐマスキング部材65を配設した。マスキング部材65としては、樹脂基材と粘着層とを有するマスキングテープを用い、これを積層体の側面に沿って周方向に巻き付け接合部655の開口部を塞いだ。
次いで、圧電ユニット15の積層体における同じ側面に形成されたユニット側面電極171(又は181)同士を電気的に接続するために、外部側面電極172(又は181)を形成した。外部側面電極172、182は、実施例1と同様に導電性樹脂を塗布し、硬化させることにより形成した。
次に、積層体の側面の全面に、ポリエステル樹脂をコーティングモールドし、コーティング層19を形成した(図34及び図35参照)。
このようにして、図34及び図35に示すごとく、積層型圧電素子6を作製した。
図34及び図35に示すごとく、本例の積層型圧電素子6において、圧電ユニット15同士は、積層方向に加圧保持されており、接合部655には、接着剤等からなる接合材層は形成されていない。そのため、圧電ユニット15同士の接合部655には、積層型圧電素子6の側面に開口する隙間部650が形成される。かかる隙間部650は、積層型圧電素子6の駆動時にその体積を変えることができるため、圧電活性領域191と圧電不活性領域192との境界における応力集中を緩和することができる。
また、隙間部650を有しているため、上述の側面電極の形成時、本例においては特に外部側面電極172、182の形成時に、側面電極を構成する導電性材料の成分が開口部659から隙間部650に滲入し、この導電性材料成分により圧電ユニット15同士が圧電不活性領域192において固着してしまうおそれがある。その結果上述の応力集中を充分に緩和することができなくなるおそれがある。
本例の積層型圧電素子6においては、隙間部650の開口部659がマスキング部材65により塞がれている。そのため、開口部659から隙間部650へ導電性材料が滲入することを防止することができる。
さらに、マスキング部材65は、コーティング層19の形成時に、コーティング層19を構成する絶縁樹脂の成分が開口部659から隙間部650に滲入することを防止することができる。
そのため、積層型圧電素子6の駆動時には、隙間部650は、圧電不活性領域192においてその体積を充分に変化させることができ、圧電ユニット15の内部に発生する上述の応力集中を充分に緩和することができる。その結果、圧電ユニット15の内部にクラックが発生することを防止することができる。
参考例4
本例は、外部側面電極をユニット側面電極中に埋設させてなる側面電極を有する積層型圧電素子の例である。
図37〜図39に示すごとく、本例の積層型圧電素子7は、電圧の印加により伸縮可能な圧電セラミックからなる圧電体層11と、内部電極を構成する電極部121、131及び控え部122、132を含む電極配設層とを交互に積層してなる圧電ユニット15を複数積み重ねてなる。
積層型圧電素子7は、隣り合う2つの内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極77、78を有する。側面電極77、78としては、実施例1と同様に、各圧電ユニット15内における隣り合う2つの電極部121、131に交互に電気的に導通する一対のユニット側面電極771、781と、圧電ユニット15間のユニット側面電極771、781同士を電気的に導通させる外部側面電極772、782とが形成されており、外部側面電極772、782は、ユニット側面電極771、772に埋設されている。
また、本例においては、ユニット側面電極771、781は、圧電ユニット15の側面に形成された第1側面電極777、787と、この上に積層形成された第2側面電極778、788とからなる。第1側面電極777、787は、Agを圧電ユニット15に焼付けてなり、第2側面電極778、788は、エポキシ樹脂とAgとを含有する導電性樹脂からなる。また、外部側面電極772、782は、導電性の金属メッシュからなる。本例において、外部側面電極772、782は、第2側面電極778、788中に埋設されている。
積層型圧電素子7は、これを積層方向に透視した場合に、すべての電極部121、131が重合する領域である圧電活性領域191と、少なくとも一部の電極部121、131しか重合しない、あるいは全く重合しない領域である圧電不活性領域192とを有する。
圧電ユニット15同士は、その接合面151における圧電活性領域191の少なくとも一部で圧電ユニット15同士を接着剤によって接着する領域である部分接着部701と、接合面151における圧電不活性領域192の少なくとも一部で圧電ユニット15同士を接着しない領域である非接着部702とを有する接合材層70により保持されている。非接着部702においては、圧電ユニット15間に隙間部750が形成されている。また、隙間部750は、積層型圧電素子7の側面に開口しており、開口部759を形成している。
以下、本例の積層型圧電素子7の製造方法につき、説明する。
本例においては、まず、実施例1と同様に、グリーンシート作製工程、電極印刷工程、圧着工程、積層体切断工程、及び焼成工程を行うことにより、圧電ユニットを作製した。図40に示すごとく、この圧電ユニット15は、実施例1と同様に圧電体層11と電極配設層12、13とを交互に積層してなり、側面に焼付け銀からなるユニット側面電極を有するものである。本例においては、焼付け銀からなるユニット側面電極を第1側面電極777、778という。
次に、上記のようにして作製した圧電ユニット15の接合面151の圧電活性領域に接着剤701を塗布した。接着剤としてエポキシ樹脂系接着剤を用いた。
次いで、図30に示すごとく、これらの圧電ユニット15を複数積層し、その接合部755の接合面に塗布した接着剤701を硬化させ、図38及び図39に示すごとく、圧電ユニット15間の接合部755に、部分接着部701を形成した。このとき部分接着部701の周囲には、圧電ユニット15同士が接着されていない非接着部702が形成される。その結果、圧電ユニット15間の接合部755には、非接着部702において隙間部750が形成される。
次に、エポキシ樹脂とAgとを含有するペースト状の導電性樹脂(樹脂銀)と導電性の金属メッシュからなる外部側面電極を準備した。次いで、ペースト状の樹脂銀を各圧電ユニットの側面に形成された第1側面電極上に塗布し、硬化させて第2側面電極778、788を形成する。このとき、樹脂銀が完全に硬化する前に金属メッシュからなる外部側面電極772、782を第2側面電極に埋め込んだ。そして、樹脂銀を完全に硬化させることにより、外部側面電極772、782を第2側面電極に埋設させた。
このようにして、第1側面電極777、787と第2側面電極778、788とからなるユニット側面電極771、781に、外部側面電極772、782が埋設された側面電極77、78を形成した。各圧電ユニットの同じ側面に形成得されたユニット側面電極771(又は781)同士は、外部側面電極772(又は782)により電気的に導通している。
このようにして積層型圧電素子7を作製した。
図38及び図39に示すごとく、本例の積層型圧電素子7においては、各圧電ユニット15同士は、圧電活性領域191に形成された部分接着部701により接合されており、部分接着部701の周囲(圧電不活性領域192)には、接着剤が形成されていない非接着部702が形成されている。非接着部702においては、圧電ユニット15同士は接着剤により接着されておらず、圧電ユニット15間に隙間部750が形成される。この隙間部750は、積層型圧電素子7の駆動時にその体積を変化させることができるため、圧電活性領域191と圧電不活性領域192との境界部に発生する応力集中を緩和することができる。このような、隙間部750を有しているため、本例においては、上述のごとく、比較的破断強度の高いエポキシ樹脂系接着剤等の接着剤により部分接着部701を形成することができる。
また、本例においては、側面電極77,78として、各圧電ユニット15の積層方向の両端部には露出していないユニット側面電極771、781と、これらユニット側面電極771、781に埋設された外部側面電極772、782が形成されている。そのため、積層型圧電素子7においては、その作製時に、例えば接合部755の側面に露出する開口部759上に導電性材料を塗布して側面電極77、78を形成する必要性を回避することができる。
即ち、ユニット側面電極771、781は、積層型圧電素子7の側面における接合部755上には形成されていない。よって、ユニット側面電極771、781、特に本例においては第1側面電極777、787及び第2側面電極778、788の形成時に、これらを構成する導電性材料の成分が接合部755の開口部759から滲入することを防止することができる。また、外部側面電極772、782は、例えば固形の外部側面電極772、782をユニット側面電極771、781に埋設させて形成することができる。そのため、外部側面電極772、782の形成時においても、これを構成する導電性材料の成分が接合部755の開口部759から滲入することを防止することができる。
このように、本例の積層型圧電素子7においては、側面電極77、78の形成時に、導電性材料の成分の接合部755への滲入することを防止することができるため、圧電ユニット15同士が接合部755の圧電不活性領域192において固着することを防止することができる。それ故、積層型圧電素子7の駆動時には、接合部755における隙間部750を圧電不活性領域192において部分的に充分に離間させることが可能になる。それ故、積層型圧電素子7の駆動時に、圧電活性領域191と圧電不活性領域192との境界における応力集中を充分に緩和し、圧電ユニット15の内部にクラックが発生することを防止することができる。
本例においては、上記のごとく、圧電ユニット間に部分接着部701を有する接合材層70を形成してなる積層型圧電素子7について、ユニット側面電極に外部側面電極を埋設させてなる側面電極を形成したが、参考例2及び3のように圧電ユニット間を少なくとも積層方向に加圧してなる積層型圧電素子についても、同様の側面電極を形成することにより、同様の作用効果を得ることができる。
実施例1にかかる、積層型圧電素子の構造を示す説明図。 実施例1にかかる、積層型圧電素子の断面構造を示す説明図。 実施例1にかかる、積層型圧電素子における圧電ユニット間の接合部の断面構造を示す説明図。 実施例1にかかる、第1電極印刷シートを形成する工程を示す説明図。 実施例1にかかる、第2電極印刷シートを形成する工程を示す説明図。 実施例1にかかる、電極印刷シートを積層する工程を示す説明図。 実施例1にかかる、予備積層体の上面図。 図6のA−A断面を示す説明図。 実施例1にかかる、中間積層体の断面構造を示す説明図。 実施例1にかかる、圧電ユニットの断面構造を示す説明図。 実施例1にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 実施例1にかかる、積層型圧電素子の駆動時における圧電ユニットの接合部の断面状態を示す説明図。 実施例1にかかる、最外側面にコーティング層を形成した積層型圧電素子の断面構造を示す説明図。 参考例1にかかる、積層型圧電素子の接合部における断面構造を示す説明図。 参考例1にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 参考例1にかかる、積層型圧電素子の駆動時における圧電ユニットの接合部の断面状態を示す説明図。 参考例2にかかる、積層型圧電素子の構造を示す説明図。 参考例2にかかる、側面電極が形成された側面における積層型圧電素子の接合部の断面構造を示す説明図。 参考例2にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 参考例2にかかる、積層型圧電素子の駆動時における圧電ユニットの接合部の断面状態を示す説明図。 参考例2にかかる、側面電極が形成されてない側面における積層型圧電素子の接合部の断面構造を示す説明図。 参考例2にかかる、圧電ユニット間を積層方向に加圧することにより保持してなる積層型圧電素子の構造を示す説明図。 参考例2にかかる、側面電極が形成された側面における、加圧保持された積層型圧電素子の接合部の断面構造を示す説明図。 参考例2にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 参考例2にかかる、圧電ユニット間を加圧保持してなる積層型圧電素子の駆動時における圧電ユニットの接合部の断面状態を示す説明図。 参考例2にかかる、側面電極が形成されていない側面における、加圧保持された積層型圧電素子の接合部の断面構造を示す説明図。 参考例3にかかる、積層型圧電素子の構造を示す説明図。 参考例3にかかる、積層型圧電素子の断面構造を示す説明図。 参考例3にかかる、側面電極が形成された側面における、積層型圧電素子の接合部の断面構造を示す説明図。 参考例3にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 参考例3にかかる、積層型圧電素子の駆動時における圧電ユニットの接合部の断面状態を示す説明図。 参考例3にかかる、側面電極が形成されていない側面における、積層型圧電素子の接合部の断面構造を示す説明図。 参考例3にかかる、幅広のマスキング部材を形成した積層型圧電素子における接合部の断面構造を示す説明図。 参考例3にかかる、圧電ユニット間を積層方向に加圧することにより保持してなる積層型圧電素子の構造を示す説明図。 参考例3にかかる、加圧保持された積層型圧電素子の接合部の断面構造を示す説明図。 参考例3にかかる、圧電ユニットを積層し、側面電極を形成し、加圧保持された積層型圧電素子を作製する工程を示す説明図。 参考例4にかかる、積層型圧電素子の構造を示す説明図。 参考例4にかかる、積層型圧電素子の断面構造を示す説明図。 参考例4にかかる、積層型圧電素子の接合部の断面構造を示す説明図。 参考例4にかかる、圧電ユニットを積層し、側面電極を形成する工程を示す説明図。 2つの圧電ユニットを接着してなる積層体の破断強度の測定方法を示す説明図。 圧電ユニットの破断強度の測定方法を示す説明図。 背景技術にかかる、圧電ユニットの接合面の全面に接着剤からなる接合材層を形成した積層型圧電素子の断面構造を示す説明図。 背景技術にかかる、圧電ユニットの接合面の全面に接着剤からなる接合材層を形成した積層型圧電素子の接合部の断面構造を示す説明図。 背景技術にかかる、接合部に部分接着部と非接着部とを形成した積層型圧電素子の断面構造を示す説明図。 背景技術にかかる、接合部に部分接着部と非接着部とを形成した積層型圧電素子の駆動時における断面状態を示す説明図。 背景技術にかかる、接合部に部分接着部と非接着部とを形成した積層型圧電素子の接合部の断面構造を示す説明図。
符号の説明
1 積層型圧電素子
10 接合材層
100 離間部
11 圧電体層
12 電極配設層
121 電極部
122 控え部
13 電極配設層
131 電極部
132 控え部
15 圧電ユニット
151 接合面
17 側面電極
18 側面電極
191 圧電活性領域
192 圧電不活性領域

Claims (7)

  1. 電圧の印加により伸縮可能な圧電セラミックからなる圧電体層と、内部電極を構成する電極部を含む電極配設層とを交互に積層してなる圧電ユニットを、接合材層を介設して複数積層してなり、隣り合う2つの上記内部電極に交互に電気的に導通する導電性材料からなる一対の側面電極を有する積層型圧電素子において、
    上記積層型圧電素子は、該積層型圧電素子を積層方向に透視した場合に、すべての上記電極部が重合する領域である圧電活性領域と、少なくとも一部の上記電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有し、
    上記接合材層は、上記圧電ユニット同士の接合面の全面に形成された接着剤からなり、
    上記接合材層は、上記積層型圧電素子の駆動時に、上記圧電不活性領域の少なくとも一部において離間する離間部を有し、
    該離間部は、上記接合材層が上記圧電不活性領域の少なくとも一部で破断してなり、
    上記離間部は、上記接合材層の内部、あるいは上記接合材層と上記圧電ユニットとの境界部で上記接合材層が破断してなり
    上記離間部は、上記圧電ユニットにおける上記圧電体層同士の接着の破断強度、上記電極部と上記圧電体層との接着の破断強度、及び上記圧電体層の破断強度よりも、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が5MPa以上小さくなる上記接着剤で、上記圧電ユニット間を上記接合面の全面で接合してなる積層体を少なくとも1回以上駆動させることにより形成してあることを特徴とする積層型圧電素子。
  2. 請求項1において、上記接着剤としては、上記圧電体層と上記接合材層との接着の破断強度及び上記接合材層自体の破断強度が1〜25MPaとなる接着剤が採用されていることを特徴とする積層型圧電素子。
  3. 請求項1又は2において、上記圧電体層は、平均粒径1〜3μmの上記圧電セラミックの粒子で構成されていることを特徴とする積層型圧電素子。
  4. 請求項1〜3のいずれか一項において、上記側面電極は、導電性樹脂、半田、導電性金属、又は導電性硝子材料からなることを特徴とする積層型圧電素子。
  5. 請求項1〜4のいずれか一項において、上記側面電極としては、各圧電ユニット内における隣り合う2つの上記内部電極に交互に電気的に導通する一対のユニット側面電極と、上記圧電ユニット間の上記ユニット側面電極同士を電気的に導通させる一対の外部側面電極とが形成されていることを特徴とする積層型圧電素子。
  6. 請求項1〜5のいずれか一項において、上記積層型圧電素子の側面は、絶縁樹脂によりコーティングされていることを特徴とする積層型圧電素子。
  7. 請求項6において、上記絶縁樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ウレタン樹脂、及びシリコーン樹脂から選ばれる1種以上を含有することを特徴とする積層型圧電素子。
JP2007218635A 2007-08-24 2007-08-24 積層型圧電素子 Expired - Fee Related JP5076733B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007218635A JP5076733B2 (ja) 2007-08-24 2007-08-24 積層型圧電素子
DE102008041061.6A DE102008041061B4 (de) 2007-08-24 2008-08-06 Piezoelektrisches Schichtelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218635A JP5076733B2 (ja) 2007-08-24 2007-08-24 積層型圧電素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012153488A Division JP5505467B2 (ja) 2012-07-09 2012-07-09 積層型圧電素子

Publications (2)

Publication Number Publication Date
JP2009054711A JP2009054711A (ja) 2009-03-12
JP5076733B2 true JP5076733B2 (ja) 2012-11-21

Family

ID=40280451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218635A Expired - Fee Related JP5076733B2 (ja) 2007-08-24 2007-08-24 積層型圧電素子

Country Status (2)

Country Link
JP (1) JP5076733B2 (ja)
DE (1) DE102008041061B4 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978520B (zh) 2008-01-23 2014-01-29 埃普科斯股份有限公司 压电多层部件
CN101978519B (zh) 2008-01-23 2013-12-18 埃普科斯股份有限公司 压电多层部件
JP5564964B2 (ja) * 2010-01-29 2014-08-06 住友ベークライト株式会社 導電接続シート、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP5842635B2 (ja) * 2012-01-27 2016-01-13 Tdk株式会社 積層型圧電素子
JP6128868B2 (ja) * 2012-02-23 2017-05-17 キヤノン株式会社 振動型駆動装置及び撮像装置
DE102019201650A1 (de) 2019-02-08 2020-08-13 Pi Ceramic Gmbh Verfahren zur Herstellung eines piezoelektrischen Stapelaktors und piezoelektrischer Stapelaktor, vorzugsweise hergestellt nach dem Verfahren
JP7293898B2 (ja) * 2019-06-18 2023-06-20 Tdk株式会社 圧電素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270085A (ja) * 1990-03-19 1991-12-02 Brother Ind Ltd 積層圧電アクチュエータ素子
JPH07106653A (ja) 1993-10-06 1995-04-21 Hitachi Metals Ltd 積層圧電素子
JPH08250777A (ja) * 1995-03-10 1996-09-27 Chichibu Onoda Cement Corp 連結積層型圧電アクチュエータ素子
JP4280321B2 (ja) 1998-03-25 2009-06-17 太平洋セメント株式会社 圧電ユニット及びその製造方法
JP4258238B2 (ja) * 2003-03-13 2009-04-30 株式会社デンソー 積層型圧電素子及びその製造方法
JP4803956B2 (ja) * 2003-09-25 2011-10-26 京セラ株式会社 圧電セラミックスおよびこれを用いた積層型圧電素子並びに噴射装置
DE102004031402A1 (de) 2004-06-29 2006-02-09 Siemens Ag Piezoelektrisches Bauteil mit Sollbruchstelle, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils
JP2006041279A (ja) * 2004-07-28 2006-02-09 Denso Corp 積層型圧電体素子及びその製造方法
DE102004050803A1 (de) 2004-10-19 2006-04-20 Robert Bosch Gmbh Piezoaktor
JP2006140215A (ja) 2004-11-10 2006-06-01 Denso Corp 積層型圧電体素子の製造方法及び外部電極材料の塗布装置
JP4775372B2 (ja) * 2005-02-15 2011-09-21 株式会社村田製作所 積層型圧電素子
EP1944813B1 (en) * 2005-09-16 2011-05-04 Delphi Technologies Holding S.à.r.l. Piezoelectric Actuator

Also Published As

Publication number Publication date
JP2009054711A (ja) 2009-03-12
DE102008041061B4 (de) 2018-05-09
DE102008041061A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5076733B2 (ja) 積層型圧電素子
JP4546931B2 (ja) 目標破損個所を備えた圧電部材及び圧電部材を製造する方法並びに圧電部材の使用
WO2005093866A1 (ja) 積層型圧電素子及びその製造方法
WO2005086247A1 (ja) 積層型圧電素子とその製造方法
WO2006135013A1 (ja) 積層型圧電素子およびこれを用いた噴射装置
WO2005011009A1 (ja) 積層型電子部品とその製造方法及び積層型圧電素子
WO2005029602A1 (ja) 積層型圧電素子
WO2010024199A1 (ja) 積層型圧電素子およびこれを用いた噴射装置ならびに燃料噴射システム
JP6417479B2 (ja) 積層型圧電セラミック素子
WO2011065182A1 (ja) 積層型圧電素子およびこれを用いた噴射装置ならびに燃料噴射システム
WO2005029603A1 (ja) 積層型圧電素子
JP2008244458A (ja) 積層型圧電素子
JP2006013437A (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP2005101207A (ja) 積層型圧電素子及びその製法並びに噴射装置
JP5505467B2 (ja) 積層型圧電素子
JP3668072B2 (ja) 積層型圧電アクチュエータ
JP4373643B2 (ja) 積層型圧電素子及びその製法並びに噴射装置
JP4956054B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JPH07226541A (ja) 積層型圧電素子
JP2005223014A (ja) 積層型圧電素子及びその製造方法
JP2007019420A (ja) 積層型圧電素子
JP5674768B2 (ja) 圧電多層コンポーネント
JP4925563B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP4349820B2 (ja) 積層型電子部品の製法
JPH07283453A (ja) 積層型圧電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees