JP5047491B2 - 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置 - Google Patents

希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置 Download PDF

Info

Publication number
JP5047491B2
JP5047491B2 JP2005337946A JP2005337946A JP5047491B2 JP 5047491 B2 JP5047491 B2 JP 5047491B2 JP 2005337946 A JP2005337946 A JP 2005337946A JP 2005337946 A JP2005337946 A JP 2005337946A JP 5047491 B2 JP5047491 B2 JP 5047491B2
Authority
JP
Japan
Prior art keywords
container
alloy
mandrel
hole
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337946A
Other languages
English (en)
Other versions
JP2007144428A5 (ja
JP2007144428A (ja
Inventor
公康 古澤
義一 鵜飼
泰造 石見
裕治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005337946A priority Critical patent/JP5047491B2/ja
Publication of JP2007144428A publication Critical patent/JP2007144428A/ja
Publication of JP2007144428A5 publication Critical patent/JP2007144428A5/ja
Application granted granted Critical
Publication of JP5047491B2 publication Critical patent/JP5047491B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

この発明は、希土類元素、鉄、ボロンを主成分とする永久磁石用の合金及びその合金を製造する方法及び製造する装置に関するものである。
従来の希土類―鉄−ボロン系焼結磁石用の合金は、合金に必要な元素を真空又は不活性ガス雰囲気中で溶解し、所要の組成となった合金の溶湯を銅製等の鋳型内に出湯し、インゴットを得る金型鋳造法により製造していた。
また、希土類−鉄−ボロン系の溶融合金をいわゆるストリップキャスティング法により急冷することにより、磁石用合金を得る方法が提案されている。この方法では、合金の結晶組織を微細化、均一化することで磁気特性の向上がなされる(例えば、特許文献1又は2参照)。
特開昭63−317643号公報 特開平5−222488号公報
従来の金型鋳造法では、合金を冷却する速度が遅いために、結晶粒の粗大化やα−Feの析出が起こる。そのため、この磁石用合金を用いて永久磁石を製作した場合、磁気特性が低下するといった問題があった。
また、特許文献1又は2記載のストリップキャスティング法では、回転している水冷ロール上に溶融合金の溶湯を出湯して急冷することで合金組織を微細化し、磁気特性を向上しているが、以下のような課題がある。
(1)ストリップキャスト法で得られる合金薄帯の幅方向の中心部と端部では合金の冷却速度が異なり、均一な結晶組織が得られず、磁気特性の安定化が困難という問題がある。
(2)ストリップキャスト法では、タンディッシュを介して、るつぼ内で溶解された磁石用合金を水冷ロールに出湯するが、タンディッシュからの出湯量を常に一定に保つことは難しく、そのため合金薄帯の肉厚が変動し、均一な結晶組織が得られず、磁気特性の安定化が困難という問題がある。
この発明は、上記のような問題点を解決するためになされたものであり、磁気特性バラツキの少ない希土類−鉄−ボロン系磁石用合金を提供することを目的とする。
この発明に係る希土類−鉄−ボロン系磁石用合金は、その断面形状が環状であり、一側面から他側面に渡って一定の肉厚を有し、上記一側面と上記他側面の距離が0.1〜4mmであり、合金の結晶が上記一側面から上記他側面に向けて一方向に成長した柱状晶であることを特徴とする。
この発明に係る希土類−鉄−ボロン系の磁石用合金の製造方法は、真空中または不活性ガス雰囲気において合金原料を第1の容器内で900℃を超えて溶解する工程と、上記第1の容器から貫通孔及び上記貫通孔の中心に心棒が設けられた第2の容器内に出湯する工程と、上記貫通孔と上記心棒により形成された隙間が0.1〜4mmであり、上記貫通孔と上記心棒とにより形成された上記隙間を通して流される溶湯を上記隙間の外周側から冷却する工程を備え、冷却速度300〜500℃/秒、過冷度300〜500℃の冷却条件で上記溶湯を冷却して、断面形状が環状の磁石合金を形成するものである。
この発明に係る希土類−鉄−ボロン系磁石用合金の製造装置は、真空溶解炉内に、合金原料を900℃を超えて溶解する第1の容器と、上記第1の容器からの溶湯が出湯されると共に、貫通孔及び上記貫通孔の中心に心棒が設けられ上記貫通孔と上記心棒により形成された隙間が0.1〜4mmである第2の容器と、上記貫通孔と上記心棒とにより形成された隙間を通して流される溶湯を当該隙間の外周側から冷却する冷却部材とを備え、冷却速度300〜500℃/秒、過冷度300〜500℃の冷却条件で上記溶湯を冷却して、断面形状が環状の磁石合金を形成するものである。
この発明によれば、貫通孔と心棒により形成された隙間を通して常に一定量の溶融した合金の溶湯を出湯し、安定した冷却条件で磁石用合金を製造することができるので、バッチ内はもとより、製造バッチが異なる場合にも、得られた磁石用合金の結晶組織は均一となる。そのため、本発明の希土類−鉄−ボロン系磁石用合金を使用することにより、磁気特性の安定した焼結永久磁石を製造することができる。
以下、本発明を実施するための最良の形態を図に基づいて説明する。
実施の形態1.
図1はこの発明の実施の形態1による希土類−鉄−ボロン系磁石用合金の製造装置の概略を示す構成図である。
まず、図1に基づいて、本実施の形態による希土類−鉄−ボロン系磁石用合金の製造装置を簡単に説明する。本実施の形態の製造装置は、真空溶解炉10内に、アルミナ製のるつぼ(第1の容器と称する)20と、るつぼ(第1の容器)20の周囲に配設された高周波誘導加熱コイル22と、るつぼ(第1の容器)20の下部にあって溶湯30を流し込むアルミナ製の容器(第2の容器と称する)50を備えている。アルミナ製の容器(第2の容器)50の外周には、ヒータ52が設置されている。アルミナ製の容器(第2の容器)50には貫通孔54が設けられており、この貫通孔54の中心部には、アルミナ製の心棒40が設けられている。アルミナ製の心棒40にはヒータ42が設置されており、心棒40を所要の温度に保つことができる。アルミナ製の容器(第2の容器)50の下部には、銅製等の金属部材(冷却部材と称する)56が設置されている。この金属部材(冷却部材)56には、アルミナ製の容器(第2の容器)50に設けられた貫通孔54と対応する位置にほぼ同じ直径の貫通孔57が設けられている。金属部材(冷却部材)56には冷却用の配管59が設置されており、アルミナ製の容器(第2の容器)50と金属部材(冷却部材)56の間に断熱材58が設けられている。また、金属部材(冷却部材)56の貫通孔と心棒40から形成される隙間の下部には、落下する磁石用合金70を回収する銅製の円盤(第3の容器と称する)80が配設されている。
次に、本実施の形態1による希土類−鉄−ボロン系磁石用合金の製造工程を、図1の製造装置に基づいて、詳細に説明する。まず、合金組成の重量比が、Nd:29wt%、Dy:3wt%、B:1wt%、Fe:残部wt%となるように、Nd、Dy、フェロボロン、電解鉄を配合する。そして、真空溶解炉10内に設置された例えば内径φ65mm、深さ150mmのるつぼ(第1の容器)20に投入する。真空溶解炉10内をいったん真空引きした後、不活性ガスであるArガスを導入する。そして、るつぼ(第1の容器)20内の合金原料を不活性ガス雰囲気において高周波誘導加熱コイル22により溶解し、合金溶融物とする。
るつぼ(第1の容器)20の下部には、例えば内径φ150mm、最大深さ100mmのアルミナ製の容器(第2の容器)50が設置されている。図2及び図3はアルミナ製の容器(第2の容器)50の平面図及び側面図を示している。図1〜図3に示すように、アルミナ製の容器(第2の容器)50の下端部は逆円錐状になっており、その底部には例えば直径φ15mmの貫通孔54が設けられている。アルミナ製の容器(第2の容器)50の下端部が逆円錐状になっているため、るつぼ(第1の容器)20から投入された溶湯30は重力により貫通孔54に導かれるような構造になっている。また、アルミナ製の容器(第2の容器)50の外周には、ヒータ52が設置されており、アルミナ製の容器(第2の容器)50を所要の温度に保つことができる。
図1〜図3に示すように、アルミナ製の容器(第2の容器)50の貫通孔54の中心部には、例えば直径φ14mmのアルミナ製の心棒40が設けられている。この心棒40は、貫通孔50の中心軸と当該心棒40の中心軸が同じになるように真空溶解炉10内の天井11に固定されている。図1に示すように、アルミナ製の心棒40にはヒータ42が設置されており、心棒40を所要の温度に保つことができる。図1〜図3に示す例では、貫通孔54及び心棒40により形成される隙間60は連続した円環状(リング状)のものとなる。しかしながら,貫通孔54及び心棒40により形成される隙間60は上記1個連続したものに限らず、複数個分割された形状であってもよい。すなわち、貫通孔54及び心棒40により形成される隙間60の断面形状は、図4に示すように、円環状(リング状)に限らず、トラック状や三角状、四角状なども含まれ、また、隙間60が1箇所又は1箇所以上分断されている直線と曲線の形状(例えばC型形状)からなっても良い。この場合、貫通孔54の内周と心棒40の外周の間隔(すなわち、隙間の幅)が全周にわたり略一定である断面形状であればよい。隙間が1箇所又は1箇所以上分断されている直線と曲線の形状からなる断面形状を選択した場合、図5及び図6に示すように、心棒40の一部をアルミナ製の容器(第2の容器)50の凹部にはめ込むことで固定を容易にし、貫通孔54と心棒40の中心軸の一致(位置決め)を容易に行うことができる。なお、アルミナ製の容器(第2の容器)50およびアルミナ製の心棒40の材質は、アルミナに限るわけではなく、使用環境に耐え得る耐熱性と強度を有する素材(セラミック)であってもよい。
図1に示すように、アルミナ製の容器(第2の容器)の下部には、銅製の金属部材(冷却部材と称する)56が設置されている。この金属部材(冷却部材)56には、アルミナ製の容器(第2の容器)50に設けられた貫通孔54と対応する位置にほぼ同じ直径の貫通孔57が設けられている。ここで、図1に示すように、金属部材(冷却部材)56の貫通孔57の下端面の軸方向の位置とアルミナ製の心棒40の下端面の軸方向の位置は必ずしも同じでなくてもよい。また、金属部材(冷却部材)56の上部には、アルミナ製の容器(第2の容器)50の底部外側の円筒部が嵌まり込む円形の凹みが設けられており、それらの部分を嵌合することでアルミナ製の容器(第2の容器)50と金属部材(冷却部材)56の中心位置を合わせることができ、両者の貫通孔54及び57の位置を容易に一致させることができる。また、図1に示すように、金属部材(冷却部材)56には水冷用の配管59が設置されており、そこを冷却水が循環し、常に金属部材(冷却部材)56を冷却している。金属部材(冷却部材)56の貫通孔57の長さを変えることにより、溶湯30が金属部材(冷却部材)56の貫通孔57を通過する距離が変わり、溶湯30の冷却速度を変えることができる。また、図1に示すように、アルミナ製の容器(第2の容器)50と金属部材(冷却部材)56の熱伝導を低減するため、アルミナ製の容器(第2の容器)50と金属部材(冷却部材)56の間に断熱材58が設けられている。
以上のように、高周波誘導加熱によりるつぼ(第1の容器)20内で溶融された合金の溶湯30は、るつぼ(第1の容器)20が傾斜することにより、アルミナ製の容器(第2の容器)50内に出湯される。アルミナ製の容器(第2の容器)50内に出湯された溶湯(溶融合金)は、重力によりアルミナ製の容器(第2の容器)50の底部の貫通孔54及びアルミナ製の心棒40の間の隙間60を通過して、アルミナ製の容器(第2の容器)50の下方に流れ出る。アルミナ製の容器(第2の容器)50はヒータ52により800℃以上に加熱されているので、るつぼ(第1の容器)20から連続的に溶湯が出湯されている間は、アルミナ製の容器(第2の容器)50内で溶湯が固化することはない。
また、アルミナ製の容器(第2の容器)50及び金属部材(冷却部材)56の貫通孔とアルミナ製の心棒40により形成される隙間60の大きさが一定である(変化しない)ように構成している。そのため、アルミナ製の容器(第2の容器)50に溜まった溶湯の量がほぼ一定であれば、アルミナ製の容器(第2の容器)50から流れ出る溶湯の流量は、単位時間当たり変動することなく一定量が流れ出る。
さらに、アルミナ製の容器(第2の容器)50及び金属部材(冷却部材)56の貫通孔とアルミナ製の心棒40により形成される隙間の幅が0.1mm未満であると、貫通孔とアルミナ製の心棒40により形成される隙間を通過している間に溶湯が固化し、隙間が詰まってしまい、円筒状等の所定形状の合金を安定して製造することができない。また、貫通孔と心棒40の隙間の幅が4mmを超えると、冷却速度が遅くなり、結晶粒の粗大化やα−Feの析出など磁石の磁気特性を低下させる現象が発生する。貫通孔と心棒40により形成される隙間の幅が0.1mmから4mmであると、安定して円筒状等の所定形状の磁石用合金を製造することができる。より好ましくは、隙間の幅は0.3mm〜0.5mmである。また、隙間の幅の変動を周方向で±10%以下(合金肉厚の変動を周方向で±10%以下)に保つことが好ましく、さらに、溶湯が通る金属部材(冷却部材)56の貫通孔の長さを50mm〜500mm、好ましくは150mm〜200mm程度とすると、冷却速度300℃/秒〜500℃/秒、過冷度300℃〜500℃の範囲において、貫通孔及び心棒40の隙間を通る溶融合金についてその外周の全面にわたって均一な冷却条件を提供することができ、さらに品質の均一な円筒状等の所定形状の磁石用合金をより安定して製造することができる。
また、貫通孔と心棒40により形成される隙間の幅(例えば貫通孔の内径と心棒の外径の差)を0.1mm〜4mmに確保していれば、貫通孔と心棒40の大きさを変えても冷却条件を維持することができるため、合金の肉厚を一定にしたまま体積を大きくでき、生産性を向上させることができる。また、図示はしないが貫通孔と心棒40により形成される隙間を1個ではなく複数個にすることによっても、複数個の合金を同時に得ることができ、生産性を向上させることができる。
また、図示はしないが、アルミナ製の容器(第2の容器)50には重量センサーが取り付けられており、アルミナ製の容器(第2の容器)50内の溶湯の量を一定量に保つように、るつぼ(第1の容器)20の傾斜角度を制御し、るつぼ(第1の容器)20から出湯する溶湯の量を調整している。このようにしてアルミナ製の容器(第2の容器)50内の溶湯の量が一定に保たれると、アルミナ製の容器(第2の容器)50から流れ出る溶湯の流量をさらに厳密に制御することができる(一定に保つことができる)。
アルミナ製の容器(第2の容器)50の貫通孔及び心棒40で形成される隙間を通って下方へ流れ出た溶湯は、アルミナ製の容器(第2の容器)50の下部に設置された金属部材(冷却部材)56の貫通孔及び心棒40で形成される隙間に導かれる。溶湯は金属部材(冷却部材)56と接触することで急冷されて凝固し、円筒状等の所定形状の磁石用合金となる。心棒40はヒータ42により800℃以上に加熱されており、溶湯は貫通孔の内周面から熱を奪われ、円筒状合金の外周表面に核生成が起こり、円筒状合金の外周面からのみ主相の成長が起こり、合金の外周面から内周面に向かっての一方向凝固を実現することができる。それによって、固化した合金の断面では、図7に示すような外周から中心に向かって、ほぼラジアル方向に均質な柱状晶が成長している状態が得られる。
上述のように貫通孔及び心棒40により形成される隙間を通り冷却される溶湯の流量は一定に制御されており、金属部材(冷却部材)56の貫通孔での溶湯の冷却状態は常に一定になり、均一な結晶組織の合金が安定して得られる。即ち、特性バラツキの少ない(品質の安定した)磁石用合金を製造することができる。
これ対して従来のストリップキャスト法では、るつぼからの出湯速度(流量)の大小、溶湯温度の違い、ロールの表面状態などにより、形成される合金薄帯の厚さに変動が生じる。例えば、るつぼからの出湯速度が大きいとタンディッシュ内が過度の溶湯で満たされ、ロールに供給される溶湯が多くなるため、合金薄帯の厚さが大きくなる。合金薄帯の厚さが大きくなると冷却速度が遅くなり、結晶粒の粗大化を招く。結晶粒が大きくなると後工程の微粉砕効率が悪くなるだけでなく、粒径が不均一になり、磁気特性が低下する。さらに冷却速度が遅くなるとα−Feが析出する場合があり、この場合も大きく磁気特性が低下する。
逆に、るつぼからの出湯速度が小さいと合金薄帯の厚みが小さくなる。この場合には、結晶粒の大きさが小さくなりすぎるため、後工程の微粉砕処理を行っても、1つの微粉末粒子の中に結晶方位の異なる結晶粒が存在するといった状態が起こり、この微粉砕処理後の工程である磁場成形工程において微粉末粒子の配向度の低下を招き、磁気特性が低下するといった問題が起こる。
また、溶湯温度が高い場合には、溶湯の粘度が小さくなるため、急冷ロールによってかきあげられる溶湯の量が小さくなり、結果として合金薄帯の厚みが薄くなることがある。ロールの表面状態(面粗さの大小)によっても同じくかきあげられる溶湯の量が変わるので、合金薄帯の厚みが変わることになる。
このようにストリップキャスト法では、製造される合金薄帯の厚みを変動させる要因が多数あり、厚みの変動に基づく冷却条件の変動により磁気特性を安定させることが困難であった。しかし、本発明の場合には、一定の大きさ(一定の肉厚)の円筒状等の所定形状の磁石用合金を一定の冷却条件のもとで製造することができるので、特性バラツキが少なく品質の安定した磁石用合金を得ることができる。
次に、金属部材(冷却部材)56により冷却された所定形状の磁石用合金70は、金属部材(冷却部材)56の貫通孔と心棒40から形成される隙間を通った後、ある程度の長さになると自重によりちぎれて落下する。また、図8に示すように金属部材(冷却部材)56の下部に羽根状部材90を設置し、この羽根状部材90を回転することによって磁石用合金を折って分断することもできる。この場合、羽根状部材90の回転数を調節することで、分断後の磁石用合金70の長さを調節することができる。このとき、円筒状等の磁石用合金70の長さを数mm〜数10mmにすると、その後の磁石用合金の取り扱いが容易になる。また、図9に示すように、羽根状部材90のかわりに、鋏状のロボットハンド92によって磁石上合金をほぼ一定の長さに切断することもできる。
また、図10に示すように、金属部材(冷却部材)56により冷却され、羽根状部材90や鋏状のロボットハンド92によって分断された磁石用合金70にArガス(不活性ガス)の気流94を吹き付けることで、磁石用合金70を冷却し、その後の冷却に要する時間を短縮することができる。このときのArガス(不活性ガス)は、炉内に設置の熱交換器により冷却されることで、磁石用合金を効率よく冷却することができる。
分断された磁石用合金70は、金属部材(冷却部材)56の貫通孔と心棒40から形成される隙間の下部に設置され、冷却されている銅製の円盤(第3の容器と称する)80上に回収され、さらに冷却される。円盤(第3の容器)80には磁石用合金が円盤上からこぼれ落ちないように枠81が取り付けられている。また、磁石用合金70を円盤80上に均一に分散させるために円盤80を回転させている。円盤80上に回収された後も、Arガス(不活性ガス)の気流により磁石用合金70を冷却することで、冷却完了までの時間を短縮し、生産性を向上させることができる。また、図11に示すように、分断された磁石用合金70を、冷却パイプ102を通じて水冷され、傾斜している銅製の傾斜板100上に回収し、傾斜板100上を磁石用合金70が転がりながら冷却され、さらにその下部に設置されている回収用の箱82に落とすことで、冷却完了までの時間を短縮、生産性を向上させることができる。
冷却完了後に真空溶解炉10内から取り出された磁石用合金70は水素脆性処理後にジェットミルを用いて平均粒径約4μmの微粉末に粉砕される。この微粉末を1.5Tの配向磁場中で金型を用いて50MPaの圧力で圧縮成形し、ブロック状の試験片を製作した。製作したブロック状の試験片を真空熱処理炉に投入し、1060℃で焼結後に、600℃で熱処理した。焼結及び熱処理後の試験片の外径を加工した後、着磁し、BHカーブトレーサーを用いて磁気特性を測定した。比較のためにストリップキャスト法により製作した磁石用合金を用いて同様の工程で製作した試験片の磁気特性を同じく、BHカーブトレーサーを用いて磁気特性を測定した。その比較結果を表1に示す。当該結果は各々の合金5バッチ分のデータである。
表1から明らかな通り、本発明の磁石用合金を用いて試作した焼結磁石はストリップキャスト法による合金薄帯を用いて試作した焼結磁石よりも磁気特性のばらつきは小さく、品質の安定した焼結磁石が得られた。
Figure 0005047491
実施の形態2.
図11はこの発明の実施の形態2による希土類−鉄−ボロン系磁石用合金の製造装置を示す概略図であり、図12は図11の製造装置を使用した本実施の形態の製造工程の概略を示す図である。
まず、実施の形態2の製造装置の構成について図11に基づいて説明する。図11において、真空溶解炉10の真空チャンバーは中央部の隔壁12により上下2室10A及び10Bに分離されている。隔壁12の一部には磁石用合金を上室10Aから下室10Bへ落下させるための開口部があり、その開口部には上室10Aと下室10Bを隔てるためのシャッター14が設けられている。上室10Aに設置されている、るつぼ(第1の容器)20、アルミナ製の容器(第2の容器)50、心棒40、金属部材(冷却部材)56の構成は実施の形態1と同じである。下室10Bには、磁石用合金分断用の鋏状のロボットハンド92が配置されている。分断された磁石用合金は、水冷用の冷却パイプ102が配設された傾斜板100上を転がり落ちることで冷却される。
また、上室10の上部にはアルミナ製の容器(第2の容器)50に出湯された溶湯の湯面高さを計測するための非接触式センサー18が取り付けられている。このセンサー18の計測値により、アルミナ製の容器(第2の容器)50内の湯面の高さが常に一定になるように、るつぼ(第1の容器)20の傾斜角度を制御することができる。
次に、この発明の実施の形態2による希土類−鉄−ボロン系磁石用合金の製造工程について、図12に基づいて説明する。まず、実施の形態1と同様、合金組成の重量比が、Nd:29wt%、Dy:3wt%、B:1wt%、Fe:残りwt%、となるようにNd、Dy、フェロボロン、電解鉄を配合し、真空溶解炉10内に設置されたアルミナ製のるつぼ(第1の容器)20に投入する。次に、上室10Aと下室10Bの間のシャッター14を閉じて、両室を真空排気する。その後、高周波誘導加熱コイル22を用いてるつぼ(第1の容器)20内の合金を溶解する。るつぼ(第1の容器)20内の合金の温度が900℃を超えた時点で上室10AにAr(不活性ガス)を導入し、上室10Aの圧力を80kPaとする。隔壁12の上部にシャッター14が載る構成となっているため、上室10Aと下室10Bの圧力差によってシャッター14は隔壁12に押し付けられ、上室10AのArガス(不活性ガス)が下室10Bに漏れることはなく、上室10Aと下室10Bの圧力差は保持される。
るつぼ(第1の容器)20内で磁石用合金が溶解された後、実施の形態1と同様に、アルミナ製の容器(第2の容器)50内に出湯されるが、出湯と同時に上室10Aと下室10Bの間のシャッター14が開けられる。シャッター14が開いた瞬間はアルミナ製の容器(第2の容器)50の貫通孔と心棒40により形成される隙間を通って上室10AのArガス(不活性ガス)が下室10Bに流入するが、すぐに隙間が溶湯で塞がれて、Arガスの下室10Bへの流入は停止する。その後は、上室10Aと下室10Bの圧力差によってアルミナ製の容器(第2の容器)50内に出湯された溶湯が連続的に貫通孔と心棒40により形成される隙間を通って下部に流れ出る。上室10Aの圧力はArガス(不活性ガス)を導入することで常に一定に保たれている。上室10Aの圧力が高くなりすぎた場合には、真空ポンプにより80kPaになるまで排気される。下室10Bは真空排気されたままであるので、上室10Aと下室10Bの間の圧力差は常に一定となる。さらに上記の通り、アルミナ製の容器(第2の容器)50内の溶湯の湯面の高さは、センサー18を用いて常に一定になるように、るつぼ(第1の容器)20からの出湯速度(流量)が制御されている。そのため、アルミナ製の容器(第2の容器)50の貫通孔と心棒40により形成される隙間から流れ出る溶湯の流量は一定に保たれる。なお、下室10Bにもその圧力が上室10B以下となるようであればArガス(不活性ガス)を導入してもかまわない。その場合、上室10Aと下室10Bの圧力差を一定に保つ必要があり、Arガスの導入、及び真空ポンプによる排気を制御することで圧力をコントロールすることができる。
出湯完了後は、下室10Bにも上室10Aと同等の圧力になるまでArガス(不活性ガス)を導入し、熱交換器を用いてArガスを冷却しながら、円筒状等の所定形状の磁石用合金に吹き付けることにより、磁石用合金の冷却を早めることができる。この場合、より早く磁石用合金の冷却を完了して炉10から取り出すことができるため生産性が良くなる。
また、出湯完了後にシャッター14を閉じて、上室10Aと下室10Bを分離することにより、下室10Bで磁石用合金を冷却している途中でも、上室10Aで次のバッチの合金製造の準備(清掃、合金原料の投入、溶解の開始等)を行うことができるため、生産性が良くなる。
以上のように、実施の形態2によれば、出湯後に円筒状等の所定形状の磁石用合金が製造される効果は実施の形態1と同じであるが、アルミナ製の容器(第2の容器)50から流れ出る溶湯の流量をより精度よくコントロールすることができる(一定にすることができる)ので、溶湯の冷却条件がより均一になり、より品質の安定した磁石用合金を得ることができる。
例えば、実施の形態1で製造された円筒状合金の外周の半径と内周の半径の差は5バッチ分の測定結果において、0.42〜0.52mmであったのに対して、実施の形態2で製造された円筒状合金の外周の半径と内周の半径の差は0.47〜0.51mmであり、外周の半径と内周の半径の差のばらつき幅が2/5になっており、より安定した条件で円筒状合金を製造することができた。その結果、より品質の安定した希土類−鉄−ボロン系焼結磁石を製造することができた。
この発明の実施の形態1による希土類−鉄−ボロン系磁石用合金の製造装置の概略を示す構成図である。 この発明の実施の形態1によるアルミナ製の容器と心棒を示す平面図である。 この発明の実施の形態1によるアルミナ製の容器と心棒を示す側面断面図である。 この発明の実施の形態1による貫通孔と心棒により形成される隙間の断面図である。 この発明の実施の形態1によるアルミナ製の容器と心棒を示す平面図である。 この発明の実施の形態1によるアルミナ製容器と心棒を示す側面断面図である。 この発明の実施の形態1による磁石用合金の断面写真である。 この発明の実施の形態1による他の磁石用合金製造装置を示す概略図である。 この発明の実施の形態1による他の磁石用合金製造装置を示す概略図である。 この発明の実施の形態1による他の磁石用合金製造装置を示す概略図である。 この発明の実施の形態2による磁石用合金製造装置を示す概略図である。 この発明の実施の形態2による磁石用合金製造装置の製造工程を示す概略図である。
10 真空溶解炉、20 アルミナ製のるつぼ(第1の容器)、
22 高周波誘導加熱コイル、30 溶湯、40 心棒、42 ヒータ、
50 アルミナ製の容器(第2の容器)、52 ヒータ、54,57 貫通孔、
56 金属部材(冷却部材)、58 断熱材、59 冷却用配管、60 隙間、
70 磁石用合金、80 円盤(第3の容器)、90 羽根状部材、
92 ロボットハンド、94 不活性ガス、100 傾斜板。

Claims (11)

  1. 希土類−鉄−ボロン系の磁石用合金であって、その断面形状が環状であり、一側面から他側面に渡って一定の肉厚を有し、上記一側面と上記他側面の距離が0.1〜4mmであり、合金の結晶が上記一側面から上記他側面に向けて一方向に成長した柱状晶であることを特徴とする希土類−鉄−ボロン系磁石用合金。
  2. 希土類−鉄−ボロン系の磁石用合金の製造方法であって、真空中または不活性ガス雰囲気において合金原料を第1の容器内で900℃を超えて溶解する工程と、上記第1の容器から貫通孔及び上記貫通孔の中心に心棒が設けられた第2の容器内に出湯する工程と、上記貫通孔と上記心棒により形成された隙間が0.1〜4mmであり、上記貫通孔と上記心棒とにより形成された上記隙間を通して流される溶湯を上記隙間の外周側から冷却する工程を備え、冷却速度300〜500℃/秒、過冷度300〜500℃の冷却条件で上記溶湯を冷却して、断面形状が環状の磁石合金を形成する希土類−鉄−ボロン系磁石用合金の製造方法。
  3. 上記第2の容器に溜まる溶湯の量を計測し、この計測結果に基づき、上記第1の容器の傾きを制御することにより、上記第2の容器の貫通孔と上記心棒により形成された隙間を通して流れる溶湯が一定になるように制御することを特徴とする請求項2に記載の希土類−鉄−ボロン系磁石用合金の製造方法。
  4. 真空溶解炉内に、合金原料を900℃を超えて溶解する第1の容器と、上記第1の容器からの溶湯が出湯されると共に、貫通孔及び上記貫通孔の中心に心棒が設けられ上記貫通孔と上記心棒により形成された隙間が0.1〜4mmである第2の容器と、上記貫通孔と上記心棒とにより形成された隙間を通して流される溶湯を当該隙間の外周側から冷却する冷却部材とを備え、冷却速度300〜500℃/秒、過冷度300〜500℃の冷却条件で上記溶湯を冷却して、断面形状が環状の磁石合金を形成する希土類−鉄−ボロン系磁石用合金の製造装置。
  5. 上記第2の容器は加熱部を備えていることを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  6. 上記心棒は加熱部を備えていることを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  7. 上記第2の容器に溜まる溶湯の量を測定する溶湯量測定手段と、上記溶湯量測定手段の測定結果に基づき、上記第1の容器の傾きを制御する制御部とを備えていることを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  8. 上記貫通孔と上記心棒により形成された隙間を通して落下する磁石用合金を分断する手段を設けていることを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  9. 上記貫通孔と上記心棒により形成された隙間を通して落下する磁石用合金を受ける冷却された傾斜板が設置されていることを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  10. 上記分断された磁石用合金を冷却するためのガスを供給する第1のガス供給手段を備えたことを特徴とする請求項8に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
  11. 上記真空溶解炉は、ガス供給口を有し、当該ガス供給口を介して外部からガスを供給する第2のガス供給手段を備えた上室と、ガス排気口を有し、当該ガス排気口を介して外部へガスを排気するガス排気手段を備えた下室とに分断され、上記上室内には、上記第1の容器と、上記第2の容器と、上記冷却部材とが設置され、上記下室内には、上記貫通孔と上記心棒により形成された隙間を通して落下する磁石用合金を回収する第3の容器が設置され、上記上室と上記下室との間が所定の圧力差になるように上記第2のガス供給手段及び上記ガス排気手段の動作を制御する制御部を備えたことを特徴とする請求項4に記載の希土類−鉄−ボロン系磁石用合金の製造装置。
JP2005337946A 2005-11-24 2005-11-24 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置 Expired - Fee Related JP5047491B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337946A JP5047491B2 (ja) 2005-11-24 2005-11-24 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337946A JP5047491B2 (ja) 2005-11-24 2005-11-24 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置

Publications (3)

Publication Number Publication Date
JP2007144428A JP2007144428A (ja) 2007-06-14
JP2007144428A5 JP2007144428A5 (ja) 2008-06-05
JP5047491B2 true JP5047491B2 (ja) 2012-10-10

Family

ID=38206456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337946A Expired - Fee Related JP5047491B2 (ja) 2005-11-24 2005-11-24 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置

Country Status (1)

Country Link
JP (1) JP5047491B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157864A (ja) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp 希土類−鉄−ボロン系磁石用合金およびその製造方法、その製造装置
CN102686337B (zh) * 2010-01-26 2015-06-17 三菱综合材料株式会社 含活性元素的铜合金线材的制造方法
KR101244322B1 (ko) * 2010-11-05 2013-03-14 주식회사 포스코 연속주조용 쉬라우드 노즐
JP6390432B2 (ja) * 2015-01-07 2018-09-19 三菱マテリアル株式会社 Cu−Ga合金円筒型スパッタリングターゲット、Cu−Ga合金円筒型鋳塊、Cu−Ga合金円筒型スパッタリングターゲットの製造方法及びCu−Ga合金円筒型鋳塊の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665590B2 (ja) * 1987-06-19 1997-10-22 住友特殊金属株式会社 希土類―鉄―ボロン系磁気異方性焼結永久磁石原料用合金薄板並びに磁気異方性焼結永久磁石原料用合金粉末,及び磁気異方性焼結永久磁石
JP2811708B2 (ja) * 1989-02-01 1998-10-15 大同特殊鋼株式会社 希土類―鉄系永久磁石の製造法とそれに用いる金型
JPH03294045A (ja) * 1990-04-10 1991-12-25 Nippon Steel Corp 中空鋳片の連続鋳造装置
JPH0488603A (ja) * 1990-07-31 1992-03-23 Kobe Steel Ltd 磁性合金の水平鋳造方法
JP2590386B2 (ja) * 1990-11-13 1997-03-12 株式会社 クボタ 管の連続鋳造方法
JP2639609B2 (ja) * 1992-02-15 1997-08-13 三徳金属工業株式会社 永久磁石用合金鋳塊及びその製造法
JPH05311271A (ja) * 1992-05-12 1993-11-22 Seiko Epson Corp 希土類ボンド磁石用合金の製造方法およびその製造装置
JP2745042B2 (ja) * 1994-06-17 1998-04-28 住友特殊金属株式会社 希土類−鉄−ボロン系合金薄板、合金粉末及び永久磁石の製造方法
JP3845461B2 (ja) * 1995-04-06 2006-11-15 株式会社Neomax ボンド磁石用永久磁石合金粉末の製造方法及びその装置
JPH09206919A (ja) * 1996-01-30 1997-08-12 Mitsubishi Materials Corp 太い柱状晶を有する希土類磁石合金インゴットの製造方法
JPH09220612A (ja) * 1996-02-14 1997-08-26 Mitsubishi Materials Corp 棒状またはパイプ状押出成形品の製造装置

Also Published As

Publication number Publication date
JP2007144428A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
RU2255833C1 (ru) Способ получения быстроотвержденного сплава для магнита
WO2011120417A1 (zh) 一种制造快淬合金的方法及设备
US20130142687A1 (en) Method for producing alloy cast slab for rare earth sintered magnet
KR101386316B1 (ko) 합금박편 제조장치
CN101808769B (zh) 制造合金的装置
JP4048568B2 (ja) 希土類磁石用合金の製造方法
JP5047491B2 (ja) 希土類―鉄−ボロン系磁石用合金及びその製造方法、製造装置
JP2007277655A (ja) 合金の製造装置
JP2639609B2 (ja) 永久磁石用合金鋳塊及びその製造法
JP2007157864A (ja) 希土類−鉄−ボロン系磁石用合金およびその製造方法、その製造装置
KR101004166B1 (ko) 합금 및 희토류 원소 합금 제조 장치
JP6456810B2 (ja) In−Cu合金スパッタリングターゲット及びその製造方法
JPH08260083A (ja) Sm−Co系永久磁石材料、永久磁石及びその製造法
CN104416162A (zh) 一种合金快速凝固设备及其自动控制方法
CN116532633A (zh) 稀土金属磁制冷工质及其制备方法
CN101490290A (zh) 制造溅射靶的方法和所制造的靶产品
JP5344296B2 (ja) タンディッシュとそれを用いたr−t−b系合金の製造方法
KR100900142B1 (ko) 급속응고법에 의한 기능성 합금스트립 제조방법
JP2002301554A (ja) 遠心鋳造方法、遠心鋳造装置、それにより製造した合金
KR100879208B1 (ko) 윈심응고법에 의한 희토류자석 합금스트립 제조방법
JP5767042B2 (ja) 金属または合金の製造装置
JP2006245300A (ja) 希土類系急冷磁石の製造方法
RU2141392C1 (ru) Способ получения металлического порошка и устройство для его осуществления
JP5731638B2 (ja) 合金片製造装置およびそれを用いた希土類系磁石原料用合金片の製造方法
JP2004339527A (ja) 熱間成形型ナノコンポジット磁石の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees