JP4978816B2 - 光学装置及び光学装置の結像挙動を補正又は改善する方法 - Google Patents

光学装置及び光学装置の結像挙動を補正又は改善する方法 Download PDF

Info

Publication number
JP4978816B2
JP4978816B2 JP2009521149A JP2009521149A JP4978816B2 JP 4978816 B2 JP4978816 B2 JP 4978816B2 JP 2009521149 A JP2009521149 A JP 2009521149A JP 2009521149 A JP2009521149 A JP 2009521149A JP 4978816 B2 JP4978816 B2 JP 4978816B2
Authority
JP
Japan
Prior art keywords
optical
optical element
vibration
optical device
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009521149A
Other languages
English (en)
Other versions
JP2009545146A (ja
JP2009545146A5 (ja
Inventor
マルティン シュリーファー
ウルリッヒ ヴェークマン
シュテファン ヘムバッハー
ベルンハルト ゴイペルト
ユールゲン フーバー
ノルベルト ケルヴィーン
ミハエル トーツェック
マルクス ハウフ
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2009545146A publication Critical patent/JP2009545146A/ja
Publication of JP2009545146A5 publication Critical patent/JP2009545146A5/ja
Application granted granted Critical
Publication of JP4978816B2 publication Critical patent/JP4978816B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、パルス周波数を有する光パルスの形態で光を放出する光源を含み、かつ少なくとも1つの光学要素を含む光学装置に関する。本発明はまた、パルス光源及び投影対物器械を含む投影露光機械、及び特に投影露光機械におけるそのような装置の結像挙動を補正又は改善する方法に関する。
光学装置では、その作動中に様々な理由から結像特性が変化する場合がある。例示的に、経年変化の結果として材料の性質が変化する場合があり、更に温度勾配の結果として又は機械力の影響の結果、例えば、マウントの結果として光学要素の変形が発生する場合がある。光学装置が比較的長時間にわたって強い放射光に露光される場合には、これも同じく結像特性の変化を招くと考えられる。
短い時間スケール(秒)に対しても、例えば、入射する光量の変化に起因して(照明環境の変更又は結像パターンの変更は、システムにおける異なる光路及び強度を引き起こす)、秒範囲内での結像特性変化を予想することができる。
これは、特に、マイクロリソグラフィのための投影露光機械に関わりを有する。上述の経年変化現象以外に、例えば、現在多くの場合に用いられている石英で作られた光学要素では、強いUV放射光負荷の下で、屈折率変化が発生する場合がある。投影露光機械の対物器械内の光学要素のコーティングも、照射の下で又は汚染に起因してその性質を変化させる場合がある。全てのこれらの影響は、対物器械の作動期間中に結像特性を変化させるのに寄与する。多くの場合に、それによって新しい像収差が生じるか、又は既に存在している像収差が増幅される。
従って、マイクロリソグラフィのための対物器械では、結像特性において予想される変化は、できる限り早期に光学システムの設計中に考慮される。特定の要素に対しては、一例として、光学要素を横方向に変位することを可能にするマニピュレータを設けることができる。測定デバイス、例えば、波面センサを共に用いて、経年変化の影響の結果又は局所加熱のような一時的な影響の結果として発生する結像収差は、このようにターゲット方式で補償することができる。z方向における光学要素のそのような変位は、一例として、公開された米国特許出願US2003/063268A1に説明されている。
マニピュレータの使用以外に、結像収差を補正する更に別の可能性は、ターゲット方式で導入されるレンズ又はミラー要素の静的変形である。例えば、円筒形の非点収差/鞍形変形が、この手法で設定される。これに対応するデバイスは、DE19859634A1に説明されており、このデバイスは、投影対物器械の作動期間中に発生する投影対物器械の結像特性変化を付加的な非点収差を発生させることによって補償する。同様の手順は、EP678768A2に説明されている。
しかし、両方の方法では、限られた数の像収差を補正することしかできない。特定の光学要素を変位させることでは、低次の像収差を補償することしかできない。光学要素の静的変形は、比較的単純な変形しか許さず、主に、非点収差及び/又はアナモフィック歪曲、すなわち、2つの直交軸における異なる結像スケールを補正するのに用いられる。
US6198579Bは、光学要素内に温度プロフィールを発生させるために、更にそれによって結像収差を補正するために、複数のペルチェ要素が対物器械の光学要素のうちの少なくとも1つに配列され、この光学要素の外縁に分散されて異なって駆動される対物器械における非回転対称結像収差を補正する方法を説明している。
US6521877Bは、結像収差が、抵抗加熱システムを用いた光学要素のターゲット加熱によって補償される、特にマイクロリソグラフィ投影露光機械における光学配置を説明している。
最後に、対物器械の結像収差の補正に向けてターゲット方式で備える自由表面をレンズ要素に設けることも同様に公知である。この一例は、US6、268、903に特定されている。そのようなレンズ要素は、補正非球面と呼ばれている。これらは、対物器械の調節において用いることができる。また、対物器械内に可換光学要素を設けることができ、ある一定の作動時間の後に、これらの光学要素は、経年変化の影響から生じる結像収差を正確に補償する形状の自由形状表面を有する交換要素で置換することができる。
原理的には、任意に複雑な波面変形を補償するのにそのような自由形状表面を用いることができるが、それにも関わらずその方法の実用的実施には様々な問題が存在する。第1に、既に作動している対物器械における介入は、リソグラフィ機械の停止を意味することから望ましくない。第2に、そのような交換要素は、非可換要素のものよりも有意に高い精度で製造する必要がある。従って、そのような交換要素の製造は、非常に高い経費を要する。
US2003/063268A1 DE19859634A1 EP678768A2 US6198579B US6521877B US6、268、903 US6、700、952B2 WO02/093257A2 DE10040813A1
本発明の目的は、作動期間中に発生する像収差、特に高次の像収差を可能な限り単純な手段を用いて補正することができる光学装置、特に投影露光機械を特定することである。
この目的は、請求項1に記載の光学装置を用いて達成される。更に、この目的は、請求項49に記載の投影露光機械を用いて、また請求項52に記載の方法を用いて達成される。有利な改良は、従属請求項に示されている。
本発明による光学装置は、光パルスの形態で光を放出する光源、及び光学要素の振動励起のための装置に接続した光学要素を有し、光学要素の振動は、屈折率、偏光性、密度、形状、位置、又は角度のような光学結像に関連する光学要素の少なくとも1つのパラメータの時間周期的変調を導き、振動周波数は、光学要素の振動励起のための装置を用いて、振動周波数が光源のパルス周波数又は高調波(パルス周波数の整数倍の周波数)と同期するように設定することができる。光パルスのパルス周波数に対するクロック発生器が設けられ、少なくとも1つの周波数逓倍器がクロック発生器に接続され、この少なくとも1つの周波数逓倍器の出力は、振動を発生させるための装置に接続される。本発明によると、光学要素の振動は、光学要素の局所空間的偏向のみならず、光学要素内で伝播する音波、圧力波、密度波などを意味することを理解すべきである。
以下では、パルス光源は、例えば、パルスレーザ、更にストロボスコープのような個々の時間的に分離した光パルスの形態で光を放出するあらゆる種類の光源を意味することは理解されるものとする。この場合には、光束又は光強度は、周期的に変化する。例えば、パルスレーザ又は他の電子切換可能又は制御可能な光源の場合のこの周期性は、例えば、電子回路によって直接的に設定される。しかし、周期的光変調は、隔膜、チョッパーホイール、振動する隔膜セグメント、又は電子駆動可能なシャッター、特に、透過又は反射において例えば回転する周期的にセグメント化されたミラーを有するLCDシャッターのような光源の下流に配置された1つ又は複数の切換可能要素によって設定することができる。光パルスの強度分布形状と周期的変化のパルス長及び負荷比との両方を手段の選択によって要件に適応させることができる。これは、例えば、振動又は回転する隔膜の透過性の構成により、又は電子制御可能な隔膜の切換速度の設定によって行うことができる。
光源のパルス周波数と光学要素の振動周波数との間の同期は、結像又は照明目的に対して十分に安定した疑似静的状態を得るように、周期的に変化する照射の周波数と振動する要素の周波数とが互いに連動されることを意味することは理解されるものとする。上述のことは、周波数に関して次式が成り立つような構成要素の振動の周波数が照明周波数の整数倍の周波数である場合である。
νOE=NνL、N≧1
ここで、νOEは、光学要素の振動周波数を表し、νLは、光源のパルス周波数を表し、Nは整数を表している。
米国特許US6、700、952B2は、ミラー表面に弾性振動を起こして、この手法で格子構造体を生成し、入射光がこの格子構造体において特定の角度で回折するようにすることを開示している。そのような角度は、振動周波数の適切な選択によって設定することができる。US6、700、952B2に説明されているデバイスは、ミラーの振動周波数を連続的に変更することによって均一照明を生成する役割を有する。従って、光学要素の振動周波数の光源のパルス周波数との同期は達成されず、又は望ましいものでもない。
WO02/093257A2は、応力複屈折によって誘起される結像収差を補償するために少なくとも1つの光学要素内に動的な力が導入されるマイクロリソグラフィのための投影露光機械及び光学システムを説明している。動的な力は、光学要素による光源の光ビームの制御の瞬間に投影に関する最適な結像条件が優勢になるようにパルス光源と同期化される。
更に、文献DE10040813A1は、回折格子を表面波構造的配置の表面上の表面波によって発生する可変格子定数を有する反射格子として形成することを開示している。この手法で設けられる回折格子は、放射光源によって放出される放射光の測定すべき波長を特定するための分光計に用いられる。
本発明による方法では、作動期間中の光学装置の結像特性変化は、従来技術にあるような光学要素の静的変形によってではなく、振動を起こす光学要素の助けを得て補償される。光学装置の結像品質を改善するために、光パルスの波面プロフィールは、弾性振動を起こす光学要素を用いてターゲット方式で動的に補正又はそれに影響を与えることができる。振動を起こす光学要素がターゲット方式で光パルスの波面プロフィールの歪曲を誘起し、更に、この歪曲が光学装置の結像挙動を改善することも同様に可能である。
光学装置の結像特性変化を補償するために、振動周波数は、光パルスが上述の光学要素に当たる全ての瞬間にこの光学要素が偏向をもたらし、結果として生じる光学活性表面の形状が望ましい波面変化を引き起こすように上述の式に従って選択される。
しかし、本発明は、光学要素の形態又は幾何学形状の変化を導く振動の光学要素内での励起に限定されず、そのような横方向の振動の代わりに又はそれに加えて、光学要素の材料における密度変化、例えば、膨張及び圧縮を導く縦方向の振動を適切な寸法の光学要素内で励起することができる。そのような密度変化は、屈折率の局所変化を伴い、すなわち、縦方向の振動が励起される時には、光学要素内で異なる屈折率を有する領域が発生し、それによって望ましい光学効果を得ることが可能になる。縦方向の振動の励起に特に適切な光学要素は、気体又は液体充填光学要素であり、これは、これらの要素では、顕著な振幅を有する密度変化を設定することができるからである。光学システムの結像特性を変更するための縦方向及び横方向の振動は、結晶又はアモルファス固体として形成された光学要素において励起することができる。
定常音波を光学要素内で誘起することができ、この定常音波は、光学要素内で圧力又は密度変化を導く。この場合には、光学要素は、誘起される振動に対しての共鳴体として機能し、この共鳴体の形態及び範囲、並びに材料の選択は、光学装置の結像収差に関して得るべき対応する補正効果に適応させることができる。この場合には、振動は、光学要素の2つ又は3つの寸法方向に伝播することができる。引き起こされる音波場は、光学要素の材料の空間依存の圧縮又は膨張を導き、それによって光学要素の屈折率の空間依存の変化が起こる。光学要素の材料に依存して、例えば、光学要素の等方性屈折率のみを変更することができ、それにより、例えば、振動を起こす光学要素を通過する光パルスの波面の勾配屈折率レンズと同様の連続的影響をもたらす。これは、特に、低粘性液体又は気体を有する場合である。それとは対照的に、光学要素の材料がアモルファス又は結晶固体の場合には、音圧レベルを光学要素の複屈折性の局所変化へと変換して、偏光挙動、すなわち、光パルスの波面の偏光状態及び偏光度を変更することができる。このようにして、光学要素は、光の偏光状態を空間分解方式で操作することができる空間変化偏光光学変調器として用いることができる。誘起される複屈折の強度に対するスカラー量の屈折率変化の比は、媒体の適切な選択によって制御することができる。
光学システムのスカラー量の波面収差の補正以外に、それに伴って光学システムの偏光収差を補償することができる。これらの収差は、例えば、DUVにおける短波長での結像システム又は照明システムで発生し、これは、本源的な複屈折を有する結晶固体が光学材料として用いられることによるものである。結果として生じる偏光収差は、システム内の結像特性を損ね、従って補正すべきである。結晶(例えば、CaF2、石英だけでなく、同様にスピネル、又はLuAG、BaF2、BaLiF3、LiFのような高屈折率材料)は、例えば、<100>配向に主に回転対称偏差及び4次の収差を引き起こす。3次の収差プロフィールは、<111>に存在する。更に、レンズに付加される光学層(反射防止層等)は、複屈折挙動を有する。この理由は、蒸着処理又は多層システム内に導入される応力の結果として生産に依存する層の異方性を含む。これらの層は、通常は回転対称な複屈折プロフィールをもたらす。また、露光システムの作動中の不均一な放射光負荷は、局所的に誘起される歪み、及び従って一般的に複雑なプロフィールを有する複屈折の導入を招く恐れもある。
これに関連して、この場合は、光学要素は、適切な縁部の長さ又は半径を有する平行六面体又は円形プレート又はレンズとして構成し、石英ガラス、フッ化カルシウム、LuAG、又は適切な複屈折液体から生成することが好ましい。
音波は、光学要素内で時間的に調和して振動し、時間的に平均された屈折率変化が消失するので、光源は、クロック発生器、例えば、光学スイッチの形態で対応するトリガを有することが更に好ましく、それにより、パルス周波数と光学要素の振動周波数とが同期化される。
本発明による方法は、波面収差を補正するように設計されるだけではなく、補正効果を強度分布、及び従って結像のコントラストに関連付け、又は投影露光機械の場合には、ウェーハのレジスト内の特徴部のサイズに関連付けることができる。
従って、一例として、補正は、照明強度の角度分布に関連付けることができる。投影露光機械では、対物面における照明角度は、投影対物器械の瞳の位置に対応する。従って、照明の角度分布は、対物器械の瞳内の強度分布に対応する。結像に対して重要である出射瞳内の強度分布は、例えば、非理想的な層、すなわち、全ての角度にわたって均一的に機能(一般的にレンズの場合は透過、ミラーの場合は反射)しない層の結果としてだけではなく、層の性質の時間変化の結果としても、例えば、静的アポディゼーションの形態で不適切に変化する場合がある。
更に、強度分布は、上述の意味における偏光光学変調器の更に別の偏光光学要素(特に偏光器)との組合せによって空間的に変調することができる。要素を1つずつ適切に配列することにより、要素全体の透過挙動は、空間的に設定して液晶ディスプレイの原理と同様の方式で変更することができる。
照明システムにおいて本発明により用いられる要素は、システム全体の結像特性の補正又は最適化を可能にし、選択された照明システム及び結像すべき構造体の場合には、光学配置の個々の適切な場合は時間的に不安定でもある透過特性に適応させることができる。構造体に依存して、回折次数は、投影対物器械内の異なる光路を通過し、像の位置において異なる強度を有する局所透過性/変化による重ね合わせ/干渉が生じる。従って、重ね合わせ強度は、結像コントラスト、及び従ってレジスト内に結像される構造の「幅」を決める(レジストの閾値挙動)。像視野にわたって結像される特徴部のサイズの均一性(CD均一性)は、分解能以外の重要な変数である。
このようにして、例えば、投影対物器械の作動中に発生する像収差を補償するのに、従来技術で公知である方法及びデバイスと比較すると、像収差の補正においてかなり高い柔軟性がもたらされる。光学要素の複数の振動モードから選択を行うことができるという事実は、高次の像収差をかなりの経費を伴ってしか補償することができない光学要素の純粋に静的な変形の場合よりも高次のものを補償することができることを意味する。必要に応じて異なる振動モード間にわたって変更を行うことができるので、作動中に像収差変化が発生するという事実を考慮することができる。
光学要素の振動周波数を光源のパルス周波数に対して位相シフトされた方式で選択することにより、光学効果の強度は、位相差に依存する方式で更に設定することができる。
更に好ましい改良では、光学要素において、高次の光学効果を導く周期的に変調された結像特性を設定するために、光学要素の振動は、パルス周波数の異なる整数倍の周波数を有する振動の重ね合わせとして励起される。光学要素の振動の各固有モードは、光学要素の幾何学形状及び境界条件だけに依存する独特の固有形態を有するので、これらの固有モードは、その振幅及び位相に関して励起によって制御することができるが、その形態に関して制御することはできない。更に、望ましい光学効果を得るために、レーザ周波数の整数倍の周波数であり、望ましい光学効果機能を設定するための適切な振幅又は位相を有する固有周波数を有する複数の固有モードを重ね合わせることができる。言い換えれば、望ましい光学効果機能は、パルス周波数に対する高調波である固有周波数を有する振動モードの固有形態に従って達成される。実際には、光学要素の幾何学形状は、固有形態が必要な補正機能に対応し、それらの固有周波数がパルス周波数の高調波と一致するように設計されることになる。
これに関連して、パルス周波数の異なる整数倍の周波数にそれぞれの個々の位相シフトを割り当てることが更に好ましく、この場合に、位相シフトは、好ましくは可変方式で設定することができ、及び/又はパルス周波数の異なる整数倍の周波数にそれぞれの専用振動振幅を割り当てることが更に好ましく、同様にこの振動振幅は、好ましくは可変方式で設定することができる。パルス周波数の異なる整数倍の周波数に割り当てられる位相シフト及び/又は振幅は、互いの間で及び/又はパルス周波数に対して異なるものとすることができる。振動過程の頂点では、パルス幅にわたる固有形態の時間変化が最小であり、この結果、時間的に定常状態にある光学効果の最良の近似を得ることができるので、この点においてパルスが光学要素に当たるように時間位相を選択することは、更に有利なものとすることができる。
光学装置の更に好ましい改良では、上述の目的のために、光パルスのパルス周波数に対するクロック発生器が設けられ、更に、このクロック発生器は、少なくとも1つの周波数逓倍器及び少なくとも1つの移相器要素に接続され、この移相器要素の出力は、振動励起のための装置に接続される。この場合には、クロック発生器の信号は、最初に周波数逓倍器に供給され、この周波数逓倍器は、パルス周波数の整数倍(例えば、1倍、2倍、3倍、4倍、…)の周波数を表す信号を発生させる。移相器要素は、ゼロとすることができる特定の位相シフトを信号に付加する。可変増幅要素は、同様にゼロとすることができる振動振幅を制御する。この手法で発生した信号は、相応に振動するように光学要素を励起するために、次に光学要素の振動励起のための装置に供給される。
光学装置の更に好ましい改良では、上述の目的のために複数の光源クロック周波数を発生するクロック発生器が設けられる。光源に対するクロック周波数及び光学要素の励起に対するクロック周波数は、1つ又は複数の位相同期周波数分割器から発生し、調節可能移相器及び増幅器によって要件に従って調整される。
光学要素の上述の複数の振動固有モードを励起するために、好ましくは、複数の周波数逓倍器及び移相器要素がクロック発生器に接続され、これらの出力は、加算要素に接続され、この加算要素の出力は、振動励起のための装置に接続される。この改良の場合には、クロック発生器の複数の周波数逓倍信号、及び適切な場合に位相シフト信号は、これらの場合に応じて積算されて制御信号を形成し、次に、この制御信号は、望ましい方式で振動するように光学要素を励起するのに用いられ、この振動は、望ましい光学効果を得ることができる振動固有モードの重ね合わせを表している。
更に好ましい改良では、光学要素は複屈折材料を含み、それにより、パルス周波数と振動周波数との適切な同期が与えられた場合には、振動を起こす光学要素を通過する光パルスの波面の偏光程度及び偏光状態にも、ターゲット方式で影響を与えることができる。
更に好ましい改良では、光学要素は、一例として、光学要素が2つの固体層の間に液体層又は気体層を含み、液体層又は気体層、又は2つの固体層のうちの少なくとも一方を振動させるように励起することができるような多層方式で構成することができる。
歪曲プロフィールを補正するために、光学要素は、好ましくは、光学装置の視野平面の領域内に配列される。視野独立の収差、いわゆる開口収差を補正するために、光学要素は、光学装置の瞳平面の領域内に設けられる。
マイクロリソグラフィに関連する投影露光機械では、投影対物器械内で像収差補正に向けて補正要素を設けることができる全ての位置にこれらの光学要素を設けることができる。これらの位置は、好ましくは、瞳平面及び視野平面であるが、瞳平面と視野平面の間の位置でもよい。ターゲット方式で強度プロフィールを変更するために振動するように励起させることができる光学要素は、投影露光機械の照明システム内に用いることができる。
光学要素の弾性振動を発生させる手段として特に適切であるものは、ラウドスピーカ(プランジャ型コイル、ローレンツモータ)、圧電アクチュエータ、静電又は静磁アクチュエータ/ドライバ(異なる構造設計のモータ)、又は油圧又は空気圧制御のアクチュエータのような装置である。弾性振動を発生させるための複数の異なる手段を互いに組み合わせることができることは説明するまでもない。
振動励起のためのそのような装置は、光学要素の陰影領域に配列することは有利である。本明細書では陰影領域は、作動中に光源からの光が届かない光学要素の領域を表している。このようにして、投影露光機械の場合は投影放射光である作動光の通過、及び相応に結像は、不利な影響を受けない。
そのような陰影領域は、光学要素の外縁とすることができる。光学装置の光学設計によって想定される範囲で、光学要素は、振動を発生させる更に別の装置が内部に配列される中心部の中央孔を有することができる。それにより、更に多くの振動モードを励起することが可能になる。振動を発生させる手段の係合のためのそのような孔は、偏芯方式、すなわち、光軸に対するオフセットを伴って配列することができる。
隣接する光学要素が同様に励起されて振動することを防止するために、振動を発生させるための装置及び振動する光学要素自体を周囲に対して本質的に分離することは有利である。そのような振動分離は、光学要素の励起に対して逆位相で振動する補償要素を用いて有利に作り出すことができる。
一実施形態では、分離は、振動する光学要素と対物器械の更に別の静的光学要素との間の機械接続を回避することによって作り出すことができる。これは、例えば、静的光学要素のための第1の担持構造体、及び振動する光学要素のための第1の担持構造体から分離又は分離された第2の担持構造体を設けることによって可能である。
分離のための別の実施形態は、振動する光学要素による周囲への望ましくない力の伝達を補償振動を発生させることによって回避する。この補償振動は、相応に逆位相で振動し、それによって振動する光学要素の振動を補償する1つ又はそれよりも多くの補償要素によって作り出すことができる。
弾性振動するように励起すべき光学要素は、平面プレートとすることができる。この場合に光学要素は、好ましくは、機械的に剛性が高く、すなわち、例えば、肉厚に構成され、これは、この構成の結果として、レーザ周波数又はその倍数の周波数のうちの1つにおける周波数を有する高周波数モードを比較的簡単に得ることができるからである。より好ましくは、光学要素は、肉薄に構成することができる。この場合には、複数の更に高い振動モードを設定し、その結果、より高次の像収差を補正するために、主に比較的高い周波数の縦方向モードが肉薄の光学要素、例えば、肉薄のプレートの場合に適切である。
好ましくは、光学要素は、気体又は一般的には流体で充填された光学装置の少なくとも1つの部分空間として実施される。部分空間内の気体は、音発生器(例えば、マイクロフォン)の形態の振動を発生させるための装置を用いて振動させ、それにより、局所密度変化は、気体内の局所屈折率変化を引き起こす。音波と同期化された光パルスが部分空間に当たると、光パルスの波面は、光学装置の結像挙動の改善を導くことができる変更を受ける。
光学装置の更に好ましい改良では、光学装置は、互いに分離された少なくとも2つの光学要素を有し、これらの光学要素の間には、気体又は液体を有する隙間が配列される。光学装置のそのような改良の場合には、2つの光学要素の一方、両方の光学要素、及び/又は気体又は液体を有する隙間を励起して振動させることができる。2つの光学要素のうちの第1の光学要素が電気絶縁方式で実施され、2つの光学要素のうちの第2の光学要素が導電方式で実施される場合には、最初に電荷を第1の光学要素において局所的に誘起し、次に気体又は液体を有する隙間を励起して振動させることが好ましい。
別の実施形態では、振動を起こすことができる光学要素は、その弾性が光学要素にわたって一定ではなく、局所的に変化するように構成される。弾性は、例えば、光学要素の剛性又は減衰挙動を意味することは理解されるものとする。この局所変化は、透過光学要素の場合に、例えば、中心部から縁部に向って局所的に変化する厚みを有する光学要素によって得ることができる。光学要素の厚みは、その2つの光学面の間で光軸に対して平行に測定される距離を意味することは理解されるものとする。例示的に、球面又は非球面レンズ、又は自由形状表面を有する光学要素は、そのような局所的に変化する厚みを有する。
代替的に、局所的に変化する弾性は、光学要素の適切な材料構成を通じて、例えば、中心部から縁部に向って局所的に変化する密度を有する光学要素によって得ることができる。
1つの更に別の展開では、光学要素は、局所的に変化する弾性を有する担持デバイスによって保持することができる。代替的に、各々が異なる弾性を有することができる接続要素を用いて互いに接続される光学要素アレイを設けることができる。
担持要素は、振動の固有モードが光学要素の光学的に用いられる領域内で望ましい形状を有するように構成することができる。
全てのこれらの実施形態は、補正すべき収差と正確に同調する振動モードを発生させることを可能にする。弾性の局所変化の結果として、これらの振動モードの設定は、均一な弾性を有する振動光学要素と比較して更に有意により柔軟になる。
レンズアレイに加えて、ミラー又は格子アレイ、又はレンズとミラーの組合せは、可撓性接続要素を有する他の実施形態において設けることができる。1つの更に別の実施形態では、そのような光学要素は、区分及び/又は区画単位で屈折を行う平坦な、特に平行平面のレンズセグメントのアレイとして構成することができる。そのようなアレイは、フレスネルレンズとして用いることができる。レンズ、ミラー、格子、又は平坦なレンズセグメントのこれらのアレイの場合には、アレイの個々の構成要素は、等しい幾何学形状、又は各場合で異なる幾何学形状を有することができる。個々の構成要素に対する異なる幾何学形状の付設は、振動光学要素の像収差補正又は波面統御に関する柔軟性を更に高める。
可撓性接続要素を有する振動レンズアレイを用いる場合には、個々のレンズの焦点位置は、適切な振動モードの選択によってターゲット方式で影響を受ける。それによって例えば通過するビーム束の角度又は強度に影響を与えることができる。照明環境をターゲット方式で設定するために、投影露光機械の照明システムにおいてそのような角度統御振動レンズアレイの特定の適用が可能である。投影露光機械における照明環境は、視野平面内の角度分布に対応するレチクル上に当たる際の照明ビーム強度の角度分布を意味することは理解される。照明環境のそのような振動レンズアレイの助けを得ての設定は、異なる照明環境を異なる振動モードの選択によって任意的に設定することができるという利点を有する。これは、照明環境にわたって変更を行うことが、光学要素にわたって変更を行うこと、又は隔膜又はフィルタを挿入することを必要としないことを意味する。これらの代わりに、異なる振動状態を設定することで十分である。
本発明による振動レンズアレイは、従来技術で公知である他の手段によって設定された照明環境の精密な補正において用いることができる。
有利な実施形態では、光学装置、特にフォトリソグラフィのための投影露光機械に用いられる際に、本明細書で説明している励起して振動させることができる光学要素の全て又は光学要素アレイは、制御ユニットと共に用いることができる。制御ユニットには、振動光学要素又はアレイの所定の制御パラメータ、例えば、振動の位相又は振幅を局所的に特定する測定システムが装備される。個々の光学要素を特徴付けるために、測定システムは、例えば、クロック計時照明を用いる干渉計、又は光学面の圧力変動又は加速度を空間分解方式で記録するマイクロフォン又は加速度センサの配置を含むことができる。光学要素のアレイを特徴付けるために、1つの好ましい実施形態における測定システムは、個々のセンサ、例えば、個々のアレイ構成要素の焦点位置を特定する焦点センサを含む。制御ユニットには、測定システムによって記録された測定値に基づいて、適切な場合にこれらの測定値をモデル計算からの所定のパラメータと比較することにより、光学要素の振動励起のための装置を制御する評価及び制御システムが更に設けられる。このようにして、振動光学要素又はアレイの振動振幅の精度、及びこれに対応するパルス光源との同期を特に正確に設定することができる。
そのような制御ユニットは、個々の振動光学要素に対して複数のそのような要素に関して同時に、又は光学装置全体に対して設けることができる。追加的又は代替的に、光学システム全体の波面を記録する波面センサを設けることができる。波面センサによって特定されるデータは、同様に制御ユニットによって処理され、補正を必要とする光学要素の振動モード又は振動振幅を定義又は設定するのに用いられる。システム全体を特徴付けるために、好ましくは、波面センサ、又は干渉計、好ましくは、複数の視野点における同期測定に向けて並列で作動する複数の測定チャンネルを有する干渉計、例えば、多チャンネル剪断干渉計が用いられる。
1つ又はそれよりも多くの振動光学要素を有する装置では、上記要素の各個々の1つの特徴付け及び制御の1つの利点は、個々の光学要素の理想的な光学要素に基づくモデル計算からの個々の偏差を考慮に入れて補償することができることである。しかし、特徴付け及び制御は、光学システム全体の特性を検出するセンサの助けを得ることにより、個々の振動構成要素の相互作用を特定することができ、更に、システム全体に望ましい効果をターゲット方式で設定することができるので、全体のシステムにおいても有利である。
1つの特に有利な改良では、制御システムは、光学要素の振動周波数を光源のパルス周波数と同期させるための同期システムを含む。この同期は、測定及び評価システムによって特定される振動励起に関するパラメータに基づいて、更に光源の所定のパルス周波数に基づいて達成される。
1つ又はそれよりも多くの振動光学要素に加えて、更に別の操作可能光学要素、特に変位可能又は傾斜可能、及び静的変形可能光学要素を本発明による光学システム内に設けることができる。この場合にも、振動光学要素の振動励起の手段、及び更に別の操作可能要素のアクチュエータシステムの両方を個々の光学要素のパラメータを特定するためのセンサ、及びシステム全体のパラメータを特定するためのセンサの両方を含む測定システムが設けられた制御ユニットを用いて制御することは有利である。
ターゲット方式でのシステム全体の結像特性の補正又は改善を得るために、一例として、照明システムの強度分布を単に別々に測定して別々に補正する代わりに、照明システム及び結像システム(投影対物器械)を含むシステム全体の出射瞳内の強度分布を測定することができる。次に、出射瞳の強度分布の測定から生じる補正値は、照明システム及び結像システムからの累積寄与を補正する役割を達成し、この後に補正を照明システム内で実施することができる。
光学要素が反射で作動する場合には、1つの特に有利な実施形態では、反射面を有する液体媒体をミラーとして用いることを可能にすることができる。
本発明による光学装置内に励起して振動させることができる複数の光学要素が設けられる場合には、光学装置内での適切な位置決めされにより、更にそれぞれ励起される振動モードの適切な設定及び組合せにより、1つのみの振動光学要素を有するものよりも更に一層複雑な像収差を補償する可能性がもたらされる。
図面を参照して本発明をより詳細に説明する。
投影対物器械を有する投影露光機械の概略図である。 単純な振動モードを有し、平面プレートの固定位置に駆動力を有する肉薄平面プレートの振動の概略図である。 単純な振動モードを有し、固定部の外側に駆動力を有する肉薄平面プレートの振動の概略図である。 8つのアクチュエータを有する円形光学要素の概略図である。 12個のアクチュエータを有する矩形光学要素の概略図である。 中心部の中央孔を有し、外縁及び中央孔内にアクチュエータを有する円形光学要素の概略図である。 光学要素を反射状態にある液体とする実施形態の概略図である。 光学要素を透過状態にある液体レンズとする実施形態の概略図である。 光学要素を周囲が密封された液体レンズとする実施形態の概略図である。 光学要素を格子とする実施形態の概略図である。 レンズアレイを有する実施形態の概略図である。 担体上にレンズアレイを有する実施形態の概略図である。 ミラーアレイを有する実施形態の概略図である。 ミラー及びレンズのアレイを有する実施形態の概略図である。 焦点センサとの組合せでミラー及びレンズアレイを有する実施形態の概略図である。 個々の光学要素に対する測定及び調節の概念の概略図である。 振動を起こすことができる光学要素と静的光学要素との機械的分離を有する対物器械の概略図である。 光源のパルス周波数と同期する光学要素の振動励起の制御の基本回路図である。 横方向(縦方向)の振動励起で励起して振動させることができる光学要素の更に別の例示的な実施形態の概略図である。 横方向の振動励起を有する更に別の光学要素の概略図である。 縦方向の振動モードの励起のための気体共鳴器の形態にある光学要素の更に別の例示的な実施形態の概略図である。 光学要素を横方向(縦方向)の振動励起を有する多層平行平面プレートとする更に別の実施形態の概略図である。 横方向の振動励起を有する図22の光学要素の図である。 光学要素をミラーとする更に別の実施形態の概略図である。 光学要素を光学装置の気体充填部分空間とする更に別の実施形態の概略図である。 間に気体層が配列される2つの光学要素の配列の概略図である。 間に気体層が配列される2つの光学要素の配列の概略図である。 光学要素を偏光統御平行平面プレートとする更に別の実施形態、及びその屈折率の半径依存性の概略図である。 光学要素を偏光統御平行平面プレートとする更に別の実施形態、及びその屈折率の半径依存性の概略図である。
図1は、フォトリソグラフィを用いた大規模集積半導体構成要素の加工に向けて設けられたマイクロリソグラフィ投影露光機械1を略示している。投影露光機械1は、光源として、193nmの作動波長を有するパルスエキシマレーザ3を含む。代替的に、他の作動波長、例えば、248nm又は157nmを有する光源、又は13.4nmの波長を有するプラズマ源を用いることができ、13.4nmの波長では、レンズの代わりにミラーのみが用いられる。下流の照明システム5は、その出射平面又は対物面7内に、下流の投影対物器械11のテレセントリシティ要件に適応する明確に範囲が定められ非常に均一に照らされる大きい照明視野を発生させる。照明システム5は、瞳の照明を制御し、照明光の所定の偏光状態を設定するためのデバイスを有する。特に、電界ベクトルの振動平面がマスク13の構造に対して平行に延びるように照明光を偏光するための装置が設けられる。
マスク13を保持及び移動するためのデバイス(レチクル台)は、このマスクを投影対物器械11の対物面7内に横たえ、走査作動に向けてこの平面内で進行方向15に移動することができるように、照明システムの後ろのビーム経路内に配列される。
マスク平面とも称する対物面7の後部には、マスクの像を縮小スケールで基板19、例えば、レジストとも呼ぶフォトレジスト21で覆われたシリコンウェーハ上に結像する投影対物器械11が続く。基板19は、レジスト21を有する平坦な基板表面が本質的に投影対物器械11の像平面23と一致するように配列される。
基板は、基板19をマスク13と同期して移動するための駆動装置を含むデバイス17によって保持される。またデバイス17は、基板19を投影対物器械11の光軸25に対して平行なz方向と、この軸に対して直角のx及びy方向との両方に移動するためのマニピュレータを含む。光軸25に対して直角に延びる少なくとも1つの傾斜軸を有する傾斜デバイスが統合される。
基板19を保持するために設けられたデバイス17(ウェーハ台)は、液浸リソグラフィにおける使用に向けて構成することができる。この場合には、投影対物器械11の最後の光学要素と基板19の間の隙間内に液体が導入される。液浸リソグラフィに適応する投影露光機械では、上記に応じて液浸液を供給及び排出されるための装置、及び基板19と最後の光学要素との間で液体を固定するための液密な受容容器も設けられる。
投影対物器械11は、放射光が非対称に印加される光学要素27、29を含む。光学要素の非回転対称照射は、光学要素27、29の結像特性の変化を招き、更にこれに応じて作動期間にわたって対物器械全体の変化を招く。経年変化に起因して発生するそのような像収差を補償するために、投影対物器械11内に光学要素31が設けられ、この光学要素31は、その外縁に配列された一連の圧電アクチュエータ33を用いて弾性振動を起こすことができる。圧電アクチュエータ33の制御に向けて、制御ユニット35が設けられる。光学要素31の励起においては、圧電アクチュエータ以外に空気圧又は油圧制御アクチュエータを用いることができ、音響励起も可能である。
システム全体の波面を記録するセンサ55が、ウェーハ台17内に配列される。好ましくは、このセンサ55は、波面センサ又は干渉計として実施される。この干渉計は、複数の視野点における同期測定に向けて並列で作動する複数の測定チャンネルを有する。測定結果は、データ線53を通じて制御コンピュータ51に送信される。この制御コンピュータ51は、測定データから作動期間中に発生する像収差を特定し、この情報に基づいて、像収差の最適な補償を導く光学要素31における振動モードを特定する。制御コンピュータは、光学要素のための制御ユニット35に接続され、同様にデータ線53を通じて光源3にも接続される。このようにして制御コンピュータは、制御ユニット35を介し、アクチュエータ33の助けを得て光学要素の振動励起を調節するだけではなく、それと同時に光学要素の振動を光源のパルス周波数と同期する役割を達成する。
図2は、振動光学要素231の作動方法を略示している。ここでは、光学要素231は、肉薄の平面プレート又は膜を含む。この膜は、光学要素231の固定点に配列された駆動装置233によって振動を起こす。単純な場合には、駆動装置は、振動中に光学要素231の円筒形の変形が発生するように配列することができる。例えば、パルスレーザ光源からの個々の光パルスが光学要素231上に入射し、レーザのパルス周波数が光学要素231の振動周波数又はその整数倍の周波数に一致する場合には、光学要素231は、光パルスの各衝突時に同じ形状を有する。効果という観点から、これは、対応する円筒形状を有する静的光学要素に対応する。
光学効果の強度は、本質的に2つの効果により、すなわち、光学要素231の振動振幅、及びパルス周波数と光学要素231の振動周波数の間の位相差によって設定することができる。各場合に光パルスが厳密に最大偏向の瞬間に衝突する場合には、光学効果は、最大に湾曲した静的光学要素に対応する。各場合に光パルスが、振動光学要素231がより顕著でない偏向を提供する異なる瞬間に衝突する場合には、光学効果は、相応に低い程度に湾曲した光学要素に対応する。パルス周波数と光学要素の振動周波数の間の位相シフトが振動周期の半分よりも大きくなるように選択することにより、曲率が反対の符号を有する光学要素の効果を得ることができる。
代替的に、駆動力は、光学要素227の固定部の外側に導入することができる。これを図3に略示する。
光学要素331の形態、支持点332の配列、個数、及び位置、並びにアクチュエータ333、更に励起周波数により、様々な固有モード、及び従って光学要素331の幅広い種類の変形を設定することができる。
ここで図4から6は、振動を起こすことができる光学要素431の様々な形態を例示的に示している。図4は、8つのアクチュエータ433が外縁に沿って配列された円形光学要素431を示している。円形プレート又は膜の固有モード、並びにこれらの計算及びモデル化は、機械工学分野の技術者には公知である。従って、これらに対しては、ここではより詳しくは解説しないことにする。
図5は、異なる実施形態の光学要素531は、12個のアクチュエータ533が外縁に沿って配列された矩形平面プレートとして示している。光学的に有効な領域537は、矩形平面プレートの中心部に位置する。アクチュエータ533は、有効領域が制限されないような手法で配列される。矩形プレート又は膜の固有モード、並びにこれらの計算及びモデル化は、同様に機械工学分野の技術者には公知である。
図6は、中心部の中央孔639を有する更に別の実施形態の光学要素631を示している。ここではアクチュエータ633は、光学要素631の外縁及び中央孔639の両方に配列されている。アクチュエータ633の個数及び配列は、励起することができるモード数を決める。
アクチュエータ633は、光学要素631の励起に対して逆位相で振動する補償要素641に接続される。これは、アクチュエータ633を光学要素631のマウント、又は光学装置のマウント構造全体から分離する役割を達成する。それにより、光学要素631の振動励起のために印加される力がマウントに入力され、隣接する光学要素が振動を起こすことが防止される。補償要素641は、発生する力が正確に補償されるように設計される。この種類の補償要素は、本明細書で特定する本発明の全ての他の実施形態においても設けることができることは説明するまでもない。
図7及び8による本発明の更に別の実施形態では、液体媒体を光学要素731、831として設けることができる。ここでは振動光学要素731は、反射状態で作動する。この場合には、液体は、例えば、水銀のようなそれ自体が反射性を有するものとすることができる。しかし、適切な場合には、液体は、肉薄の反射性弾性層、例えば、金膜で覆うことができる。この場合、液体表面の変形がこの膜へと伝達される。液体は、液密容器743によって保持される。振動は、液体容器743の外縁に装着されたラウドスピーカ733による音響励起を用いて励起される。
液体媒体で作られる光学要素831の場合には、透過状態の作動も可能である。透過状態で作動する液体光学要素は、液体レンズとも呼ばれる。図8は、そのような液体レンズを示している。液体は、基部が例えば石英ガラスで作られた透過平面プレート845を含み、外縁に液体の音響励起のためのラウドスピーカが装着された液体容器843内に入れられる。例示的に、この液体としては、蒸留水、硫酸、過フッ素化エーテル、又はシクロヘキサンが適切である。液体容器843の形態は、容器の基部が更に別の光学要素、例えば平凹又は平凸レンズとして構成されるように構成することができる。
光学要素として液体が用いられる場合には、図9に例示するように閉じた実施形態が特に有利である。このようにして、光学装置は、蒸発する液体分子による汚染なしに保つことができる。第2に、周囲からのあらゆる汚染粒子が液体内へと通過することも不可能である。図9の液体レンズ931は、基部が例えば石英ガラスで作られた透過平面プレート945を含む液体容器943によって囲まれる。液体容器は、上部に向って平凸レンズ951によって密封される。液体を補充するために、液体の入口及び出口947が設けられる。液体レンズの厚みは、液体量を変更することによって設定することができる。排気開口部949は、圧力均等化をもたらす。液体レンズの振動励起のためのラウドスピーカ933は、液体容器947の外縁に設けられる。
更に別の実施形態では、相応に高い振動モードの場合に格子状の周期的構造体を生成することもできる。このようにして、例えば、位相格子は、線形正弦格子、交差格子、又は放射格子として生成することができる。図10は、外縁に複数のアクチュエータ1033が装着され、振動励起によって内部に格子状の構造が生成された反射面を有する矩形光学要素1031を示している。
様々な改良における別の実施形態の振動光学要素を図11から14に例示している。ここでは光学要素は、例えば、レンズアレイ(図11及び12)、又はミラーアレイ(図13)、又はレンズ及びミラーのアレイ(図14)の形態で個々の光学構成要素のアレイとして構成される。
図11は、個々のレンズ1161が可撓性接続要素1163によって互いに接続された、振動を起こすことができるレンズアレイ1131を示している。単純な形態では、個々のレンズ1163は、平坦なレンズアレイ1131として配列される。別の実施形態では、アレイは平坦である必要はなく、z方向に予め形成された非平坦な行列で配列することができる。レンズアレイ1131の可能な振動の振幅を矢印で表している。
図12は、共通の担体1265上に個々のレンズ1261を有するレンズアレイ1231を示している。この担体は、局所的に変化する密度を有する材料を含むことができ、一例として、密度は、担体の中心部から縁部に向って連続的に低下するものとすることができる。このようにして、振動振幅は局所的に影響を受け、光源のパルス周波数と同期する方式で振動する光学要素の有効光学活性形態が、断面において基本形として正弦曲線形態を提供する代わりに、この有効光学活性形態は、局所的に変化する密度によって自由に構成することができる。
図13は、個々のミラー1369の間で可撓性接続要素1363及び1367を有するミラーアレイ1331を示している。接続要素1363及び1367は、各々異なる剛性を有する。光源のパルス周波数と同期する方式で振動する光学要素の有効光学活性形態は、異なる剛性を有する接続要素の選択によって同様に局所的に影響を与えることができる。
図14は、接続要素1463によって互いに接続した個々のレンズ1461及び個々のミラー1469を含むアレイ1431を示している。
ここで説明するアレイの場合には、個々の要素の局所位相及び振幅は、焦点センサを用いて制御することができる。これを図15に例示する。作動放射光1575は、個々のミラー1569において反射され、これに対して個々のレンズ1561は、作動放射光1575を点1571に合焦する。焦点センサ1573は、振動するように光学要素31を励起するアクチュエータ33のための制御ループにおいて用いることができる。そのような制御ループは、個々の構成要素のアレイだけではなく、図1から10による個々の振動光学要素にも用いることができる。
個々の光学要素1631の振動励起を調節するためのそのような制御ループの概略的構造を図16に例示する。測定システム1655は、発生した光学要素の変形を特徴付ける役割を達成する。測定システム1655は、例えば、表面を測定するためにクロック計時照明を用いる干渉計を含むことができ、又は光学面の圧力変動を空間分解方式で記録するマイクロフォン配置を有することができる。同様に、測定システム1655は、光学面の加速度変動を空間分解方式で記録する加速度センサ配置を有することができる。測定値は、測定値を取得及び処理し、特に記憶も行う評価及び制御システム1651にデータ線1653を通じて転送することができる。測定値は、モデル計算から理想的光学要素の振動に対して得られる理想値、例えば、理想振幅と比較することができる。理想状態からの偏差が特定され、振動励起のためのアクチュエータ1633の動きは、適切な場合に光学要素1631の振動特性が理想状態に近づくように調整される。アクチュエータの動きの調整は、同様に評価及び制御システム1651により、アクチュエータシステム1633に接続したデータ線1653を通じて行われる。
更に、評価及び制御システム1651は、光学要素1631の振動周波数を光源(図16には例示していない)のパルス周波数と同期する役割を達成する。この目的のために、評価及び制御システム1651は、光源に接続される。
力が、光学要素31の振動によってレンズマウント及びアクチュエータシステムを通じて周囲、特に対物器械構造体に望ましくない方式で伝達されることを防止するために、振動光学要素の周囲からの機械的分離が設けられる。図17は、そのような分離を有する実施形態の対物器械を示している。この場合には、振動光学要素1731は、第1の担持構造体1783内に配列され、その一方で静的光学要素1727は、第2の担持構造体1781内に配列される。2つの担持構造体1781及び1783は、互いに機械的に分離される。内側の担持構造体1781は、冠と同様の切除リング区分を有する。外側の担持構造体1783は、内側の担持構造体1781における切除部を通じて横断アーム1787を延ばしている。2つよりも多くの分離担持構造体を設けることも可能である。例示的に、各振動光学要素に対して専用担持構造体を設けることができる。
図18は、例えば、図1の投影露光機械1とすることができる光学装置1810の基本回路図を示している。
光学装置1810は、光源1812、例えば、レーザを有する。更に、光学装置1810は、例えば、図1の投影露光機械1の投影対物器械11内の光学要素31とすることができる光学要素1814を有する。しかし、光学要素1814は、図1の照明システム5の光学要素とすることができることは説明するまでもない。
光源1812によって放出された光は、図18の矢印1816で表しており、この光は、光学要素1814を通して導かれる。
光学要素1814は、従来の例示的な実施形態で説明したように励起して振動させることができ、この目的のために、光学要素1814には、例えば、圧電アクチュエータの形態で振動励起のための装置1818が割り当てられる。
光源1812には、光源1812がパルス周波数fpulseを有するパルス光を放出するように、パルス周波数fpulseを有するクロック信号を光源1812に供給するクロック発生器1820(クロック)が割り当てられる。
更に、複数(n個)の周波数逓倍器(位相同期ループ(pll))1822i(i=1、…、n)が、クロック発生器1820に接続される。周波数逓倍器1822iの各々は、パルス周波数fpulseの整数倍の周波数を発生させる。例示的に、周波数逓倍器18223は、パルス周波数fpulseの3倍の周波数を有する信号を発生させる。
各周波数逓倍器1822iには、設定することができる値だけ周波数逓倍信号のそれぞれの位相をシフトさせるか又はその位相を未変更のままに残す(位相シフトゼロ)移相器要素1824iが割り当てられる。
移相器要素1824iの下流には、信号振幅を1よりも小さいか又は大きい、又は1に等しい係数によって適切な方式で厳密に設定するそれぞれの振幅増幅器要素1826iが配列される。
すなわち、処理された全ての信号は、加算要素1828に供給され、それによって積算される。次に、加算要素1828の出力は、信号増幅器1838に接続され、信号増幅器1838の出力は、光学要素1814の振動励起のための装置1818に接続される。増幅された積算信号が印加される振動励起のための装置1818は、積算信号に従って最終的に光学要素1814を励起する。
光源1812からの光パルスは、光学要素1814の変調周波数と位相同期であるから、これらのサンプリング結果は常に、周期的に励起される光学要素1814の同じ状態を示している。従って、周期的に変調される結像特性は、ストロボスコープと同様の方式で光パルスに対する時間的疑似定常状態として現れる。
光パルスとの適切な同期が与えられたとして、定常状態として現れる空間依存の光学効果を得るために、要件に依存して、平面プレート、レンズ、又はミラーの縦方向及び/又は横方向の振動モードを利用することができる。
図19は、透過平面プレートとして形成された光学要素1910を示している。光学要素1910は、レンズ又はミラーなどとして形成することもできる。
光学要素1910の振動励起のための装置1912、1914は、光学要素1910の縁部に配列される。装置1912、1914は、例えば、圧電要素である。光学要素1910の主に側方の、すなわち、縦方向の固有モードは、装置1912、1914を用いて共鳴励起することができる。空間依存の膨張変調(光学要素1019の明暗部分によって表している)を用いることにより、屈折率又は複屈折も、励起によって設定することができる振動振幅によって空間依存方式で変調される。励起方向は、矢印1916、1918によって例示している。屈折率の変調は、次に、望ましい光学効果を得るように機能する。
光学要素1910を光学要素1910が存在する光学システムの他の光学要素から振動分離するために、更に、振動分離手段1920、1922が光学要素1910に配列される。
図20は、光学要素1910と同等の光学要素2010を示しており、この場合には、光学要素2010の横方向の振動モードを励起するために、振動励起のための装置2012、2014は、光学要素2010に対して横方向に作用する。
図19の光学要素1910の縦方向の振動モードが、光学要素1910の表面形態の変化を導かないか又は本質的に導かないのに対して、光学要素10の横方向の振動は、形態変動を導き、この形態変動が光学効果を導く。これとは対照的に光学要素1910の場合には、変調される光学効果は、主に光学要素1910内で変調される屈折率分布に基づいている。
図21は、2つのプレート2112と2114の間に気体充填又は液体充填空間2116を有する光学要素2110を示している。
縦方向の振動モードは、振動励起に適切な装置を用いて気体内で励起され、このモードは、変調される密度分布において顕在化し、従って、屈折率が空間依存方式で変調される。
図21は、高密度領域2118、2120、2122、及び低密度領域2124、2126、2128、及び2130を示している。
それぞれ高密度領域及び低密度領域である2118〜2122及び2124〜2130は、同時にそれぞれ高圧力及び低圧力領域である。高圧力領域と低圧力領域の間に例えば28Paの圧力差がある場合には、約8.3×10-6の屈折率差Δnが生じる。
光学要素2110の気体充填空間2116は、変調周波数に関して調整することができ、それぞれ高密度領域及び低密度領域である2118〜2122及び2124〜2130は、振動励起の適切な選択によって局所的に変位することも可能である。
縦方向の振動モードは、異なる方向に励起することができ、例えば、図21に示している光の通過方向、この方向に対して横断する方向、又はこれらの両方の方向に同時に励起することができる。
図22は、液体層、例えば、水の層2216を2つの固体層2212と2214の間に有する更に別の光学要素2210を示している。固体層2212、2214は、例として透過平面プレートとして構成される。
液体の密度依存の屈折率、及び/又は液体内の圧力変化及び固体層2212、2214のコンプライアンスに起因する液体層2216の厚み変化のいずれかを用いて光学効果を得るために、横方向に配列された装置2218、2220を用いて液体層2216を励起して振動させることができる。
図23は、図22の光学要素2210を示しており、図22とは対照的に、光学要素2210の振動励起のための装置2318、2320は、光学要素2310に対して横方向に作用する。この場合には、固体層2212のみが励起され、固体層2214は、その大きい厚みに起因して十分に堅固であり、それによって固体層2312の横方向の振動モードは、液体層2216を通じて固体層2214に伝達されない。
図24は、ミラー2132として実施される更に別の実施形態の光学要素2130を示している。光学要素2130の振動を発生させるための装置2133は、ミラー2132に配列され、これらの装置は、ミラー基板2135に縦方向に係合する。それによってミラー基板2135は、反射ミラー表面2137が時間的に振動し、それによってミラー2132に当たる光パルスの波面の望ましい光学補正効果が得られるように振動を起こす。反射ミラー表面2137の時間変化は、例えば、ミラー表面2137の局所密度変化、又はミラー表面2137の局所点の空間的偏向を意味すると理解すべきである。
図25は、光学装置2143の部分空間2142として実施される更に別の実施形態の光学要素2140を示している(図25の破線を参照されたい)。部分空間2142は、気体容器2145に接続され、気体、例えば、乾燥空気(n=1.000292)、二酸化炭素(n=1.00045)、又はキセノン(n=1.00706)によって充填される。更に、図示の例示的な実施形態では、音発生器又はマイクロフォンとして構成される部分空間2142内の気体の音響振動を発生させるための装置2147が存在する。装置2147を用いて、部分空間2142内の気体において時間変調音波が発生し、それにより、閉じた部分空間2142内に局所密度変化が誘起される。音波は、部分空間2142の側部で反射される。振動周波数は、気体が特定の密度パターンを有する所定の瞬間に光パルスが部分空間2142を通過するように光パルスのパルス周波数と同期化される。それにより、光パルスの波面プロフィールにターゲット方式で影響を与えることが可能になる。更に、2つの連続光パルスの波面は、各場合に別様に変更することができるような適切な方式で、発生した音波を減衰する減衰要素を部分空間2142に配列することができる。
光学装置2143の気体充填部分空間2142としての光学要素2140の構成は、光学装置2143の結像挙動の特に単純で費用効率の良い改善を可能にし、この改善は、光学装置2143の作動において実施することができる。
光学要素2140はまた、光学装置2143の内部全体として、又は例えば光学装置2143における光通過領域内の円盤形状容積として具現化することができる。
図26Aは、振動を起こすことができる2つの光学要素2152、2154を収容する光学装置2150を示している。2つの光学要素2152、2154は、例えば、互いに分離された2つの円形平行平面プレート、又は膜及びマスク、又はレンズとすることができる。2つの光学要素2152、2154は、弾性側壁2156を通じて互いに接続され、隙間2158は、気体、例えば、アルゴンで充填される。光パルスの光伝播方向の上流に配列された第1の光学要素2152は、装置2160を用いて横方向に振動するように励起される。この振動は、膜又は光学要素の空間依存の偏向を導き、この偏向は、図26Aに破線によって誇張方式で略示している。これに加えて、特定のトポロジーが気体に加えられ、それによって密度変化、及び従って気体における屈折率変化が更に導かれる。それにより、光パルスの波面のターゲット統御が導かれる。
同様に、2つの光学要素2152、2154は、横方向に励起して振動させることができることも可能である。この目的のために、振動を発生させるための装置2162が、同様に光学要素2154に配列される。2つの光学要素2152、2154の振動周波数は、互いに対して、例えば180°だけ位相オフセットすることができる。2つの光学要素2152、2154において誘起される振動に起因して、隙間2158内の気体は密度及び屈折率変化を受け、この変化は、時間的に適切にクロック同期化された光パルスの波面を変更し、ターゲット方式で不正な波面プロフィールを最小にする。
同様に、隙間2158内の気体は、音発生器2164を用いて音響的に振動するように直接励起することも可能である。上述のように、望ましい光学補正効果をこのように達成することができる。
図26Bは、ここでは平行平面プレート及びレンズとして実施された図26Aからの2つの光学要素2152、2154を示している。第1の光学要素2152は高い抵抗を有し、すなわち、電気絶縁され、光通過方向に光学要素2152の下流に配列された第2の光学要素2154は、導電性を有する。荷電ロッドを用いた第1の光学要素2152への電荷の導入又はターゲット印加は、第2の光学要素2154からの光学要素2152の局所領域の引力又は斥力を導く。隙間2158内の気体は、これに対応して密度変調を受ける。更に、隙間2158内の気体は、隙間2158に配列された装置2164によって振動を起こす。気体内の密度変化は、気体の屈折率の局所変化を生み、それにより、気体を通過する適切にクロック同期化された光パルスの波面プロフィールにターゲット化方式で影響を与えることができる。
アルゴンの代わりに、隙間2158は、液体、例えば、水で充填することができる。
図27Aは、半径Rを有し、例えば、投影露光機械の投影対物器械内に収容された円形石英プレート2172として実施される光学要素2170の平面図を示している。同様に、光学要素2170は、投影露光機械の照明光学システム内に収容することができる。
光学要素2170は、音声発生器2173を用いて振動を起こすことができ、それによって音波が光学要素2170内を伝播する。この音波は、光学要素2170内を伝播して方向性応力場を発生させる縦方向の密度波を導き、これは、次に、光学要素の複屈折性に局所的に影響を与える。基本モードでは、結果として生じる光学要素の複屈折は、光学要素2170の縁部に向って外向きに放射状に円盤の半径rと共に低下する(図27Bを参照されたい)。複屈折の主軸は、半径方向及び接線方向に方向付けられる。
同様に、光学要素2170は、光源の光パルスの波面の偏光状態に対する偏光解消器として作用することも可能である。光学要素2170の振動周波数と光パルスのパルス周波数との適切な同期が与えられると、光学要素2170は、2つのレーザパルス間の偏光状態を90°だけ傾斜又は変更する迅速に切換可能なλ/2プレートとして機能する。この目的のために、レーザパルスは、光学要素2170の材料内の応力場の最小値及び最大値を交互に取る。
振動を引き起こされることが可能な光学要素2170の使用に依存して、投影露光機械の照明モード及び結像特性の両方は、投影露光機械の結像品質を改善し、発生する結像収差を補正するために、ターゲット方式で動的に影響を受け、かつ変更することができる。特に、光源の光パルスの波面プロフィールの収差を補償するか又は(局所)偏光状態を結像すべき構造体に適応させることにより、結像コントラストを最適化することができる。光学要素2170の照明配置内での使用は、例えば、投影対物器械の照明の回転対称モードの発生と、光源の光パルスの干渉特性及び偏光の操作とを可能にする。
本発明は、特定的な実施形態に基づいて説明したが、当業者には、例えば、個々の実施形態の特徴の組合せ及び/又は交換により、多くの変形及び代替実施形態が明らかである。従って、そのような変形及び代替実施形態が本発明によって同時に含まれることは、当業者には説明するまでもない。
本件明細書に開示されている発明には、これらに限定されるものではないが、次のとおりのものが含まれる。
(1)
パルス周波数を有する光パルスの形態で光を放出する光源と、
ある一定の振動周波数で光学要素の振動を励起するための装置に接続された少なくとも1つの光学要素と、
を含み、
前記光学要素の前記振動は、光学結像に関連する該光学要素の少なくとも1つのパラメータの時間周期的な変調をもたらし、
前記振動周波数は、前記光学要素の前記振動励起のための前記装置を用いて、それが前記光源の前記パルス周波数と同期するように設定することができ、
前記光パルスの前記パルス周波数のためのクロック発生器が設けられ、少なくとも1つの周波数逓倍器が、該クロック発生器に接続され、該少なくとも1つの周波数逓倍器の出力が、振動を発生させるための前記装置に接続されている、
ことを特徴とする光学装置。
(2)
前記光学要素の前記振動周波数は、前記光源の前記パルス周波数の整数倍として設定することができることを特徴とする(1)に記載の光学装置。
(3)
前記光学要素の前記振動は、前記パルス周波数の異なる整数倍を有する振動の重ね合わせであることを特徴とする(1)に記載の光学装置。
(4)
前記光学要素の前記振動周波数は、前記光源の前記パルス周波数に対して位相シフトされた方式で設定することができることを特徴とする(1)から(3)のいずれかに記載の光学装置。
(5)
前記パルス周波数の前記異なる整数倍には、それぞれの位相シフトが割り当てられることを特徴とする(3)に記載の光学装置。
(6)
前記位相シフトは、設定することができることを特徴とする(5)に記載の光学装置。
(7)
前記パルス周波数の前記異なる整数倍には、それぞれの振動振幅が割り当てられることを特徴とする(3)、(5)、又は(6)のいずれかに記載の光学装置。
(8)
前記振幅は、設定することができることを特徴とする(7)に記載の光学装置。
(9)
少なくとも1つの移相器要素が、前記クロック発生器に接続され、該少なくとも1つの移相器の出力が、前記振動励起のための前記装置に接続されていることを特徴とする(1)から(8)のいずれかに記載の光学装置。
(10)
複数の周波数逓倍器及び/又は移相器要素が、前記クロック発生器に接続され、これらの出力が、加算要素に接続され、その出力が、前記振動励起のための前記装置に接続されることを特徴とする(1)から(9)のいずれかに記載の光学装置。
(11)
前記振動励起のための前記装置、及び前記光学要素は、該光学要素の横方向の振動を励起するように設計されることを特徴とする(1)から(10)のいずれかに記載の光学装置。
(12)
前記振動励起のための前記装置、及び前記光学要素は、該光学要素の縦方向の振動を励起するように設計されることを特徴とする(1)から(11)のいずれかに記載の光学装置。
(13)
前記光学要素は、結晶固体、アモルファス固体、液体、又は気体を含むことを特徴とする(1)から(12)のいずれかに記載の光学装置。
(14)
前記光学要素は、複屈折材料を含むことを特徴とする(1)から(13)のいずれかに記載の光学装置。
(15)
前記光学要素は、2つの固体層の間に液体又は気体層を含み、該液体又は気体層は、振動へと励起することができることを特徴とする(1)から(14)のいずれかに記載の光学装置。
(16)
前記光学要素は、2つの固体層の間に液体又は気体層を含み、該2つの固体層の少なくとも一方は、励起して振動させることができることを特徴とする(1)から(14)のいずれかに記載の光学装置。
(17)
瞳平面を有し、
前記光学要素は、該瞳平面に又は該瞳平面の領域に配置される、
ことを特徴とする(1)から(16)のいずれかに記載の光学装置。
(18)
視野平面を有し、
前記光学要素は、該視野平面に又は該視野平面の領域に配置される、
ことを特徴とする(1)から(16)のいずれかに記載の光学装置。
(19)
前記光学要素の弾性振動の前記励起のための前記装置は、ラウドスピーカ、プランジャ型コイル、圧電アクチュエータ、静電アクチュエータ、静磁気アクチュエータ、油圧制御アクチュエータ、又は空気圧制御アクチュエータを含むことを特徴とする(1)から(18)のいずれかに記載の光学装置。
(20)
前記光学要素の前記振動励起のための前記装置は、該光学要素の陰影領域に配置されることを特徴とする(1)から(19)のいずれかに記載の光学装置。
(21)
前記光学要素の前記振動励起のための前記装置は、該光学要素の外縁に配置されることを特徴とする(20)に記載の光学装置。
(22)
前記光学要素は、該光学要素の前記振動励起のための更に別の装置が配置された中心部の中央孔を有することを特徴とする(20)に記載の光学装置。
(23)
前記振動励起のための前記装置を有する前記光学要素は、周囲に対して本質的に振動分離されることを特徴とする(1)から(22)のいずれかに記載の光学装置。
(24)
前記光学要素に加えて少なくとも1つの更に別の光学要素を含み、
第1の担持構造体が、該光学要素のために設けられ、第2の担持構造体が、該少なくとも1つの更に別の光学要素のために設けられ、
前記第1及び第2の担持構造体は、該第1の担持構造体から該第2の担持構造体への力伝達が可能ではないような方法で互いに分離される、
ことを特徴とする(23)に記載の光学装置。
(25)
前記振動分離は、励起して振動させることができる補償要素を用いて達成されることを特徴とする(23)に記載の光学装置。
(26)
前記光源は、ストロボスコープ、レーザ光源、シンクロトロン、断続光源、電子切換可能光源(ランプ、ダイオード)、シャッターを有するCW光源、又はプラズマ源であることを特徴とする(1)から(25)のいずれかに記載の光学装置。
(27)
前記光学要素は、平面プレート、特に膜であることを特徴とする(1)から(26)のいずれかに記載の光学装置。
(28)
前記光学要素は、ミラーであることを特徴とする(1)から(26)のいずれかに記載の光学装置。
(29)
前記光学要素は、反射面を有する液体を含むことを特徴とする(1)から(26)のいずれかに記載の光学装置。
(30)
前記光学要素は、レンズであることを特徴とする(1)から(26)のいずれかに記載の光学装置。
(31)
前記光学要素は、液体レンズであることを特徴とする(30)に記載の光学装置。
(32)
前記光学要素は、個々の光学構成要素のアレイを含むことを特徴とする(1)から(26)のいずれかに記載の光学装置。
(33)
前記個々の光学構成要素は、レンズ、ミラー、格子、及び/又は区分及び/又は区画で屈折性を有する平坦で特に平行平面のレンズセグメントを含むことを特徴とする(32)に記載の光学装置。
(34)
前記個々の光学構成要素は、同一の幾何学形状を有することを特徴とする(32)又は(33)に記載の光学装置。
(35)
前記個々の光学構成要素は、異なる幾何学形状を有することを特徴とする(32)又は(33)に記載の光学装置。
(36)
前記個々の光学構成要素は、接続要素を用いて互いに接続され、少なくとも2つの接続要素は、異なる弾性特性を有することを特徴とする(32)から(35)のいずれかに記載の光学装置。
(37)
前記光学要素は、光学装置の少なくとも1つの気体充填部分空間として具現化されることを特徴とする(1)から(26)のいずれかに記載の光学装置。
(38)
互いに離間し、その間に気体又は液体の隙間が配置された少なくとも2つの光学要素を有することを特徴とする(1)から(37)のいずれかに記載の光学装置。
(39)
前記2つの光学要素の一方、該2つの光学要素、及び/又は前記気体又は液体の隙間は、励起して振動させることができることを特徴とする(38)に記載の光学装置。
(40)
前記2つの光学要素の第1の光学要素は、電気絶縁方式で具現化され、該2つの光学要素の第2の光学要素は、導電方式で具現化されることを特徴とする(38)又は(39)に記載の光学装置。
(41)
前記光学要素の剛性又は減衰挙動のような前記弾性特性は、局所的に変化することを特徴とする(1)から(40)のいずれかに記載の光学装置。
(42)
前記光学要素は、その中心からその縁部に向って局所的に変化する厚みを有することを特徴とする(1)から(41)のいずれかに記載の光学装置。
(43)
測定システムと、評価システムと、制御システムとを含む制御ユニットを有することを特徴とする(1)から(42)のいずれかに記載の光学装置。
(44)
前記測定システムは、前記光学要素の制御パラメータを測定するための1つ又はそれよりも多くの焦点センサ、クロック計時照明を用いる干渉計、偏光測定ユニット、又はマイクロフォン又は加速度センサ構成を含むことを特徴とする(43)に記載の光学装置。
(45)
前記測定システムは、光学装置全体の制御パラメータを測定するための波面センサ、特に、複数の視野点での同期測定に向けて並列で作動する複数の測定チャンネルを有する干渉計を含むことを特徴とする(43)又は(44)に記載の光学装置。
(46)
前記測定システムは、光学装置全体に対する前記制御パラメータを判断するために複数の視野点での光波場の偏光状態の同期測定に向けて並列で作動する測定チャンネルを有する偏光測定センサを含むことを特徴とする(43)から(45)のいずれかに記載の光学装置。
(47)
前記制御システムは、前記光学要素の前記振動の前記振動周波数を前記光源の前記パルス周波数と同期させるための同期システムを含むことを特徴とする(43)から(46)のいずれかに記載の光学装置。
(48)
特に、変位可能方式、傾斜可能方式、又は静的変形可能方式で構成された少なくとも1つの更に別の操作可能光学要素を収容することを特徴とする(1)から(47)のいずれかに記載の光学装置。
(49)
(1)から(48)のいずれかに記載の光学装置、
を含むことを特徴とする投影露光機械。
(50)
照明システムを有し、光学要素が該照明システム内に配置されていることを特徴とする(49)に記載の投影露光機械。
(51)
投影対物器械を有し、光学要素が該投影対物器械内に配置されていることを特徴とする(49又は(50)に記載の投影露光機械。
(52)
パルス周波数を有するパルス光源を有する光学装置、特に投影露光機械の結像挙動を補正又は改善する方法であって、
少なくとも1つの光学要素が、振動周波数で振動するように励起され、
前記光学要素の前記振動は、光学結像に関連する該光学要素の少なくとも1つのパラメータの時間周期的変調をもたらし、
前記光学要素の前記振動の前記振動周波数は、それが光源のパルス周波数と同期するように設定され、
前記光学要素の前記振動周波数は、前記パルス周波数の整数倍として設定される、
ことを特徴とする方法。
(53)
前記光学要素の前記振動は、前記パルス周波数の異なる整数倍を有する振動の重ね合わせとして励起されることを特徴とする(52)に記載の方法。
(54)
前記光学要素の前記振動周波数は、前記光源の前記パルス周波数に対して位相シフトされた方法で設定されることを特徴とする(52)又は(53)に記載の方法。
(55)
前記パルス周波数の前記異なる整数倍には、それぞれの位相シフトが割り当てられることを特徴とする(53)に記載の方法。
(56)
前記位相シフトは、設定されることを特徴とする(55)に記載の方法。
(57)
前記パルス周波数の前記異なる整数倍には、それぞれの振動振幅が割り当てられることを特徴とする(53)、(55)、又は(56)に記載の方法。
(58)
前記振動振幅は、設定されることを特徴とする(57)に記載の方法。
(59)
クロック信号が、光パルスの前記パルス周波数のためのクロック発生器を用いて発生され、
前記クロック信号は、周波数逓倍器及び少なくとも1つの移相器要素に給送され、その出力信号が、前記光学要素の前記振動励起に用いられる、
ことを特徴とする(52)から(58)のいずれかに記載の方法。
(60)
前記クロック信号は、複数の周波数逓倍器及び移相器要素に給送され、その前記出力信号は、加算要素に給送され、その出力信号が、前記光学要素の前記振動の前記励起に用いられることを特徴とする(59)に記載の方法。
(61)
前記光学要素は、横方向に振動するように励起されることを特徴とする(52)から(60)のいずれかに記載の方法。
(62)
前記光学要素は、縦方向に振動するように励起されることを特徴とする(52)から(61)のいずれかに記載の方法。
(63)
前記光学要素は、2つの固体層の間に液体又は気体層を含み、
前記液体又は気体層は、振動するように励起される、
ことを特徴とする(52)から(62)のいずれかに記載の方法。
(64)
前記光学要素は、2つの固体層の間に液体又は気体層を含み、
前記2つの固体層の少なくとも一方は、振動するように励起される、
ことを特徴とする(52)から(62)のいずれかに記載の方法。
(65)
前記光学装置は、互いに離間してその間に気体又は液体の隙間が配置された少なくとも2つの光学要素を有し、
前記2つの光学要素の一方、該2つの光学要素、及び/又は前記気体又は液体の隙間は、振動するように励起される、
ことを特徴とする(52)から(64)のいずれかに記載の方法。
(66)
前記2つの光学要素の第1の光学要素は、電気絶縁方式で具現化され、該2つの光学要素の第2の光学要素は、導電方式で具現化され、
電荷が、前記第1の光学要素に印加される、
ことを特徴とする(65)に記載の方法。
(67)
第1の段階が、前記光学装置の視野平面における該光学装置の波面を判断する段階を伴い、第2の段階が、該判断された波面を所定の波面と比較する段階を伴い、第3の段階が、該判断された波面と該所定の波面の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された波面と該所定の波面の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(68)
第1の段階が、前記光学装置の視野平面における該光学装置によって発生された光波場の偏光状態を判断する段階を伴い、第2の段階が、該判断された偏光状態を所定の偏光状態分布と比較する段階を伴い、第3の段階が、該判断された偏光状態と該所定の偏光状態の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された偏光状態と該所定の偏光状態の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(69)
第1の段階が、視野平面における前記光源の放射光の強度の角度分布を判断する段階を伴い、第2の段階が、該判断された角度分布を所定の角度分布と比較する段階を伴い、第3の段階が、該判断された角度分布と該所定の角度分布の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された角度分布と該所定の角度分布の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(70)
第1の段階が、視野平面における前記光源の放射光の強度分布を判断する段階を伴い、第2の段階が、該判断された強度分布を所定の強度分布と比較する段階を伴い、第3の段階が、該判断された強度分布と該所定の強度分布の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された強度分布と該所定の強度分布の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(71)
第1の段階が、前記光学装置の出射瞳における前記光源の放射光の強度分布を判断する段階を伴い、第2の段階が、該判断された強度分布を所定の強度分布と比較する段階を伴い、第3の段階が、該判断された強度分布と該所定の強度分布の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された強度分布と該所定の強度分布の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(72)
第1の段階が、前記光学装置の出射瞳における前記光源の放射光の偏光状態分布を判断する段階を伴い、第2の段階が、該判断された偏光状態分布を所定の偏光状態分布と比較する段階を伴い、第3の段階が、該判断された偏光状態分布と該所定の偏光状態分布の間の差を判断する段階を伴い、第4の段階が、前記光学要素の前記振動周波数と前記光源の前記パルス周波数との同期時に、該判断された偏光状態分布と該所定の偏光状態分布の間の該差が最小にされるように構成された該光学要素の振動モードを判断する段階を伴い、第5の段階が、該光学要素を励起して該振動モードで振動させる段階を伴うことを特徴とする(52)から(66)のいずれかに記載の方法。
(73)
前記光学要素の振動は、該光学要素の前記振動励起のための装置を用いて励起され、
制御ユニットが、該振動する光学要素の制御パラメータを測定し、評価結果を得るために該制御パラメータを所定の望ましい値と比較し、かつ該評価結果に基づいて該光学要素の前記振動励起に向けて前記装置を調節する、
ことを特徴とする(52)から(72)のいずれかに記載の方法。
(74)
前記制御パラメータは、少なくとも1つの焦点センサを用いて、又はクロック計時照明を備えた干渉計、偏光計を用いて、又はマイクロフォンの構成を用いて測定されることを特徴とする(73)に記載の方法。
1 マイクロリソグラフィ投影露光機械
3 パルスエキシマレーザ
5 照明システム
11 投影対物器械
13 マスク

Claims (32)

  1. パルス周波数を有する光パルスの形態で光を放出する光源と、
    ある一定の振動周波数で光学要素の振動を励起するための装置に接続された少なくとも1つの光学要素と、
    を含み、
    前記光学要素の前記振動は、光学結像に関連する該光学要素の少なくとも1つのパラメータの時間周期的な変調をもたらし、
    前記振動周波数は、前記光学要素の前記振動励起のための前記装置を用いて、それが前記光源の前記パルス周波数と同期するように設定することができ、
    前記光パルスの前記パルス周波数のためのクロック発生器が設けられ、少なくとも1つの周波数逓倍器が、該クロック発生器に接続され、該少なくとも1つの周波数逓倍器の出力が、振動を発生させるための前記装置に接続されている、
    ことを特徴とする光学装置であって、
    複数の周波数逓倍器及び/又は移相器要素が、前記クロック発生器に接続され、これらの出力が、加算要素に接続され、その出力が、前記振動励起のための前記装置に接続されることを特徴とする前記光学装置。
  2. 前記振動励起のための前記装置、及び前記光学要素は、該光学要素の横方向及び/又は縦方向の振動を励起するように設計されることを特徴とする請求項1に記載の光学装置。
  3. 前記光学要素は、結晶固体、アモルファス固体、液体、又は気体を含むことを特徴とする請求項1又は請求項2に記載の光学装置。
  4. 前記光学要素は、複屈折材料を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の光学装置。
  5. 前記光学要素は瞳平面及び/又は視野平面を有し、前記光学要素は、該瞳平面に又は該瞳平面の領域、あるいは該視野平面に又は該視野平面の領域に配置される、
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の光学装置。
  6. 前記光学要素の弾性振動の前記励起のための前記装置は、ラウドスピーカ、プランジャ型コイル、圧電アクチュエータ、静電アクチュエータ、静磁気アクチュエータ、油圧制御アクチュエータ、又は空気圧制御アクチュエータを含むことを特徴とする請求項1から請求項5のいずれか1項に記載の光学装置。
  7. 前記光学要素の前記振動励起のための前記装置は、該光学要素の陰影領域、特に該光学要素の外縁に配置され、あるいは前記光学要素は、該光学要素の前記振動励起のための更に別の装置が配置された中心部の中央孔を有することを特徴とする請求項1から請求項6のいずれか1項に記載の光学装置。
  8. 前記光源は、ストロボスコープ、レーザ光源、シンクロトロン、断続光源、電子切換可能光源(ランプ、ダイオード)、シャッターを有するCW光源、又はプラズマ源であることを特徴とする請求項1から請求項7のいずれか1項に記載の光学装置。
  9. 前記光学要素は、平面プレート、特に膜であるか、ミラーであり、または前記光学要素は、反射面を有する液体を含み、あるいは前記光学要素は、レンズ、特に液体レンズであることを特徴とする請求項1から請求項8のいずれか1項に記載の光学装置。
  10. 前記光学要素は、個々の光学構成要素のアレイを含み、
    前記個々の光学構成要素は、レンズ、ミラー、格子、及び/又は区分及び/又は区画で屈折性を有する平坦で特に平行平面のレンズセグメントを含むことを特徴とする請求項1から請求項9のいずれか1項に記載の光学装置。
  11. 前記個々の光学構成要素は、同一又は異なる幾何学形状を有することを特徴とする請求項10に記載の光学装置。
  12. 前記個々の光学構成要素は、接続要素を用いて互いに接続され、少なくとも2つの接続要素は、異なる弾性特性を有することを特徴とする請求項10又は請求項11に記載の光学装置。
  13. 互いに離間し、その間に気体又は液体の隙間が配置された少なくとも2つの光学要素を有することを特徴とする請求項1から請求項12のいずれか1項に記載の光学装置。
  14. 前記2つの光学要素の一方、該2つの光学要素、及び/又は前記気体又は液体の隙間は、励起して振動させることができることを特徴とする請求項13に記載の光学装置。
  15. 前記2つの光学要素の第1の光学要素は、電気絶縁方式で具現化され、該2つの光学要素の第2の光学要素は、導電方式で具現化されることを特徴とする請求項13又は請求項14に記載の光学装置。
  16. 測定システムと、評価システムと、制御システムとを含む制御ユニットを有することを特徴とする請求項1から請求項15のいずれか1項に記載の光学装置。
  17. 前記測定システムは、前記光学要素の制御パラメータを測定するための1つ又はそれよりも多くの焦点センサ、クロック計時照明を用いる干渉計、偏光測定ユニット、又はマイクロフォン又は加速度センサ構成を含み、及び/又は前記測定システムは、光学装置全体の制御パラメータを測定するための波面センサ、特に、複数の視野点での同期測定に向けて並列で作動する複数の測定チャンネルを有する干渉計を含み、及び/又は前記測定システムは、光学装置全体に対する前記制御パラメータを判断するために複数の視野点での光波場の偏光状態の同期測定に向けて並列で作動する測定チャンネルを有する偏光測定センサを含むことを特徴とする請求項16に記載の光学装置。
  18. 前記制御システムは、前記光学要素の前記振動の前記振動周波数を前記光源の前記パルス周波数と同期させるための同期システムを含むことを特徴とする請求項16又は請求項17に記載の光学装置。
  19. 特に、変位可能方式、傾斜可能方式、又は静的変形可能方式で構成された少なくとも1つの更に別の操作可能光学要素を収容することを特徴とする請求項1から請求項18のいずれか1項に記載の光学装置。
  20. パルス周波数を有する光パルスの形態で光を放出する光源と、
    ある一定の振動周波数で光学要素の振動を励起するための装置に接続された少なくとも1つの光学要素と、
    を含み、
    前記光学要素の前記振動は、光学結像に関連する該光学要素の少なくとも1つのパラメータの時間周期的な変調をもたらし、
    前記振動周波数は、前記光学要素の前記振動励起のための前記装置を用いて、それが前記光源の前記パルス周波数と同期するように設定することができ、
    前記光パルスの前記パルス周波数のためのクロック発生器が設けられ、少なくとも1つの周波数逓倍器が、該クロック発生器に接続され、該少なくとも1つの周波数逓倍器の出力が、振動を発生させるための前記装置に接続されている、
    ことを特徴とする光学装置であって、
    前記光学要素は、個々の光学構成要素のアレイを含むことを特徴とする前記光学装置。
  21. 前記個々の光学構成要素は、レンズ、ミラー、格子、及び/又は区分及び/又は区画で屈折性を有する平坦で特に平行平面のレンズセグメントを含むことを特徴とする請求項20に記載の光学装置。
  22. 前記個々の光学構成要素は、接続要素を用いて互いに接続され、少なくとも2つの接続要素は、異なる弾性特性を有することを特徴とする請求項20又は請求項21に記載の光学装置。
  23. 少なくとも1つの移相器要素が、前記クロック発生器に接続され、該少なくとも1つの移相器の出力が、前記振動励起のための前記装置に接続されていることを特徴とする請求項20から請求項22のいずれか1項に記載の光学装置。
  24. 前記振動励起のための前記装置、及び前記光学要素は、該光学要素の横方向の振動及び/又は縦方向の振動を励起するように設計されることを特徴とする請求項20から請求項23のいずれか1項に記載の光学装置。
  25. 前記光学要素は、結晶固体、アモルファス固体、液体、又は気体を含むことを特徴とする請求項20から請求項24のいずれか1項に記載の光学装置。
  26. 前記光学要素は、複屈折材料を含むことを特徴とする請求項20から請求項25のいずれか1項に記載の光学装置。
  27. 前記光学要素は瞳平面及び/又は視野平面を有し、前記光学要素は、該瞳平面に又は該瞳平面の領域、あるいは該視野平面に又は該視野平面の領域に配置される、
    ことを特徴とする請求項20から請求項26のいずれか1項に記載の光学装置。
  28. 前記光学要素の弾性振動の前記励起のための前記装置は、ラウドスピーカ、プランジャ型コイル、圧電アクチュエータ、静電アクチュエータ、静磁気アクチュエータ、油圧制御アクチュエータ、又は空気圧制御アクチュエータを含むことを特徴とする請求項20から請求項27のいずれか1項に記載の光学装置。
  29. 測定システムと、評価システムと、制御システムとを含む制御ユニットを有することを特徴とする請求項20から請求項28のいずれか1項に記載の光学装置。
  30. 前記測定システムは、前記光学要素の制御パラメータを測定するための1つ又はそれよりも多くの焦点センサ、クロック計時照明を用いる干渉計、偏光測定ユニット、又はマイクロフォン又は加速度センサ構成を含み、及び/又は前記測定システムは、光学装置全体の制御パラメータを測定するための波面センサ、特に、複数の視野点での同期測定に向けて並列で作動する複数の測定チャンネルを有する干渉計を含み、及び/又は前記測定システムは、光学装置全体に対する前記制御パラメータを判断するために複数の視野点での光波場の偏光状態の同期測定に向けて並列で作動する測定チャンネルを有する偏光測定センサを含むことを特徴とする請求項29に記載の光学装置。
  31. 前記制御システムは、前記光学要素の前記振動の前記振動周波数を前記光源の前記パルス周波数と同期させるための同期システムを含むことを特徴とする請求項29又は請求項30に記載の光学装置。
  32. 特に、変位可能方式、傾斜可能方式、又は静的変形可能方式で構成された少なくとも1つの更に別の操作可能光学要素を収容することを特徴とする請求項20から請求項31のいずれか1項に記載の光学装置。
JP2009521149A 2006-07-24 2007-07-19 光学装置及び光学装置の結像挙動を補正又は改善する方法 Expired - Fee Related JP4978816B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006034755A DE102006034755A1 (de) 2006-07-24 2006-07-24 Optische Vorrichtung sowie Verfahren zur Korrektur bzw. Verbesserung des Abbildungsverhaltens einer optischen Vorrichtung
DE102006034755.2 2006-07-24
PCT/EP2007/006407 WO2008012022A1 (de) 2006-07-24 2007-07-19 Optische vorrichtung und verfahren zur korrektur bzw. verbesserung des abbildungsverhaltens einer solchen vorrichtung

Publications (3)

Publication Number Publication Date
JP2009545146A JP2009545146A (ja) 2009-12-17
JP2009545146A5 JP2009545146A5 (ja) 2010-08-05
JP4978816B2 true JP4978816B2 (ja) 2012-07-18

Family

ID=38645887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009521149A Expired - Fee Related JP4978816B2 (ja) 2006-07-24 2007-07-19 光学装置及び光学装置の結像挙動を補正又は改善する方法

Country Status (5)

Country Link
US (1) US8169595B2 (ja)
EP (1) EP2044487B1 (ja)
JP (1) JP4978816B2 (ja)
DE (2) DE102006034755A1 (ja)
WO (1) WO2008012022A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819711B1 (ko) * 2016-07-22 2018-01-29 충북대학교 산학협력단 머신 비전을 이용한 너트 풀림 감지 장치 및 방법

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036613A1 (nl) 2008-03-03 2009-09-07 Asml Netherlands Bv Lithographic apparatus, plasma source, and reflecting method.
DE102009009221A1 (de) * 2009-02-17 2010-08-26 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Halbleiterlithographie mit einem Aktuatorsystem
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
NL2004256A (en) * 2009-05-13 2010-11-18 Asml Netherlands Bv Enhancing alignment in lithographic apparatus device manufacture.
WO2012013451A1 (en) * 2010-07-30 2012-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102010041623A1 (de) * 2010-09-29 2012-03-29 Carl Zeiss Smt Gmbh Spiegel
US9418270B2 (en) 2011-01-31 2016-08-16 Hand Held Products, Inc. Terminal with flicker-corrected aimer and alternating illumination
NL2008704A (en) * 2011-06-20 2012-12-28 Asml Netherlands Bv Wavefront modification apparatus, lithographic apparatus and method.
WO2013004278A1 (en) * 2011-07-01 2013-01-10 Carl Zeiss Smt Gmbh Optical imaging arrangement with individually actively supported components
DE102012205976A1 (de) * 2012-04-12 2013-05-02 Carl Zeiss Smt Gmbh Optische Vorrichtung für die Mikrolithographie und Verfahren zum Betreiben derselben
US9298102B2 (en) * 2013-03-13 2016-03-29 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US9651872B2 (en) 2013-03-13 2017-05-16 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
DE102013223808A1 (de) 2013-11-21 2014-12-11 Carl Zeiss Smt Gmbh Optische Spiegeleinrichtung zur Reflexion eines Bündels von EUV-Licht
DE102013223935A1 (de) 2013-11-22 2015-05-28 Carl Zeiss Smt Gmbh Beleuchtungssystem für die EUV-Belichtungslithographie
KR20160144491A (ko) * 2014-04-17 2016-12-16 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조 방법
JP6730197B2 (ja) * 2014-05-14 2020-07-29 カール・ツァイス・エスエムティー・ゲーエムベーハー ニアフィールドマニピュレータを有する投影露光装置
WO2016083120A2 (en) * 2014-11-24 2016-06-02 Asml Netherlands B.V. Radiation beam apparatus
DE102014226917A1 (de) 2014-12-23 2015-12-17 Carl Zeiss Smt Gmbh Beleuchtungssystem für die EUV-Projektionslithographie
DE102015209051B4 (de) * 2015-05-18 2018-08-30 Carl Zeiss Smt Gmbh Projektionsobjektiv mit Wellenfrontmanipulator sowie Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage
DE102015225262A1 (de) * 2015-12-15 2017-06-22 Carl Zeiss Smt Gmbh Optisches System, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
DE102016226082A1 (de) * 2016-12-22 2018-06-28 Carl Zeiss Smt Gmbh Steuerungsvorrichtung zum ansteuern einer aktuatoreinheit einer lithographieanlage, lithographieanlage mit einer steuerungsvorrichtung und verfahren zum betreiben der steuerungsvorrichtung
DE102017205548A1 (de) 2017-03-31 2018-10-04 Carl Zeiss Smt Gmbh Optische Baugruppe zum Führen eines Ausgabestrahls eines Freie-Elektronen-Lasers
TW202329762A (zh) 2017-11-17 2023-07-16 新加坡商Aes 全球公司 用於在空間域和時間域上控制基板上的電漿處理之系統和方法,及相關的電腦可讀取媒體
TWI767088B (zh) * 2017-11-17 2022-06-11 新加坡商Aes全球公司 電漿處理系統,用於調變其中的電源的控制方法及相關的電漿處理控制系統
JP2022541004A (ja) 2019-07-12 2022-09-21 エーイーエス グローバル ホールディングス, プライベート リミテッド 単一制御型スイッチを伴うバイアス供給装置
RU2746857C1 (ru) * 2020-10-23 2021-04-21 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ управления импульсным оптическим излучением
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205296A1 (de) * 1982-02-15 1983-09-01 Werner 3512 Reinhardshagen Geiger Frequenzvervielfacher
US4577932A (en) * 1984-05-08 1986-03-25 Creo Electronics Corporation Multi-spot modulator using a laser diode
JP2569711B2 (ja) 1988-04-07 1997-01-08 株式会社ニコン 露光制御装置及び該装置による露光方法
JP3301153B2 (ja) * 1993-04-06 2002-07-15 株式会社ニコン 投影露光装置、露光方法、及び素子製造方法
JPH06313833A (ja) * 1993-04-30 1994-11-08 Toshiba Corp 光学装置
US5818507A (en) * 1994-10-28 1998-10-06 Xerox Corporation Method and apparatus for controlling the modulation of light beams in a rotating polygon type image forming apparatus
JP3278317B2 (ja) * 1995-03-24 2002-04-30 キヤノン株式会社 露光装置及びデバイス製造方法
US5774274A (en) * 1995-05-12 1998-06-30 Schachar; Ronald A. Variable focus lens by small changes of the equatorial lens diameter
JP3632264B2 (ja) * 1995-11-30 2005-03-23 株式会社ニコン X線投影露光装置
JPH09298154A (ja) * 1996-05-07 1997-11-18 Nikon Corp 照明装置
FR2751095B1 (fr) * 1996-07-09 1998-10-30 Thomson Csf Dispositif de controle d'impulsions lumineuses par un dispositif programmable acousto-optique
JPH1039208A (ja) * 1996-07-23 1998-02-13 Nikon Corp 投影光学系
JPH10133150A (ja) * 1996-10-29 1998-05-22 Canon Inc 回折光学装置及びこれを用いた露光装置
US6037967A (en) * 1996-12-18 2000-03-14 Etec Systems, Inc. Short wavelength pulsed laser scanner
JPH10206714A (ja) * 1997-01-20 1998-08-07 Canon Inc レンズ移動装置
DE19827602A1 (de) * 1998-06-20 1999-12-23 Zeiss Carl Fa Verfahren zur Korrektur nicht-rotationssymmetrischer Bildfehler
DE19827603A1 (de) * 1998-06-20 1999-12-23 Zeiss Carl Fa Optisches System, insbesondere Projektions-Belichtungsanlage der Mikrolithographie
DE19859634A1 (de) * 1998-12-23 2000-06-29 Zeiss Carl Fa Optisches System, insbesondere Projektionsbelichtungsanlage der Mikrolithographie
DE10001291A1 (de) * 2000-01-14 2001-07-19 Zeiss Carl Adaptronischer Spiegel
DE10040813A1 (de) * 2000-08-21 2002-03-21 Zeiss Carl Spektrometeranordnung
JP4296710B2 (ja) * 2000-12-13 2009-07-15 コニカミノルタビジネステクノロジーズ株式会社 回折素子
WO2002054837A2 (en) * 2001-01-04 2002-07-11 Laser Imaging Systems Gmbh & Co. Kg Direct pattern writer
US6490390B1 (en) * 2001-01-05 2002-12-03 Phaethon Communications Grating writing systems based on an acousto-optic element
DE10123725A1 (de) * 2001-05-15 2002-11-21 Zeiss Carl Projektionsbelichtungsanlage der Mikrolithographie, Optisches System und Herstellverfahren
JP2003107311A (ja) * 2001-09-27 2003-04-09 Nikon Corp 光学素子保持装置、鏡筒及び露光装置並びにデバイスの製造方法
DE10151919B4 (de) * 2001-10-20 2007-02-01 Carl Zeiss Smt Ag Belichtungsobjektiv in der Halbleiterlithographie
JP2003234269A (ja) * 2002-02-07 2003-08-22 Nikon Corp 反射ミラーの保持方法、反射ミラーの保持部材及び露光装置
WO2005109083A2 (en) * 2004-05-06 2005-11-17 Esko-Graphics A/S Optical image exposing method and apparatus
US7436484B2 (en) * 2004-12-28 2008-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819711B1 (ko) * 2016-07-22 2018-01-29 충북대학교 산학협력단 머신 비전을 이용한 너트 풀림 감지 장치 및 방법

Also Published As

Publication number Publication date
JP2009545146A (ja) 2009-12-17
US20090174876A1 (en) 2009-07-09
EP2044487A1 (de) 2009-04-08
EP2044487B1 (de) 2011-04-20
US8169595B2 (en) 2012-05-01
DE102006034755A1 (de) 2008-01-31
DE502007007006D1 (de) 2011-06-01
WO2008012022A1 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4978816B2 (ja) 光学装置及び光学装置の結像挙動を補正又は改善する方法
JP5194030B2 (ja) マイクロリソグラフィ投影露光装置の照明系のマルチミラーアレイを監視するための方法および装置
TWI381251B (zh) 微影裝置及器件製造方法
US8325322B2 (en) Optical correction device
KR101155066B1 (ko) 리소그래피 장치, 투영 조립체 및 능동 감쇠
TWI514001B (zh) An illumination optical device, a lighting method, and an exposure method and apparatus
JP2009545146A5 (ja)
JP2008256778A (ja) 光偏向装置、画像形成装置、及び光偏向装置の駆動方法
JP2009130354A (ja) 構造物と能動減衰システムとの組合せ、およびリソグラフィ装置
JP6316973B2 (ja) ステージ位置決めシステムおよびリソグラフィ装置
JP2010267966A (ja) 光学装置、露光方法及び装置、並びにデバイス製造方法
JP2009147300A (ja) リソグラフィ装置およびデバイス製造方法
KR101455140B1 (ko) 파면 수정 장치, 리소그래피 장치 및 디바이스 제조 방법
JP2011146727A (ja) リソグラフィ装置
JP2010109186A (ja) 露光装置およびデバイス製造方法
JP2018514810A (ja) リソグラフィ装置
JP2013106017A (ja) 光学素子保持装置、光学装置、及び露光装置
KR101823449B1 (ko) 리소그래피 장치, 리소그래피 장치에 사용되는 위치설정 시스템 및 방법
CN104272191B (zh) 光刻设备及器件制造方法
US8212992B2 (en) Device for damping vibrations in projection exposure apparatuses for semiconductor lithography
JP2010283089A (ja) 露光装置およびデバイス製造方法
TW201827942A (zh) 微影系統與方法
JP2018513419A (ja) リソグラフィ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees