JP4968331B2 - ピーク抑圧方法 - Google Patents

ピーク抑圧方法 Download PDF

Info

Publication number
JP4968331B2
JP4968331B2 JP2009510682A JP2009510682A JP4968331B2 JP 4968331 B2 JP4968331 B2 JP 4968331B2 JP 2009510682 A JP2009510682 A JP 2009510682A JP 2009510682 A JP2009510682 A JP 2009510682A JP 4968331 B2 JP4968331 B2 JP 4968331B2
Authority
JP
Japan
Prior art keywords
suppression
peak
signal
modulation
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009510682A
Other languages
English (en)
Other versions
JPWO2008129645A1 (ja
Inventor
和男 長谷
一 濱田
広吉 石川
伸和 札場
裕一 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2008129645A1 publication Critical patent/JPWO2008129645A1/ja
Application granted granted Critical
Publication of JP4968331B2 publication Critical patent/JP4968331B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、異なる変調方式の信号を多重化する技術に関する。
無線通信などで用いられているデジタル変調方式の一つにOFDM変調方式がある。該OFDM変調方式では、マルチキャリア信号における各サブキャリアが重なりあうことで出力信号に高いピークが発生する。
この出力信号のピークが、OFDM通信装置内の回路(例えば、増幅器や光変調器)のダイナミックレンジを越えると、送信信号に非線形歪みが生じて伝送特性劣化を引き起こすことがある。そこで、出力信号のピーク対平均電力比(Peak to Average Power Ratio:PAPR)を見越して後段の回路のバックオフを充分に大きく設計する必要がある。
従って、出力信号のPAPRが大きくなり過ぎると、後段の回路の大型化や電力効率の悪化を招いてしまう。このため、出力信号のピーク振幅を抑圧する対策が採られている。
また、本願発明に関連する先行技術として、例えば、下記の特許文献1に開示される技術がある。
特開2002−271296号公報
上記出力信号のピークを抑圧することによって、PAPRを小さくできるが、ピークを抑圧し過ぎると、信号のデータシンボルが歪み、受信側で正しく復調することが出来なくなってしまう。
このため、ピーク抑圧の量は、入力信号の変調方式に基づき、信号の歪みを許容できる範囲、即ち正しく復調が可能な程度となるように決定される。
一方、次世代移動体通信システムとして検討されている、WiMAX(Worldwide Interoperability for Microwave Access)や、LTE(Long Term Evolution)による通信システムでは、QPSK(Quadrature Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)といった異なる変調方式で変調された信号を合わせて送信することができる。
この場合、ピーク抑圧の量は、最も高品質な変調方式、即ち、最も歪みの許容範囲が狭い変調方式の許容範囲内に決定される。
例えば、QPSK、16QAM(4ビット)、64QAM(6ビット)の信号を用いる場合、64QAMの信号が正しく復調可能なようにピーク抑圧の量が決定されなければならない。
従って、低品質のQPSK、16QAMの信号にとっては、ピーク抑圧の量が少なく、PAPRが充分に小さくならない。即ち、前記回路の小型化や電力効率の向上が充分に図れないといった問題点があった。
そこで本発明は、異なる変調方式の信号を合成する際、変調方式毎の量でピーク抑圧することにより、合成信号のPAPRを効果的に小さくする技術を提供する。
上記課題を解決するため、本発明は、以下の構成を採用した。
即ち、本発明のピーク抑圧回路は、
異なる変調方式の入力信号を時間領域において合成信号を生成する合成部と、
前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号を生成するピーク検出部と、
前記ピーク信号を周波数領域の信号に変換して、前記入力信号に由来する信号に分割し、各入力信号に由来する信号を夫々の抑圧信号とする抑圧信号生成部と、
前記変調方式毎に抑圧量を異ならせた抑圧信号を前記入力信号に加えてピーク抑圧する抑圧部と、を備える。
また、本発明の送信装置は、入力信号のピークを抑圧するピーク抑圧回路と、該ピーク抑圧回路からの送信信号を増幅して出力する出力回路とを備え、
前記ピーク抑圧回路が、
異なる変調方式の入力信号を時間領域において合成信号を生成する合成部と、
前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号を生成するピーク検出部と、
前記ピーク信号を周波数領域の信号に変換して、前記入力信号に由来する信号に分割し、各入力信号に由来する信号を夫々の抑圧信号とする抑圧信号生成部と、
前記変調方式毎に抑圧量を異ならせた抑圧信号を前記入力信号に加えてピーク抑圧する抑圧部と、を備える。
前記抑圧部は、前記変調信号毎に異なる係数を前記抑圧信号に乗じて抑圧量を異ならせても良い。なお、前記異なる変調方式の入力信号のうち、変調精度の許容度が高い変調方式の入力信号に加算する抑圧信号の係数を、該変調精度の許容度が低い変調方式の入力信号に加算する抑圧信号の係数よりも高く設定しても良い。
前記変調信号毎に異なる閾値を用いてピークを検出することにより、前記抑圧信号の抑圧量を異ならせても良い。
前記入力信号全体に占める変調方式毎の入力信号の割合を求める割合検出部を更に備え、
前記ピーク検出部は、前記割合に応じて前記閾値を決定しても良い。
前記ピーク抑制回路において、前記入力信号に基づいて、当該入力信号のピーク抑圧による平均電力の低下分を求め、該低下分に相当する電力を該入力信号に加える電力補償部を更に備えても良い。
前記電力補償部は、前記ピーク抑圧前の入力信号と前記ピーク抑圧後の入力信号を比較して前記電力の低下分を求めても良い。
前記合成部、ピーク検出部、抑圧信号生成部及び抑圧部を複数組み備え、多段階に抑圧を行っても良い。
前記ピーク抑圧回路は、前記ピーク抑圧後の信号を窓関数方式で抑圧する窓関数抑圧部を更に備えても良い。
また、本発明のピーク抑圧方法は、
ピーク抑制回路が、
異なる変調方式の入力信号を時間領域において合成信号を生成し、
前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号の生成と、
前記ピーク信号を周波数領域の信号に変換して、前記入力信号に由来する信号に分割し、各入力信号に由来する信号を夫々の抑圧信号とすることと、
前記変調方式毎に抑圧量を異ならせた抑圧信号を前記入力信号に加えることによるピーク抑圧と、を行う。
前記ピーク抑圧方法は、前記変調信号毎に異なる係数を前記抑圧信号に乗じて抑圧量を異ならせても良い。
前記ピーク抑圧方法は、前記異なる変調方式の入力信号のうち、変調精度の許容度が高い変調方式の入力信号に加算する抑圧信号の係数を、該変調精度の許容度が低い変調方式の入力信号に加算する抑圧信号の係数よりも高く設定しても良い。
前記ピーク抑圧方法は、前記変調信号毎に異なる閾値を用いてピークを検出することにより、前記抑圧信号の抑圧量を異ならせても良い。
前記ピーク抑圧方法は、前記入力信号全体に占める変調方式毎の入力信号の割合を求め、
前記割合に応じて前記閾値を決定しても良い。
前記ピーク抑圧方法は、前記入力信号に基づいて、当該入力信号のピーク抑圧による平均電力の低下分を求め、該低下分に相当する電力を該入力信号に加えて電力低下を補償しても良い。
前記ピーク抑圧方法は、前記ピーク抑圧前の入力信号と前記ピーク抑圧後の入力信号を比較して前記電力の低下分を求めても良い。
前記ピーク抑圧後の信号を入力信号として前記抑圧を複数回繰り返す請求項11から17の何れかに記載のピーク抑圧方法。
前記ピーク抑圧方法は、前記ピーク抑圧後の信号を窓関数方式で抑圧しても良い。
本発明によれば、異なる変調方式の信号を合成する際、変調方式毎の量でピーク抑圧することにより、合成信号のPAPRを効果的に小さくする技術を提供できる。
本発明に係る実施形態1の送信装置の概略構成図 変調信号の説明図 合成信号の説明図 QPSK方式の変調信号のコンスタレーションパターンを示す図 16QAM方式の変調信号のコンスタレーションパターンを示す図 64QAM方式の変調信号のコンスタレーションパターンを示す図 本発明に係る実施形態2の送信装置の概略構成図 本発明に係る実施形態3の送信装置の概略構成図 実施形態3の送信装置の変形例を示す図 本発明に係る実施形態4の送信装置の概略構成図 本発明に係る実施形態5の送信装置の概略構成図 本発明に係る実施形態6の送信装置の概略構成図
符号の説明
1 入力側回路
2 ピーク抑圧回路
3 出力回路
10 送信装置
21 IFFT部(合成部)
22 ピーク検出部
23 抑圧信号生成部
24 抑圧部
25 遅延部
26,27 電力補償部
31 合成部31
32 GI挿入部
33 増幅部
以下、図面を参照して本発明を実施するための最良の形態について説明する。以下の実施の形態の構成は例示であり、本発明は実施の形態の構成に限定されない。
〈実施形態1〉
図1は、本発明に係る送信装置の概略図である。本例の送信装置10は、移動体通信の基地局に備えられ、QPSK、16QAM、64QAMといった複数の異なる変調方式の入力信号(以下変調信号とも称す)を一つの電力増幅器(送出部)を介して送信する。
図1に示すように、送信装置10は、入力側回路1、ピーク抑圧回路2、出力回路3を備えている。
入力側回路1は、所定方式の変調信号を後段の回路、本例ではピーク抑圧回路2へ伝送する。該変調信号は他の装置から受信する、或は移動体通信装置等の他の装置から受信した信号を所定の方式で変調して変調信号とする。なお、入力側回路1は、入力信号をシリアル−パラレル変換(S/P変換)し、図2に示すように所定の周波数間隔とした複数のサブキャリアでデータを伝送する。
入力側回路1の変調方式は、音声通信であればQPSK、データ通信であればQAMのように、データ内容や端末の種別を示す信号(識別信号)に応じて予め設定した方式で変調しても良いし、エラー率が高い場合に16QAM、エラー率が低い場合に64QAMのように通信状況に応じて変更しても良い。
出力回路3は、合成部31、GI挿入部32、増幅部33を備え、入力側回路1からの変調信号S1〜S3を合成して送信信号とし、増幅して無線出力する。
ピーク抑圧回路2は、入力側回路1から送出された変調信号S1〜S3を合成した場合のピークを求めて、該ピークに応じたピーク抑圧信号を生成し、該ピーク抑圧信号に基づいて各変調信号S1〜S3に対するピーク抑圧を行う。
ピーク抑圧回路2は、IFFT部(合成部)21や、ピーク検出部22、抑圧信号生成部23と、抑圧部24、遅延部25を備えている。
IFFT部21は、異なる変調方式の変調信号(入力信号)を周波数領域の信号を時間領域に変換(IFFT処理)して合成信号を生成する。
ピーク検出部22は、前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号を生成する。
抑圧信号生成部23は、前記ピーク信号を時間領域の信号から周波数領域の信号に変換(FFT処理)して、前記各変調信号に由来する信号に分割し、各変調信号に由来する信号を夫々の抑圧信号とする。
抑圧部24は、前記変調方式毎に異なる係数を乗じた前記抑圧信号を前記入力信号に加えてピークを抑圧する。
これら構成の送信装置10によるピーク抑圧方法について、次に説明する。
送信装置10は、移動体端末からの無線信号を入力側回路1で受信すると、所定方式で変調し、変調信号(入力信号)として後段の回路に伝送する。本例の送信装置は、複数の変調方式に対応しており、異なる変調方式の入力信号を伝送している。
ピーク抑圧回路2は、この入力側回路1からの入力信号S1〜S3を遅延回路25に入力する。また、ピーク抑圧回路2は、ピークを検出するため、入力信号S1〜S3の一部を分岐させ、IFFT部21でIFFT処理して合成信号(図3)とする。
ピーク検出部22は、図3に示すように時間領域に変換された前記合成信号41を閾値42と比較し、該閾値42を超えた部分(斜線部)をピークとして検出する。そして、ピーク検出部22は、該ピークに応じ、該ピークを相殺するように、該ピーク部分を抽出し、位相を反転してピーク信号43を得る。
抑圧信号生成部23は、このピーク信号をFFT処理によって各入力信号S1〜S3に由来する周波数領域上の信号(抑圧信号)Y1〜Y3に分割する。即ち、該抑圧信号Y1〜Y3によって各入力信号S1〜S3の各サブキャリアを抑圧することにより、前記ピークを相殺し、送信信号を所定値以下に制御できる。
ここで、各入力信号S1〜S3が許容できる変調精度(Error Vector Magnitude:EVM)は、変調方式毎に異なる。図4Aは、QPSKで変調された入力信号S1の各値をプロットしたコンスタレーションパターン、図4Bは、16QAMで変調された入力信号S2の各値をプロットしたコンスタレーションパターン、図4Cは、64QAMで変調された入力信号S3の各値をプロットしたコンスタレーションパターンである。
図4A〜図4Cにおいて、各値を示す点は、他の値の点と交じらない範囲に収まる必要がある。このとき、取り得る範囲、即ち許容可能なEVMを円で示す。同図から明らかなように、入力信号S1で許容可能なEVMをE1、入力信号S2で許容可能なEVMをE2、入力信号S3で許容可能なEVMをE3とした場合、E1>E2>E3となっている。
従って、上記抑圧信号を夫々一様に各入力信号S1〜S3に加えてピーク抑圧を行うのでは、抑圧できるピーク量が、E3に制限されてしまうことになる。
そこで、本実施形態では、抑圧部24の調整部24Aで変調方式毎に異なる係数を抑圧信号に乗じて変調方式毎の抑圧量を調整している。具体的には、抑圧信号Y1を1倍、抑圧信号Y2を0.2倍、抑圧信号Y3を0.1倍にしている。なお、この係数は、前記値に限らず、各変調信号の変調方式や出力回路3のダイナミックレンジ等に基づいて任意に設定できる。
また、調整部24Aは、各抑圧信号Y1〜Y3の値を変調方式毎に異なる所定の上限値未満に制限しても良い。例えば、各抑圧信号Y1〜Y3の上限値をそれぞれM1〜M3(但しM1>M2>M3)とし、調整部24Aは、抑圧信号Y1〜Y3が上限値M1〜M3以上であった場合に、その部分をカットする。これにより抑圧後の入力信号S1〜S3のEVMを確実に所定範囲内に収めることができる。
抑圧部24は、該調整部24で調整後の抑圧信号Y1〜Y3を抑圧点24Bで、前記遅延部25を介した主信号(変調信号)S1〜S3に加える。該抑圧信号Y1〜Y3は、ピーク部分の位相を反転させたピーク信号に基づいて生成されているので、該加算により主信号S1〜S3のパワーを抑圧する。
なお、ここで遅延部25は、抑圧信号Y1〜Y3の生成にかかる時間分、主信号S1〜S3を遅延させることにより、抑圧信号Y1〜Y3と主信号S1〜S3の同期をとっている。
そして、出力回路3は、抑圧後の変調信号S1〜S3を合成部31で周波数領域の信号を時間領域の信号に変換(IFFT処理)して合成し、GI挿入部でガードインターバルを挿入して送信信号とし、増幅部33で増幅して無線出力する。
このように本実施形態によれば、異なる変調方式の信号を合成して送信する場合に、各信号の変調方式に応じた適切な量で抑圧を行うことができ、例えば、高品質の入力信号の抑圧量を小さく、低品質の入力信号の抑圧量を大きくすることができる。これにより、送信信号のPAPRを効果的に小さくでき、出力回路(増幅部)の小型化や、電力効率の向上が図れる。
〈実施形態2〉
図5は、本発明に係る実施形態2の概略図である。本実施形態は、前述の実施形態1と比較してピーク抑圧回路が変調方式の割合を求める割合検出部を更に備えた点が異なり、他の構成は同じである。なお、同一の要素には、同符号を付すなどして再度の説明を省略している。
割合検出部26は、入力側回路1から伝送される入力信号全体に占める変調方式毎の入力信号の割合を求める。
本実施形態の割合検出部26は、入力側回路1から各入力信号のデータ量を示す情報を受信し、これを集計して変調方式毎の割合を求める。なお、割合を求める手法は、これに限らず、変調方式毎の信号数やサブキャリア数をカウントするものや、入力側回路1で該割合を求めてこれを受信する、或は管理者によって入力された割合の情報を受信するものでも良い。
ピーク検出部22は、前記割合検出部26で求めた割合に応じて変調方式毎の閾値を決定する。
例えば、QPSKの変調信号が全体の30%未満の場合には閾値La、30%以上60%未満の場合に閾値Lb、60%を越えた場合には閾値Lc(但しLa>Lb>Lc)のように、低品質の変調信号の割合が所定値より低い場合の閾値を該割合が所定値より高い場合の閾値よりも高くする。これにより低品質の変調信号が少ない場合には抑圧量を少なくし、低品質の変調信号が多い場合には抑圧量を多くする。
同様に、高品質の変調信号の割合が所定値より高い場合の閾値を該割合が所定値より低い場合の閾値よりも高くしても良い。
そして、この決定した閾値を用いてピーク検出部22がピークを検出し、抑圧信号生成部23が抑圧信号を生成する。
このように本実施形態によれば、変調方式の割合に応じて閾値を変更して各変調信号の抑圧量を変更するので、変調信号の変調方式の割合が変動した場合でも適切にピーク抑圧できる。
〈実施形態3〉
図6は、本発明に係る実施形態3の概略図である。本実施形態は、前述の実施形態2と比較してピーク抑圧回路2を多段構成2A−2Cにした点が異なり、他の構成は同じである。なお、同一の要素には、同符号を付すなどして再度の説明を省略している。
本実施形態の送信装置10は、入力側回路1からの変調信号をピーク抑圧回路2Aで抑圧し、該ピーク抑圧回路2Aの出力を後段のピーク抑圧回路2Bで再度ピーク抑圧し、該ピーク抑圧回路2Bの出力を後段のピーク抑圧回路2Cで更にピーク抑圧し、該ピーク抑圧回路2Cの出力を出力回路3で合成して送信する。
このように本実施形態では、直列に複数のピーク抑圧回路2A−2Cを備え、前段の回路の出力を後段の回路の入力として複数回ピーク抑圧を行う。
これは、ピーク検出部22で求めたピークが、変調信号S1−S3の総和からなるのに対して、本発明では変調方式毎に抑圧量を変えて抑圧するので、全抑圧量が前記ピークと一致しないことがあるため、抑圧を繰り返して確実にピークを抑圧するものである。
また、本実施形態では、抑圧部24の係数を変えるのではなく、ピーク抑圧回路2A−2Cの各段で抑圧する変調信号数を異ならせることにより、変調方式毎の抑圧量を異ならせている。即ち、ピーク抑圧回路2Aは変調信号S1のみ抑圧し、ピーク抑圧回路2Bは変調信号S1,S2を抑圧し、ピーク抑圧回路2Cは全ての変調信号S1−S3を抑圧している。
これにより、先ず最も低品質な変調信号S1について抑圧し、この結果抑圧できなかったピーク、即ち抑圧回路2Bの閾値を越えた部分について変調信号S1,S2を抑圧する。更に、この結果抑圧できなかったピーク、即ち抑圧回路2Cの閾値を越えた部分について全ての変調信号S1−S3を抑圧する。
ここで、各ピーク抑圧回路2A,2B,2Cにおけるピーク検出部22の閾値をそれぞれL1,L2,L3とした場合、該閾値L1−L3は、同一でも良いし、L1<L2<L3、L1>L2>L3など異ならせても良い。
また、本実施形態においても、前記入力信号全体に占める変調方式毎の入力信号の割合を割合検出部26が検出し、該割合に応じてピーク検出部22が前記閾値L1,L2,L3を変更する。
例えば、QPSKの割合が高ければ、閾値L1を下げてピーク抑圧回路2Aでの抑圧量を多くする、16QAMの割合が高ければ、閾値L2を下げてピーク抑圧回路2Bでの抑圧量を多くする、64QAMの割合が高ければ、閾値L3を下げてL2,L1を上げ、ピーク抑圧回路2Cでの抑圧量を多くし、ピーク抑圧回路2B,2Aでの抑圧量を少なくする、といった制御ができる。即ち、前記変調信号毎に異なる閾値を用いてピークを検出することにより、前記抑圧信号の抑圧量を異ならせている。
なお、本実施形態では、全てのピーク抑圧回路2A−2Cに割合検出部26を備えて閾値を変更したが、これに限らず一部のピーク抑圧回路のみで閾値を変更しても良い。例えば最も低品質の入力信号S1に対するピーク抑圧回路2Aのみに割合検出部26を備えて閾値を変更する構成すれば、簡易な構成で変調方式の割合の変動に対応することができる。
以上のように本実施形態によれば、多段構成としたピーク抑圧回路2A−2Cによって精度良くピーク抑圧を行うことができる。
なお、図6の例では、抑圧部24の調整部24Aを省略して抑圧信号生成部23で生成した抑圧信号をそのまま抑圧点24Bで変調信号に加算したが、これに限らず図7に示すように調整部24Aで抑圧信号に係数を乗じてから抑圧点24Bで変調信号に加算する構成であっても良い。
〈実施形態4〉
図8は、本発明に係る実施形態4の概略図である。本実施形態は、前述の実施形態1と比較してピーク抑圧回路2を多段構成にした点が異なり、他の構成は同じである。なお、同一の要素には、同符号を付すなどして再度の説明を省略している。
本実施形態では、前述のピーク抑圧回路2と直列に他の方式のピーク抑圧回路20を備えている。
ピーク抑圧回路(窓関数抑圧部)20は、送信信号の値を窓関数によって抑制する所謂窓方式の回路である。なお、この窓関数によるピーク抑制回路については、周知の構成であるので詳しい説明は省略する。
本実施形態によれば、本発明に係るピーク抑圧回路2で変調方式毎にピーク抑圧したのち、合成部(IFFT部)31で合成し、抑圧できなかった部分を窓方式のピーク抑圧回路20で抑圧する。
これにより、簡易にピーク抑圧回路を多段構成とし、精度良くピーク抑圧することができる。
なお、図8の例では、前述の実施形態1にピーク抑圧回路20を追加した構成としたが、これに限らず、他の実施形態2,3にピーク抑圧回路20を適用する構成であっても良い。例えば、実施形態3の最終段(全ての変調信号を抑圧する段)のピーク抑圧回路2Cと置き換えても良い。
〈実施形態5〉
図9は、本発明に係る実施形態5の概略図である。本実施形態は、前述の実施形態1と比較して電力補償部26を備えた点が異なり、他の構成は同じである。なお、同一の要素には、同符号を付すなどして再度の説明を省略している。
前述のように変調信号のピークを抑圧する場合に、抑圧が大きくなると、平均電力が下がることがある。このため、本実施形態では、電力補償部26を備え、入力信号のピーク抑圧による平均電力の低下分を求め、該低下分に相当する電力を該入力信号に加えて平均出力を補償する。
なお、本実施形態の電力補償部26は、各入力信号S1〜S3に対する電力補償部26A〜26Cから成っている。
前記電力補償部26Aは、抑圧前検出部61と、抑圧後検出部62と、電力補填部63を有している。
抑圧前検出部61は、入力側回路1から受信した変調信号S1の平均電力を検出する。
抑圧後検出部62は、抑圧部24で抑圧した後の変調信号S1の平均電力を検出する。
電力補填部63は、抑圧前の平均電力と抑圧後の平均電力を比較して抑圧による電力低下を求め、該低下した電力を抑圧後の変調信号S1に乗算する。
同様に、前記電力補償部26Bは、抑圧前検出部、抑圧後検出部、電力補填部を有し、入力側回路1から受信した変調信号S2の平均電力と抑圧部24で抑圧した後の変調信号S2の平均電力を検出して比較し、低下した電力を抑圧後の変調信号S2に乗算する。
更に、前記電力補償部26Cは、抑圧前検出部、抑圧後検出部、電力補填部を有し、入力側回路1から受信した変調信号S3の平均電力と抑圧部24で抑圧した後の変調信号S3の平均電力を検出して比較し、低下した電力を抑圧後の変調信号S3に乗算する。
出力回路3は、この電力補償後の変調信号を合成し、増幅して無線出力する。
このように本実施形態によれば、ピーク抑圧による平均電力の低下が補償されるので、ピーク抑圧が大きくなっても定格どおりの出力が得られる。
なお、図9の例では、前述の実施形態1に電力補償部26を追加した構成としたが、これに限らず、他の実施形態2〜4に電力補償部26を追加する構成であっても良い。
〈実施形態6〉
図10は、本発明に係る実施形態6の概略図である。本実施形態は、前述の実施形態1と比較して電力補償部27を備えた点が異なり、他の構成は同じである。なお、同一の要素には、同符号を付すなどして再度の説明を省略している。
本実施形態の電力補償部27は、変調方式毎に備えた推定部27Aが、入力信号の値に応じてビーク抑圧後の電力の低下量を算出し、各乗算部27Bで各入力信号S1〜S3に該低下分の電力を乗算する。
なお、推定部27Aによる電力低下量の推定は、予め抑制前の変調信号の値と抑制後の変調信号の電圧低下量との対応関係を統計的に求めておき、この対応関係に基づく変換テーブル或は関数を設定しておく。即ち推定部27は、この変換テーブル或は関数を用いて、抑制前の変調信号の値から一義に電圧低下量を求める。
このように本実施形態によれば、ピーク抑圧による電力の低下が補償されるので、ピーク抑圧が大きくなっても定格どおりの出力が得られる。
なお、図10の例では、前述の実施形態1に電力補償部27を追加した構成としたが、これに限らず、他の実施形態2〜4に電力補償部27を追加する構成であっても良い。

Claims (10)

  1. 異なる変調方式の信号を一括して送信するシステムにおいて、入力信号を時間領域で合成信号とする合成信号生成部と、
    前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号を生成するピーク検出部と、
    前記ピーク信号を周波数領域の信号に変換して、前記入力信号に由来する信号に分割し、各入力信号に由来する信号を夫々の抑圧信号とする抑圧信号生成部と、
    前記変調方式毎に抑圧量を異ならせた抑圧信号を前記入力信号に加えてピーク抑圧する抑圧部と、
    を備えるピーク抑圧回路。
  2. 前記抑圧部が、前記変調信号毎に異なる係数を前記抑圧信号に乗じて抑圧量を異ならせる請求項1に記載のピーク抑圧回路。
  3. 前記異なる変調方式の入力信号のうち、変調精度の許容度が高い変調方式の入力信号に加算する抑圧信号の係数を、該変調精度の許容度が低い変調方式の入力信号に加算する抑圧信号の係数よりも高く設定した請求項2に記載のピーク抑圧回路。
  4. 前記ピーク検出部が、前記変調信号毎に異なる閾値を用いてピークを検出することにより、前記抑圧信号の抑圧量を異ならせる請求項1に記載のピーク抑圧回路。
  5. 前記入力信号全体に占める変調方式毎の入力信号の割合を求める割合検出部を更に備え、
    前記ピーク検出部が、前記割合に応じて前記閾値を決定する請求項1から4の何れかに記載のピーク抑圧回路。
  6. 前記入力信号に基づいて、当該入力信号のピーク抑圧による平均電力の低下分を求め、該低下分に相当する電力を該入力信号に加える電力補償部を備える請求項1から5の何れかに記載のピーク抑圧回路。
  7. 前記電力補償部が、前記ピーク抑圧前の入力信号と前記ピーク抑圧後の入力信号を比較
    して前記電力の低下分を求める請求項6に記載のピーク抑圧回路。
  8. 前記合成部、ピーク検出部、抑圧信号生成部及び抑圧部を複数組み備え、多段階に抑圧を行う請求項1から7の何れかに記載のピーク抑圧回路。
  9. 請求項1からの何れかに記載のピーク抑圧回路を備えた送信装置。
  10. ピーク抑制回路が、
    異なる変調方式の入力信号を時間領域で合成し、合成信号を生成する構成において、
    前記合成信号のうち、閾値を超えた部分をピークとして検出し、該ピークに応じたピーク信号の生成と、
    前記ピーク信号を周波数領域の信号に変換して、前記入力信号に由来する信号に分割し、各入力信号に由来する信号を夫々の抑圧信号とすることと、
    前記変調方式毎に抑圧量を異ならせた抑圧信号を前記入力信号に加えることによるピークの抑圧と、
    を行うピーク抑圧方法。
JP2009510682A 2007-04-13 2007-04-13 ピーク抑圧方法 Expired - Fee Related JP4968331B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/058185 WO2008129645A1 (ja) 2007-04-13 2007-04-13 ピーク抑圧方法

Publications (2)

Publication Number Publication Date
JPWO2008129645A1 JPWO2008129645A1 (ja) 2010-07-22
JP4968331B2 true JP4968331B2 (ja) 2012-07-04

Family

ID=39875193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009510682A Expired - Fee Related JP4968331B2 (ja) 2007-04-13 2007-04-13 ピーク抑圧方法

Country Status (5)

Country Link
US (1) US7969205B2 (ja)
JP (1) JP4968331B2 (ja)
KR (1) KR101120685B1 (ja)
CN (1) CN101647217B (ja)
WO (1) WO2008129645A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163645B2 (ja) * 2007-06-29 2013-03-13 日本電気株式会社 送信信号生成装置、方法、およびプログラム
JP4938864B2 (ja) * 2007-12-26 2012-05-23 パナソニック株式会社 受信機及び利得制御方法
US8532498B2 (en) * 2008-02-08 2013-09-10 Celight Secure orthogonal frequency multiplexed optical communications
US7920478B2 (en) 2008-05-08 2011-04-05 Nortel Networks Limited Network-aware adapter for applications
US8068558B2 (en) * 2008-12-17 2011-11-29 Nortel Networks Limited Selective peak power reduction
WO2012012836A1 (en) * 2010-07-28 2012-02-02 Cohda Wireless Pty Ltd An intelligent transportation systems device
US8908786B1 (en) * 2012-06-06 2014-12-09 Arris Enterprises, Inc. Optimized QAM transmission
JP5949271B2 (ja) * 2012-07-25 2016-07-06 アイコム株式会社 通信機および通信方法
JP2016039419A (ja) 2014-08-06 2016-03-22 富士通株式会社 送信装置およびピーク対平均電力比抑制方法
JP2016082549A (ja) * 2014-10-22 2016-05-16 富士通株式会社 ピーク抑圧装置
JP2017011390A (ja) * 2015-06-18 2017-01-12 富士通株式会社 無線装置及び無線送信方法
CN111200571B (zh) * 2018-11-19 2021-10-01 华为技术有限公司 一种信号传输方法及装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045799A (en) * 1989-09-28 1991-09-03 Rockwell International Corporation Peak to average power ratio reduction in a power amplifier with multiple carrier input
KR100314353B1 (ko) * 1998-04-28 2001-12-28 전주범 직교분할대역수신시스템
JP3462388B2 (ja) * 1998-04-28 2003-11-05 松下電器産業株式会社 無線通信装置
EP1267508A1 (en) * 2000-02-29 2002-12-18 Fujitsu Limited Encoding method for multicarrier transmission and encoder using the same
JP3679018B2 (ja) 2001-03-14 2005-08-03 松下電器産業株式会社 無線通信装置および無線通信方法
JP2003249910A (ja) * 2002-02-26 2003-09-05 Hitachi Ltd 信号受信方法,通信方法及び通信装置
JP4073753B2 (ja) * 2002-10-24 2008-04-09 正哉 太田 マルチキャリア通信方法及びマルチキャリア通信装置
JP2004336564A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、基地局装置及び移動体通信端末装置
DE10320917A1 (de) * 2003-05-09 2004-12-09 Infineon Technologies Ag Verfahren und Schaltung zur Crestfaktor-Reduzierung
JP4323985B2 (ja) * 2003-08-07 2009-09-02 パナソニック株式会社 無線送信装置及び無線送信方法
JPWO2005034401A1 (ja) * 2003-09-30 2007-11-22 松下電器産業株式会社 送信装置及びピーク抑圧方法
US20070047431A1 (en) * 2003-12-02 2007-03-01 Matsushita Electric Industrial Co., Ltd. Radio transmission apparatus and peak power suppression method in multicarrier communication
US20060098747A1 (en) * 2004-11-09 2006-05-11 Nec Laboratories America, Inc. Coded OFDM system and method with improved PAPR reduction
KR20060059221A (ko) * 2004-11-26 2006-06-01 삼성전자주식회사 멀티캐리어 통신 시스템에서 피크대 평균 전력비 감소 장치및 방법
EP1843536B1 (en) * 2006-04-06 2009-07-01 Alcatel Lucent A method of reducing a peak to average power ratio of a modulated signal
EP1901510A1 (en) * 2006-09-15 2008-03-19 NTT DoCoMo Inc. Peak-to-average-power-ratio reduction in a multicarrier system
GB0620158D0 (en) * 2006-10-11 2006-11-22 Nokia Corp Method and apparatus for reducing peak-to-average power ratio of a signal
JP4927585B2 (ja) * 2007-02-15 2012-05-09 株式会社日立国際電気 送信機
EP2115985B1 (en) * 2007-02-26 2013-04-10 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and a method for reducing peak power in a transmitter of telecommunications systems
US8175177B2 (en) * 2007-08-14 2012-05-08 Lg Electronics Inc. Peak to average power ratio reduction
KR101524890B1 (ko) * 2007-10-04 2015-06-01 애플 인크. Ofdm 통신 네트워크에서의 피크 전력 대 평균 전력비의 적응적인 저감 방법 및 시스템
US7986738B2 (en) * 2007-10-19 2011-07-26 Redpine Signals, Inc Peak to average power ratio reduction apparatus and method for a wireless OFDM transmitter
US8457226B2 (en) * 2008-10-10 2013-06-04 Powerwave Technologies, Inc. Crest factor reduction for OFDM communications systems by transmitting phase shifted resource blocks
US8306148B2 (en) * 2008-11-20 2012-11-06 Advanced Micro Devices, Inc. Method to reduce peak to average power ratio in multi-carrier modulation receivers
US8068558B2 (en) * 2008-12-17 2011-11-29 Nortel Networks Limited Selective peak power reduction

Also Published As

Publication number Publication date
CN101647217A (zh) 2010-02-10
US7969205B2 (en) 2011-06-28
KR20100005080A (ko) 2010-01-13
KR101120685B1 (ko) 2012-03-22
WO2008129645A1 (ja) 2008-10-30
CN101647217B (zh) 2013-02-27
US20100148828A1 (en) 2010-06-17
JPWO2008129645A1 (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4968331B2 (ja) ピーク抑圧方法
EP1879296B1 (en) Peak suppression control apparatus
US8774298B2 (en) Transmitter with adaptive back-off
US20110116383A1 (en) Technique for Peak Power Reduction
WO2012102935A1 (en) Peak-to-average power ratio reduction for hybrid fm hd radio transmission
NL2012479B1 (en) Device and Method for Predistortion.
US20160227549A1 (en) Radio device that has function to reduce peak power of multiplexed signal
US7804914B2 (en) Radio transmission apparatus having peak suppression function
JP3451947B2 (ja) Ofdm変調器
JPWO2008111471A1 (ja) Ofdm変調波出力装置、及び、歪補償方法
US7864874B2 (en) OFDM communications system employing crest factor reduction with ISI control
JP2003518867A (ja) 無線チャネルを介した信号の送信のための送信器および送信方法
JP2002044054A (ja) リミッタ回路付きキャリア合成送信回路
KR20040043480A (ko) 높은 첨두전력대 평균전력비를 가지는 전력증폭기의 효율개선 장치 및 방법
US8031803B2 (en) Transmitter capable of suppressing peak of transmission signal
JP2009224922A (ja) ピーク抑圧装置、無線送信装置及び窓関数生成装置
US8094756B2 (en) Portable communications device with demodulation correction and related methods
JP4303048B2 (ja) 送信装置及び送信方法
KR101084550B1 (ko) 첨두대평균 전력비 감소 방법, 첨두대평균 전력비 감소 장치, 송신기, 및 수신기
JP5388204B2 (ja) 通信装置及び通信方法
JP2003249910A (ja) 信号受信方法,通信方法及び通信装置
KR20120100730A (ko) 데이터 송수신 장치 및 방법
JP2023015902A (ja) シングルキャリア送信装置
CN111435929A (zh) 基于rapp曲线压缩的削峰处理方法及装置、ofdm发射机
JP4998207B2 (ja) 同相直交不整合を補償する通信装置及び方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees