JP2017011390A - 無線装置及び無線送信方法 - Google Patents

無線装置及び無線送信方法 Download PDF

Info

Publication number
JP2017011390A
JP2017011390A JP2015122773A JP2015122773A JP2017011390A JP 2017011390 A JP2017011390 A JP 2017011390A JP 2015122773 A JP2015122773 A JP 2015122773A JP 2015122773 A JP2015122773 A JP 2015122773A JP 2017011390 A JP2017011390 A JP 2017011390A
Authority
JP
Japan
Prior art keywords
amplifier
bandwidth
power
transmission signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015122773A
Other languages
English (en)
Inventor
石川 光
Hikari Ishikawa
光 石川
小野 孝司
Koji Ono
孝司 小野
喬裕 向田
Kosuke Mukaida
喬裕 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015122773A priority Critical patent/JP2017011390A/ja
Priority to US15/097,830 priority patent/US20160373143A1/en
Publication of JP2017011390A publication Critical patent/JP2017011390A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Abstract

【課題】消費電力の増大を抑制すること。
【解決手段】無線装置は、設定された閾値と送信信号の電力とを比較し、前記送信信号の前記閾値以上の電力を抑圧するクリッピング部と、前記クリッピング部によって電力が抑圧された送信信号を増幅する増幅器と、複数のキャリアが占有する占有帯域幅と当該占有帯域幅において前記複数のキャリアとして使用される使用帯域幅とに対応付けて、前記クリッピング部に設定される閾値と前記増幅器に設定される電圧値とを記憶するメモリと、前記送信信号に含まれる複数のキャリアのキャリア配置を示すキャリア設定情報を取得し、キャリア設定情報に基づいて、前記送信信号の占有帯域幅及び使用帯域幅に対応する閾値及び電圧値を前記メモリから読み出し、前記クリッピング部及び前記増幅器に設定するプロセッサとを有する。
【選択図】図2

Description

本発明は、無線装置及び無線送信方法に関する。
通常、ディジタル無線通信方式の無線装置には、送信信号の電力を増幅する増幅器が設けられる。増幅器は、送信信号の電力を線形に増幅することが好ましい。特に、ピーク電力対平均電力比(PAPR:Peak to Average Power Ratio)が大きい送信信号を増幅する場合には、増幅器への入力電力が大きくなることがあるため、大きな入力電力に対して線形増幅をすることが求められる。
しかし、増幅器の入力電力と出力電力の関係は、入力電力が大きくなるにつれ非線形となり、増幅率が徐々に飽和する。このため、PAPRが大きい送信信号を増幅する場合には、高い線形性を持つ増幅器を用いたり、増幅器のドレイン電圧及びゲート電圧を上昇させたりすることにより、増幅器のバックオフを大きくする対策が採られることがある。また、例えばCFR(Crest Factor Reduction)と呼ばれるピーク抑圧処理により、ピーク電力をクリッピングして送信信号のPAPRを低下させる対策が採られることもある。
特開2006−67073号公報 特開2001−244757号公報
ところで、送信信号のピーク電力や平均電力は、例えば変調方式やキャリア構成などによって変動する。したがって、PAPRは一定ではなく常に変動し得るため、通常はPAPRが最も大きくなる条件を想定して、増幅器のバックオフを大きくしたり、ピーク抑圧処理がなされたりする。
ピーク抑圧処理を行う場合には、クリッピングにより送信信号の情報が一部失われるため、変調精度(EVM:Error Vector Magnitude)が劣化する。このため、クリッピングによってPAPRを低下させる対策には、一定の限界がある。そこで、増幅器のバックオフを大きくするために、高い線形性を持つ増幅器を用いたり、増幅器のドレイン電圧及びゲート電圧を上昇させたりすることが考えられる。
しかしながら、高い線形性を持つ増幅器は比較的高価であるため、コストの増大を招く。一方、増幅器のドレイン電圧及びゲート電圧を上昇させる場合には、消費電力が増大するという問題がある。すなわち、PAPRが最大になる条件を想定した比較的大きいドレイン電圧及びゲート電圧で増幅器を稼働させるため、実際の送信信号のPAPRが小さい場合でも増幅器の消費電力は常に大きいままである。結果として、増幅器が無駄に電力を消費することとなり、無線装置の消費電力が増大する。
開示の技術は、かかる点に鑑みてなされたものであって、消費電力の増大を抑制することができる無線装置及び無線送信方法を提供することを目的とする。
本願が開示する無線装置は、1つの態様において、設定された閾値と送信信号の電力とを比較し、前記送信信号の前記閾値以上の電力を抑圧するクリッピング部と、前記クリッピング部によって電力が抑圧された送信信号を増幅する増幅器と、複数のキャリアが占有する占有帯域幅と当該占有帯域幅において前記複数のキャリアとして使用される使用帯域幅とに対応付けて、前記クリッピング部に設定される閾値と前記増幅器に設定される電圧値とを記憶するメモリと、前記送信信号に含まれる複数のキャリアのキャリア配置を示すキャリア設定情報を取得し、キャリア設定情報に基づいて、前記送信信号の占有帯域幅及び使用帯域幅に対応する閾値及び電圧値を前記メモリから読み出し、前記クリッピング部及び前記増幅器に設定するプロセッサとを有する。
本願が開示する無線装置及び無線送信方法の1つの態様によれば、消費電力の増大を抑制することができるという効果を奏する。
図1は、実施の形態1に係る無線通信システムの構成を示すブロック図である。 図2は、実施の形態1に係るRE装置のハードウェア構成を示すブロック図である。 図3は、実施の形態1に係るFPGAの構成を示すブロック図である。 図4は、実施の形態1に係るクリッピング部の構成を示すブロック図である。 図5は、実施の形態1に係る設定処理を示すフロー図である。 図6は、占有帯域幅及び使用帯域幅を説明する図である。 図7は、クリッピング閾値設定テーブルの具体例を示す図である。 図8は、電圧設定テーブルの具体例を示す図である。 図9は、実施の形態1に係るFPGAの構成の変形例を示すブロック図である。 図10は、実施の形態1に係るFPGAの構成の変形例を示すブロック図である。 図11は、実施の形態2に係る電圧設定テーブルの具体例を示す図である。 図12は、増幅器の入出力特性の具体例を示す図である。
以下、本願が開示する無線装置及び無線送信方法の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
(実施の形態1)
図1は、実施の形態1に係る無線通信システムの構成を示すブロック図である。図1に示す無線通信システムは、CPRI(Common Public Radio Interface)と呼ばれるインタフェースによって接続されたREC(Radio Equipment Control)装置10及びRE(Radio Equipment)装置100を有する。すなわち、REC装置10には、光ファイバを介して複数のRE装置100が接続されている。なお、無線通信システムの構成は、図1に示すものに限定されず、例えば図1のRE装置100それぞれに他のRE装置がさらに接続されるなどの構成でも良い。
REC装置10は、送信データ及び受信データに対するベースバンド処理を実行する。具体的には、REC装置10は、例えば送信データの符号化及び変調を実行し、複数のキャリアに対応する複数のベースバンド信号を生成する。そして、REC装置10は、生成したベースバンド信号をRE装置100へ送信する。また、REC装置10は、各ベースバンド信号を伝送するキャリア配置を示すキャリア設定情報をベースバンド信号とともにRE装置100へ送信する。キャリア設定情報は、ベースバンド信号それぞれを伝送するキャリアの中心周波数と帯域幅を少なくとも含んでいる。
RE装置100は、光ファイバを介してREC装置10に接続され、送信データ及び受信データに対する無線処理を実行する。具体的には、RE装置100は、REC装置10から受信したベースバンド信号をDA(Digital Analogue)変換及びアップコンバートし、得られた無線信号をアンテナを介して送信する。このとき、RE装置100は、キャリア設定情報に従って、各ベースバンド信号を異なる周波数のキャリアに配置して得られる信号を送信する。
図2は、実施の形態1に係るRE装置100のハードウェア構成を示すブロック図である。図2に示すRE装置100は、FPGA(Field Programmable Gate Array)101、DAコンバータ102、アップコンバータ103、増幅器104、フィルタ105、ダウンコンバータ106、AD(Analogue Digital)コンバータ107、CPU(Central Processing Unit)108及びメモリ109を有する。
FPGA101は、CPRIのインタフェースを備え、REC装置10から送信された複数のベースバンド信号(以下「BB信号」と略記する)#1〜#N(Nは2以上の整数)及びキャリア設定情報を受信する。そして、FPGA101は、CPU108による設定に従って、BB信号#1〜#Nをクリッピングしてそれぞれ異なるキャリアに対応する周波数帯に配置し、プリディストーション方式の歪み補償を実行する。FPGA101は、歪み補償によって得られるプリディストーション信号をDAコンバータ102へ出力する。FPGA101の構成については、後に詳述する。
DAコンバータ102は、FPGA101から出力されるプリディストーション信号をDA変換し、得られたアナログ信号をアップコンバータ103へ出力する。このアナログ信号の異なる周波数帯には、それぞれBB信号#1〜#Nが配置されている。
アップコンバータ103は、DAコンバータ102から出力されるアナログ信号を無線周波数にアップコンバートし、BB信号#1〜#Nがそれぞれ異なるキャリアに配置された無線信号を生成する。そして、アップコンバータ103は、生成した無線信号を増幅器104へ出力する。
増幅器104は、アップコンバータ103から出力される無線信号を増幅する。このとき、増幅器104は、CPU108によって設定されるゲート電圧及びドレイン電圧に応じた電力を消費して、無線信号の増幅を実行する。そして、増幅器104は、増幅後の信号をフィルタ105へ出力するとともに、フィードバック信号としてダウンコンバータ106へフィードバックする。
フィルタ105は、増幅器104における増幅後の信号の送信帯域外の成分を減衰させ、得られた送信信号をアンテナを介して無線送信する。
ダウンコンバータ106は、増幅器104からフィードバックされるフィードバック信号をベースバンド周波数にダウンコンバートする。そして、ダウンコンバータ106は、ダウンコンバートされたフィードバック信号をADコンバータ107へ出力する。
ADコンバータ107は、ダウンコンバータ106から出力されるフィードバック信号をAD変換し、得られたディジタルのフィードバック信号をFPGA101へ出力する。このフィードバック信号は、FPGA101によってプリディストーション方式の歪み補償に用いられる。
CPU108は、FPGA101によって受信されたキャリア設定情報を取得し、BB信号#1〜#Nを伝送するキャリアの帯域に応じたクリッピングの閾値設定及び増幅器104における電圧設定をメモリ109から読み出す。すなわち、CPU108は、BB信号#1〜#Nを伝送するキャリアが占有する占有帯域幅と、占有帯域幅において実際にキャリアとして使用される使用帯域幅とに対応するクリッピングの閾値と、増幅器104のゲート電圧及びドレイン電圧とを取得する。そして、CPU108は、取得したクリッピングの閾値をFPGA101に設定するとともに、取得したゲート電圧及びドレイン電圧を増幅器104に設定する。
メモリ109は、占有帯域幅及び使用帯域幅に対応付けてFPGA101におけるクリッピングの閾値を記憶するクリッピング閾値設定テーブルと、占有帯域幅及び使用帯域幅に対応付けて増幅器104のゲート電圧及びドレイン電圧を記憶する電圧設定テーブルとを保持する。
ここで、クリッピング閾値設定テーブルは、占有帯域幅が大きいほど大きいクリッピング閾値を記憶している。これは、信号が広帯域となって占有帯域幅が大きくなるほど、この信号のピーク電力が大きくなる傾向があることから、占有帯域幅が大きい場合のクリッピング閾値を大きくすることで、クリッピングにより失われる情報を削減しEVMの劣化を抑制するためである。また、占有帯域幅が小さい場合のクリッピング閾値を小さくすることで、増幅器104へ入力される無線信号の電力を小さくすることができる。結果として、増幅器104は、比較的小さい消費電力でも無線信号を線形増幅することができ、非線形歪みを小さくすることができる。
また、電圧設定テーブルは、占有帯域幅が小さく使用帯域幅が大きいほど増幅器104の消費電力を小さくするゲート電圧及びドレイン電圧を記憶している。具体的には、占有帯域幅が小さいほど増幅器104のゲートバイアス電流及びドレイン電流を小さくし、使用帯域幅が大きいほど増幅器104のゲートバイアス電流及びドレイン電流を小さくするゲート電圧及びドレイン電圧を記憶している。占有帯域幅が小さいほど増幅器104の消費電力を小さくするのは、占有帯域幅が小さくピーク電力が小さければ、増幅器104は、比較的小さい消費電力でも無線信号を線形増幅できるからである。また、使用帯域幅が大きいほど増幅器104の消費電力を小さくするのは、アンテナから送信される送信信号の電力が一定である条件下では、使用帯域幅が大きいほど周波数当たりの電力が小さくなり、増幅器104が消費する電力も小さくて済むからである。
図3は、実施の形態1に係るFPGA101の構成を示すブロック図である。図3に示すFPGA101は、CPRIインタフェース201、クリッピング部202、フィルタ203、NCO(Numerically Controlled Oscillator)204、合成部205及び歪み補償部206を有する。このうち、クリッピング部202、フィルタ203及びNCO204は、BB信号#1〜#Nに対応してN個ずつ設けられる。
CPRIインタフェース201は、BB信号#1〜#N及びキャリア設定情報をREC装置10から受信する。そして、CPRIインタフェース201は、BB信号#1〜#Nをそれぞれ対応するクリッピング部202へ出力する。また、CPRIインタフェース201は、キャリア設定情報をCPU108へ出力する。
クリッピング部202は、それぞれ入力されたBB信号#1〜#Nをクリッピングする。具体的には、クリッピング部202は、BB信号#1〜#Nの合計電力がクリッピング閾値を超えないように、それぞれ入力されたBB信号#1〜#Nに電力を抑圧する抑圧係数を乗算する。抑圧係数としては、例えばクリッピング閾値と各サンプルの電力との比(クリッピング閾値/サンプルの電力)を用いることができる。クリッピング部202によるクリッピングについては、後に詳述する。
フィルタ203は、クリッピング部202によるクリッピングによってBB信号#1〜#Nに生じた不要帯域成分を減衰させる。
NCO204は、それぞれ入力されたBB信号#1〜#Nを、それぞれのBB信号が伝送されるキャリアに対応する周波数帯へ周波数変換する。すなわち、NCO204は、BB信号#1〜#Nを互いに異なる周波数帯へ周波数変換する。
合成部205は、NCO204による周波数変換後のBB信号#1〜#Nを合成する。合成部205から出力される合成信号においては、BB信号#1〜#Nがそれぞれのキャリアに対応する周波数帯に配置されている。
歪み補償部206は、ADコンバータ107から出力されるフィードバック信号(図中「FB信号」と略記する)を用いて、合成部205から出力される合成信号を歪み補償する。具体的には、歪み補償部206は、合成信号とこの合成信号に対応するFB信号との誤差を小さくする歪み補償係数を合成信号に乗算する。すなわち、歪み補償部206は、増幅器104において発生する非線形歪みの逆特性の歪みをあらかじめ合成信号に付与し、得られたプリディストーション信号(図中「PD信号」と略記する)を出力する。
図4は、実施の形態1に係るクリッピング部の構成を示すブロック図である。図4においては、クリッピング部202とその周辺の回路とを含むクリッピング部を示している。すなわち、図4に示すクリッピング部は、BB信号#1〜#Nに対応するN個のクリッピング部202の他に、電力演算部303、比較部304及び抑圧係数算出部305を有する。また、それぞれのクリッピング部202は、遅延部301及び乗算部302を有する。
遅延部301は、それぞれ入力されたBB信号#1〜#Nのサンプルを、電力演算部303、比較部304及び抑圧係数算出部305における処理時間だけ遅延させる。
乗算部302は、遅延部301によって遅延したBB信号#1〜#Nのサンプルに対して、抑圧係数算出部305によって算出された抑圧係数を乗算する。
電力演算部303は、各クリッピング部202に入力されるBB信号#1〜#Nのサンプルの合計電力を演算する。
比較部304は、電力演算部303によって演算された合計電力とCPU108によって設定されたクリッピング閾値とを比較する。ここで、CPU108によって設定されたクリッピング閾値は、BB信号#1〜#Nを伝送するキャリアの占有帯域幅に対応している。したがって、キャリアの占有帯域幅が大きいほど大きいクリッピング閾値が比較部304に設定されている。比較部304は、比較の結果、合計電力がクリッピング閾値より大きい場合には、その旨を抑圧係数算出部305へ通知する。
抑圧係数算出部305は、BB信号#1〜#Nのサンプルの合計電力がクリッピング閾値より大きいことが比較部304から通知されると、各サンプルの電力を抑圧する抑圧係数を算出する。すなわち、抑圧係数算出部305は、合計電力をクリッピング閾値以下とするサンプルごとの抑圧係数を算出する。そして、抑圧係数算出部305は、各サンプルについて算出された抑圧係数をそれぞれ対応するクリッピング部202の乗算部302へ出力する。
次いで、上記のように構成されたRE装置100におけるクリッピング閾値及び増幅器104の電圧の設定処理について、図5に示すフロー図を参照して具体的に例を挙げながら説明する。図5は、主にCPU108によって実行される設定処理を示すフロー図である。
REC装置10から送信されたBB信号#1〜#N及びキャリア設定情報は、FPGA101のCPRIインタフェース201によって受信され、BB信号#1〜#Nは、それぞれ対応するクリッピング部202へ入力される。また、キャリア設定情報は、CPU108によって取得される(ステップS101)。
キャリア設定情報が取得されると、CPU108によって、BB信号#1〜#Nを伝送するキャリアの占有帯域幅及び使用帯域幅が算出される(ステップS102)。具体的には、占有帯域幅は、周波数が最小のキャリアの中心周波数と周波数が最大のキャリアの中心周波数との差として算出される。また、使用帯域幅は、各キャリアの帯域幅の合計の帯域幅として算出される。
すなわち、例えば図6の上段に示すキャリア配置の場合は、周波数が最小のキャリア401の中心周波数と周波数が最大のキャリア402の中心周波数との差WAが占有帯域幅として算出される。また、例えば図6の下段に示すキャリア配置の場合も、周波数が最小のキャリア403の中心周波数と周波数が最大のキャリア405の中心周波数との差WAが占有帯域幅として算出される。信号のピーク電力は占有帯域幅に依存するため、図6の上段及び下段に示すキャリア配置の信号は、キャリアの数が異なっていてもほぼ等しいピーク電力を有する。
一方、キャリア401〜405の帯域幅がいずれもWCである場合、図6の上段に示すキャリア配置の使用帯域幅は、2つのキャリア401、402の合計の帯域幅である2WCとして算出される。また、図6の下段に示すキャリア配置の使用帯域幅は、3つのキャリア403〜405の合計の帯域幅である3WCとして算出される。このように、キャリア設定情報が示すキャリア配置によっては、占有帯域幅が等しくても、使用帯域幅が異なることがある。本実施の形態においては、多くのキャリア配置それぞれについて個別にクリッピング閾値及び増幅器104の電圧を設定するのではなく、占有帯域幅及び使用帯域幅に着目して設定が行われる。このため、少ないパラメータを用いた簡易な処理で効率的にクリッピング閾値及び増幅器104の電圧を設定することができる。
このような占有帯域幅及び使用帯域幅が算出されると、CPU108によってメモリ109が参照され、占有帯域幅及び使用帯域幅に対応するクリッピング閾値及び増幅器104の電圧の設定値が読み出される(ステップS103)。すなわち、CPU108によって、メモリ109に保持されたクリッピング閾値設定テーブルからクリッピング閾値が読み出され、電圧設定テーブルから増幅器104のゲート電圧及びドレイン電圧が読み出される。
図7は、クリッピング閾値設定テーブルの具体例を示す図である。図7に示すように、クリッピング閾値設定テーブルは、占有帯域幅が大きいほど大きいクリッピング閾値を記憶している。例えば占有帯域幅が0MHzから10MHzの間の場合には、クリッピング閾値が6.5dBであるのに対し、占有帯域幅が90MHzから100MHzの間の場合には、クリッピング閾値が7.4dBである。したがって、占有帯域幅が大きくピーク電力が大きい信号に対しては、クリッピング閾値が大きいことから、クリッピングによって失われる情報量を削減し、EVMの劣化を抑制することができる。これに対して、占有帯域幅が小さくピーク電力が小さい信号に対しては、クリッピング閾値が小さいことから、クリッピング後の信号の電力も小さくなる。この結果、増幅器104へ入力される無線信号の電力も小さくなり、増幅器104の消費電力を増大させることなく所定の歪み特性を達成することができる。
また、図8は、電圧設定テーブルの具体例を示す図である。図8において、電圧値A、B、C、D、E、Fの順で増幅器104の消費電力が大きくなる。換言すれば、電圧値Aでは増幅器104の消費電力が最も小さく、電圧値Fでは増幅器104の消費電力が最も大きい。図8に示すように、電圧設定テーブルは、占有帯域幅が小さいほど増幅器104の消費電力を小さくする電圧値を記憶しており、同じ占有帯域幅でも使用帯域幅が大きいほど増幅器104の消費電力を小さくする電圧値を記憶している。なお、図8に示す電圧設定テーブルは、増幅器104のゲート電圧及びドレイン電圧のいずれか一方に関するテーブルであり、メモリ109は、ゲート電圧及びドレイン電圧の双方に対応する2つの電圧設定テーブルを保持していても良い。
このように、電圧設定テーブルは、占有帯域幅が小さいほど増幅器104の消費電力を小さくする電圧値を記憶しているため、占有帯域幅が小さくピーク電力が小さい場合には、増幅器104の消費電力を小さくすることができる。また、電圧設定テーブルは、使用帯域幅が大きいほど増幅器104の消費電力を小さくする電圧値を記憶しているため、周波数当たりの増幅に必要な電力が小さい場合には、増幅器104の消費電力を小さくすることができる。すなわち、増幅器104の消費電力を小さくしても十分な歪み特性が得られる場合には、消費電力を小さくする電圧値を増幅器104に設定することができる。
図5に戻って、クリッピング閾値及び増幅器104の電圧設定が読み出されると、CPU108によって、FPGA101のクリッピング部にクリッピング閾値が設定される(ステップS104)。具体的には、電力演算部303によって演算されたBB信号#1〜#Nのサンプルの合計電力と比較されるクリッピング閾値が比較部304に設定される。このようにクリッピング閾値が設定されることにより、合計電力がクリッピング閾値を超える場合には、合計電力をクリッピング閾値以下とする抑圧係数を各サンプルに乗算するクリッピングが実行される。
また、CPU108によって、増幅器104の電圧が設定される(ステップS105)。ここでの設定は、増幅器104のゲート電圧及びドレイン電圧の双方の設定であっても良く、いずれか一方の設定であっても良い。増幅器104の電圧が占有帯域幅及び使用帯域幅に応じた電圧値に設定されるため、増幅器104が無駄に電力を消費することがなく、RE装置100の消費電力の増大を抑制することができる。
以上のように、本実施の形態によれば、キャリア設定情報に基づいてベースバンド信号を伝送するキャリアの占有帯域幅及び使用帯域幅を算出し、占有帯域幅及び使用帯域幅に対応するクリッピング閾値と増幅器の電圧とを設定する。このため、送信信号のキャリア配置に応じて増幅器の消費電力を適切に調整することができ、消費電力の増大を抑制することができる。
なお、上記実施の形態1においては、BB信号#1〜#Nそれぞれをクリッピングするものとしたが、BB信号#1〜#Nを合成して得られる合成信号をクリッピングすることも可能である。図9は、合成信号をクリッピングする場合のFPGA101の構成を示すブロック図である。図9において、図3と同じ部分には同じ符号を付し、その説明を省略する。図9に示すFPGA101は、図3に示すFPGA101のクリッピング部202及びフィルタ203に代えて、フィルタ251、クリッピング部252及びフィルタ253を有する。このうち、フィルタ251は、BB信号#1〜#Nに対応してN個設けられる。
フィルタ251は、CPRIインタフェース201によって受信されたBB信号#1〜#Nそれぞれの不要帯域成分を減衰させる。
クリッピング部252は、合成部205から出力される合成信号をクリッピングする。具体的には、クリッピング部252は、合成信号の電力がクリッピング閾値を超えないように、合成信号に抑圧係数を乗算する。このとき、クリッピング部252は、CPU108によって設定されるクリッピング閾値と合成信号のサンプルの電力とを比較し、クリッピング閾値よりも大きい電力を有するサンプルに対して抑圧係数を乗算する。抑圧係数としては、例えばクリッピング閾値と各サンプルの電力との比(クリッピング閾値/サンプルの電力)を用いることができる。
フィルタ253は、クリッピング部252によるクリッピングによって合成信号に生じた不要帯域成分を減衰させる。
このように、合成信号に対してクリッピングをする場合には、CPU108は、クリッピング部252に対して占有帯域幅に応じたクリッピング閾値を設定する。これにより、占有帯域幅が小さくピーク電力が小さい信号に対しては、クリッピング閾値を小さくして、増幅器104へ入力される無線信号の電力を小さくすることができる。結果として、増幅器104の消費電力を増大させることなく所定の歪み特性を達成することができる。
また、BB信号#1〜#Nに対してクリッピングをするとともに、合成信号に対してもクリッピングをすることも可能である。図10は、BB信号#1〜#N及び合成信号の双方をクリッピングする場合のFPGA101の構成を示すブロック図である。図10において、図3及び図9と同じ部分には同じ符号を付し、その説明を省略する。図10に示すFPGA101は、図3に示すFPGA101に、図9に示すクリッピング部252を追加した構成を採る。
このような構成を採る理由は、以下のようなものである。すなわち、クリッピング部202によってBB信号#1〜#Nそれぞれのクリッピングが実行されると、BB信号#1〜#Nの合計電力はクリッピング閾値以下となる。しかしながら、その後、BB信号#1〜#Nがフィルタ203を通過することによって、BB信号#1〜#Nの波形が変化し、BB信号#1〜#Nの合計電力がクリッピング閾値より大きくなることがある。このため、図10に示す構成では、BB信号#1〜#Nが合成部205によって合成された後、クリッピング部252によって合成信号のクリッピングが実行される。これにより、合成信号の電力が確実にクリッピング閾値以下となり、増幅器104へ入力される無線信号の電力を小さくすることができる。なお、図10に示す構成では、クリッピング部252において抑圧される電力が比較的小さいため、クリッピング部252の後段にフィルタが設けられていない。
(実施の形態2)
実施の形態2の特徴は、増幅器のゲート電圧及びドレイン電圧を一定にする一方で、クリッピング閾値を変化させ、増幅器の消費電力を固定したまま歪み特性の改善を図る点である。
実施の形態2に係る無線通信システム及びRE装置の構成は、実施の形態1(図1〜4)と同様であるため、その説明を省略する。実施の形態2のRE装置が有するメモリには、実施の形態1と同様に、クリッピング閾値設定テーブルと電圧設定テーブルが保持されている。このうち、クリッピング閾値設定テーブルは、実施の形態1と同様に、占有帯域幅が大きいほど大きいクリッピング閾値を記憶している。一方、電圧設定テーブルは、例えば図11に示すように、すべての占有帯域幅及び使用帯域幅に対応付けて、同一の電圧値Fを記憶している。すなわち、実施の形態2においては、占有帯域幅及び使用帯域幅に対応付けて固定の電圧値Fが記憶されている。この電圧値Fは、図8に示す電圧値Fに対応しており、占有帯域幅が大きく使用帯域幅が小さい最悪の条件においても、最低限の歪み特性を得ることができる増幅器のゲート電圧及びドレイン電圧である。
実施の形態2においては、増幅器の電圧が一定である一方で、キャリア設定情報に基づいて、占有帯域幅に応じたクリッピング閾値が設定される。このため、占有帯域幅が大きくピーク電力が大きい信号は、比較的大きいクリッピング閾値が用いられてクリッピングされ、占有帯域幅が小さくピーク電力が小さい信号は、比較的小さいクリッピング閾値が用いられてクリッピングされる。このとき、クリッピングの抑圧係数としては、例えばクリッピング閾値と各サンプルの電力との比(クリッピング閾値/サンプルの電力)を用いることができる。占有帯域幅に応じたクリッピングの結果、ピーク電力が小さい信号については、EVMを一定に保ったまま、増幅器へ入力される無線信号の電力を小さくすることができる。したがって、無線信号がより線形に増幅され、歪み特性を改善することができる。
具体的に例を挙げると、図12に示すように、増幅器の入出力特性は、入力電力及び出力電力が比較的小さい範囲では、無線信号を線形に増幅するのに対し、入力電力及び出力電力が比較的大きい範囲では、無線信号を非線形に増幅することを示す。このため、ピーク電力が大きくクリッピング閾値も大きい場合には、増幅器へ入力される無線信号の電力が例えばP1となることがあり、この無線信号は非線形に増幅される。結果として、増幅器において非線形歪みが発生し、良好な歪み特性は得られない。
これに対して、占有帯域幅に応じたクリッピング閾値が設定されることにより、クリッピング閾値が小さい場合には、増幅器へ入力される無線信号の電力を例えばP2とすることができ、この無線信号をより線形に増幅することが可能となる。結果として、無線信号の電力がP1である場合よりも歪み特性を改善することができる。
以上のように、本実施の形態によれば、増幅器の電圧を固定する一方で、占有帯域幅に対応するクリッピング閾値を設定する。このため、占有帯域幅が小さくピーク電力が小さい信号は、比較的小さいクリッピング閾値が用いられてクリッピングされ、増幅器へ入力される無線信号の電力を小さくすることができる。したがって、増幅器の消費電力を増大させることなく歪み特性を改善することができる。
なお、上記各実施の形態においては、CPRIインタフェースによって接続されたREC装置10及びRE装置100を有する無線通信システムを例に挙げて説明したが、本発明はその他の無線通信システムに適用することも可能である。すなわち、複数のキャリアによって信号を伝送する無線装置であって、キャリア配置が変更される無線通信システムにおいて用いられる無線装置であれば、本発明を適用することが可能である。
101 FPGA
102 DAコンバータ
103 アップコンバータ
104 増幅器
105、203、251、253 フィルタ
106 ダウンコンバータ
107 ADコンバータ
108 CPU
109 メモリ
201 CPRIインタフェース
202、252 クリッピング部
204 NCO
205 合成部
206 歪み補償部
301 遅延部
302 乗算部
303 電力演算部
304 比較部
305 抑圧係数算出部

Claims (9)

  1. 設定された閾値と送信信号の電力とを比較し、前記送信信号の前記閾値以上の電力を抑圧するクリッピング部と、
    前記クリッピング部によって電力が抑圧された送信信号を増幅する増幅器と、
    複数のキャリアが占有する占有帯域幅と当該占有帯域幅において前記複数のキャリアとして使用される使用帯域幅とに対応付けて、前記クリッピング部に設定される閾値と前記増幅器に設定される電圧値とを記憶するメモリと、
    前記送信信号に含まれる複数のキャリアのキャリア配置を示すキャリア設定情報を取得し、キャリア設定情報に基づいて、前記送信信号の占有帯域幅及び使用帯域幅に対応する閾値及び電圧値を前記メモリから読み出し、前記クリッピング部及び前記増幅器に設定するプロセッサと
    を有することを特徴とする無線装置。
  2. 前記メモリは、
    前記占有帯域幅が大きいほど大きい閾値を記憶する閾値設定テーブルを保持することを特徴とする請求項1記載の無線装置。
  3. 前記メモリは、
    前記占有帯域幅が小さいほど前記増幅器の消費電力を小さくする電圧値を記憶する電圧設定テーブルを保持することを特徴とする請求項1記載の無線装置。
  4. 前記メモリは、
    前記使用帯域幅が大きいほど前記増幅器の消費電力を小さくする電圧値を記憶する電圧設定テーブルを保持することを特徴とする請求項1記載の無線装置。
  5. 前記メモリは、
    前記増幅器のゲート電圧又はドレイン電圧を示す電圧値を記憶することを特徴とする請求項1記載の無線装置。
  6. 前記メモリは、
    前記占有帯域幅及び前記使用帯域幅に対応付けて固定の電圧値を記憶する電圧設定テーブルを保持することを特徴とする請求項2記載の無線装置。
  7. 前記プロセッサは、
    前記キャリア設定情報に基づいて、周波数が最小のキャリアの中心周波数と周波数が最大のキャリアの中心周波数との差分を占有帯域幅として算出することを特徴とする請求項1記載の無線装置。
  8. 前記プロセッサは、
    前記キャリア設定情報に基づいて、前記複数のキャリアそれぞれの帯域幅の合計を使用帯域幅として算出することを特徴とする請求項1記載の無線装置。
  9. 設定された閾値と送信信号の電力とを比較し、前記送信信号の前記閾値以上の電力を抑圧するクリッピング部と、前記クリッピング部によって電力が抑圧された送信信号を増幅する増幅器とを有する無線装置における無線送信方法であって、
    前記送信信号に含まれる複数のキャリアのキャリア配置を示すキャリア設定情報を取得し、
    取得されたキャリア設定情報に基づいて、複数のキャリアが占有する占有帯域幅と当該占有帯域幅において前記複数のキャリアとして使用される使用帯域幅とに対応付けて前記クリッピング部に設定される閾値と前記増幅器に設定される電圧値とを記憶するメモリから、前記送信信号の占有帯域幅及び使用帯域幅に対応する閾値及び電圧値を読み出し、
    読み出された閾値及び電圧値を前記クリッピング部及び前記増幅器に設定する
    処理を有することを特徴とする無線送信方法。
JP2015122773A 2015-06-18 2015-06-18 無線装置及び無線送信方法 Ceased JP2017011390A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015122773A JP2017011390A (ja) 2015-06-18 2015-06-18 無線装置及び無線送信方法
US15/097,830 US20160373143A1 (en) 2015-06-18 2016-04-13 Wireless device and wireless transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122773A JP2017011390A (ja) 2015-06-18 2015-06-18 無線装置及び無線送信方法

Publications (1)

Publication Number Publication Date
JP2017011390A true JP2017011390A (ja) 2017-01-12

Family

ID=57588565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122773A Ceased JP2017011390A (ja) 2015-06-18 2015-06-18 無線装置及び無線送信方法

Country Status (2)

Country Link
US (1) US20160373143A1 (ja)
JP (1) JP2017011390A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103130A (ja) * 2017-12-07 2019-06-24 株式会社村田製作所 送信ユニット
US10484024B2 (en) 2017-12-07 2019-11-19 Murata Manufacturing Co., Ltd. Transmission unit
CN110943700B (zh) * 2019-12-17 2023-04-18 北京紫光展锐通信技术有限公司 信号生成系统及终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354378A (ja) * 2004-06-10 2005-12-22 Hitachi Kokusai Electric Inc 送信装置
JP2009225363A (ja) * 2008-03-18 2009-10-01 Toshiba Corp 無線伝送装置
JP2010206385A (ja) * 2009-03-02 2010-09-16 Ntt Docomo Inc 送信機、受信機、電力増幅方法及び信号復調方法
JP2011188529A (ja) * 2004-03-05 2011-09-22 Qualcomm Inc ワイアレス通信システムにおけるパワー制御のためのシステム及び方法
US20120299659A1 (en) * 2011-05-24 2012-11-29 Samsung Electronics Co. Ltd. Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
US20130129024A1 (en) * 2011-10-17 2013-05-23 Renesas Mobile Corporation Methods of Receiving and Receivers
US20140362951A1 (en) * 2013-06-05 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of carrier aggregated signals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617232B2 (ja) * 2005-09-21 2011-01-19 株式会社日立国際電気 送信機
JP4789749B2 (ja) * 2006-08-17 2011-10-12 富士通株式会社 ピーク抑圧装置
CN101647217B (zh) * 2007-04-13 2013-02-27 富士通株式会社 峰值抑制电路、发送装置以及峰值抑制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188529A (ja) * 2004-03-05 2011-09-22 Qualcomm Inc ワイアレス通信システムにおけるパワー制御のためのシステム及び方法
JP2005354378A (ja) * 2004-06-10 2005-12-22 Hitachi Kokusai Electric Inc 送信装置
JP2009225363A (ja) * 2008-03-18 2009-10-01 Toshiba Corp 無線伝送装置
JP2010206385A (ja) * 2009-03-02 2010-09-16 Ntt Docomo Inc 送信機、受信機、電力増幅方法及び信号復調方法
US20120299659A1 (en) * 2011-05-24 2012-11-29 Samsung Electronics Co. Ltd. Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
US20130129024A1 (en) * 2011-10-17 2013-05-23 Renesas Mobile Corporation Methods of Receiving and Receivers
US20140362951A1 (en) * 2013-06-05 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of carrier aggregated signals

Also Published As

Publication number Publication date
US20160373143A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5126234B2 (ja) 電力増幅器およびこれを備える電波送信機
JP5722173B2 (ja) デュアルバンド無線周波送信機
JP4255929B2 (ja) 送信機
JP4299845B2 (ja) 送信機のピーク電力必要量を直交符号ノイズシェーピングによって低減する方法及び装置
US8831136B2 (en) Wireless apparatus and distortion compensating method
JP2014072887A (ja) 電力結合装置における出力特性補正装置及び方法
US8416893B2 (en) Systems and methods of improved power amplifier efficiency through adjustments in crest factor reduction
KR20130126889A (ko) 반도체 장치
KR20110073226A (ko) 다중 모드 광대역 무선통신 장치 및 방법
US20160227549A1 (en) Radio device that has function to reduce peak power of multiplexed signal
JP2017011390A (ja) 無線装置及び無線送信方法
US10644733B2 (en) Method and system for crest factor reduction
JP4789749B2 (ja) ピーク抑圧装置
KR20100039255A (ko) 이동통신 시스템에서 아이큐 불일치를 보상하기 위한 장치 및 방법
US10187018B2 (en) Wideband highly linear amplifier
US20080240287A1 (en) Transmitter
US10700722B1 (en) Frequency-segmented power amplifier
WO2019190469A1 (en) Transmitters and methods for operating the same
US9755877B2 (en) Peak suppression device and peak suppression method
US10727880B1 (en) Crest factor reduction in cable communication systems
JP5122361B2 (ja) 歪み補償機能を備えた増幅装置
JP2011124840A (ja) 無線通信装置
JP2013115594A (ja) 電力増幅器および増幅制御方法
KR100849760B1 (ko) 신호 전송 장치 및 신호 전송 방법
JP6175852B2 (ja) 電力増幅装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190625