JP4935164B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4935164B2
JP4935164B2 JP2006112536A JP2006112536A JP4935164B2 JP 4935164 B2 JP4935164 B2 JP 4935164B2 JP 2006112536 A JP2006112536 A JP 2006112536A JP 2006112536 A JP2006112536 A JP 2006112536A JP 4935164 B2 JP4935164 B2 JP 4935164B2
Authority
JP
Japan
Prior art keywords
field region
potential
semiconductor device
power supply
gnd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006112536A
Other languages
English (en)
Other versions
JP2007287883A (ja
Inventor
憲司 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006112536A priority Critical patent/JP4935164B2/ja
Publication of JP2007287883A publication Critical patent/JP2007287883A/ja
Application granted granted Critical
Publication of JP4935164B2 publication Critical patent/JP4935164B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、埋め込み酸化膜上の多重のフィールド領域に複数個のトランジスタ素子が分散配置されてなる半導体装置に関するもので、特に、インバータ駆動用等の高電圧ICに適用することのできる高耐圧の半導体装置に関する。
インバータ駆動用等の高電圧ICが、例えば、特許第3384399号公報(特許文献1)およびProc. of ISPSD’04(非特許文献1)に開示されている。
図4に、SOI基板とトレンチ分離を用いた、従来の高電圧IC90の模式的な断面図を示す。
図4に示す高電圧IC90には、埋め込み酸化膜3を有するSOI基板1のSOI層1aに、低電位(GND)基準回路、高電位(浮遊)基準回路およびレベルシフト回路が、それぞれ設けられている。また、GND基準回路、浮遊基準回路およびレベルシフト回路の各形成領域は、SOI基板1の埋め込み酸化膜3とトレンチ4の側壁酸化膜4sにより、絶縁(誘電体)分離されている。尚、埋め込み酸化膜3の下はシリコン(Si)からなる厚い支持基板2となっており、SOI基板1は、基板の貼り合わせによって形成されたものである。
高電圧IC90のレベルシフト回路においては、低電位基準回路と高電位基準回路を繋ぐため、高耐圧の回路素子が必要である。図4に示したレベルシフト回路形成領域の横型MOSトランジスタ(LDMOS)9は、耐圧を確保するために、いわゆるSOI−RESURF構造が採用されている。
レベルシフト回路における高電圧は、図中に示すように、LDMOS9のドレインDに印加される。図4のLDMOS9では、断面の横方向の耐圧を、表面p型不純物層と埋め込み酸化膜3によって形成されるSOI−RESURF構造で確保する。また、断面の縦方向の耐圧については、非特許文献1に開示されているように、ドレインDとグランド(GND)間にかかる高電圧を、低濃度のSOI層1aと埋め込み酸化膜3で分圧して、SOI層1aにおける電界を緩和させる。
特許第3384399号公報 Proc. of ISPSD’04,p385,H.Akiyama, et al(三菱電機)
図4のLDMOS9のように、埋め込み酸化膜上のSOI層に、絶縁分離されたLDMOSが形成されてなる半導体装置では、断面の縦方向における耐圧を確保するために、SOI層の不純物濃度と厚さ及び埋め込み酸化膜の厚さを最適設計する必要がある。しかしながら、この方法で1000V以上の高耐圧を得ようとすると、5μmより厚い埋め込み酸化膜と、50μmより厚いSOI層が必要となる。一方、SOI基板の反り等の関係で、達成できる埋め込み酸化膜の上限膜厚は、4μm程度である。また、SOI層の厚さは、通常数μm〜20μm程度であり、SOI層の厚さを厚くすると、トレンチ加工負荷が増大する。このため、図4のレベルシフト回路形成領域におけるLDMOS9では、600V程度の耐圧確保が限界で、400V電源系やEV車等で要求される1200Vの耐圧は確保することができない。
上記問題を解決するため、以下に示す新規な半導体装置10が発明された。
図5は、半導体装置10の基本的な等価回路図である。図5に示す半導体装置10では、互いに絶縁分離されたn個(n≧2)のトランジスタ素子Tr〜Trが、グランド(GND)電位と所定電位Vsとの間で、GND電位側を第1段、所定電位Vs側を第n段として、順次直列接続されている。第1段のトランジスタ素子Trのゲート端子は、半導体装置10の入力端子となっている。半導体装置10の出力は、第n段のトランジスタ素子Trにおける所定電位Vs側の端子から、所定の抵抗値を有する負荷抵抗(図示省略)を介して取り出される。尚、出力信号は、基準電位が入力信号のGND電位から所定電位Vsに変換(レベルシフト)され、入力信号に対して反転した状態で取り出される。
図5の半導体装置10の動作においては、GND電位と所定電位Vsの間の電圧がn個のトランジスタ素子Tr〜Trにより分割され、第1段から第n段の各トランジスタ素子Tr〜Trが、それぞれの電圧範囲を分担している。従って、GND電位と所定電位Vsの間の電圧を1個のトランジスタ素子で分担する場合に較べて、各トランジスタ素子Tr〜Trに要求される耐圧は、略n分の1となる。従って、一般的な製造方法を用いて安価に製造でき、通常の耐圧を有するトランジスタ素子であっても、図5の半導体装置10においてトランジスタ素子の個数nを適宜設定することにより、全体として必要とされる高い耐圧を確保した半導体装置とすることができる。尚、図5の半導体装置10においては、n個のトランジスタ素子Tr〜Trが同じ耐圧を有することが好ましい。これにより、GND電位と所定電位の間に挿入された各トランジスタ素子Tr〜Trの分担する電圧(耐圧)を均等にして、最小化することができる。
具体的には、例えば、厚さ2μm程度の埋め込み酸化膜を有するSOI基板を用いて、150V程度の耐圧を有するMOS型トランジスタ素子は、一般的な製造方法により、容易に形成することができる。従って、絶縁分離トレンチによって互いに絶縁分離されたn個のトランジスタ素子Tr〜Trを上記SOI基板に形成し、直列接続されたn段のトランジスタ素子からなる半導体装置10とすることで、高耐圧の半導体装置を実現することができる。例えば、耐圧150Vのトランジスタ素子を、図5のように2段、4段、8段直列接続することで、それぞれ、耐圧300V、600V、1200Vの半導体装置10とすることができる。従って、耐圧に応じて、ウエハ構造(SOI層や埋め込み酸化膜の厚さ、SOI層の不純物濃度等)を変更する必要が無い。また、絶縁分離トレンチの加工深さも一定であり、必要耐圧が1000V以上であっても、容易に実現することができる。
以上のようにして、図5に示す半導体装置10は、必要とする任意の耐圧を確保することができ、一般的な半導体装置の製造方法を用いて安価に製造することのできる半導体装置とすることができる。
図6は、高電圧IC100におけるレベルシフト回路部と浮遊基準ゲート駆動回路部を詳細に示す図で、レベルシフト回路に適用された図5の基本的な等価回路図で示した半導体装置10の各回路素子の配置を示す図である。図7は、図6の一点鎖線A−Aにおける断面図で、各トランジスタ素子の構造を示す図である。
図7の断面図に示すように、高電圧IC100では、レベルシフト回路に適用された図5の半導体装置10におけるn個のトランジスタ素子Tr〜Trが、埋め込み酸化膜3を有するSOI構造半導体基板1のn導電型SOI層1aに形成されている。尚、埋め込み酸化膜3の下はシリコン(Si)からなる厚い支持基板2となっており、SOI基板1は、基板の貼り合わせによって形成されたものである。
n個のトランジスタ素子Tr〜Trは、LDMOS(Lateral Double−diffused MOS)型トランジスタ素子で、埋め込み酸化膜3に達する絶縁分離トレンチ4により、互いに絶縁分離されている。尚、図7に示す半導体装置10においては、浮遊基準ゲート駆動回路でのスイッチングに伴う高周波電位干渉をシールドするために、図4に示す高電圧IC90と異なり、SOI層1aにおける埋め込み酸化膜3上に高濃度不純物層1bが形成されている。
図6に示すように、高電圧IC100の半導体装置10においては、n重の絶縁分離トレンチT〜Tが形成され、互いに絶縁分離されたn個のトランジスタ素子Tr〜Trが、n重の絶縁分離トレンチT〜Tにより囲まれた各フィールド領域に、高段のトランジスタ素子を内に含むようにして、一個ずつ順次配置されている。これにより、GND電位から所定電位までの電圧増加に応じて、n重の絶縁分離トレンチにより囲まれた各フィールド領域に加わる電圧を均等化し、n個のトランジスタ素子Tr〜Trの担当電圧範囲をGND電位から所定電位に向かって順番に移行させることができる。尚、隣り合うトランジスタ素子同士の間には、n重の絶縁分離トレンチT〜Tが一つ存在するだけであるため、n個のトランジスタ素子Tr〜Trの接続配線が容易になると共に、占有面積を低減して、半導体装置10を小型化することができる。
上記したように、半導体装置10においては、n個のトランジスタ素子Tr〜Trが、通常の耐圧を有するトランジスタ素子であってよい。これによって、図6に示す高電圧IC100は、1200Vの耐圧を確保することができ、車載モータのインバータ駆動用や車載エアコンのインバータ駆動用に好適なの高電圧ICとなっている。尚、上記発明については、すでに特許出願(出願番号2005−227058、出願番号2005−291528、出願番号2005−318679、出願番号2006−051854)がなされている。
一方、図5に示す半導体装置10を高電圧IC100のレベルシフト回路部に適用するにあたって、高速の電圧サージ(dV/dtサージ)が入った場合の特性をシミュレートした結果、以下に示す問題があることが判明した。
図8は、図7の高電圧IC100を簡略化した図8(a)中に示す半導体装置101について、サージ入力時の各フィールド領域F1〜F6の電位をシミュレートした結果である。尚、図8(a)中に示す半導体装置101において、図7の高電圧IC100と同様の部分については、同じ符号を付した。また、図8(a)の半導体装置101において、グランド(GND)電位と電源電位の間に直列接続された分割抵抗は全て同じ抵抗値に設定し、支持基板2は浮遊状態としている。
図8(a),(b)の各グラフは、それぞれ、サージを印加してから30n秒後と1秒後における各フィールド領域F1〜F6の電位分布を示している。尚、各フィールド領域F1〜F6の電位分布の評価であるため、シミュレーションにおいて印加したサージ電圧は、実際のESD(Electro Static Discharge)サージより数桁小さい、50Vとしている。
図8(b)に示すように、サージを入力してから1秒後においては、GND電位と電源電位の間の分圧抵抗に従って、サージ電圧50Vが各フィールド領域F1〜F6に均等に分割され、電位分布が図のように均一になっている。これに対し、図8(a)に示すように、サージを入力してから30n秒後の過渡状態においては、電源電位に固定されたフィールド領域F6とフィールド領域F5の間、およびGND電位に固定されたフィールド領域F1とフィールド領域F2の間に大きな電位差が発生して、電位分布が図のように不均一になっている。このため、半導体装置101において実際に大きな電圧のESDサージが印加されると、電源電位フィールド領域F6とフィールド領域F5、およびGND電位フィールド領域F1とフィールド領域F2を分離する絶縁分離トレンチが破壊され易い。
そこで本発明は、多重に形成されたフィールド領域に直列接続されたトランジスタ素子が分散配置されてなる半導体装置であって、各トランジスタ素子に要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域間の絶縁分離トレンチが破壊し難い半導体装置を提供することを目的としている。
請求項1に記載の半導体装置は、埋め込み酸化膜を有するSOI基板のSOI層において、前記埋め込み酸化膜に達する第1絶縁分離トレンチが、基板面内において多重に形成され、前記多重に形成された第1絶縁分離トレンチにより、前記SOI層が、基板面内において互いに絶縁分離された多重のフィールド領域に分割されてなり、前記多重のフィールド領域のうち、所定のフィールド領域が、所定の電源電位に固定され、前記多重のフィールド領域のうち、所定のフィールド領域が、グランド(GND)電位に固定され、複数個のトランジスタ素子が、前記電源電位フィールド領域と前記GND電位フィールド領域間のフィールド領域に分散配置され、前記複数個のトランジスタ素子が、前記GND電位と電源電位の間で、順次直列接続されてなり、前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間が、m重(m≧2)の前記第1絶縁分離トレンチにより絶縁分離されてなり、前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間が、n重(n≧2)の前記第1絶縁分離トレンチにより絶縁分離されてなり、GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、前記所定の電源電位を浮遊電位として、前記レベルシフト回路に適用されることを特徴としている。
上記半導体装置においては、直列接続された複数個のトランジスタ素子により、GND電位と電源電位の間の電圧を分割してそれぞれのトランジスタ素子に分担させることができる。従って、GND電位と電源電位の間の電圧を1個のトランジスタ素子で分担する場合に較べて、各トランジスタ素子に要求されるDC耐圧を低減することができる。
また、上記半導体装置のような多重のフィールド領域を有する半導体装置においては、一般的に、高速の電圧サージ(dV/dtサージ)印加直後の過渡状態において、上記電源電位フィールド領域とそれに隣接するフィールド領域の間、および上記GND電位フィールド領域とそれに隣接するフィールド領域の間に、大きな電位差が発生する。これに対して、上記半導体装置においては、電源電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間、およびGND電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間に発生するサージ印加直後の大きな電位差を、それぞれ、m重(m≧2)の第1絶縁分離トレンチおよびn重(n≧2)の第1絶縁分離トレンチに分散して分担させることができる。このため、上記半導体装置にESD等の大きなサージ電圧が印加された場合であっても、各フィールド領域間の第1絶縁分離トレンチの破壊を防止することができる。
従って、上記半導体装置は、GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、前記所定の電源電位を浮遊電位として、前記レベルシフト回路に好適である。
以上のようにして、上記半導体装置は、多重に形成されたフィールド領域に直列接続されたトランジスタ素子が分散配置されてなる半導体装置であって、各トランジスタ素子に要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域間の絶縁分離トレンチが破壊し難い半導体装置とすることができる。
請求項2に記載のように、上記半導体装置においては、前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間にあるフィールド領域の基板面内における占有面積が、電源電位フィールド領域およびそれに隣接するトランジスタ素子配置フィールド領域の基板面内における占有面積より小さく設定されてなり、前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間にあるフィールド領域の基板面内における占有面積が、GND電位フィールド領域およびそれに隣接するトランジスタ素子配置フィールド領域の基板面内における占有面積より小さく設定されてなることが好ましい。
これによれば、前記m重の第1絶縁分離トレンチ間のフィールド領域およびn重の第1絶縁分離トレンチ間のフィールド領域直下における埋め込み酸化膜の寄生容量の影響が抑制され、m重の第1絶縁分離トレンチおよびn重の第1絶縁分離トレンチを、それぞれ、一体的に機能する一つの絶縁分離トレンチとみなすことができる。従って、m重の第1絶縁分離トレンチおよびn重の第1絶縁分離トレンチのうち、特定の一つの第1絶縁分離トレンチへ偏ったサージ電圧の印加を抑制することができ、m重の第1絶縁分離トレンチおよびn重の第1絶縁分離トレンチの破壊をより確実に防止することができる。
請求項3に記載のように、上記半導体装置においては、前記多重に形成された第1絶縁分離トレンチが、基板面内において、同一幅を有することが好ましい。
上記第1絶縁分離トレンチは、通常、トレンチ形成後に側壁酸化膜を形成し、多結晶シリコン等で埋め戻して形成される。従って、上記のように多重に形成された各第1絶縁分離トレンチの基板面内における幅を等しく設定することで、各第1絶縁分離トレンチの多結晶シリコン等による埋め戻しが確実で安定したものとなり、各第1絶縁分離トレンチの絶縁耐圧信頼性を高めることができる。
請求項4に記載の半導体装置は、埋め込み酸化膜を有するSOI基板のSOI層において、前記埋め込み酸化膜に達する第1絶縁分離トレンチが、基板面内において多重に形成され、前記第1絶縁分離トレンチにより、前記SOI層が、基板面内において互いに絶縁分離された多重のフィールド領域に分割されてなり、前記多重のフィールド領域のうち、所定のフィールド領域が、所定の電源電位に固定され、前記多重のフィールド領域のうち、所定のフィールド領域が、グランド(GND)電位に固定され、複数個のトランジスタ素子が、前記電源電位フィールド領域と前記GND電位フィールド領域間のフィールド領域に分散配置され、前記複数個のトランジスタ素子が、前記GND電位と電源電位の間で、順次直列接続されてなり、前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域を絶縁分離する前記第1絶縁分離トレンチ、および前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域を絶縁分離する前記第1絶縁分離トレンチが、それら以外の前記第1絶縁分離トレンチの基板面内における幅より大きな幅を有してなり、GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、前記所定の電源電位を浮遊電位として、前記レベルシフト回路に適用されることを特徴としている。
上記半導体装置も、GND電位と電源電位の間の電圧を直列接続された複数個のトランジスタ素子に分割して分担させることで、各トランジスタ素子に要求されるDC耐圧を低減することができる。
また、上記半導体装置においては、電源電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間、およびGND電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間に発生するサージ印加直後の大きな電位差を、それぞれ、他に較べて大きな幅を持った高い耐圧を有する第1絶縁分離トレンチに分担させることができる。このため、上記半導体装置にESD等の大きなサージ電圧が印加された場合であっても、各フィールド領域間の第1絶縁分離トレンチの破壊を防止することができる。
従って、上記半導体装置は、GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、前記所定の電源電位を浮遊電位として、前記レベルシフト回路に好適である。
以上のようにして、上記半導体装置は、多重に形成されたフィールド領域に直列接続されたトランジスタ素子が分散配置されてなる半導体装置であって、各トランジスタ素子に要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域間の絶縁分離トレンチが破壊し難い半導体装置とすることができる。
請求項5に記載のように、上記半導体装置においては、ショート(短絡)の確率を低減するため、基板面内において、前記電源電位フィールド領域が、前記GND電位フィールド領域より内側にあることが好ましい。
請求項6に記載のように、上記半導体装置においては、前記トランジスタ素子が、前記埋め込み酸化膜に達する第2絶縁分離トレンチにより取り囲まれてなることが好ましい。これにより、一つのフィールド領域に2個以上のトランジスタ素子を配置したり、一つのフィールド領域にトランジスタ素子と別の素子をいっしょに配置したりすることが可能になる。
上記半導体装置においては、例えば請求項7に記載のように、前記トランジスタ素子を、SOI構造半導体基板の使用に好適な横型MOSトランジスタ素子とすることができる。
上記半導体装置は、dV/dtサージ印加直後において、電源電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間、およびGND電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間に大きな電位差が発生することを許容した上で、これに耐えうる各フィールド領域間の第1絶縁分離トレンチを構成するようにしている。従って、フィールド領域に分散配置される複数個のトランジスタ素子は、直列接続によりDC耐圧を低減することができるものの、できるだけ高い耐圧を有することが望ましい。
このため、前記トランジスタ素子を横型MOSトランジスタ素子とする場合には、請求項8に記載のように、前記横型MOSトランジスタ素子が、比較的高い耐圧を有するリサーフ構造の横型MOSトランジスタ素子であることが好ましい。
また、請求項9に記載のように、前記電源電位フィールド領域に隣接する前記トランジスタ素子配置フィールド領域直下にある前記埋め込み酸化膜、および前記GND電位フィールド領域に隣接する前記トランジスタ素子配置フィールド領域直下にある前記埋め込み酸化膜が、それら以外のフィールド領域直下にある埋め込み酸化膜の膜厚より大きな膜厚を有する構造として、高い耐圧を確保するようにしてもよい。
前記高電圧ICは、例えば、請求項1に記載のように、車載モータのインバータ駆動用の高電圧ICであってもよいし、請求項1に記載のように、車載エアコンのインバータ駆動用の高電圧ICであってもよい。
以下、本発明を実施するための最良の形態を、図に基づいて説明する。
(第1の実施形態)
図1は本実施形態における半導体装置の一例で、(a)は半導体装置110の各回路素子の配置を示す上面図であり、(b)は(a)の一点鎖線B−Bにおける断面を簡略化して示した図である。尚、図1(a),(b)に示す半導体装置110において、図6および図7に示す高電圧IC100と同様の部分については、同じ符号を付した。
図1(a),(b)に示すように、半導体装置110では、埋め込み酸化膜3を有するSOI基板1のSOI層1aにおいて、図中に太線で示した埋め込み酸化膜3に達する第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbが、基板面内において多重に形成されている。この多重に形成された第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbにより、埋め込み酸化膜3上のSOI層1aは、基板面内において互いに絶縁分離された多重のフィールド領域F,F1ab,F〜F,FEab,Fに分割されている。
第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbは、通常、トレンチ形成後に側壁酸化膜を形成し、多結晶シリコン等で埋め戻して形成される。この埋め込み性を均一にするため、図1(a),(b)の半導体装置110においては、多重に形成された各第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbの基板面内における幅を等しく設定している。これにより、各第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbの多結晶シリコン等による埋め戻しが確実で安定したものとなり、各第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbの絶縁耐圧信頼性を高めることができる。
図1(a)において、符号Pを付した部分は、電源電位を接続するパッド電極である。多重のフィールド領域F,F1ab,F〜F,FEab,Fのうち、一番内側にあるフィールド領域Fは、所定の電源電位に固定されている。図1(a)において、符号Pを付した部分は、グランド(GND)電位を接続するパッド電極である。多重のフィールド領域F,F1ab,F〜F,FEab,Fのうち、一番外側にあるフィールド領域Fは、GND電位に固定されている。尚、半導体装置110においては、ショート(短絡)の確率を低減するため、基板面内において、電源電位フィールド領Fが、GND電位フィールド領域Fより内側にあるようにしている。
図1(a)に示すように、半導体装置110では、6個のトランジスタ素子Tr〜Trが、電源電位フィールド領域FとGND電位フィールド領域F間のフィールド領域F,F1ab,F〜F,FEab,Fに分散配置されている。6個のトランジスタ素子Tr〜Trは、SOI構造半導体基板1の使用に好適な、図7に示すトランジスタ素子Tr〜Trと同様の横型MOSトランジスタ素子(LDMOS)である。半導体装置110の6個のトランジスタ素子Tr〜Trは、図1(a)中に太線で囲って示したように、第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbと同様の埋め込み酸化膜3に達する第2絶縁分離トレンチにより取り囲まれている。これにより、一つのフィールド領域に2個以上のトランジスタ素子を配置したり、一つのフィールド領域にトランジスタ素子と別の素子をいっしょに配置したりすることが可能になる。尚、図示を省略しているが、6個のトランジスタ素子Tr〜Trは、図5および図6に示すように、GND電位と電源電位の間で順次直列接続されている。また、図1(a)において、符号Rを付した部分は基板1上に形成された抵抗素子であり、符号Cを付した部分は基板1上に形成された容量素子である。この抵抗素子Rと容量素子は並列接続されて一組の対をなしており、6組の抵抗素子Rと容量素子Cからなる対が、6個のトランジスタ素子Tr〜Trと同様に、GND電位と電源電位の間で順次直列接続されている。
図1(a),(b)の半導体装置110においては、図5の半導体装置10において詳述したように、直列接続された6個のトランジスタ素子Tr〜Trにより、GND電位と電源電位の間の電圧を分割してそれぞれのトランジスタ素子Tr〜Trに分担させることができる。従って、GND電位と電源電位の間の電圧を1個のトランジスタ素子で分担する場合に較べて、各トランジスタ素子Tr〜Trに要求されるDC耐圧を低減することができる。
一方、図1(a),(b)に示す半導体装置110においては、図6〜図8に示す半導体装置100,101と異なり、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域F5の間が、2重の第1絶縁分離トレンチTEa,TEbにより絶縁分離されている。同様に、GND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間も、2重の第1絶縁分離トレンチT1a,T1bにより絶縁分離されている。
半導体装置100,101,110のような多重のフィールド領域を有する半導体装置においては、一般的に、高速の電圧サージ(dV/dtサージ)印加直後の過渡状態において、図8の半導体装置101で説明したように、電源電位フィールド領域F6とそれに隣接するフィールド領域F5の間、およびGND電位フィールド領域F1とそれに隣接するフィールド領域F2の間に、大きな電位差が発生する。これに対して、図1(a),(b)の半導体装置110においては、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間、およびGND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間に発生するサージ印加直後の大きな電位差を、それぞれ、2重の第1絶縁分離トレンチTEa,TEbおよび2重の第1絶縁分離トレンチT1a,T1bに分散して分担させることができる。このため、半導体装置110にESD等の大きなサージ電圧が印加された場合であっても、各フィールド領域F,F1ab,F〜F,FEab,F間の第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbの破壊を防止することができる。
特に、半導体装置110においては、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間にあるフィールド領域FEabの基板面内における占有面積が、電源電位フィールド領域Fおよびそれに隣接するトランジスタ素子配置フィールド領域Fの基板面内における占有面積より小さく設定されている。同様に、GND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間にあるフィールド領域F1abの基板面内における占有面積についても、GND電位フィールド領域Fおよびそれに隣接するトランジスタ素子配置フィールド領域Fの基板面内における占有面積より小さく設定されている。
これにより、2重の第1絶縁分離トレンチTEa,TEb間のフィールド領域FEabおよび2重の第1絶縁分離トレンチT1a,T1b間のフィールド領域F1ab直下における埋め込み酸化膜の寄生容量の影響が抑制され、2重の第1絶縁分離トレンチTEa,TEbおよび2重の第1絶縁分離トレンチT1a,T1bを、それぞれ、一体的に機能する一つの絶縁分離トレンチとみなすことができる。従って、2重の第1絶縁分離トレンチTEa,TEbおよび2重の第1絶縁分離トレンチT1a,T1bのうち、特定の一つの第1絶縁分離トレンチへ偏ったサージ電圧の印加を抑制することができ、2重の第1絶縁分離トレンチTEa,TEbおよび2重の第1絶縁分離トレンチT1a,T1bの破壊をより確実に防止することができる。
以上の効果を具体的な例で説明すると、シミュレーション結果によれば、図8(a)に示したように、電源電位フィールド領域F6とそれに隣接するフィールド領域F5の間、およびGND電位フィールド領域F1およびそれに隣接するトランジスタ素子配置フィールド領域F2の間には、サージの印加直後において、ドレイン出力の35〜60%の電位差(電圧)が発生している。これは、出力を1000Vとすれば、350〜600Vの電圧に相当する。一方、通常使われる第1絶縁分離トレンチの酸化膜厚は1μm程度であり、この場合の絶縁分離耐圧は400V程度である。従って、図8(a)に示す半導体装置101のように、1本の第1絶縁分離トレンチでは絶縁破壊が起きるが、図1(a),(b)に示す半導体装置110のように2本の第1絶縁分離トレンチTEa,TEbおよびT1a,T1bとすることで、それぞれの第1絶縁分離トレンチTEa,TEb,T1a,T1bに印加される電圧は半分の300V以下となり、各第1絶縁分離トレンチTEa,TEb,T1a,T1bの酸化膜における絶縁破壊が抑制される。
以上のようにして、図1(a),(b)に示す半導体装置110は、多重に形成されたフィールド領域F,F1ab,F〜F,FEab,Fに直列接続されたトランジスタ素子Tr〜Trが分散配置されてなる半導体装置であって、各トランジスタ素子Tr〜Trに要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域F,F1ab,F〜F,FEab,F間の絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbが破壊し難い半導体装置となっている。
尚、図1(a),(b)の半導体装置110では、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域F5の間が、2重の第1絶縁分離トレンチTEa,TEbにより絶縁分離されていたが、2重に限らず、m重(m≧2)の第1絶縁分離トレンチにより絶縁分離されていてよい。同様に、GND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間も、2重に限らず、n重(n≧2)の第1絶縁分離トレンチにより絶縁分離されていてよい。また、多重の第1絶縁分離トレンチにより互いに絶縁分離された多重のフィールド領域に分散配置されるトランジスタ素子は、6個に限らず、任意の複数個であってよい。
次に、多重に形成されたフィールド領域に分散配置するトランジスタ素子に関して、より好ましい構造を説明する。図1(a),(b)の半導体装置110は、dV/dtサージ印加直後において、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域F5の間、およびGND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間に大きな電位差が発生することを許容した上で、これに耐えうる各フィールド領域F,F1ab,F〜F,FEab,F間の第1絶縁分離トレンチT,T1a,T1b,T〜T,TEa,TEbを構成するようにしている。従って、フィールド領域F,F1ab,F〜F,FEab,Fに分散配置される複数個のトランジスタ素子Tr〜Trは、直列接続によりDC耐圧を低減することができるものの、できるだけ高い耐圧を有することが望ましい。
図2(a),(b)は、上記多重に形成されたフィールド領域に分散配置するのにより好ましい、高い耐圧を有するトランジスタ素子の例で、それぞれ、トランジスタ素子Tra,Trbを部分的な断面で示した斜視図である。尚、図2(a),(b)に示すトランジスタ素子Tra,Trbにおいて、図7に示すトランジスタ素子Tr〜Trと同様の部分については、同じ符号を付した。また、図2(a),(b)に示す符号4の部分は、トランジスタ素子Tra,Trbを周りから絶縁分離するための前述した第2絶縁分離トレンチである。
図2(a)に示すトランジスタ素子Traは、比較的高い耐圧を有するリサーフ(RESURF,Reduced Surface electric field)構造の横型MOSトランジスタ素子である。このリサーフ構造のトランジスタ素子Traでは、埋め込み酸化膜3上に形成されたp型拡散領域5,6とドレイン側のn型拡散領域7とで、サージ電圧印加時にSOI層が完全に空乏化されるため、通常の図7に示す横型MOSトランジスタ素子Tr〜Trに較べて、高い耐圧を確保することができる。
以上の効果を具体的な例で説明すると、150V程度の耐圧に設計した通常の横型MOSトランジスタ素子(LDMOS)を図1(a),(b)に示す半導体装置110に用いると、初段と最終段のLDMOSTr,Trでアバランシェが起き、次々とLDMOSTr〜Trのブレークが連続して起きる。サージ電流が各LDMOSTr〜TrのSOA(安全動作域)以上に達すれば、サージのエネルギーで最も弱いLDMOSが破壊される。しかし、図2(a)に示すRESURF構造のLDMOSTraは、600V以上の耐圧設計が可能であり、これを図1(a),(b)に示す半導体装置110の初段と最終段のLDMOSTr,Trに用いると、LDMOSTr〜Trのアバランシェは起きない。従って、高電圧のサージが印加されても、LDMOSTr〜Trの破壊を防止することができる。
図2(b)に示すトランジスタ素子Trbは、図1(a)に示す電源電位フィールド領域Fに隣接するトランジスタ素子配置フィールド領域F、あるいはGND電位フィールド領域Fに隣接するトランジスタ素子配置フィールド領域Fに配置するトランジスタ素子である。このトランジスタ素子Trbが配置されるフィールド領域F,F直下にある埋め込み酸化膜3aは、それら以外のフィールド領域直下にある埋め込み酸化膜3の膜厚より大きな膜厚を有している。このように、特定のフィールド領域直下にある埋め込み酸化膜の膜厚を周囲のそれより大きくすることで、このフィールド領域に配置するトランジスタ素子の耐圧を高めるようにしてもよい。
(第2の実施形態)
第1実施形態の半導体装置は、電源電位フィールド領域あるいはGND電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間を、2重以上の第1絶縁分離トレンチにより絶縁分離した半導体装置であった。本実施形態の半導体装置は、電源電位フィールド領域あるいはGND電位フィールド領域とそれに隣接するトランジスタ素子配置フィールド領域の間を、他より大きな幅を有する第1絶縁分離トレンチにより絶縁分離する半導体装置に関する。
図3は本実施形態における半導体装置の一例で、(a)は半導体装置120の各回路素子の配置を示す上面図であり、(b)は(a)の一点鎖線C−Cにおける断面を簡略化して示した図である。尚、図3(a),(b)に示す半導体装置120において、図1(a),(b)に示す半導体装置110と同様の部分については、同じ符号を付した。
図3(a),(b)に示すように、半導体装置120では、埋め込み酸化膜3を有するSOI基板1のSOI層1aにおいて、埋め込み酸化膜3に達する第1絶縁分離トレンチT,T1w,T〜T,TEwが、基板面内において多重に形成されている。半導体装置120では、図中で塗りパターンを変えて識別したように、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fを絶縁分離する第1絶縁分離トレンチTEw、およびGND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fを絶縁分離する第1絶縁分離トレンチT1wが、それら以外の第1絶縁分離トレンチT,T〜Tの基板面内における幅waより大きな幅wbを有している。図1(a),(b)の半導体装置110と図3(a),(b)の半導体装置120を比較してわかるように、半導体装置120における大きな幅wbを持った第1絶縁分離トレンチTEw,T1wは、それぞれ、半導体装置110における2重の第1絶縁分離トレンチTEa,TEbおよびT1a,T1bとその間に挟まれたフィールド領域F1abおよびFEabを置き換えた構造となっている。尚、図3(a),(b)の半導体装置120では、大きな幅wbを持った第1絶縁分離トレンチTEw,T1wを確実に埋め込むため、BPSG(Boron-doped Phospho-Silicate Glass)等を用いて平坦に埋め込むことが好ましい。
図3(a),(b)に示す半導体装置120も、GND電位と電源電位の間の電圧を直列接続された6個のトランジスタ素子Tr〜Trに分割して分担させることで、各トランジスタ素子Tr〜Trに要求されるDC耐圧を低減することができる。また、半導体装置120においては、電源電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間、およびGND電位フィールド領域Fとそれに隣接するトランジスタ素子配置フィールド領域Fの間に発生するサージ印加直後の大きな電位差を、それぞれ、他に較べて大きな幅wbを持った高い耐圧を有する第1絶縁分離トレンチTEw,T1wに分担させることができる。このため、半導体装置120にESD等の大きなサージ電圧が印加された場合であっても、各フィールド領域F,F〜F,F間の第1絶縁分離トレンチT,T1w,T〜T,TEwの破壊を防止することができる。
以上のようにして、図3(a),(b)に示す半導体装置120も、多重に形成されたフィールド領域F,F〜F,Fに直列接続されたトランジスタ素子Tr〜Trが分散配置されてなる半導体装置であって、各トランジスタ素子Tr〜Trに要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域F,F〜F,F間の絶縁分離トレンチT,T1w,T〜T,TEwが破壊し難い半導体装置となっている。尚、図3(a),(b)の半導体装置120においても、多重のフィールド領域に分散配置されるトランジスタ素子は、6個に限らず任意の複数個であってよいことはいうまでもない。
以上のように、上記半導体装置110,120は、各トランジスタ素子に要求されるDC耐圧を低減することができると共に、高電圧のdV/dtサージが印加されても各フィールド領域間の絶縁分離トレンチが破壊し難い半導体装置となっている。
上記半導体装置110,120は、例えば、GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、およびGND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、所定の電源電位を浮遊電位とする、前記レベルシフト回路に好適である。前記高電圧ICは、例えば、車載モータのインバータ駆動用の高電圧ICであってもよいし、車載エアコンのインバータ駆動用の高電圧ICであってもよい。また、これに限らず、民生・産業用モータ制御分野にも適用することができる。
第1実施形態における半導体装置の一例で、(a)は半導体装置110の各回路素子の配置を示す上面図であり、(b)は(a)の一点鎖線B−Bにおける断面を簡略化して示した図である。 (a),(b)は、高い耐圧を有するトランジスタ素子の例で、それぞれ、トランジスタ素子Tra,Trbを部分的な断面で示した斜視図である。 第2本実施形態における半導体装置の一例で、(a)は半導体装置120の各回路素子の配置を示す上面図であり、(b)は(a)の一点鎖線C−Cにおける断面を簡略化して示した図である。 SOI基板とトレンチ分離を用いた、従来の高電圧IC90の模式的な断面図を示す。 半導体装置10の基本的な等価回路図である。 高電圧IC100におけるレベルシフト回路部と浮遊基準ゲート駆動回路部を詳細に示す図で、レベルシフト回路に適用された半導体装置10の各回路素子の配置を示す図である。 図6の一点鎖線A−Aにおける断面図で、各トランジスタ素子の構造を示す図である。 高電圧IC100を簡略化した半導体装置101について、サージ入力時の各フィールド領域F1〜F6の電位をシミュレートした結果で、(a),(b)の各グラフは、それぞれ、サージを印加してから30n秒後と1秒後における電位分布を示している。
符号の説明
10,90,100,101,110,120 半導体装置
,T1a,T1b,T1w,T〜T,TEa,TEb,TEw 第1絶縁分離トレンチ
,F5 (電源電位)フィールド領域
,F1 (GND電位)フィールド領域
1ab,F〜F,FEab,F2〜F5 フィールド領域
Tr〜Tr,Tra,Trb トランジスタ素子
電源電位を接続するパッド電極
グランド(GND)電位を接続するパッド電極
R 抵抗素子
C 容量素子
1 SOI基板
1a SOI層
2 支持基板
3 埋め込み酸化膜

Claims (11)

  1. 埋め込み酸化膜を有するSOI基板のSOI層において、前記埋め込み酸化膜に達する第1絶縁分離トレンチが、基板面内において多重に形成され、
    前記多重に形成された第1絶縁分離トレンチにより、前記SOI層が、基板面内において互いに絶縁分離された多重のフィールド領域に分割されてなり、
    前記多重のフィールド領域のうち、所定のフィールド領域が、所定の電源電位に固定され、
    前記多重のフィールド領域のうち、所定のフィールド領域が、グランド(GND)電位に固定され、
    複数個のトランジスタ素子が、前記電源電位フィールド領域と前記GND電位フィールド領域間のフィールド領域に分散配置され、
    前記複数個のトランジスタ素子が、前記GND電位と電源電位の間で、順次直列接続されてなり、
    前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間が、m重(m≧2)の前記第1絶縁分離トレンチにより絶縁分離されてなり、
    前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間が、n重(n≧2)の前記第1絶縁分離トレンチにより絶縁分離されてなり、
    GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、
    前記所定の電源電位を浮遊電位として、前記レベルシフト回路に適用されることを特徴とする半導体装置。
  2. 前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間にあるフィールド領域の基板面内における占有面積が、電源電位フィールド領域およびそれに隣接するトランジスタ素子配置フィールド領域の基板面内における占有面積より小さく設定されてなり、
    前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域の間にあるフィールド領域の基板面内における占有面積が、GND電位フィールド領域およびそれに隣接するトランジスタ素子配置フィールド領域の基板面内における占有面積より小さく設定されてなることを特徴とする請求項1に記載の半導体装置。
  3. 前記多重に形成された第1絶縁分離トレンチが、基板面内において、同一幅を有することを特徴とする請求項1または2に記載の半導体装置。
  4. 埋め込み酸化膜を有するSOI基板のSOI層において、前記埋め込み酸化膜に達する第1絶縁分離トレンチが、基板面内において多重に形成され、
    前記第1絶縁分離トレンチにより、前記SOI層が、基板面内において互いに絶縁分離された多重のフィールド領域に分割されてなり、
    前記多重のフィールド領域のうち、所定のフィールド領域が、所定の電源電位に固定され、
    前記多重のフィールド領域のうち、所定のフィールド領域が、グランド(GND)電位に固定され、
    複数個のトランジスタ素子が、前記電源電位フィールド領域と前記GND電位フィールド領域間のフィールド領域に分散配置され、
    前記複数個のトランジスタ素子が、前記GND電位と電源電位の間で、順次直列接続されてなり、
    前記電源電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域を絶縁分離する前記第1絶縁分離トレンチ、および前記GND電位フィールド領域とそれに隣接する前記トランジスタ素子配置フィールド領域を絶縁分離する前記第1絶縁分離トレンチが、それら以外の前記第1絶縁分離トレンチの基板面内における幅より大きな幅を有してなり、
    GND電位を基準とするGND基準ゲート駆動回路、浮遊電位を基準とする浮遊基準ゲート駆動回路、および前記GND電位と浮遊電位の間で入出力信号をレベルシフトさせるレベルシフト回路を有してなるインバータ駆動用の高電圧ICにおいて、
    前記所定の電源電位を浮遊電位として、前記レベルシフト回路に適用されることを特徴とする半導体装置。
  5. 基板面内において、前記電源電位フィールド領域が、前記GND電位フィールド領域より内側にあることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
  6. 前記トランジスタ素子が、前記埋め込み酸化膜に達する第2絶縁分離トレンチにより取り囲まれてなることを特徴とする請求項1乃至5のいずれか一項に記載の半導体装置。
  7. 前記トランジスタ素子が、横型MOSトランジスタ素子であることを特徴とする請求項1乃至6のいずれか一項に記載の半導体装置。
  8. 前記横型MOSトランジスタ素子が、リサーフ構造を有する横型MOSトランジスタ素子であることを特徴とする請求項7に記載の半導体装置。
  9. 前記電源電位フィールド領域に隣接する前記トランジスタ素子配置フィールド領域直下にある前記埋め込み酸化膜、および前記GND電位フィールド領域に隣接する前記トランジスタ素子配置フィールド領域直下にある埋め込み酸化膜が、それら以外のフィールド領域直下にある埋め込み酸化膜の膜厚より大きな膜厚を有することを特徴とする請求項1乃至8のいずれか一項に記載の半導体装置。
  10. 前記高電圧ICが、車載モータのインバータ駆動用の高電圧ICであることを特徴とする請求項1乃至9のいずれか一項に記載の半導体装置。
  11. 前記高電圧ICが、車載エアコンのインバータ駆動用の高電圧ICであることを特徴とする請求項1乃至9のいずれか一項に記載の半導体装置。
JP2006112536A 2006-04-14 2006-04-14 半導体装置 Expired - Fee Related JP4935164B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112536A JP4935164B2 (ja) 2006-04-14 2006-04-14 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112536A JP4935164B2 (ja) 2006-04-14 2006-04-14 半導体装置

Publications (2)

Publication Number Publication Date
JP2007287883A JP2007287883A (ja) 2007-11-01
JP4935164B2 true JP4935164B2 (ja) 2012-05-23

Family

ID=38759374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112536A Expired - Fee Related JP4935164B2 (ja) 2006-04-14 2006-04-14 半導体装置

Country Status (1)

Country Link
JP (1) JP4935164B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160167B2 (ja) * 2018-12-28 2022-10-25 三菱電機株式会社 半導体装置
EP3693993A1 (en) * 2019-02-11 2020-08-12 Infineon Technologies AG Semiconductor device including protection structure and manufacturing method therefore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026137A (ja) * 2000-07-05 2002-01-25 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP4326835B2 (ja) * 2003-05-20 2009-09-09 三菱電機株式会社 半導体装置、半導体装置の製造方法及び半導体装置の製造プロセス評価方法
JP4654574B2 (ja) * 2003-10-20 2011-03-23 トヨタ自動車株式会社 半導体装置

Also Published As

Publication number Publication date
JP2007287883A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
US8269305B2 (en) High-voltage semiconductor device
JP4706381B2 (ja) 半導体装置
JP4844089B2 (ja) 半導体装置
US6439514B1 (en) Semiconductor device with elements surrounded by trenches
US9640526B2 (en) Semiconductor device
JP6458878B2 (ja) 半導体装置
US20090212373A1 (en) Semiconductor device
JP3730394B2 (ja) 高耐圧半導体装置
US5889310A (en) Semiconductor device with high breakdown voltage island region
JP4923686B2 (ja) 半導体装置
JP4935164B2 (ja) 半導体装置
KR101505313B1 (ko) 반도체 장치 및 그것을 이용한 반도체 집적 회로 장치
JP4952004B2 (ja) 半導体装置
US10497698B2 (en) Semiconductor circuit and semiconductor device
KR101009305B1 (ko) 반도체 칩의 장변을 따라 연장된 정전기 보호 소자를 갖는반도체 디바이스
JP4983333B2 (ja) 半導体装置
JPH1065018A (ja) 半導体装置
CN100456475C (zh) 半导体器件
JP4765898B2 (ja) 半導体装置の選別方法及び半導体装置
JP2007103672A (ja) 半導体装置
JP4682533B2 (ja) 半導体装置
JP4972977B2 (ja) 半導体装置
JP5458760B2 (ja) 半導体装置
JP2010114298A (ja) 高耐圧半導体装置
JP2023108349A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees