JP4923370B2 - 照明光学系、露光装置、及びマイクロデバイスの製造方法 - Google Patents

照明光学系、露光装置、及びマイクロデバイスの製造方法 Download PDF

Info

Publication number
JP4923370B2
JP4923370B2 JP2001283637A JP2001283637A JP4923370B2 JP 4923370 B2 JP4923370 B2 JP 4923370B2 JP 2001283637 A JP2001283637 A JP 2001283637A JP 2001283637 A JP2001283637 A JP 2001283637A JP 4923370 B2 JP4923370 B2 JP 4923370B2
Authority
JP
Japan
Prior art keywords
mask
optical system
filter
light
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283637A
Other languages
English (en)
Other versions
JP2003092253A5 (ja
JP2003092253A (ja
Inventor
秀基 小松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001283637A priority Critical patent/JP4923370B2/ja
Priority to TW091118266A priority patent/TW583720B/zh
Priority to CN02142427A priority patent/CN1409175A/zh
Priority to US10/244,377 priority patent/US6819403B2/en
Priority to KR1020020056824A priority patent/KR20030024638A/ko
Publication of JP2003092253A publication Critical patent/JP2003092253A/ja
Publication of JP2003092253A5 publication Critical patent/JP2003092253A5/ja
Application granted granted Critical
Publication of JP4923370B2 publication Critical patent/JP4923370B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、照明光学系、露光装置、及びマイクロデバイスの製造方法に係り、特に、マスク又はレチクル等の被照射物体を均一な照度分布を有する照明光で照明する照明光学系、当該照明光学系を備え、半導体素子、液晶表示素子、撮像素子、薄膜磁気ヘッド、その他のマイクロデバイスの製造工程において用いられる露光装置、及び当該露光装置を用いたマイクロデバイスの製造方法に関する。
【0002】
【従来の技術】
半導体素子、液晶表示素子、撮像素子、薄膜磁気ヘッド、その他のマイクロデバイスの製造工程の1つであるフォトリソグラフィ工程においては、マスクやレチクル(以下、これらを総称する場合は、マスクと総称する)に形成されたパターンを、フォレジスト等の感光剤が塗布されたウェハやガラスプレート等(以下、これらを総称する場合は、基板と称する)に転写する露光装置が用いられる。この露光装置は均一な照度分布の照明光でマスクを照明するために、エキシマレーザ等の光源から射出された光の照度分布を均一化するとともに所定の形状に整形するための照明光学系を備える。
【0003】
この照明光学系から射出されるマスクを照明する光、ひいては基板上に照射される光の照度がマスク又は基板の面内において変化する分布を有していると、基板上に照射される光の光量がその照度分布に応じて変化するため、基板に形成されるパターンの線幅がばらついてしまう。特に、上述したマイクロデバイスの1つである半導体素子の内のロジック系の半導体素子を製造する場合には、パターンの線幅の均一性が高く要求される。これは、パターンの線幅がばらつくと動作速度が低下するためである。例えば、近年のCPU(中央処理装置)は、数GHzの動作周波数で動作するものが主流であり、今後益々動作周波数の向上が図られるものと考えられるため、パターンの線幅の均一化は極めて重要となる。
【0004】
従来の露光装置は、基板上に照射される光の光量を基板面内で均一にするために、ディストーションを有するコンデンサーレンズを照明光学系内に備え、その値を可変することで基板面内における光量の均一性を達成していた。以下、コンデンサーレンズのディストーションを可変させて照度分布を変化させる原理について図11を参照しつつ簡単に説明する。図11は、コンデンサーレンズにより照度分布を調整する原理を説明するための図である。
【0005】
図11において、P1は光源であり、100はコンデンサーレンズであり、P2は被照射面である。この被照射面P2は、例えばマスクのパターン形成面である。いま、光源P1から射出される光束の射出角をθ(光軸AXに平行に射出される光束の射出角をθ=0とする)、コンデンサーレンズ100の焦点距離をf、光源P1から射出角θで射出された光束が被照明面P2に入射する位置の光軸AXからの距離をhとする。
【0006】
一般のケーラー照明において、コンデンサーレンズの射影関係は一般に以下の(1)式で表される。
h=f・g(θ) ……(1)
上記(1)式中の、g(θ)はθの関数である。
ここで、光源P1として完全拡散面(測光学上の理想的な面光源)を想定すると、g(θ)=sinθのときに被照明面P2の照度が均一となる。このため、g(θ)=sinθのときには、コンデンサーレンズ100のディストーションが零の状態であるとする。
【0007】
まず、コンデンサーレンズ100のディストーションが零の状態にある場合を考える。この場合に光源P1から微小立体角dΩをもって射出された光束が被照射面P2上になす微小面積dSは、以下の(2)式で表される。
Figure 0004923370
ここで、ψは光軸AX周りの回転角である。
【0008】
次に、コンデンサーレンズ100にディストーションがある場合を考える。いま、ある像高でn%のディストーションがあるという状態の射影関係は以下の(3)式で表される。
h=fsinθ(1−n/100)……(3)
さて、実際のコンデンサーレンズ100は一般にさほど複雑な形状をしていないため、3次以上の収差はあまり発生しない。そのため、ディストーションも3次収差の範囲で考察すれば良い。すると、ディストーションは像高の二乗に比例するため、n=αsin2θと表すことができる。尚、αは定数である。
この場合に光源P1から微小立体角dΩをもって射出された光束が被照射面P2上になす微小面積dSは、以下の(4)式で表される。
Figure 0004923370
【0009】
上記(2)式はコンデンサーレンズ100のディストーションが零の状態にある場合に、光源P1から微小立体角dΩをもって射出された光束が被照射面P2上になす微小面積dSを表しており、(4)式はコンデンサーレンズ100のディストーションが非零の状態にある場合に、光源P1から微小立体角dΩをもって射出された光束が被照射面P2上になす微小面積dSを表している。
【0010】
ここで、上記(2)式及び(4)式では、光源P1から同一の微小立体角dΩをもって射出された光束が被照射面P2上になす微小面積dSを求めた訳であるが、微小立体角dΩが同一であるのにもかかわらず、ディストーションがある場合の微小面積dhがディストーションが無い場合の微小面積dhよりも小さいということは、その分照度が高くなることを意味する。
【0011】
いま、(2)式と(4)式との右辺の比をとると、ディストーションによる微小面積dSの縮小率が、
1−4αsin2θ/100+3α2sin4θ/10000
であることが分かる。この式の内、ディストーションが極端に大きくない、即ちα≪1である場合には、「+3α2sin4θ/10000」という項は無視できるため、実質的にはディストーションによる微小面積dSの縮小率は、
1−4αsin2θ/100 ……(5)
であるといえる。光源から射出する微小立体角が同一であるにも拘わらず、照射する面積が小さいということは、それだけ照度が上がるということを意味する。即ち、(5)式より、コンデンサーレンズにディストーションがある場合には、sinθ(∝像高)の二乗に比例した照度分布が発生することが分かる。また、この照度分布の2次成分の発生量はα、即ちディストーションの量に比例することも、(5)式から理解されよう。
【0012】
従来は以上の原理を用い、コンデンサレンズのディストーションの量を変化させることによって照度分布を調整していた。尚、以上の説明では、コンデンサーレンズ100のディストーションの量を変化させたときの、照度ムラの2次成分を変化させる場合に着目して説明したが、当然ながら、照度分布の1次成分(像高に比例した成分)も他の種々の調整手段によって2次成分と併せて調整されていた。
【0013】
【発明が解決しようとする課題】
ところで、従来の露光装置は、上述のようにコンデンサーレンズのディストーションの量を可変することで、基板上に照射される光の照度分布を調整していたが、近年ではコンデンサーレンズのディストーションの量を変化させることが、線幅均一性からの要請により難しくなっている。その理由は、コンデンサーレンズのディストーションの量を変化させると照明光の像高毎の開口数が変化してしまうためである。この点の詳細については、例えば特開平9−22869号公報を参照されたい。
【0014】
均一な線幅のパターンを形成するためには、基板上に照射される光の基板面内における照度分布を均一化する必要があることは前述したとおりであるが、更に、基板に光が照射される露光領域内において開口数が均一であることが必要となる。これは、露光領域内において開口数が均一でない場合、即ち開口数が露光領域内の位置に依存して変化する場合には、空間コヒーレンスが不均一になり、その結果として基板上に形成されるパターンの線幅が不均一になるからである。
【0015】
このため、近年の露光装置では、コンデンサーレンズのディストーションを変化させずに、照度分布の2次成分を調整する機構が求められている。しかしながら、この要請を満足する機構は従来存在しなかったため、従来は様々な透過率分布を有するフィルタを複数用意し、これを交換することで極力コンデンサーレンズのディストーションを変化させないようにしつつも、最後の微調整では公差の範囲内でコンデンサーレンズのディストーションを僅かに変化させて調整を行うという、極めて面倒な方法により照度分布の調整を行っていた。
【0016】
本発明は上記事情に鑑みてなされたものであり、コンデンサーレンズのディストーションを全く変化させることなしに、照度分布の2次成分を無段階に調整することができる照明光学系、当該照明光学系を備える露光装置、及び当該露光装置を用いて微細なパターンを形成することにより製造されるマイクロデバイスの製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の観点による照明光学系は、光源(1)から射出される光(IL)を被照射物体(R)に照射する照明光学系において、前記光源(1)から射出される光(IL)の光路(IAX)上に、当該光路(IAX)を横切る方向に3次以上の関数を含む関数で表される透過率分布を有する少なくとも2つのフィルタ部材(14a、14b)を備えることを特徴としている。
この発明によれば、光路を横切る方向に3次以上の関数を含む関数で表される透過率分布を有するフィルタを少なくとも2つ光路上に配置し、この透過率分布を組み合わせることで光路を横切る方向に2次関数的に変化する透過率分布を得ているため、フィルタのみで照度分布の2次成分を調整することができる。このように、フィルタのみで照度分布の2次成分を調整できるため、従来照度分布の2次成分を調整するために必要であったコンデンサーレンズのディストーションを全く変化させる必要が無くなる。この結果として、コンデンサーレンズのディストーション変化による照明光の像高毎の開口数の変化が無くなり、しかも照度分布の2次成分も調整できるため、均一な線幅のパターンを生成する上で極めて好適である。
尚、上記第1の観点による照明光学系において、3次以上の関数を含む関数で表される透過率分布は、3次関数を含む関数で表される透過率分布であることが好ましい。
また、本発明の第1の観点による照明光学系は、前記光路(IAX)を横切る方向に前記フィルタ部材(14a、14b)を移動させる駆動装置(15)を備えことを特徴としている。
更に、本発明の第1の観点による照明光学系は、前記駆動装置(15)は、前記光路(IAX)を横切る方向に前記フィルタ部材(14a、14b)を連続的に移動可能であることを特徴としている。
この発明によれば、光路を横切る方向にフィルタ部材を連続的に移動させることができるため、照度分布の調整を短時間で且つ高精度に調整することができる。
更にまた、本発明の第1の観点による照明光学系は、前記駆動装置(15)を駆動して、前記光路(IAX)を横切る方向における前記フィルタ部材(14a、14b)各々の相対位置を制御する制御装置(24)を備えることを特徴としている。
上記課題を解決するために、本発明の第2の観点による照明光学系は、光源(1)から射出される光(IL)を被照射物体(R)に照射する照明光学系において、前記光源(1)から射出される光(IL)の光路(IAX)上に、当該光路(IAX)を横切る第1方向(X方向)及び当該第1方向(X方向)に直交する第2方向(Y方向)各々に3次以上の関数を含む関数で表される透過率分布を有する少なくとも2つのフィルタ部材(14a、14b)を備えることを特徴としている。
この発明によれば、光路を横切る第1方向及び第2方向の各々に3次以上の関数を含む関数で表される透過率分布を有するフィルタを少なくとも2つ光路上に配置し、この透過率分布を組み合わせることで光路を横切る方向に2次関数的に変化する透過率分布を得ているため、フィルタのみで照度分布の2次成分を調整することができる。このように、フィルタのみで照度分布の2次成分を調整できるため、従来照度分布の2次成分を調整するために必要であったコンデンサーレンズのディストーションを全く変化させる必要が無くなる。この結果として、コンデンサーレンズのディストーション変化による照明光の像高毎の開口数の変化が無くなり、しかも照度分布の2次成分も調整できるため、均一な線幅のパターンを生成する上で極めて好適である。しかも、第1方向及び第2方向の各々について2次成分を調整することができるため、種々の照度分布に対応することが可能である。
尚、上記第2の観点による照明光学系において、3次以上の関数を含む関数で表される透過率分布は、3次関数を含む関数で表される透過率分布であることが好ましい。
また、本発明の第2の観点による照明光学系は、前記第1方向(X方向)及び前記第2方向(Y方向)の少なくとも一方の方向に前記フィルタ部材(14a、14b)を移動させる駆動装置(15)を備えることを特徴としている。
更に、本発明の第2の観点による照明光学系は、前記駆動装置(15)は、前記第1方向(X方向)及び前記第2方向(Y方向)に前記フィルタ部材(14a、14b)を連続的に移動可能であることを特徴としている。
この発明によれば、X方向及びY方向にフィルタ部材を連続的に移動させることができるため、X方向及びY方向の照度分布の調整を短時間で且つ高精度に調整することができる。
更にまた、本発明の第2の観点による照明光学系は、前記駆動装置(15)を駆動して、前記第1方向(X方向)及び前記第2方向(Y方向)の少なくとも一方の方向における前記フィルタ部材(14a、14b)各々の相対位置を制御する制御装置(24)を備えることを特徴としている。
以上の本発明の第1の観点及び第2の観点による照明光学系は、前記フィルタ部材(14a、14b)が、前記被照射物体(R)の近傍又は前記被照射物体(R)の被照射面に対して光学的に共役な面若しくはその近傍に配置されることが好ましい。
更に、本発明の第1の観点及び第2の観点による照明光学系は、前記フィルタ部材(14a、14b)の各々が、それぞれの透過率分布特性が前記光路(IAX)を横切る方向に関してほぼ反転した関係となるように配置されることが好適である。
上記課題を解決するために、本発明の第1の観点による露光装置は、光源(1)からの光(IL)をマスク(R)に照射して、当該マスク(R)に形成されたパターンを感光性基板(W)に転写する露光装置において、前記マスク(R)を載置できるように構成されたマスクステージ(31)と、前記感光性基板(W)を載置できるように構成された基板ステージ(39)と、前記光源(1)からの光(IL)を前記マスク(R)に照明する上記第1の観点及び第2の観点の何れかの観点による照明光学系とを備えることを特徴としている。
上記課題を解決するために、本発明の第2の観点による露光装置は、光源(1)からの光(IL)をマスク(R)に照射して、当該マスク(R)に形成されたパターンを感光性基板(W)に転写する露光装置において、前記マスク(R)を載置した状態で移動可能に構成されたマスクステージ(31)と、前記感光性基板(W)を載置した状態で移動可能に構成された基板ステージ(39)と、前記光源(1)からの光(IL)を前記マスク(R)に照明する上記第1の観点による照明光学系と、前記マスク(R)の前記パターンの像を前記感光性基板(W)上に形成する投影光学系(PL)と、前記マスクステージ(31)に接続されて、前記マスクステージ(31)を移動させるマスクステージ駆動系(34)と、前記基板ステージ(39)に接続されて、前記基板ステージ(39)を移動させる基板ステージ駆動系(41)と、前記マスクステージ駆動系(34)と前記基板ステージ駆動系(41)とに接続されて、前記マスク(R)と前記感光性基板(W)とを前記投影光学系(PL)の倍率に応じて走査方向(SD)に沿って移動させるように前記マスクステージ駆動系(34)と前記基板ステージ駆動系(41)とを制御する制御部(24)とを備え、前記光路(IAX)を横切る方向は、前記走査方向(SD)に対応する方向(Z方向)を横切るように設定されることを特徴としている。
ここで、走査方向に対応する方向とは、マスクからフィルタ部材へ至る光学系によって投影されたフィルタ部材位置での走査方向をいう。
上記課題を解決するために、本発明のマイクロデバイスの製造方法は、上記の第1の観点による露光装置又は第2の観点による露光装置を用いて前記マスク(R)に形成されたパターンを前記感光性基板(W)に露光する露光工程(S26)と、露光された前記感光性基板(W)を現像する現像工程(S27)とを含むことを特徴としている。
【0018】
次に、本発明の原理について説明する。ここでは、説明を簡単にするため、光路を横切る第1方向(x方向)、及び第1方向に直交する第2方向(y方向)各々に3次のべき級数で表される透過率分布を有する2つのフィルタ部材を備えた照明光学系を例に挙げて説明する。ここで、一般に3次のべき級数とは、T=ax3+bx2+cx+dと表記される関数をいう。尚、a,b,c,dは定数である。
【0019】
いま、フィルタ部材の透過率分布がx,yの関数であるとすると、透過率分布T(x,y)が3次のべき級数にて表記されるフィルタ部材とは、以下の(6)式で表される。
T(x,y)=ax3+bx2+cx+ey3+fy2+gy+d ……(6)
尚、上記(6)式において、a,b,c,d,e,f,gは定数である。
更に説明を簡単にするために、以下の説明では(7)式で表される透過率分布T(x,y)を有するフィルタ部材を考える。
T(x,y)=ax3+d ……(7)
【0020】
上記(7)式で表される透過率分布を有するフィルタ部材を2つ用意し、一方を他方に対してxy面内で180度回転した状態に配置する。これにより、2つのフィルタ部材の一方は、透過率分布T(x,y)=−ax3+dを有するフィルタ部材となる。この2つのフィルタ部材を合わせた透過率分布T1は以下の(8)式で表される。
Figure 0004923370
【0021】
ここで、以下の計算を簡単化して説明の見通しを良くするため、近似的に透過率を求める。いま、値が「1」に極めて近い数値α、βを用いて以下の(9)式に示す式を考える。
(α−1)(β−1)=αβ−α−β+1 ……(9)
この(9)式を並べ替えると、以下の(10)式になる。
αβ−(α−1)(β−1)=α+β−1 ……(10)
ところで、数値α、βはともに「1」に極めて近いと仮定したため、(α−1)(β−1)は、αβと比較して極めて小さな値となる。このため、(10)式は以下の(11)式のように表記することができる。
αβ≒α+β−1 ……(11)
【0022】
上記2つのフィルタ部材の透過率が「1」に極めて近い(即ち、透過率が100〜95%程度)とすれば、(11)式の関係を用いて前述した(8)式は以下の(12)式で表すことができる。
Figure 0004923370
と、書き換えられ、近似値ながら非常に簡単な式となる。
【0023】
次に、上記2つのフィルタ部材の一方を−x方向にjだけずらし、且つ、他方を+x方向にjだけずらすことにより、2つのフィルタ部材を相対的に若干量(=2j)だけ位置をずらして光路に沿って配置した状態にすると、その透過率分布T2は、以下の(13)式で表される。
Figure 0004923370
【0024】
ここで、(12)式と(13)式との差を求めることにより、2つのフィルタ部材のx方向の位置をずらしたことによる透過率の変化を求めることができる。以下の(14)式に透過率の変化を示す。
T2−T1=6ajx2+2aj3 ……(14)
このように、2枚のフィルタ部材の相対位置をずらすことによって、2次の透過率分布が変化する。また、2次の透過率分布の変化量は、(14)式から明らかなように、2つのフィルタ部材のずらし量jに比例する。尚、上記(14)式には、2aj3なる定数成分が含まれているため、jの変化に伴って透過率そのものにオフセットが乗るが、現実には定数aの値が定数dの値に対して十分小さいために、そのオフセット量は事実上問題とはならない。
【0025】
以上説明したように、3次のべき級数にて表記される2つのフィルタ部材を光路に沿って配置し、且つ、光路を横切る方向における相対位置をずらすことで、透過率分布の2次成分を補正できるフィルタを実現することができる。よって、この2つのフィルタ部材を被照射面と光学的に共役な面又はその近傍に配置することで、コンデンサーレンズのディストーションの量を変化させずに、照度分布の2次成分を補正することができる。
【0026】
尚、以上では、説明を簡単化するために、T(x,y)=ax3+dなる透過率分布をフィルタ部材各々が有する場合を例に挙げて説明した。しかしながら、本発明のフィルタ部材は、一般に
T(x,y)=ax3+bx2+cx+d
なる透過率分布を有するものを用いることができる。尚、この式中のa,b,c,dは定数である。
更に、本発明のフィルタ部材は、前述した(6)式の透過率分布、即ち、
T(x,y)=ax3+bx2+cx+ey3+fy2+gy+d
なる透過率を有するものを用いることができる。尚、この式中のa,b,c,d,e,f,gは定数である。
【0027】
この場合には、x、yの2方向における各フィルタ部材の相対位置をずらすことで、x、yの2方向における照度分布の2次成分を独立して調整することができる。また、以上の説明では、フィルタ部材が3次のべき級数で表される透過率分布を有する場合を例に挙げて説明したが、更に高次のべき級数で表記される成分や、例えば三角関数等の他の関数で表記される成分を含んでいても良い。
【0028】
また、フィルタ部材の数は、以上の説明のように2つに制限される訳ではなく、複数のフィルタ部材を組み合わせることで、同様の効果を得ても良い。例えば、以下の透過率分布Ta(x,y)、Tb(x,y)、Tc(x,y)、Td(x,y)をそれぞれ有する4つのフィルタを組み合わせれば、x方向における照度分布の2次成分、y方向における照度分布の2次成分を独立して調整する事が容易となる。
Ta(x,y)=ax3+d
Tb(x,y)=−ax3+d
Tc(x,y)=ay3+d
Td(x,y)=−ay3+d
【0029】
更に、以上の説明では照度分布の2次成分を調整することを主眼において説明したが、本発明のフィルタ部材は透過率分布に本質的に2次成分を含むため、組み合わせフィルタを全体的に偏心することで、照度分布の1次の成分の補正が可能となる。
【0030】
また、前述した透過率分布を有するフィルタ部材は、光学薄膜等を用いて位置により膜の設計解を異なるものにして作成しても良く、解像限界以下の微小ドット遮光物又は減光物を基板に蒸着し、この微小ドットの密度を位置により異ならせて作成しても良い。つまるところ、前述した透過率分布を有するフィルタ部材の作成方法は特に制限されることはない。ところで、微小ドットの存在確率を位置により異ならせて前述した透過率分布を有するフィルタを作成する場合には、微小ドットの並びに特定のパターンが無い事(各フィルタ部材において同一の透過率を有する箇所のドットの並びが同じでないこと)が望ましく、また特定のパターンがある場合でも、その特定のパターンが複数のフィルタ部材で異なっていることが望ましい。
【0031】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態による照明光学系、露光装置、及びマイクロデバイスの製造方法について詳細に説明する。図1は、本発明の一実施形態による露光装置の全体の概略構成を示す図である。本実施形態においては、図1中の投影光学系PLに対してマスクとしてのレチクルRと感光性基板としてのウェハWとを相対的に移動させつつ、レチクルRに形成されたパターンをウェハWに転写して半導体素子を製造するステップ・アンド・スキャン方式の露光装置に適用した場合を例に挙げて説明する。
【0032】
尚、以下の説明においては、図1中に示したXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸がウェハWに対して平行となるよう設定され、Z軸がウェハWに対して直交する方向に設定されている。図中のXYZ座標系は、実際にはXY平面が水平面に平行な面に設定され、Z軸が鉛直上方向に設定される。また、本実施形態ではレチクルR及びウェハWを移動させる方向(走査方向SD)をY方向に設定している。
【0033】
図1において、露光光源1としては断面が略長方形状の平行光束である露光光ILを射出するArFエキシマレーザ光源(波長193nm)が用いられる。露光光源1からの波長193nmの紫外パルスよりなる露光光IL(露光ビーム)は、ビームマッチングユニット(BMU)2を通り、光アッテネータとしての可変減光器3に入射する。ウェハW上のフォトレジストに対する露光量を制御するための露光制御ユニット23が、露光光源1の発光の開始及び停止、並びに出力(発振周波数、パルスエネルギー)を制御すると共に、可変減光器3における減光率を段階的、又は連続的に調整する。
【0034】
可変減光器3を通った露光光ILは、レンズ系4a,4bよりなるビーム成形系5を経て第1段のオプティカル・インテグレータ(ユニフォマイザ、又はホモジナイザ)としての第1フライアイレンズ6に入射する。この第1フライアイレンズ6から射出された露光光ILは、第1レンズ系7a、光路折り曲げ用のミラー8、及び第2レンズ系7bを介して第2段のオプティカル・インテグレータとしての第2フライアイレンズ9に入射する。
【0035】
第2フライアイレンズ9の射出面、即ち露光対象のレチクルRのパターン面に対する光学的なフーリエ変換面(照明系の瞳面)には開口絞り板10が、駆動モータ10eによって回転自在に配置されている。開口絞り板10には、通常照明用の円形の開口絞り10a、輪帯照明用の開口絞り10b、及び複数(例えば4極)の偏心した小開口よりなる変形照明用の開口絞り(不図示)や小さいコヒーレンスファクタ(σ値)用の小円形の開口絞り(不図示)等が切り換え自在に配置されている。露光装置50の全体の動作を統括制御する主制御系24が駆動モータ10eを介して開口絞り板10を回転させて、照明条件を設定する。
【0036】
尚、変形照明(輪帯照明、4極照明等)を行うときに、露光光ILの利用効率を高めて高い照度(パルスエネルギー)を得るには、露光光ILが第2フライアイレンズ9に入射する段階で、露光光ILの断面形状をほぼ輪帯形状に整形しておくことが望ましい。このためには、第1フライアイレンズ6を例えば多数の位相型の回折格子の集合体よりなる回折光学格子(Diffractive Optical Element:DOE)で置き換えればよい。また、照明条件切り換え系は上記の構成に限られるものではなく、開口絞り板10に組み合わせて又は単独で円錐プリズム(アキシコン)及び/又はズーム光学系と、回折光学素子とを用いるようにしても良い。尚、第2段のオプティカル・インテグレータとして内面反射型インテグレータ(ロッドインテグレータ等)を用いる場合には、例えばDOE、円錐プリズム、又は多面体プリズム等を用いて、照明系の光軸IAXに関して露光光ILを傾けて内面反射型インテグレータに入射させるとともに、照明条件に応じてその入射面での露光光ILの入射角度範囲を変更することが望ましい。
【0037】
図1において、第2フライアイレンズ9から射出されて通常照明用の開口絞り10aを通過した露光光ILは、透過率が高く反射率が低いビームスプリッタ11に入射する。ビームスプリッタ11で反射された露光光は、集光用のレンズ21を介して光電検出器よりなるインテグレータセンサ22に入射し、インテグレータセンサ22の検出信号は露光制御ユニット23に供始されている。インテグレータセンサ22の検出信号とウェハW上での露光光ILの照度との関係は予め高精度に計測されて、露光制御ユニット23内のメモリに記憶されている。露光制御ユニット23は、インテグレータセンサ22の検出信号より間接的にウェハWに対する露光光ILの照度(平均値)、及びその積分値をモニタできるように構成されている。
【0038】
ビームスプリッタ11を透過した露光光ILは、光軸IAXに沿ってレンズ系12,13を順次経て、本発明のフィルタ部材としてのフィルタ14a,14bを順次介して可動ブラインド(可動照明視野絞り)16aに入射する。このフィルタ14a,14bは、光軸IAXを横切る方向に3次以上の関数を含む関数で表される透過率分布を有する。図2は、フィルタ14a,14bの一例を示す外観斜視図である。図2に示したフィルタ14a,14bは、露光光ILに対して透明な基板上に複数の遮光性のドットパターン(微少トッド)が蒸着されており、透明基板上の単位面積当たりのドットパターンの存在確率は、透明基板内の位置に応じた透過率に基づいて設定される。
【0039】
この蒸着によって形成されるドットパターンは、一例として直径が25μm程度の微細な円形パターンであり、照度分布の調整量を10%程度とすると、ドットパターンの存在確率は0〜15%程度の範囲に収まると考えられる。尚、フィルタ14a,14bに形成されるドットパターンは、その並びに特定のパターンが無いこと(フィルタ14a,14bにおいて同一の透過率を有する箇所のドットの並びが同じでないこと)が望ましく、また特定のパターンがある場合でも、その特定のパターンが複数のフィルタ14a,14bで異なっていることが望ましい。
【0040】
尚、図2に示したフィルタ14a,14bは、走査方向SD(図1参照)に対応する方向(Z軸方向)を横切るX方向に3次関数で表される透過率分布を有するフィルタである。ここで、走査方向SDに対応する方向とは、レチクルRからフィルタ14a,14bに至る光学系によって投影されたフィルタ14a,14bの位置での走査方向をいう。
【0041】
これらのフィルタ14a,14bは図1中の駆動装置15によってX方向に連続的に移動可能に構成されており、フィルタ14aとフィルタ14bとのX方向の位置が個別に設定可能であるとともに、フィルタ14aとフィルタ14bとの相対位置関係を保ったままフィルタ14a及びフィルタ14bをX方向に並進させることも可能である。この駆動装置15の動作は、本発明にいう制御装置としての主制御系24が駆動系25を介して制御する。
【0042】
図1に戻り、可動ブラインド16aは、レチクルRのパターンが形成されている面(以下、レチクル面という)に対する共役面に設置され、フィルタ14a,14bはその共役面から光軸IAX方向に所定量だけデフォーカスした面に配置されている。このようにフィルタ14a,14bをレチクル面に対する共役面からデフォーカスさせるのは、以下の理由による。即ち、前述したように、本実施形態のフィルタ14a,14bには多数のドットパターンが形成されているため、このドットパターンがレチクル面(露光対象としてのウェハWの表面と光学的に共役)上で解像されないようにするため、換言するとウェハWにかようなドットパターンが転写されないようにするためである。尚、第2段のオプティカル・インテグレータとして内面反射型インテグレータ(ロッドインテグレータ等)を用いる場合には、フィルタ14a,14bは、内面反射型インテグレータの射出端面又はその近傍に配置される。
【0043】
露光時に可動ブラインド16aを通過した露光光ILは、光路折り曲げ用のミラー17、結像用のレンズ系18、コンデンサレンズ19、主コンデンサレンズ系20、及び固定ブラインド(固定照明視野絞り)16bを介して、マスクとしてのレチクルRのパターン面(下面)の照明領域(照明視野領域)35を照明する。固定ブラインド16bは、例えば特開平4−196513号公報及び対応する米国特許題5,473,410号に開示されているように、後述する投影光学系PLの円形視野内の中央で走査露光方向と直交した方向に直線スリット状、又は矩形状(以下、まとめて「スリット状」という)に伸びるように配置された開口部を有する。
【0044】
ここで、前述した可動ブラインド16aは、ウェハW上の各ショット領域への走査露光の開始時及び終了時に不要な露光を防止するために、照明視野領域の走査方向の幅を可変とするために使用される。更に、可動ブラインド16aは、走査方向と直交した方向(非走査方向)に関してレチクルRのバターン領域のサイズ、又は後述のように評価対象に応じてその幅を可変とするために使用される。可動ブラインド16aの開口率の情報は露光制御ユニット23にも供給され、インテグレータセンサ22の検出信号から求められる値にその開口率を乗じた値が、ウェハW上の実際の照度となる。
【0045】
尚、以上説明した露光光源1、ビームマッチングユニット2、可変減光器3、レンズ系4a,4bよりなるビーム成形系5、第1フライアイレンズ6、第1レンズ系7a、光路折り曲げ用のミラー8、第2レンズ系7b、第2フライアイレンズ9、開口絞り板10、ビームスプリッタ11、レンズ系12,13、フィルタ14a,14b、可動ブラインド16a、光路折り曲げ用のミラー17、結像用のレンズ系18、コンデンサレンズ19、主コンデンサレンズ系20、及び固定ブラインドは、照明光学系を構成している。尚、固定ブラインド16bは、可動ブラインド16aとフィルタ14bとの間の面、又は可動ブラインド16aの射出側の近傍(可動ブラインド16aと光路折り曲げ用のミラー17との間)の面に配置しても良い。
【0046】
また、上記照明光学系内に設けられるレンズ系4a,4bよりなるビーム成形系5、第1フライアイレンズ6、第1レンズ系7a、第2レンズ系7b、第2フライアイレンズ9、レンズ系12,13、フィルタ14a,14b、結像用のレンズ系18、コンデンサレンズ19、及び主コンデンサレンズ系20の硝材としては、例えば蛍石(フッ化カルシウム:CaF2)が用いられる。
【0047】
露光光ILのもとで、レチクルRの照明領域35内の回路パターンの像が両側テレセントリックな投影光学系PLを介して所定の投影倍率β(βは例えば1/4又は1/5等)で、投影光学系PLの結像面に配置された基板としてのウェハW上のフォトレジスト層のスリット状の露光領域35Pに転写される。本実施形態の投影光学系PLは、ジオプトリック系(屈折系)であるが、カタジオプトリック系(反射屈折系)や反射系も使用できることはいうまでもない。また、本実施形態では露光光ILが真空紫外光であるため、通常の空気中の酸素、二酸化炭素、水蒸気等によって大きく吸収されてしまう。これを避けるために、図1に示した露光光源1からウェハWまでの露光光ILの光路には、真空紫外光に対しても高透過率の高純度のパージガス(ヘリウム、ネオン等の希ガス、又は窒素ガス等の所謂不活性ガス)が供給されている。更に、投影光学系PLを構成する屈折部材の硝材としては、例えば蛍石(フッ化カルシウム:CaF2)が用いられる。
【0048】
図1において、レチクルRは、レチクルステージ31上に吸着保持され、レチクルステージ31は、レチクルベース32上でY方向に等速移動できると共に、X方向、Y方向、回転方向に傾斜できるように載置されている。レチクルステージ31(レチクルR)の2次元的な位置及び回転角は駆動制御ユニット34内のレーザ干渉計によってリアルタイムに計測されている。この計測結果、及び主制御系24からの制御情報に基づいて、駆動制御ユニット34内の駆動モータ(リニアモータやボイスコイルモータ等)は、レチクルステージ31の走査速度、及び位置の制御を行う。
【0049】
一方、ウェハWは、ウェハホルダ38を介してウェハステージ39上に吸着保持され、ウェハステージ39は、ウェハベース40上で投影光学系PLの像面と平行なXY平面に沿って2次元移動する。即ち、ウェハステージ39は、ウェハベース40上でY方向に一定速度で移動すると共に、X方向、Y方向にステップ移動する。更に、ウェハステージ39には、ウェハWのZ方向の位置(フォーカス位置)、並びにX軸及びY軸の回りの傾斜角を制御するZレベリング機構も組み込まれている。また、図示は省略しているが、投影光学系PLの側面に、ウェハWの表面(ウェハ面)の複数の計測点に斜めにスリット像を投影する投射光学系と、そのウェハ面からの反射光を受光してそれらの複数の計測点のフォーカス位置に対応するフォ−カス信号を生成する受光光学系とからなる多点のオートフォーカスセンサも設けられており、それらのフォ−カス信号が主制御系24中の合焦制御部に供給されている。走査露光時には、主制御系24中の合焦制御部は、それらのフォーカス信号(フォーカス位置)の情報に基づいてオートフォーカス方式でウェハステージ39中のZレベリング機構を連続的に駆動する。これによって、ウェハWの表面が投影光学系PLの像面に合焦される。
【0050】
ウェハステージ39のX方向、Y方向の位置、及びX軸、Y軸、Z軸の回りの回転角は駆動制御ユニット41内のレーザ干渉計によってリアルタイムに計測されている。この計測結果及び主制御系24からの制御情報に基づいて、駆動制御ユニット41内の駆動モータ(リニアモータ等)は、ウェハステージ39の走査速度、及び位置の制御を行う。
【0051】
主制御系24は、レチクルステージ31及びウェハステージ39のそれぞれの移動位置、移動速度、移動加速度、位置オフセット等の各種情報を駆動制御ユニット34及び41に送る。これに応じて、レチクルステージ31を介して露光光ILの照明領域35に対してレチクルRが+Y方向(又は−Y方向)に速度Vrで走査されるのに同期して、ウェハステージ39を介してレチクルRのパターン像の露光領域35Pに対してウェハWが−Y方向(又は+Y方向)に速度β・Vr(βはレチクルRからウェハWへの投影倍率)で走査される。この際の走査露光の開始時及び終了時に不要な部分への露光を防止するために、駆動制御ユニット34によって可動ブラインド16aの開閉動作が制御される。レチクルRとウェハWとの移動方向が逆であるのは、本実施形態の投影光学系PLが反転投影を行うためである。
【0052】
主制御系24は、ウェハW上の各ショット領域のフォトレジストを適正露光量で走査露光するための各種露光条件を露光データファイルより読み出して、露光制御ユニット23とも連携して最適な露光シーケンスを実行する。即ち、ウェハW上の1つのショット領域への走査露光開始の指令が主制御系24から露光制御ユニット23に発せられると、露光制御ユニット23は露光光源1の発光を開始すると共に、インテグレータセンサ22を介してウェハWに対する露光光ILの照度(単位時間当たりのパルスエネルギーの和)の積分値を算出する。その積分値は走査露光開始時に0にリセットされている。そして、露光制御ユニット23では、その照度の積分値を逐次算出し、この結果に応じて、走査露光後のウェハW上のフォトレジストの各点で適正露光量が得られるように、露光光源1の出力(発振周波数、及びパルスエネルギー)及び可変減光器3の減光率を制御する。そして、当該ショット領域への走査露光の終了時に、露光光源1の発光が停止される。
【0053】
また、本実施形態の露光装置は、ウェハステージ39上に、投影光学系PLを介してウェハW上に照射される露光光ILの照度ムラを測定するための照度計測部42が固定され、この照度計測部42の上面に走査方向SD(Y方向)に細長いスリット状の受光部を持つCCD型のラインセンサ42a(図3(a)参照)が固定されている。このラインセンサ42aの検出信号は露光制御ユニット23に供給されている。また、照度計測部42の上面には、ピンホール状の受光部を有する光電センサよりなる通常の照度ムラセンサ(不図示)も設置されている。ここで、図3を参照してラインセンサ42aを用いてスリット状の露光領域35Pの非走査方向(X方向)に対する照度ムラを計測する方法について説明する。尚、この照度ムラの計測は、例えば定期的に実行される。その際に、図1の開口絞り板10を駆動して照明方式を通常照明、変形照明、小σ値照明等に切り換えて各照明方式毎にその照度ムラの計測が実行される。そして、露光装置の稼働時間の経過に伴う照度ムラの状態が照明方式毎にテーブルとして主制御系24内の記憶部に記憶される。
【0054】
図3は、照度ムラを計測する方法を説明するための図である。まず、図3(a)は、図1のウェハステージ39を駆動して投影光学系PLの露光領域35Pの非走査方向の側面に照度計測部42上のラインセンサ42aを移動した状態を示しており、その露光領域35Pの走査方向SD(Y方向)の照度分布F(Y)はほぼ台形状である。図3(c)に示すように、その照度分布F(Y)の底辺の走査方向の幅をDLをすると、ラインセンサ42aの受光部の走査方向の幅はDLよりも十分に広く設定されている。
【0055】
その後、ウェハステージ39を駆動して、図3(a)に示すように、露光領域35Pを走査方向に完全に覆う形で、ラインセンサ42aを非走査方向(X方向)に所定間隔で順次一連の計測点に移動させる。そして、各計測点で図1の露光光源1をパルス発光させて、インテグレータセンサ22の検出信号とラインセンサ42aの検出信号とを露光制御ユニット23に並列に取り込み、ラインセンサ42aの検出信号のディジタルデータを全部の画素について積分したデータをインテグレータセンサ22からの検出信号のディジタルデータで除算することで、図3(b)に示すように、露光領域35Pの非走査方向(X方向)への照度分布E(X)を算出する。ここで、インテグレータセンサ22からの検出信号で除算するのは、パルスエネルギーのばらつきの影響を除くためである。このように、ラインセンサ42aをX方向に走査することによって、容易且つ短時間に露光領域35Pの非走査方向における照度分布E(X)を計測することができる。尚、ここでの照度分布E(X)は、例えば非走査方向の端部の1番目の計測点での照度を基準とした相対値で表されている。
【0056】
この結果、照度分布E(X)は、非走査方向の各位置Xにおいて、露光領域35Pの照度を走査方向(Y方向)に積分した照度を表している。走査露光時に、ウェハWの各点は、図3(c)の台形状の照度分布F(Y)の領域を走査方向に横切るため、本例の非走査方向の照度分布E(X)は、ウェハW上の各ショット領域における非走査方向の積算露光量の分布とほぼ等価である。本例では、その照度分布E(X)を非走査方向の位置Xの関数として以下の(15)式のように表す。尚、位置Xの原点は、投影光学系PLの光軸AXを通り、Y軸に平行な直線とする。
E(X)=a・(X−b)2+c・X+d ……(15)
【0057】
上記(15)式において、2次係数aは、位置Xに関して凸(a>0)、又は凹(a<0)の照度ムラを、シフト係数bは照度ムラの対称軸の光軸AXからのX方向へのシフト量を、1次係数cは所謂傾斜ムラを、係数dは位置Xによらない一定の照度(オフセット)をそれぞれ表している。これらの係数a〜dの値は、例えば、実測データから最小自乗法によって求められ、求められた値が非走査方向の照度ムラ(即ち、非走査方向の積算露光量分布)の状態として記憶される。本実施形態では、以上の方法により測定された照度ムラ(照度分布)をフィルタ14a,14bによって調整している。以下、照度ムラの調整方法について詳細に説明する。
【0058】
図4は、フィルタ14a,14bの相対位置を変化させた場合の透過率分布の変化を示すシミュレーション結果であり、(a)はフィルタ14aの透過率分布を、(b)はフィルタ14bの透過率分布を、(c)はフィルタ14a,14bを組み合わせた透過率分布をそれぞれ示している。尚、図4(a)に示すフィルタ14aの透過率分布T10は、X方向のシフト量が0の場合にはT10=a・X3+0.98であり、図4(b)に示すフィルタ14bの透過率分布T11は、X方向のシフト量が0の場合にはT11=−a・X3+0.98である。尚、これらの式中のaは任意の定数である。このように、フィルタ14a及びフィルタ14bは、それぞれの透過率分布特性が光軸IAXに沿う方向に関してほぼ反転した関係となるように配置されている。
【0059】
また、図4(a)において、符号L11を付した曲線はX方向のシフト量が0のときのフィルタ14aのX方向の透過率分布を示し、符号L12を付した曲線はX方向のシフト量が−0.1のときのフィルタ14aのX方向の透過率分布を示し、符号L13を付した曲線はX方向のシフト量が−0.2のときのフィルタ14aのX方向の透過率分布をそれぞれ示している。同様に、図4(b)において、符号L21を付した曲線はX方向のシフト量が0のときのフィルタ14bのX方向の透過率分布を示し、符号L22を付した曲線はX方向のシフト量が0.1のときのフィルタ14bのX方向の透過率分布を示し、符号L23を付した曲線はX方向のシフト量が0.2のときのフィルタ14bのX方向の透過率分布をそれぞれ示している。尚、図4においては、上記の透過率分布T10,T11を示す式中の定数aを適当な値に設定して図示をしている。
【0060】
図4(c)中の符号L31を付した曲線は、フィルタ14a,14bのX方向のシフト量が0のときのフィルタ14a,14bを組み合わせた透過率分布を示している。この図から分かるように、フィルタ14a,14bのX方向のシフト量が0の場合(相対的な位置ずれ量が0の場合)には、フィルタ14a,14bを組み合わせた透過率分布はほぼ一定となる(厳密にいうと一定ではない)。また、図4(c)中において、符号L32を付した曲線は、フィルタ14aのX方向のシフト量が−0.1であり、フィルタ14bのX方向のシフト量が0.1であるときのフィルタ14a,14bを組み合わせた透過率分布を示している。このときのフィルタ14a,14bのX方向の相対的な位置ずれ量は0.2となる。このときのフィルタ14a,14bを組み合わせた透過率分布はX方向に沿って2次関数的に変化する分布となることが分かる。
【0061】
更に、図4(c)中において、符号L33を付した曲線は、フィルタ14aのX方向のシフト量が−0.2であり、フィルタ14bのX方向のシフト量が0.2であるときのフィルタ14a,14bを組み合わせた透過率分布を示している。このときのフィルタ14a,14bのX方向の相対的な位置ずれ量は0.4となる。このときのフィルタ14a,14bを組み合わせた透過率分布は、符号L32を付した曲線で示される透過率分布と同様に、X方向に沿って2次関数的に変化する分布となるが、その曲率が曲線L21よりも小さくなっていることが分かる。このように、本実施形態のフィルタ14a,14bは、フィルタ14aの−X方向のシフト量を大きくするとともにフィルタ14bのX方向のシフト量を大きくして、フィルタ14aとフィルタ14bとの相対的な位置ずれ量を増大させることにより、2次関数的に変化する透過率分布の変化量(2次関数の曲率)を任意に可変することができる。
【0062】
また、図4(c)から分かるように、フィルタ14aとフィルタ14bとのX方向の相対的な位置ずれ量を可変させても、副次的に発生するオフセット量の変化量が僅かであることが分かる。尚、ウェハWに照射される露光光ILの露光量をより高い精度で制御する場合には、このオフセットの影響を考慮する必要がある場合が考えられる。この場合には、フィルタ14aとフィルタ14bとのX方向の位置とウェハW上に照射される露光光ILの照度の変化量との関係を、例えば照度計測部42上のラインセンサ42aを用いて予め測定しておき、露光時にはフィルタ14aとフィルタ14bとのX方向の位置に応じて露光光ILの照度を制御することが好ましい。
【0063】
以上説明した透過率が2次関数的に可変のフィルタ14a,14bを用いて、照度分布の2次成分を補正(調整)するには、まずフィルタ14a,14bのX方向又は−X方向のシフト量と透過率分布の変化量(2次関数の曲率の変化量)との関係を予め求めておく。そして、ラインセンサ42aを用いて予め計測した非走査方向(X方向)の照度分布(図3(b)参照)を補正し得る(均一化し得る)シフト量を主制御系24が算出し、この算出値に基づいて主制御系24が駆動系25を介して駆動装置15を駆動することによりフィルタ14a,14bのX方向又は−方向の位置決めを行う。
【0064】
また、他の方法としては、ウェハステージ39を駆動して、図3(a)に示すように、露光領域35Pの非走査方向の側面に照度計測部42上のラインセンサ42aを移動させ、走査方向に完全に覆う形で、ラインセンサ42aを非走査方向(X方向)に所定間隔で順次一連の計測点に移動させる。そして、各計測点で図1の露光光源1をパルス発光させて、フィルタ14a,14bを介した露光光ILが露光領域35Pを照射したときのラインセンサ42aの検出信号を順次取り込む。この各計測点での検出信号の値が一定の値でない場合にはフィルタ14a,14bを所定量X方向又は−X方向に移動させ、再度各計測点での計測結果を得る。このように、フィルタ14a,14bのX方向又は−X方向の位置を変えつつ、露光領域35Pに実際に照射される露光光ILの非走査方向における照度分布を計測して、非走査方向における照度分布のムラが無くなる(非走査方向における照度が一定となる)フィルタ14a,14bの位置を求める。
【0065】
以上説明した実施形態のステップ・アンド・スキャン方式の露光装置は、長手方向が非走査方向に設定されたスリット状の露光光を用い、この露光光に対してレチクルRとウェハとを相対的に走査して、レチクルRに形成されたパターンを順次ウェハWのショット領域に転写するものである。よって、例え走査方向における露光光ILの照度分布の不均一性があったとしても、ウェハWに照射される露光光ILの露光量は走査方向に照度分布を積分したものとなるため、露光光ILの走査方向における照度分布の不均一性は殆ど問題にならない。
【0066】
しかしながら、例えば、ステップ・アンド・リピート方式の露光装置は、あるショット領域を露光する場合に、レチクルとウェハとの相対的な位置決めを行った後は、その位置を変えずに一括してそのショット領域を露光するものであるため、ステップ・アンド・スキャン方式の露光装置のように、一方向(非走査方向)のみの照度分布の不均一性を補正すれば良いという訳ではなく、ウェハWの面内(露光領域内)において照度分布を均一化する必要がある。このため、かようなステップ・アンド・リピート方式の露光装置が備える照明光学系には、露光光源から射出された露光光の光路を横切る第1方向(例えば、図1中のX方向)と、第1方向に直交する方向(例えば、図1中のY方向)各々に3次以上の関数を含む関数で表される透過率分布を有する少なくとも2つのフィルタが設けられる。
【0067】
これらのフィルタを備える照明光学系には、図1に示した照明光学系と同様に、フィルタ各々を第1方向及び第2方向に連続的に移動させる駆動装置が設けられる。この駆動装置は、図1に示した主制御系24及び駆動系25と同様の装置系によって制御される。よって、フィルタ各々の相対位置は制御系24によって制御される。また、図1に示したステップ・アンド・スキャン方式の露光装置が備える照明光学系と同様に、ステップ・アンド・リピート方式の露光装置が備える照明光学系も、レチクルRのレチクル面に対して光学的に共役な面に露光光ILのレチクルRの照明領域を規定する視野絞りが設けられており、フィルタはこの視野絞りの近傍に配置される。つまり、これらのフィルタは、レチクルRのレチクル面に対して光学的に共役な面の近傍に配置されている。尚、視野絞りがレチクルRの近傍に配置されている場合には、フィルタはレチクル面に対して光学的に共役な面又はその近傍に配置される。
【0068】
図5は、露光光の光路を横切る第1方向と、第1方向に直交する方向各々に3次以上の関数を含む関数で表される透過率分布を有するフィルタの一例を示す図である。尚、図5においては第1方向をX方向に設定し、第2方向をY方向に設定してある。図5に示すフィルタの透過率分布T20は、X方向及びY方向のシフト量が0の場合にはT20=b・X3+c・Y3+0.97に設定されている。尚、b,cは、任意の定数である。また、図6は、図5に示した透過率分布を有するフィルタに対して設けられる他方のフィルタの透過率分布の一例を示す図である。図6に示すフィルタの透過率分布T21は、X方向のシフト量が0の場合にはT21=−b・X3−c・Y3+0.97に設定されている。このように、ステップ・アンド・リピート方式の露光装置に設けられる2つのフィルタも露光光の進行方向(光軸)に沿う方向に関して透過率分布がほぼ反転した関係となるように配置されている。
【0069】
図7は、図5に示した透過率分布を有するフィルタのX方向及びY方向のシフト量が0.1であり、図6に示した透過率分布を有するフィルタのX方向及びY方向のシフト量が−0.1であるときのフィルタを組み合わせた透過率分布を示す図である。尚、図7においては、上記の透過率分布T20,T21を示す式中の定数b,cを適当な値に設定して図示をしている。図7から分かるように、2つのフィルタを組み合わせた透過率分布は、X方向及びY方向ともに2次関数的に変化する分布となっており、X方向及びY方向ともに上に凸である。
【0070】
また、図8は、図5に示した透過率分布を有するフィルタのX方向のシフト量を0.1、Y方向のシフト量を−0.1に設定し、図6に示した透過率分布を有するフィルタのX方向のシフト量を−0.1、Y方向のシフト量を0.1に設定したときのフィルタを組み合わせた透過率分布を示す図である。図8に示した透過率分布は、X方向及びY方向ともに2次関数的に変化する分布となっているが、図7に示した透過率分布とは異なり、X方向については凸になっているが、Y方向については下に凸となっている。このように、X方向及びY方向各々に3次以上の関数を含む関数で表される透過率分布を有するフィルタを組み合わせ、フィルタの相対的な位置ずれ量をX方向及びY方向で個別に設定することで透過率分布の変化量(2次関数の曲率)のみならず、曲率の符号(上に凸であるか又は下に凸であるか)を自在に変化させることができる。
【0071】
また、図5及び図6に示す透過率分布を有するフィルタのX方向及びY方向の相対的な位置ずれ量を可変させても、副次的に発生するオフセット量の変化量が図7及び図8から僅かであることが分かる。しかしながら、ウェハWに照射される露光光ILの露光量をより高い精度で制御する場合には、2つのフィルタのX方向の位置及びY方向の位置とウェハW上に照射される露光光ILの照度の変化量との関係を、例えば照度計測部42上のラインセンサ42aを用いて予め測定しておき、露光時にはフィルタ14aとフィルタ14bとのX方向の位置に応じて露光光ILの照度を制御することが好ましい。
【0072】
また、X方向及びY方向について透過率が2次関数的に可変の2枚のフィルタを用いて、照度分布の2次成分を補正(調整)するには、前述した予め求めたシフト量と透過率分布の変化量(2次関数の曲率の変化量)との関係に基づいてフィルタ位置を制御する方法と、フィルタを介して露光領域に照射される露光光の検出結果を計測しつつフィルタの位置決めを行う方法との何れの方法をも用いることができる。更に、この場合においても照度分布の2次成分を調整するのみならず、組み合わせフィルタを全体的X方向又はY方向に偏心することで、照度分布の1次の成分の補正が可能となる。
【0073】
以上、本発明の実施形態について説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では露光光源1として、ArFエキシマレーザ光源の場合を例に挙げて説明したが、これ以外に露光光源1としては、例えばg線(波長436nm)、i線(波長365nm)を射出する超高圧水銀ランプ、又はKrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)、Kr2レーザ(波長146nm)、YAGレーザの高周波発生装置、若しくは半導体レーザの高周波発生装置を用いることができる。
【0074】
更に、光源としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイットリビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。例えば、単一波長レーザの発振波長を1.51〜1.59μmの範囲内とすると、発生波長が189〜199nmの範囲内である8倍高調波、又は発生波長が151〜159nmの範囲内である10倍高調波が出力される。
【0075】
特に、発振波長を1.544〜1.553μmの範囲内とすると、発生波長が193〜194nmの範囲内の8倍高調波、即ちArFエキシマレーザ光とほぼ同一波長となる紫外光が得られ、発振波長を1.57〜1.58μmの範囲内とすると、発生波長が157〜158nmの範囲内の10倍高調波、即ちF2レ−ザ光とほぼ同一波長となる紫外光が得られる。また、発振波長を1.03〜1.12μmの範囲内とすると、発生波長が147〜160nmの範囲内である7倍高調波が出力され、特に発振波長を1.099〜1.106μmの範囲内とすると、発生波長が157〜158μmの範囲内の7倍高調波、即ちF2レーザ光とほぼ同一波長となる紫外光が得られる。この場合、単一波長発振レーザとしては例えばイットリビウム・ドープ・ファイバーレーザを用いることができる。
【0076】
また、上記実施形態では上記照明光学系内に設けられるレンズ系4a,4bよりなるビーム成形系5、第1フライアイレンズ6、第1レンズ系7a、第2レンズ系7b、第2フライアイレンズ9、レンズ系12,13、フィルタ14a,14b、結像用のレンズ系18、コンデンサレンズ19、及び主コンデンサレンズ系20の硝材、及び、投影光学系PLを構成する屈折部材の硝材としては蛍石(フッ化カルシウム:CaF2)を用いる場合を例に挙げて説明した。しかしながら、これらは、露光光ILの波長に応じて蛍石(フッ化カルシウム:CaF2)、フッ化マグネシウム(MgF2)、フッ化リチウム(LiF)、フッ化バリウム(BaF2)、フッ化ストロンチウム(SrF2)、LiCAF(コルキライト:LiCaAlF6)、LiSAF(LiSrAlF6)、LiMgAlF6、LiBeAlF6、KMgF3、KCaF3、KSrF3等のフッ化物結晶又はこれらの混晶、又フッ素や水素等の物質をドープした石英硝子等の真空紫外光を透過する光学材料から選択される。尚、所定の物質をドープした石英硝子は、露光光の波長が150nm程度より短くなると透過率が低下するため、波長が150nm程度以下の真空紫外光を露光光ILとして用いる場合には、光学素子の光学材料としては、蛍石(フッ化カルシウム)、フッ化マグネシウム、フッ化リチウム、フッ化バリウム、フッ化ストロンチウム、LiCAF(コルキライト)、LiSAF(LiSrAlF6)、LiMgAlF6、LiBeAlF6、KMgF3、KCaF3、KSrF3等のフッ化物結晶又はこれらの混晶が使用される。
【0077】
また、上記実施形態では、理解を容易にするため、X方向(及びY方向)に3時間数的に変化する透過率分布を有するフィルタを例に挙げて説明したが、更に高次のべき級数で表記される成分や、例えば三角関数等の他の関数で表記される成分を含む透過率分布を有するフィルタを用いることも可能である。更に、上記実施形態では、理解を容易にするために、X方向(及びY方向)に3次間数的に変化する透過率分布を有するフィルタを2枚組み合わせた場合を例に挙げて説明したが、3枚以上のフィルタを組み合わせても良い。例えば、以下の透過率分布Ta(x,y)、Tb(x,y)、Tc(x,y)、Td(x,y)をそれぞれ有する4つのフィルタを組み合わせれば、x方向における照度分布の2次成分、y方向における照度分布の2次成分を独立して調整する事が容易となる。
Ta(x,y)=ax3+d
Tb(x,y)=−ax3+d
Tc(x,y)=ay3+d
Td(x,y)=−ay3+d
【0078】
また、上述した実施形態では、透明基板上に複数の遮光性のドットパターンが蒸着形成されたフィルタを例に挙げて説明したが、光学薄膜等を用いて位置により膜の設計解を異なるものにして作成したものであっても良い。更には、フィルタの基板として用いる光学材料が露光光ILに対してある程度の吸収性を有するものであれば、面内方向において3次関数的に基板の厚みを変化させたものであってもよい。更には、フィルタの基板として金属又はセラミックスの基板を用いる場合には、金属又はセラミックスの基板に多数の微小な孔を形成したものを用いても良い。このときには、微小な孔の存在確率を位置により異ならせることにより、前述した3次又は高次のべき級数で表記される成分を含む透過率分布を形成する。
【0079】
また、本発明は半導体素子の製造に用いられる露光装置だけではなく、液晶表示素子(LCD)等を含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッドの製造に用いられてデバイスパターンをセラミックウェハ上へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置等にも適用することができる。更には、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウェハなどに回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、又は水晶などが用いられる。また、プロキシミティ方式のX線露光装置、又は電子線露光装置などでは透過型マスク(ステンシルマスク、メンブレンマスク)が用いられ、マスク基板としてはシリコンウェハなどが用いられる。
【0080】
次に、本発明の一実施形態による露光装置及び露光方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図9は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。図9に示すように、まず、ステップS10(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS11(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクル)を製作する。一方、ステップS12(ウェハ製造ステップ)において、シリコン等の材料を用いてウェハを製造する。
【0081】
次に、ステップS13(ウェハ処理ステップ)において、ステップS10〜ステップS12で用意したマスクとウェハを使用して、後述するように、リソグラフィ技術等によってウェハ上に実際の回路等を形成する。次いで、ステップS14(デバイス組立ステップ)において、ステップS13で処理されたウェハを用いてデバイス組立を行う。このステップS14には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS15(検査ステップ)において、ステップS14で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
【0082】
図10は、半導体デバイスの場合における、図9のステップS13の詳細なフローの一例を示す図である。図10において、ステップS21(酸化ステップ)においてはウェハの表面を酸化させる。ステップS22(CVDステップ)においてはウェハ表面に絶縁膜を形成する。ステップS23(電極形成ステップ)においてはウェハ上に電極を蒸着によって形成する。ステップS24(イオン打込みステップ)においてはウェハにイオンを打ち込む。以上のステップS21〜ステップS24のそれぞれは、ウェハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
【0083】
ウェハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ25(レジスト形成ステップ)において、ウェハに感光剤を塗布する。引き続き、ステップ26(露光ステップ)において、上で説明したリソグラフィシステム(露光装置)及び露光方法によってマスクの回路パターンをウェハに転写する。次に、ステップ27(現像ステップ)においては露光されたウェハを現像し、ステップ28(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ29(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。これらの前処理工程と後処理工程とを繰り返し行うことによって、ウェハ上に多重に回路パターンが形成される。
【0084】
以上説明した本実施形態のマイクロデバイス製造方法を用いれば、露光工程(ステップS26)において、照度分布が一定の露光光ILでウェハWが露光され、レチクルRに形成されたパターンをウェハW上へ忠実に転写することができるため、結果的に最小線幅が0.1μm程度の高集積度のデバイスを歩留まり良く生産することができる。
【0085】
【発明の効果】
以上、説明したように、本発明によれば、光路を横切る方向に3次以上の関数を含む関数で表される透過率分布を有するフィルタを少なくとも2つ光路上に配置し、この透過率分布を組み合わせることで光路を横切る方向に2次関数的に変化する透過率分布を得ているため、フィルタのみで照度分布の2次成分を調整することができるという効果がある。
このように、フィルタのみで照度分布の2次成分を調整できるため、従来照度分布の2次成分を調整するために必要であったコンデンサーレンズのディストーションを全く変化させる必要が無くなるという効果がある。
この結果として、コンデンサーレンズのディストーション変化による照明光の像高毎の開口数の変化が無くなり、しかも照度分布の2次成分も調整できるため、均一な線幅のパターンを生成する上で極めて好適であるという効果がある。
また、本発明によれば、光路を横切る方向にフィルタ部材を連続的に移動させることができるため、光路を横切る方向の照度分布の調整を短時間で且つ高精度に調整することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による露光装置の全体の概略構成を示す図である。
【図2】 フィルタ14a,14bの一例を示す外観斜視図である。
【図3】 照度ムラを計測する方法を説明するための図である。
【図4】 フィルタ14a,14bの相対位置を変化させた場合の透過率分布の変化を示すシミュレーション結果であり、(a)はフィルタ14aの透過率分布を、(b)はフィルタ14bの透過率分布を、(c)はフィルタ14a,14bを組み合わせた透過率分布をそれぞれ示している。
【図5】 露光光の光路を横切る第1方向と、第1方向に直交する方向各々に3次以上の関数を含む関数で表される透過率分布を有するフィルタの一例を示す図である。
【図6】 図5に示した透過率分布を有するフィルタに対して設けられる他方のフィルタの透過率分布の一例を示す図である。
【図7】 図5に示した透過率分布を有するフィルタのX方向及びY方向のシフト量が0.1であり、図6に示した透過率分布を有するフィルタのX方向及びY方向のシフト量が−0.1であるときのフィルタを組み合わせた透過率分布を示す図である。
【図8】 図5に示した透過率分布を有するフィルタのX方向のシフト量を0.1、Y方向のシフト量を−0.1に設定し、図6に示した透過率分布を有するフィルタのX方向のシフト量を−0.1、Y方向のシフト量を0.1に設定したときのフィルタを組み合わせた透過率分布を示す図である。
【図9】 マイクロデバイスの製造工程の一例を示すフローチャートである。
【図10】 半導体デバイスの場合における、図9のステップS13の詳細なフローの一例を示す図である。
【図11】 コンデンサーレンズにより照度分布を調整する原理を説明するための図である。
【符号の説明】
1 露光光源(光源)
14a,14b フィルタ(フィルタ部材)
15 駆動装置
24 主制御系(制御装置、制御部)
31 レチクルステージ(マスクステージ)
34 駆動制御ユニット(マスクステージ駆動系)
39 ウェハステージ(基板ステージ)
41 駆動制御ユニット(基板ステージ駆動系)
IAX 光路(光軸)
IL 露光光(光源から射出される光)
PL 投影光学系
R レチクル(被照射物体、マスク)
SD 走査方向
W ウェハ(感光性基板)
X X方向、X軸(第1方向)
Y Y方向、Y軸(第2方向)
Z Z方向、Z軸(走査方向に対応する方向)

Claims (14)

  1. 光源から射出される光を被照射物体に照射する照明光学系において、
    前記光源から射出される光の光路上に設けられて、当該光路を横切る方向に互いの相対位置を変化可能な第1のフィルタ部材及び第2のフィルタ部材を備え、
    前記第1のフィルタ部材は前記光路を横切る方向に3次以上の関数を含む第1の関数で表される第1透過率分布を有し、
    前記第2のフィルタ部材は前記光路を横切る方向に3次以上の関数を含む第2の関数で表される第2透過率分布を有することを特徴とする照明光学系。
  2. 前記光路を横切る方向に前記フィルタ部材を移動させる駆動装置を備えることを特徴とする請求項1記載の照明光学系。
  3. 前記駆動装置は、前記光路を横切る方向に前記フィルタ部材を連続的に移動可能であることを特徴とする請求項2記載の照明光学系。
  4. 前記駆動装置を駆動して、前記光路を横切る方向における前記フィルタ部材各々の相対位置を制御する制御装置を備えることを特徴とする請求項2又は請求項3記載の照明光学系。
  5. 前記第1のフィルタ部材及び第2のフィルタ部材は、前記光路を横切る方向と直交する方向に3次以上の関数を含む関数で表される透過率分布を有することを特徴とする請求項1から請求項4の何れか一項に記載の照明光学系。
  6. 光源から射出される光を被照射物体に照射する照明光学系において、
    前記光源から射出される光の光路上に設けられて、当該光路を横切る第1方向及び当該第1方向に直交する第2方向各々の方向に3次以上の関数を含む第1の関数で表される透過率分布を有する第1のフィルタ部材と、
    前記光源から射出される光の光路上に設けられて、前記第1方向及び前記第2方向の各々の方向に3次以上の関数を含む第2の関数で表される透過率分布を有する第2のフィルタ部材とを備え
    前記第1及び第2のフィルタ部材は、前記第1方向及び前記第2方向の少なくとも一方の方向に互いの相対位置が変化可能であることを特徴とする照明光学系。
  7. 前記第1方向及び前記第2方向の少なくとも一方の方向に前記フィルタ部材を移動させる駆動装置を備えることを特徴とする請求項6記載の照明光学系。
  8. 前記駆動装置は、前記第1方向及び前記第2方向に前記フィルタ部材を連続的に移動可能であることを特徴とする請求項7記載の照明光学系。
  9. 前記駆動装置を駆動して、前記第1方向及び前記第2方向の少なくとも一方の方向における前記フィルタ部材各々の相対位置を制御する制御装置を備えることを特徴とする請求項7又は請求項8記載の照明光学系。
  10. 前記フィルタ部材は、前記被照射物体の近傍又は前記被照射物体の被照射面に対して光学的に共役な面若しくはその近傍に配置されることを特徴とする請求項1から請求項9の何れか一項に記載の照明光学系。
  11. 前記第1のフィルタ部材と前記第2のフィルタ部材とは、それぞれの透過率分布特性が前記光路を横切る方向に関してほぼ反転した関係となるように配置されることを特徴とする請求項1から請求項10の何れか一項に記載の照明光学系。
  12. 光源からの光をマスクに照射して、当該マスクに形成されたパターンを感光性基板に転写する露光装置において、
    前記マスクを載置できるように構成されたマスクステージと、
    前記感光性基板を載置できるように構成された基板ステージと、
    前記光源からの光を前記マスクに照明する請求項1から請求項11の何れか一項に記載の照明光学系と
    を備えることを特徴とする露光装置。
  13. 光源からの光をマスクに照射して、当該マスクに形成されたパターンを感光性基板に転写する露光装置において、
    前記マスクを載置した状態で移動可能に構成されたマスクステージと、
    前記感光性基板を載置した状態で移動可能に構成された基板ステージと、
    前記光源からの光を前記マスクに照明する請求項1から請求項5の何れか一項に記載の照明光学系と、
    前記マスクの前記パターンの像を前記感光性基板上に形成する投影光学系と、
    前記マスクステージに接続されて、前記マスクステージを移動させるマスクステージ駆動系と、
    前記基板ステージに接続されて、前記基板ステージを移動させる基板ステージ駆動系と、
    前記マスクステージ駆動系と前記基板ステージ駆動系とに接続されて、前記マスクと前記感光性基板とを前記投影光学系の倍率に応じて走査方向に沿って移動させるように前記マスクステージ駆動系と前記基板ステージ駆動系とを制御する制御部と
    を備え、
    前記光路を横切る方向は、前記走査方向に対応する方向を横切るように設定されることを特徴とする露光装置。
  14. 請求項12又は請求項13記載の露光装置を用いて前記マスクに形成されたパターンを前記感光性基板に露光する露光工程と、
    露光された前記感光性基板を現像する現像工程と
    を含むことを特徴とするマイクロデバイスの製造方法。
JP2001283637A 2001-09-18 2001-09-18 照明光学系、露光装置、及びマイクロデバイスの製造方法 Expired - Fee Related JP4923370B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001283637A JP4923370B2 (ja) 2001-09-18 2001-09-18 照明光学系、露光装置、及びマイクロデバイスの製造方法
TW091118266A TW583720B (en) 2001-09-18 2002-08-14 Optical illuminating system, light exposure equipment and manufacturing method of micro-devices
CN02142427A CN1409175A (zh) 2001-09-18 2002-09-16 照明光学系统、曝光装置以及微元件的制造方法
US10/244,377 US6819403B2 (en) 2001-09-18 2002-09-17 Illumination optical system, exposure apparatus, and microdevice manufacturing method
KR1020020056824A KR20030024638A (ko) 2001-09-18 2002-09-18 조명 광학계, 노광 장치 및 마이크로 디바이스의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283637A JP4923370B2 (ja) 2001-09-18 2001-09-18 照明光学系、露光装置、及びマイクロデバイスの製造方法

Publications (3)

Publication Number Publication Date
JP2003092253A JP2003092253A (ja) 2003-03-28
JP2003092253A5 JP2003092253A5 (ja) 2008-06-19
JP4923370B2 true JP4923370B2 (ja) 2012-04-25

Family

ID=19107093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283637A Expired - Fee Related JP4923370B2 (ja) 2001-09-18 2001-09-18 照明光学系、露光装置、及びマイクロデバイスの製造方法

Country Status (5)

Country Link
US (1) US6819403B2 (ja)
JP (1) JP4923370B2 (ja)
KR (1) KR20030024638A (ja)
CN (1) CN1409175A (ja)
TW (1) TW583720B (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412617A (en) * 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
KR100598095B1 (ko) 2003-07-10 2006-07-07 삼성전자주식회사 노광 장치
JP4503967B2 (ja) * 2003-09-26 2010-07-14 三星電子株式会社 調節フィルタ及び露光装置
DE10345782A1 (de) * 2003-10-01 2005-04-21 Zeiss Carl Sms Gmbh Variabler Abschwächer
KR101099847B1 (ko) 2004-01-16 2011-12-27 칼 짜이스 에스엠티 게엠베하 편광변조 광학소자
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
US7075097B2 (en) * 2004-03-25 2006-07-11 Mitutoyo Corporation Optical path array and angular filter for translation and orientation sensing
KR100606932B1 (ko) * 2004-06-24 2006-08-01 동부일렉트로닉스 주식회사 반도체 제조용 노광 장치 및 방법
JP4599936B2 (ja) 2004-08-17 2010-12-15 株式会社ニコン 照明光学装置、照明光学装置の調整方法、露光装置、および露光方法
US7119883B2 (en) 2004-10-13 2006-10-10 Asml Holding N.V. Correcting variations in the intensity of light within an illumination field without distorting the telecentricity of the light
FR2887043B1 (fr) * 2005-06-13 2008-09-19 Sagem Defense Securite Illuminateur a homogeneite d'eclairement et procede d'apodisation d'illumination
US8085383B2 (en) * 2005-10-27 2011-12-27 Asml Holding N.V. System, method, and apparatus for scanning detector for fast and frequent illumination uniformity correction module
US20080024923A1 (en) * 2006-05-24 2008-01-31 Tdk Corporation Lubricant film forming method, slide body with lubricant film, magnetic recording medium, magnetic head slider, and hard disk drive
KR101256670B1 (ko) * 2006-06-26 2013-04-19 엘지디스플레이 주식회사 노광 장치
US7683300B2 (en) * 2006-10-17 2010-03-23 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
WO2008092653A2 (en) 2007-01-30 2008-08-07 Carl Zeiss Smt Ag Illumination system of a microlithographic projection exposure apparatus
US7714984B2 (en) * 2007-03-28 2010-05-11 Asml Holding N.V. Residual pupil asymmetry compensator for a lithography scanner
US7843549B2 (en) * 2007-05-23 2010-11-30 Asml Holding N.V. Light attenuating filter for correcting field dependent ellipticity and uniformity
US8081296B2 (en) * 2007-08-09 2011-12-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5391641B2 (ja) * 2008-10-20 2014-01-15 株式会社ニコン フィルタ装置、照明装置、露光装置、及びデバイス製造方法
JP5365641B2 (ja) * 2008-12-24 2013-12-11 株式会社ニコン 照明光学系、露光装置及びデバイスの製造方法
KR101708948B1 (ko) 2008-12-24 2017-03-08 가부시키가이샤 니콘 조명 광학계, 노광 장치 및 디바이스의 제조 방법
JP5187632B2 (ja) * 2008-12-30 2013-04-24 株式会社ニコン 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5187631B2 (ja) * 2008-12-30 2013-04-24 株式会社ニコン 補正ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5396885B2 (ja) * 2009-01-29 2014-01-22 株式会社ニコン 遮光ユニット、照明光学系、露光装置及びデバイスの製造方法
JP5473350B2 (ja) * 2009-02-13 2014-04-16 キヤノン株式会社 照明光学系、露光装置及びデバイスの製造方法
JP5689461B2 (ja) * 2009-06-09 2015-03-25 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、極端紫外線の反射を制御する方法、及びマスキングデバイス
CN101807009A (zh) * 2010-03-15 2010-08-18 上海微电子装备有限公司 一种照明均匀性补偿装置及具有该装置的光刻机
JP4993003B2 (ja) * 2010-07-08 2012-08-08 株式会社ニコン 照明光学装置の調整方法、および露光方法
JP2012049305A (ja) * 2010-08-26 2012-03-08 Hitachi High-Technologies Corp 真空紫外光処理装置
JP2011187989A (ja) * 2011-06-11 2011-09-22 Nikon Corp 照明光学装置、照明光学装置の調整方法、露光装置、および露光方法
DE102013206528B4 (de) * 2013-04-12 2014-11-20 Carl Zeiss Smt Gmbh Mikrolithographische projektionsbelichtungsanlage mit einem variablen transmissionsfilter
DE102013208129B4 (de) * 2013-05-03 2014-11-20 Carl Zeiss Smt Gmbh Mikrolithographische Projektionsbelichtungsanlage mit einem variablen Transmissionsfilter
TWI561327B (en) * 2013-10-16 2016-12-11 Asm Tech Singapore Pte Ltd Laser scribing apparatus comprising adjustable spatial filter and method for etching semiconductor substrate
TWI518281B (zh) * 2013-11-26 2016-01-21 泰金寶電通股份有限公司 感應式光源模組
RU2725707C2 (ru) * 2015-11-03 2020-07-03 Материон Корпорейшн Фильтрующая решетка с уменьшенным рассеянием сфокусированного света

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473410A (en) * 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
JPH05251310A (ja) * 1992-03-06 1993-09-28 Nikon Corp 露光制御装置
US5486896A (en) * 1993-02-19 1996-01-23 Nikon Corporation Exposure apparatus
JP3440458B2 (ja) * 1993-06-18 2003-08-25 株式会社ニコン 照明装置、パターン投影方法及び半導体素子の製造方法
JPH0982631A (ja) * 1995-09-14 1997-03-28 Nikon Corp 投影露光装置
JPH09167731A (ja) * 1995-12-14 1997-06-24 Mitsubishi Electric Corp 投影露光装置、収差評価用マスクパタン、収差量評価方法、収差除去フィルター及び半導体装置の製造方法
JP3610175B2 (ja) * 1996-10-29 2005-01-12 キヤノン株式会社 投影露光装置及びそれを用いた半導体デバイスの製造方法
JPH10199800A (ja) * 1997-01-09 1998-07-31 Nikon Corp オプティカルインテグレータを備える照明光学装置
JP3784136B2 (ja) * 1997-06-02 2006-06-07 株式会社ルネサステクノロジ 投影露光装置および投影露光方法
JP3101613B2 (ja) * 1998-01-30 2000-10-23 キヤノン株式会社 照明光学装置及び投影露光装置
US6404499B1 (en) * 1998-04-21 2002-06-11 Asml Netherlands B.V. Lithography apparatus with filters for optimizing uniformity of an image
JP3304917B2 (ja) * 1999-04-16 2002-07-22 日本電気株式会社 走査型露光装置及び走査露光方法
JP2001060546A (ja) * 1999-08-20 2001-03-06 Nikon Corp 露光方法及び露光装置

Also Published As

Publication number Publication date
US6819403B2 (en) 2004-11-16
CN1409175A (zh) 2003-04-09
TW583720B (en) 2004-04-11
JP2003092253A (ja) 2003-03-28
KR20030024638A (ko) 2003-03-26
US20030067591A1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
JP4923370B2 (ja) 照明光学系、露光装置、及びマイクロデバイスの製造方法
JP6323425B2 (ja) 照明光学装置及び投影露光装置
TWI431430B (zh) 曝光方法、曝光裝置、光罩以及光罩的製造方法
JP2001313250A (ja) 露光装置、その調整方法、及び前記露光装置を用いるデバイス製造方法
JP2002100561A (ja) 露光方法及び装置、並びにデバイス製造方法
JPWO2007000984A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JPWO2007100081A1 (ja) 露光方法及び装置、並びにデバイス製造方法
JPWO2003023832A1 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2005311020A (ja) 露光方法及びデバイス製造方法
JP2001237183A (ja) マイクロリソグラフィ投影装置
JP4095376B2 (ja) 露光装置及び方法、並びに、デバイス製造方法
JP2005093948A (ja) 露光装置及びその調整方法、露光方法、並びにデバイス製造方法
JP2004343079A (ja) デバイス製造方法
US6335786B1 (en) Exposure apparatus
JP2002033272A (ja) 露光方法及び装置、並びにデバイス製造方法
JP3708075B2 (ja) リソグラフィ装置およびデバイス製造方法
WO2000057459A1 (fr) Méthode d'exposition et dispositif correspondant
JPWO2004066371A1 (ja) 露光装置
JP2003100622A (ja) 照明装置、およびそれを用いた露光装置、デバイス製造方法
JP2002139406A (ja) 光学特性計測用マスク、光学特性計測方法、及び露光装置の製造方法
US7315351B2 (en) Lithographic apparatus, device manufacturing method and device manufactured therewith
JP2005079470A (ja) 照明光学系の調整方法、露光装置及び方法、並びにデバイス製造方法
JP2004023020A (ja) 投影光学系及び縮小投影露光装置
JP2004319770A (ja) 露光方法及びデバイス製造方法
JP2004319780A (ja) 露光方法及び露光装置並びにデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees