JP4863998B2 - 仮想顕微鏡画像キャプチャにおいてステージを機械的に位置決めする方法および機器 - Google Patents

仮想顕微鏡画像キャプチャにおいてステージを機械的に位置決めする方法および機器 Download PDF

Info

Publication number
JP4863998B2
JP4863998B2 JP2007527913A JP2007527913A JP4863998B2 JP 4863998 B2 JP4863998 B2 JP 4863998B2 JP 2007527913 A JP2007527913 A JP 2007527913A JP 2007527913 A JP2007527913 A JP 2007527913A JP 4863998 B2 JP4863998 B2 JP 4863998B2
Authority
JP
Japan
Prior art keywords
image
capture
stage
area
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007527913A
Other languages
English (en)
Other versions
JP2008510201A (ja
Inventor
ブイ.バクス ジェームス
ダブリュ.バクス ジェームス
Original Assignee
オリンパス アメリカ インコーポレイテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス アメリカ インコーポレイテツド filed Critical オリンパス アメリカ インコーポレイテツド
Publication of JP2008510201A publication Critical patent/JP2008510201A/ja
Application granted granted Critical
Publication of JP4863998B2 publication Critical patent/JP4863998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4038Scaling the whole image or part thereof for image mosaicing, i.e. plane images composed of plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は一般に、仮想顕微鏡スライドの画像キャプチャに関し、より詳細には、低分解能のx,y機械的移動を有する顕微鏡ステージプラットフォームを用い、光学エンコーダ位置フィードバック制御を用いずに、仮想顕微鏡スライドをキャプチャする方法、システム、および機器に関する。
現在、製造業者らは、仮想顕微鏡スライド(virtual microscope slide)を得られるデジタル顕微鏡を製造している。そのような2つのシステムが、イリノイ州Lombardの本件特許出願人のBLISS System、およびカリフォルニア州VistaのAperio technologies社のScanscope Systemである。デジタル顕微鏡は一般に、顕微鏡を制御するアプリケーションプログラムをもつコンピュータによって操作される。さらに、デジタル顕微鏡によって生成される仮想スライドは、イントラネットサーバが、イントラネットやインターネットなどのネットワークに対してホストすることができる。したがって、これらのデジタル顕微鏡を使用した物理スライド(physical slide)は、ユーザが容易にスキャンすることができ、キャプチャされたスライド画像は、仮想スライドのデータ構造で記録することができ、それらはその後、ネットワーク上の他のユーザが見ることができる。物理スライドは基本的に、仮想顕微鏡スライドとなる。仮想顕微鏡スライドのより詳細な説明については、本発明者らによる特許文献1および2を参照されたい。それらを、参照によりその全体を組み込む。
一般的な光学顕微鏡を通して標本を見ると、視野は、拡大用の対物レンズを使って標本平面内に見える、顕微鏡光学システムの照明された視野絞りの区域である。視野は、接眼レンズに通常は含まれる視覚的視野絞りによって、さらに限定される。より高い倍率の対物レンズを使って倍率を上げると、視野は劇的に狭くなる。デジタルイメージング顕微鏡では、視野は、拡大対物レンズを使って標本平面内に見える、顕微鏡光学システムの照明された視野絞りの区域であり、画像キャプチャ装置の検出区域によってさらに限定される。仮想スライドは、記録の際に使用される光学システムの標本平面内の視野の区域よりも大きな、顕微鏡スライド上の標本の区域をキャプチャするために、多数の部分に分けて高倍率で記録される、記憶顕微鏡画像または画像データ構造である。多数の画像フィールド(image field)は、ステージプラットフォーム上に装着されたスライドを、各画像キャプチャごとに視野内に移動させることによってキャプチャされ、その結果、隣り合った連続画像フィールドを、あたかも連続しているかのように再構築または記憶することができる。この仮想スライドの記憶画像または画像データ構造により、表示画面を通して、記録された区域またはそれらの部分の再構築されたデジタル画像を見ることが可能になる。表示画面を使用して見るときは、記憶画像または画像データ構造のデジタル画像を変更して、標本の異なる部分を見ることができ、あるいはそれを、より高いまたはより低いデジタル倍率に変更して、異なる分解能(resolution)で見ることもできる。標本の拡大画像のキャプチャは、一団となったシームレスな拡大画像を閲覧者に提供するために正確に整合される必要のある、通常は画像タイルまたは画像ストリップと呼ばれる、多数のデータセグメントをキャプチャすることによって行う。先行技術文献で述べられている仮想スライドは、752×480ピクセルセンサなど、長方形のセンサで、または1×1024ピクセルセンサなど、機械的ステージにより1つの軸のスキャン方向に移動される直線センサで、キャプチャされる。どちらの方法も、一時にキャプチャすることのできる画像のサイズに関しては、ステージを移動して後続の画像キャプチャを行うことをしない限り、光学視野のサイズによって制限される。上記の特許文献に開示されているシステムおよび従来のシステムでは、モータ駆動ステージを有するデジタル顕微鏡システムを使用して、画像データをキャプチャし保存して、整合されたセグメントまたはタイルからなる全体的画像のデータ構造をもたらす。これらのシステムは、主要構成要素のうちの1つが、画像整合を保持するのに必要な高精密ステージであり、高価である。著しく安価なデジタル顕微鏡が、COOLSCOPEの商標でニコンから販売されている。一般に、COOLSCOPEなどのデジタル顕微鏡のモータ駆動ステージの精度は、安価にするために犠牲になっており、仮想スライドキャプチャには使用されていない。しかし、この比較的安価なデジタル顕微鏡の利点のうちの1つが、1280×960ピクセルの、はるかに大きな5メガピクセル長方形画像センサである。
ステッピングステージプラットフォーム(stepping stage platform)のデジタル分解能とデジタル画像センサの分解能との間の関係は、順次画像キャプチャ(sequential image capture)間でシームレスな整合(seamless alignment)を得ることに関して、決定的に重要である。BLISS System(例えば、特許文献1、2、および3参照)では、位置精度を高めるために、非常に精密なフィードバック制御および高度に線形な(highly linear)親ねじ(lead screw)を用いて、分解能0.1μmのステッピングステージを使用することによって、シームレスな画像が得られる。したがって、ステージの分解能が、画像ピクセルのデジタル分解能よりも高く、整合を容易に実現することができる。例えば、20倍の倍率では、BLISS SYSTEMのデジタル分解能は、0.5μmである。1ピクセルの長さを進むために5ステージステップかかるので、1ステージステップの誤差は、最終的な画像ではわからない。さらに、そのようなステージは、精度を精密に維持するためのフィードバック制御を有する。残念ながら、そのような高精密ステージは、非常に高価である。例えば、1.0μm、1.25μm、または5μmで、より低コストのステージが入手可能である。しかし、これにより、ステージのステップサイズが画像平面内のピクセル要素のサイズよりも大きいことに関係する、位置誤差がもたらされる。ステージは、通常はピクセルでの画像幅に均一にマッチしない増分量しか移動することができず、画像間での数ピクセルの誤差が生成される。
また、より低コストのステージは、光学エンコードフィードバック位置制御ステージで使用される精密金属材料ほどは線形ではない材料から作られ得る親ねじを有することがある。これにより、非線形性の誤差がさらにもたらされる。曲がった、または湾曲した親ねじにより、ステージプラットフォームのx、y平面上のスライドの表面を横切る精密な直線経路に対して、位置における、波状の、またはゆるやかなシフトが生じる。この誤差、および機械的ヒステリシスは通常、高価な光学エンコーダフィードバック制御によって補正される。光学エンコーダフィードバック制御なしでの線形性の偏差(deviation)により、結果の位置再現性において、許容範囲20μmのステージ仕様となるおそれがある。これにより、フィードバック制御なしでは、画像間における40ピクセルもの整合誤差が生じる可能性がある。
本発明は、上記特許の所有者である本件特許出願人によって市販されるシステムに比べて比較的安価な、上記のデジタル顕微鏡システムCOOLSCOPEに関して説明することにする。しかし、本発明で説明される画像タイルの整合は、COOLSCOPEシステムだけには限定されず、他のシステムに適用することもできる。したがって、本明細書に記載され、特許請求の範囲に記述される本発明は、本発明の単なる一例として述べられているCOOLSCOPEだけには限定されない。
本願は、2004年8月16日出願の米国仮特許出願第60/601,794号、および2004年8月30日出願の米国仮特許出願第60/605,583号の利益を主張するものである。それらを、参照によりその全体を本明細書に組み込む。
米国特許第6,101,265号 米国特許第6,272,235号 米国特許第6,396,941号
本発明によれば、組織標本などの顕微鏡試料から、デジタルスキャン画像からなる仮想顕微鏡スライドを構築するための、先行技術と比べて新規で安価な方法および機器が提供される。
本発明に係る方法及び機器は、従来の高精密x,yステージプラットフォームを、著しく低精度で低精密なx,yステージプラットフォームで置き換えることによって、かつ、より大きな画像センサを使用してフィードバック制御を提供して位置決めの誤りを補償することによって、実現される。そのより大きな画像センサによって、はるかに大きな画像キャプチャが可能になる。画像の中心部分だけを仮想スライドデータ構造タイルとして保持することにより、その中心部分を囲む画像キャプチャのより大きな区域を使用して、画像を整合させてステージ誤りを補償し、かつフィードバック制御信号を提供して、従来の光学エンコードフィードバック制御信号を置き換えることができる。フィードバック制御の目的は、画像整合用のオーバーラップ区域が常に存在するように、キャプチャ画像をより大きな画像センサの中心に維持することである。
本発明の様々な実施形態の説明に進む前に、本発明の様々な実施形態が実施され得るコンピュータおよびネットワーキング環境について、次に説明する。必ずしもその必要はないが、本発明は、コンピュータによって実行されるプログラムによって実装されてもよい。一般に、プログラムは、個々のタスクを実行する、または個々の抽象データ型を実装するルーチン、オブジェクト、コンポーネント、データ構造などを含む。本明細書では「プログラム」という語は、単一のプログラムモジュールを暗示しても、協調動作する多数のプログラムモジュールを暗示してもよい。本明細書では「コンピュータ」という語には、パーソナルコンピュータ(PC)、ハンドヘルド装置、マルチプロセッサシステム、マイクロプロセッサベースのプログラマブル民生用エレクトロニクス、ネットワークPC、ミニコンピュータ、メインフレームコンピュータ、マイクロプロセッサまたはマイクロコントローラを有する民生機器、ルータ、ゲートウェイ、ハブなど、1つまたは複数のプログラムを電子的に実行するどんな装置も含まれる。本発明はまた、通信ネットワークを介してリンクされるリモート処理装置によってタスクが実行される、分散コンピューティング環境で使用されてもよい。分散コンピューティング環境では、プログラムは、ローカルの記憶装置に位置しても、リモートの記憶装置に位置してもよい。
図1は、本発明を実装することのできる例示的なコンピュータ環境10を示す。この一般的なコンピュータ環境10では、デジタル顕微鏡12が、直接多数のコンピュータ14、16に、またネットワーク22を介して間接的にその他のコンピュータ18、20に、接続される。ネットワークは、イントラネットやインターネットなど、どんなタイプのコンピュータネットワークでもよい。1つのデジタル顕微鏡12が一例として示されているが、このシステムは、多数のコンピュータまたは単一のコンピュータに接続される多数の顕微鏡を含むことができる。コンピュータ環境10のトポロジは大きく変わり得るので、このシステムは一例として示されている。コンピュータ環境10は、ネットワークなしで直接デジタル顕微鏡12に接続される単一のコンピュータまで縮小することができ、または数百のコンピュータおよびデジタル顕微鏡が相互接続される巨大なコンピューティングネットワークとすることもできる。その結果、当業者なら容易に理解するであろうように、他のコンピュータ環境も企図され、こうした様々なコンピュータ環境が本発明の範囲に含まれる。
図2は、本発明のすべてまたは一部が実装され得る、図1に示されており、30で全体的に示されている、コンピュータ14、16、18、20についての全体構成を示す。一例として、その最も基本的な構成では、コンピュータ14は、少なくとも1つの処理ユニット32およびメモリ34を含んでもよい。処理ユニット32は、本発明の様々な実施形態に従って、命令を実行して、タスクを実行する。そのようなタスクを実行する際に、処理ユニット32は、コンピュータ14の他の部分およびコンピュータ14の外部の装置に電子信号を送信して、何らかの結果を生じさせてもよい。コンピュータ14の具体的な構成およびタイプに応じて、メモリ34は、システムメモリ36、揮発性メモリ38(例えば、ランダムアクセスメモリ「RAM」)、あるいは不揮発性メモリ40(例えば、読取り専用メモリ「ROM」またはフラッシュメモリ)でよい。この最も基本的な構成は、図2に破線42で示されている。
また、コンピュータ14は、さらなる機能を有してもよい。例えば、コンピュータ14は、取外し可能44および/または取外し不可能46記憶媒体を含んでもよく、それらには、例えば、磁気ディスクもしくは磁気テープおよび/または光ディスクもしくは光テープが含まれる。こうしたコンピュータ記憶媒体は、コンピュータ実行可能命令、データ構造、プログラムモジュール、またはその他のデータを含めた情報を記憶するための、任意の方法または技術で実装することもできる。コンピュータ記憶媒体には、それだけには限らないが、RAM、ROM、EEPROM、フラッシュメモリ、CD−ROM、デジタル多用途ディスク(DVD)、またはその他の光学記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置、またはその他の磁気記憶装置、あるいは所望の情報を記憶するために使用することができ、コンピュータ14によってアクセスすることができる他のどんな媒体も含まれる。そのようなどんなコンピュータ記憶媒体も、コンピュータ14の一部でよい。
また、コンピュータ14は好ましくは、コンピュータが他のコンピュータおよび/または装置と通信することを可能にする、通信接続48も含む。通信接続は、通信媒体の一例である。通信媒体は一般に、コンピュータ可読命令、データ構造、プログラムモジュール、または搬送波やその他の移送機構などの変調データ信号中の他のデータを実施し、またこの通信媒体には、どんな情報送達媒体も含まれる。限定ではなく例として、「通信媒体」という語には、有線ネットワークや直接有線接続などの有線媒体、ならびに音波、RF、赤外、およびその他の無線媒体などの無線媒体が含まれる。本明細書では「コンピュータ可読媒体」という語には、コンピュータ記憶媒体も、通信媒体も含まれる。コンピュータ14はまた、キーボード、マウス、ペン、音声入力装置、タッチ式入力装置などの入力装置50を有してもよい。また、ディスプレイ54、スピーカ、プリンタ、または周辺装置などの出力装置52が含まれてもよい。こうした装置はすべて、当技術分野でよく知られている。
以下の説明では、別段の指示がない限り、本発明について、1つまたは複数のコンピュータによって実行される動作の働きおよび記号表現に関して説明する。したがって、時としてコンピュータ実行されるともいう、そのような働きおよび動作には、構造化形態でデータを表す電気信号のコンピューティング装置の処理ユニットによる操作が含まれることが理解されよう。この操作によってデータが変換され、またはそれがコンピュータのメモリシステム中の場所に維持され、それにより、当業者によってよく理解されるような方式で、コンピューティング装置の動作が再構成され、あるいは変更される。データが維持されるデータ構造は、データのフォーマットによって定義される個々のプロパティを有する、メモリの物理的場所である。しかし、本発明について以上の文脈で説明されているが、当業者なら理解するであろうように、それは限定するものではなく、以下で説明される様々な働きおよび動作もまた、ハードウェアに実装されてよい。
次に図3を参照すると、本発明の一実施形態に従って実装されるデジタル顕微鏡12の概要図が示されており、全体的に60で示されている。顕微鏡12は、平面68の領域を、x,y軸平面に垂直なz軸72上に位置する対物レンズ70の視野内に移動するための、x,y軸64、66を提供するステージ62を含む。ステージ62は、x,y軸平面68の区域上にスライド74を受け入れるように構成される。図示されているように、デジタル顕微鏡12は、標本75をその上に載せたスライドを、ステージ座標を構成するx,y軸64、66に沿って移動させて、そうした指定の座標での視野画像をキャプチャすることができる。デジタル顕微鏡12は、ステージ62、レンズ70、またはレンズおよびステージの組合せを、これらのステージ座標に合わせて移動させるように適合させることができる。例えば、対物レンズ70は、z軸72上を上および下に移動させるように適合させることができ、ステージ62は、x,y軸64、66上を移動するように適合される。あるいは、ステージ62または対物レンズ70は別個に、定義されたステージ座標に合わせて、x軸64、y軸66、z軸72上を移動することもできる。本明細書に記載される本発明の実施形態では、ステージを移動させて、対物レンズの下の標本を視野に入れる。
本発明の一実施形態では、利用可能な装置機能を制御するために、プログラム76を使用して、適切な命令を作成し、顕微鏡12に送る。一例として、プログラム76は、記憶媒体上に永続的または一時的に保存され得るデータ78を使用するが、指定のステージ座標を用いた命令を顕微鏡12に送って、そうした指定のステージ座標で1つまたは複数の視野画像をキャプチャしてもよい。プログラム76はまた、命令を送って、フォーカス、データの送信、またはスライドのイジェクトなど、その他の装置機能を制御してもよい。基本的には、プログラム76は、デジタル顕微鏡12の装置機能の、必ずしもすべてではないが、大部分を制御するために実装される。デジタル顕微鏡12の移動構成に応じて、プログラム76は、装置の機械部品を制御可能であるべきである。プログラム76は好ましくは、顕微鏡12のユーザ制御を可能にするユーザインターフェース80を含む。
本発明は、プログラム76が、それだけには限らないが、デジタル顕微鏡12、その装置に接続された別個のコンピュータ、アプリケーションの機能、またはウェブベースの実行可能機能の中にある実装形態であると企図するので、そのプログラムは、コンピュータまたは周辺装置で使用するためのどんなプログラムでもよいとみなされるべきである。その結果、そのプログラムの実装形態には、ソフトウェア、ファームウェア、アプリケーション内のモジュール、およびアプリケーションプログラムインターフェースが含まれる。こうした様々な実装形態が企図され、当業者によって容易に理解されるので、それらは本発明の範囲に含まれる。
図4は、本発明の一実施形態に従って選択される標本75の長方形領域82を示す。最初に、標本75のマクロビューがキャプチャされ、それによりユーザが、ユーザインターフェースを介して標本の領域を容易に選択することが可能になる。マクロビューと、より高い倍率の画像キャプチャ用の領域を選択する際にそれを使用することとの関係は、本発明者らによる特許文献1に記載されている。本発明では、同様の方法を使用してもよい。時として、異なる光学部品を使用してマクロビューを得るCOOLSCOPEおよびその他のシステムや、異なる光学部品およびセンサを使用する他のシステムの場合と同様に、正確な選択を行うために、マクロビュー画像をより高い倍率の画像と整合させる必要がある。この整合を実現するための本発明の手順では、マクロビュー画像中の小さな視覚的に検出可能なオブジェクトを選択し、マウスポインタでクリックして、その画像ピクセルのx,y座標を得る。次に、予備中心合わせ(centration)とともに、取得し画像化する倍率を変更して、2番目に高い分解能の、例えば20倍での同じ全体視野内の、通常は第2の閲覧ウィンドウ内の画像を得た後、スクロールによって、または光学部品に対する標本の自動移動によって、そのウィンドウ内でオブジェクトを中心合わせし、キャプチャ画像の視野内でそのオブジェクトが中心合わせされた後、2番目に高い倍率のx,y座標を記録する。次いで、マクロビューをマウスポインタでナビゲートするときに、マクロビュー画像のx,y座標とより高い倍率のビュー画像の間の差異関係をオフセットとして使用して、より高い倍率で異なる点を参照し、より高い倍率での仮想スライドキャプチャ用のマクロビュー上に領域の概略を示してもよい。本発明は、マクロビューの取得だけには限定されないが、スライド全体を単にスキャンする、または画像キャプチャ用の標本領域を自動的に位置決定するシステムで使用してもよい。
キャプチャで要求される倍率に応じて、選択領域が多数のタイル84に分割され、それが、図4中のそれぞれDa0からDa41として示されている。より高い倍率、例えば40倍の倍率では、選択領域を分割するために、より多くのタイル84が使用される。同様に、より低い倍率、例えば5倍の倍率では、より少ないタイル84が使用される。使用される倍率、したがって使用されるタイル84の数は、標本を見る際の具体的な必要性に依存する。しかし、一般に、より詳細が望まれる場合、選択領域を分割するために、より高い倍率およびより多数のタイル84が使用される。しかし、より多くのタイルを使用すると厄介な問題が生じ、その場合、このプロセスにはより多くの時間がかかり、より多くの画像記憶容量が必要になる。したがって、諸利点は、具体的な標本の検査、倍率、および分解能の必要性に従って重み付けされ、そのことは、当業者によって容易に理解される。選択領域を分割するために使用されるタイル数によって、各タイルのx,y座標が決まり、左上タイルのx,y座標が、取得のための開始位置として記憶される。
図5Aは、本発明の一実施形態による選択領域をキャプチャするためのプロセスの流れ図を示しており、それは全体的に100で示されている。このプロセスは、スライドの検出によって自動的に、またはこのプロセスを実行するユーザによって手動で開始する(ブロック102)。このプロセスを開始する他の実装形態も可能であり、それらは当業者によって容易に理解される。このプロセスが開始された後(ブロック102)、装置内でスライドが検出されたかどうかが判定される(ブロック104)。検出されていない場合(ブロック104)、このプロセスは、スライドが装置に挿入されるようユーザに促し(ブロック106)、戻ってスライド検出を再びチェックする(ブロック104)。スライドが検出された後(ブロック104)、スライドのマクロビューが低分解能画像(ブロック108)でキャプチャされ、それがディスプレイ上でユーザに出力される(ブロック110)。一実施形態では、スライドのマクロキャプチャは、22倍の倍率での2つのマクロ画像を含んでおり、整合され、端同士が貼り合わされて、スライド全体のマクロキャプチャが生成される。しかし、単一のフィールド画像のキャプチャなど、他の実装形態も可能である。具体的な実装形態は、装置の能力に依存する。
次に、ユーザは、スライドのマクロビューを使用して、スライドの事前定義領域を選択し(ブロック112)、選択領域の選択倍率でのキャプチャを要求することができる(ブロック114)。選択領域および選択倍率の情報が与えられると、このプロセスは次いで、選択領域を分割するために適切なタイル数を決定する(ブロック116)。選択領域はしたがって、決定されたタイル数で分割される(ブロック118)。前述のように、倍率が高いほどタイル数が増加し、その逆も同様である。使用されるべきタイル数は、装置の容量および構成と、選択領域の形状に大きく依存する。選択領域が決定されたタイル数に分割された後(ブロック118)、システムのいくつかの変数が初期化され、具体的には、オフセット値および合計オフセット値がゼロに設定される(ブロック120)。
第1のタイルが選択され(ブロック122)、装置はしたがって、第1のタイルのステージ座標に移動し(ブロック124)、第1のタイルの画像をキャプチャする(ブロック126)。第1のタイルのキャプチャ画像は、ImageNと設定される(ブロック128)。次に、次のタイルが存在するかどうかが判定される(ブロック130)。存在しない場合(ブロック130)、すなわち、すべてのタイルが処理された場合、このプロセスは終了する(ブロック132)。しかし、別のタイルが存在する場合(ブロック130)、この次のタイルが選択される(ブロック134)。このプロセスは、次のタイルに基づいて移動方向を決定する。例えば、次のタイルがx軸の右方向(すなわち、正)の場合、移動は、x軸上の右移動となる。同様に、次のタイルがy軸の下側(負)の場合、移動は、y軸上の下移動となる。本発明の実施形態では、第1のタイルは好ましくは、第1のタイル画像として選択されるので、右移動、左移動、下移動があることになり、それらはすべて、次のタイルの方向によって決まる。その結果、次のタイルへの方向移動に応じて、xまたはy((x,y)とも呼ばれる)オフセット値が計算されることになる。こうした様々な実施形態は、当業者によって容易に理解され、本発明の範囲に含まれる。xまたはy軸(x,y)上のオフセット値を定義する次のタイルで、(x,y)補正ステップ値が算出され(ブロック136)、それにより、図5Bに示されているサブルーチンが初期化される。
図5Bに移ると、(x,y)補正ステップ値を算出するためのプロセス136の流れ図が示されている。新(x,y)合計オフセットは、「現(x,y)合計オフセット+(x,y)オフセット」に設定される(すなわち、(x,y)合計オフセット=(x,y)合計オフセット+(x,y)オフセット)(ブロック138)。前述のように、次のタイルが整合の方向を定義するので、その値は、x合計オフセット、y合計オフセット、xオフセット、またはyオフセットとなり、これらの値は互いに異なる。しかし、適用(application)をわかりやすく読みやすくするために、表記法(x,y)を使用して、xまたはy値を表す。第1の反復(iteration)では、これらの変数はゼロに設定されているので、すべてがゼロとなる。しかし、第1および第2のタイル画像が整合された後は、概して正または負の(x,y)オフセット値である可能性が高く、それは次の反復で処理される。
(x,y)合計オフセット値は次に、(x,y)しきい値と比較される。具体的には、このプロセスは、(x,y)合計オフセット値が(x,y)しきい値よりも大きいかどうかを判定する(ブロック140)。大きい場合(ブロック140)、(x,y)合計オフセット値は、しきい値を正の側に超えており、それに応じて、(x,y)補正ステップ値は、第1の事前定義値に設定され(ブロック142)、それによりこのプロセスは完了する(ブロック144)。一方、(x,y)合計オフセット値が(x,y)しきい値以下のとき(ブロック140)、このプロセスは次に、(x,y)合計オフセット値が(x,y)しきい値未満かどうかを判定する(ブロック146)。(x,y)しきい値未満の場合(ブロック146)、すなわち整合が負の側に外れている場合、(x,y)補正ステップは、第2の事前定義値に設定され(ブロック148)、それによりやはり、このプロセスは終了する(ブロック144)。この好ましい実施形態では、サンプリング部分および変数の(x,y)合計オフセットおよび(x,y)オフセットは、画像のピクセル値に基づいており、したがって、ピクセル数として表される長さ単位(μm)である。したがって、(x,y)しきい値は、長さ単位(μm)のステージステップに変換される必要があり、それを、図6Aおよび図6Bに表される関係を使用することによって導出して、第1の固定値(ブロック142)および第2の固定値(ブロック148)を得ることができる。これらの値は、ステージステップであり、画像キャプチャに使用される倍率に応じて異なる。本発明の実施形態では、第1および第2の事前定義値は、一方が正の値で他方が負の値であることを除き、同じ値である。これは、ステージ装置が下回った(例えば、オフセットを補正する正の値)または上回った(例えば、オフセットを補正する負の値)のを補償するものである。しかし、実装設計および/または装置の仕様によっては、他の値または値範囲を使用することもできる。こうした様々な実装形態は、当業者によって容易に理解され、したがって、本発明の範囲に含まれる。(x,y)合計オフセット値が、しきい値より大きくも小さくもない場合、すなわち、オフセットがしきい値の範囲内であり、補償が必要とされない場合、(x,y)補正ステップ値は、ゼロに設定される(ブロック150)。この時点で、(x,y)補正ステップ値が得られたので、このプロセスは終了し(ブロック144)、図5Aに戻る。
戻って図5Aを参照すると、(x,y)ステップは、「事前定義された(x,y)デフォルトステップ+図5Bで得られた(x,y)補正ステップ値」に設定される(ブロック152)。このプロセスは、ステージを(x,y)ステップだけ次のタイルに移動し(ブロック154)、画像をキャプチャする(ブロック156)。キャプチャ画像は次に、ImageN+1と設定され(ブロック158)、ImageNおよびImageN+1が整合される(ブロック160)。その整合の結果から、ImageNおよびImageN+1の(x,y)オフセット値が算出され(ブロック162)、それにより、図5Cに示されているサブルーチンが開始される。
次に図5Cに移ると、ImageNおよびImageN+1の(x,y)オフセット値を算出するプロセス162の流れ図が示されている。そのプロセスは、まず両画像のサンプリング部分を抽出する(ブロック164)。抽出されたサンプリング部分(ブロック166)に基づいて、ImageNおよびImageN+1の1組の相関係数が計算され(ブロック166)、その1組の相関係数からの最大値が、その最大値に関連する(x,y)オフセットステップとともに保持される(ブロック168)。この場合も、オフセット値がx値か、それともy値かは、次のタイルの方向に基づく。その結果、抽出されたサンプリング部分も、次のタイルが、x軸方向か、それともy軸方向かに従う。さらに、本発明の諸実施形態では、抽出された各サンプリング部分がハッシュされ、サンプリング部分の各反復ごとの最大値だけが保持される。この好ましい実施形態では、サンプリング部分は、画像のピクセル値に基づいており、(x,y)オフセットステップは、ピクセル数、すなわち、一方の画像を他方の画像に対して移動させ、したがって、それらの画像をxまたはy方向に正確に整列させるのに必要なピクセル数である。オフセットステップが得られた後、それは(x,y)オフセット値と設定され(ブロック172)、このプロセスは終了し(ブロック174)、図5Aのプロセスにループして戻る。本発明の代替実施形態では、相関係数の代わりに、サンプリング部分の画像ピクセル値間の絶対差異の合計を使用してもよい。この場合、最小絶対差異が、サンプリング部分の各反復ごとに、その最小値に関連する(x,y)オフセットステップとともに保持される。
再び図5Aを参照すると、新(x,y)オフセット値が設定されたことで、ImageN+1は次に、ImageNに設定することができる(ブロック176)。このプロセスは、ループして戻り、別の次のタイルが存在するかどうかをチェックする(ブロック130)。存在する場合(ブロック132)、このプロセスは、次のタイルを選択することで、次のタイルのためにもう1回、反復する(ブロック134)。そうでない場合は、このプロセスを通じて、すべてのタイルがスキャンされキャプチャされているので、このプロセスは終了する(ブロック132)。発明の諸実施形態では、キャプチャ画像は好ましくは再び整合され、その整合は、タイルがキャプチャされる必要がないことを除き、図5A、5B、および5Cに示されているプロセスと同様である。しかし、オフセット値の計算およびこの計算されたオフセット値に基づく移動は、同じままである。
倍率および画像サイズが与えられた場合、各取得ごとの、ステージを移動させる名目上の(nominal)x、y増分ステップ数を算出することができる。例を挙げると、図6Aおよび6Bはそれぞれ、関連した画像センサおよび低分解能増分ステップをもつ安価なステージのピクセル値を示している。具体的には、図6Aでは、幅6.75μmおよび高さ6.75μmの5メガピクセル2/3インチ(1.69cm)デジタルセンサのセンサ表面でのピクセルサイズが、10倍、20倍、および40倍の倍率での標本平面内の対応サイズとともに示されている。例えば、図6Aに示されているように、20倍の倍率での単一ピクセルの標本平面内のピクセルサイズは、0.34375である。指定のピクセル数の画像タイルに対する指定の倍率での画像サイズ(幅および高さ)は、単一ピクセルのサイズに基づいて容易に計算することができる。
また、図6Bは、1.25μm増分位置決めステージプラットフォームでのステージステップ数を示す。正確なステップ数が指定された距離をカバーしない場合、ステージステップは、最も近い整数値に切り捨てられる。例えば、40倍の倍率での画像幅103.4μmは、103.4ステージステップを要することになるが、103ステップに切り捨てられ、約2ピクセルの整合問題が生じる。光学エンコーダフィードバック制御のない、より低コストのステージは、整合の誤差が生じる傾向がある。
図7Aは、各タイルが全1280×960ピクセルサイズである、5メガピクセル画像センサを使った画像タイル取得の例示的なパターンを示す。標本75の選択区域200が、多数のタイル画像202に分割されている。この例では、選択区域200は、タイルImage0からImage17に分割される。タイル画像202は全体的に、整合時に確実に選択区域200の画像全体が正しくキャプチャされるようにするために、相互間に大きなオーバーラップを有する。
図7Bおよび7Cは、図7Aに示されているImage0、Image1、Image2、およびImage11の抽出された部分の例示的な整合を示す。各画像の中心がタイルとして選ばれる場合、画像のオーバーラップ領域はしたがって、(x,y)オフセット補正後の名目的に中心合わせされた部分の後続の整合および抽出のために、中心領域の外部で利用可能である。図7Bに示されているように、Image0およびImage1の中心Da0およびDa1は、x方向でオーバーラップし、タイルImage11の中心Da11は、ギャップが空き、Image0およびImage1と正しく整合されない。これは、精密なステージの動きを仮定して、正確な中心が位置決定されるという仮定に基づいている。ステージの動きは不正確なので、中心部分をタイル化仮想スライドキャプチャとして抽出することにより、仮想スライド画像の不整合および不連続が生じることになる。(x,y)オフセットを使用した整合後、図7Cに示されているように、Image0およびImage11のDa0およびDa11の中心は、大部分オーバーラップするImage0、Image1、およびImage11の異なる部分から抽出されるので、オーバーラップ領域なしで整合される。スキャンパターンY誤差は、行全体に起きる傾向があり、短い距離では不規則な傾向であるので、より長い距離では、スキャンパターンY誤差は、うねる周期的パターンを示す。ステージの動きのオーバーシュートのためにオーバーラップしていないギャップがある場合は、画像を相互相関させることができないので、非常に大きくオーバーラップする初期画像の中心部分の抽出は、本発明の重要な特徴である。大きくオーバーラップする画像では、相関後、ステージの動きのアンダーシュートまたはオーバーシュートのためにオーバーラップまたはギャップが存在する場合、タイルは単に、画像の異なる領域から取られる。
本発明の一実施形態では、この手順では、オーバーラップ領域をもつ2つの画像をマッチさせ、それら2つの画像は、アルファ画像およびデルタ画像と呼ばれる。この手順は、アルファ画像領域を固定し、デルタ画像領域を、ラスタスキャンパターン(raster scan pattern)でアルファ画像領域上を移動させ、パラメータを算出する、例えばデルタ領域をアルファ領域上および固定検索範囲上をx,y方向に反復させながら各ピクセルを減算することによって、それらの領域間の最小絶対差異を算出する、と概念化される。したがって、デルタ領域インデックスは、同じままとなり、アルファ領域インデックスは、異なる領域を固定のアルファ領域と比較するために、検索手順を通じて変化する。アルファ画像領域およびデルタ画像領域は、2つの画像を位置決めする際に誤差がなかった場合、同一であるべき領域を定義するx,y開始および終了座標によって定義される。この出力は、確定された誤配置画像のX,Yオフセットである。それらの領域は、検索範囲によってアルファ画像領域上の座標を移動しても、アルファ画像領域上の比較される領域が、より大きな元の画像から外れないように選ばれるべきである。
図8Aは、図7Aに示されている第1のタイルImage0 210の例示的な寸法(dimension)を示す。顕微鏡12は、そのステージ座標を使用して、x方向752ピクセルおよびy方向480ピクセルに関連する名目的ステージステップだけ移動させて、より大きな1280×960画像をそれぞれキャプチャする。図示されているように、タイルImage0 210は、中心タイル区域Da0 212、およびその中心タイル区域に隣接する追加のキャプチャ区域214を含む。キャプチャされるより大きな画像210の区域全体は、x軸方向1280ピクセルおよびy軸方向960ピクセルの寸法である。しかし、中心区域212は、x軸上752ピクセルおよびy軸上480ピクセルの寸法であり、残りの区域は、x,y軸においてタイルの両側でそれぞれ264および240ピクセルの寸法である追加のキャプチャ区域214からなる。もちろん、示されているこれらの寸法は、顕微鏡12のキャプチャされる分解能によって異なるので、単に例示的なものである。他の代替寸法および比も企図されるが、それらも本発明の範囲内である。顕微鏡12によってキャプチャされる、より大きな画像は、タイル、およびそのタイルに隣接する追加の区域を含む。
図8Bは、図8Aに示されているタイルImage0 210のx軸上右側でキャプチャされる第2のタイルImage1 220の、例示的な寸法を示す。この実施形態では、第1のタイルImage0 210がキャプチャされた後、顕微鏡12は、第2のタイル画像220をキャプチャするために、事前定義ステップに従って右に移動するよう指令される。その第2のタイル画像220は、その対応する第2の中心区域Da1 222、およびそのタイル区域に隣接する第2の追加のキャプチャ区域224を含む。この例では、事前定義ステップは、第1のタイルImage0 210の右への752ピクセルの距離で定義される。具体的には、確実にキャプチャされたタイルが分割されたタイルよりも大きくなるように、第1のタイルImage0 210の第1の中心区域Da0 212は、第2のタイルImage1 220の第2の中心区域Da1 222にオーバーラップする。オーバーラップ区域により、タイルの区域全体がキャプチャされ、その結果、顕微鏡12の不正確な移動のために何もタイルの区域が失われなくなる。さらに、これらの追加の区域は、精度を得るために整合プロセス中も有用である。この場合、使用される相関区域は、2つのより大きな画像間のオーバーラップ区域226である。x方向では、これは、右の画像211の(上部に図示される)第132ピクセルで開始し、第395ピクセルで終了する。同様に、左の画像210のオーバーラップ区域は、(下部に図示される)第884ピクセル〜第1147ピクセルである。x軸上でImage0の右に位置する残りのタイルImage2からImage5も同様に、x方向でのオフセット値に従ってオーバーラップされることになる。
図8Cは、タイルImage5 230、およびタイルImage5から下に移動してキャプチャされるタイルImage6 232の例示的な寸法を示す。この例では、x軸上で右に移動することによってすべてのタイル画像がキャプチャされた後、顕微鏡12は、次のタイル画像(例えば、Image6 232)をキャプチャするために、x軸の右側でキャプチャされた最後のタイル画像(例えば、Image5 230)から、y軸上で下に移動するよう指令される。この例では、顕微鏡12は、同様に中心区域Da5 234および追加のキャプチャ区域236を含むタイルImage5 230から下方に、約480ピクセル相当ステージステップだけ移動して、その対応する中心区域Da6 238および追加のキャプチャ区域240も含むタイルImage6 120をキャプチャする。2つのより大きな画像間に、オーバーラップ区域が作成される。この場合も、上側および下側の2つのタイル画像がキャプチャされ、オーバーラップ区域が確実に、顕微鏡12の不正確な移動のために何もタイルの区域が失われないようになる。さらに、タイルImage5およびImage6に対してy方向でのオフセット値も計算される。このオフセット値を計算するために、区域242が使用される。これは、(左部に示される)タイルImage5 230の第480ピクセル〜第719ピクセルであり、タイルImage6 232のゼロ(0)ピクセル〜第239ピクセルである。図示されたオーバーラップ区域は、距離約239ピクセルの寸法で、これは、タイルImage6 232の追加のキャプチャ区域240のほぼ上部である。この実施形態では、タイルImage6の後の次のタイル画像がx方向の左側であるので、顕微鏡はしたがって、次のタイル画像、すなわちタイルImage7をキャプチャするために、x軸の左に移動される。
図8Dは、タイルImage6 232、およびタイルImage6から左に移動してキャプチャされるタイルImage7 250の例示的な寸法を示す。この例では、顕微鏡12は、次のタイル画像(例えば、Image7 250)をキャプチャするために、y軸上でキャプチャされた最後のタイル画像(例えば、Image6 232)から、x軸上で左に移動するよう指令される。この場合、タイルImage7は、y軸上で下移動の第1のタイル画像、および同時にx軸上で左移動の第1のタイル画像である。この例では、キャプチャタイルImage7をキャプチャするために、顕微鏡12は、タイルImage6のステージ座標から、x方向での前のオフセット値に基づくステージステップ距離だけ、x軸の左に移動する。タイルImage7は同様に、中心区域252および追加のキャプチャ区域254を含む。xオフセット値を計算するために使用されるオーバーラップ区域256は、(上部に示される)第1のタイル画像の第132ピクセル〜第395ピクセルである。x軸上のImage7の左に位置する、残りの画像Image8からImage11は同様に、このプロセスを通じて動的に計算されるオフセット値に従ってオーバーラップされることになる。Image11の完了後、このプロセスは、図8Cに示されているように、タイルImage12をキャプチャするために、下に移動する(例えば、y軸での下移動)。その後、タイルImage13からImage17が、図8Bに示されているように、x軸上の右方向に沿ってキャプチャされ、これにより、選択画像に対するキャプチャプロセスが完了する。図8A、8B、8C、および8Dは、述べられているように、具体例として示されているが、寸法、各タイルに使用されるフィールド画像数、事前定義の距離、および移動の方向は変更することができる。例えば、顕微鏡12は、x軸(左右)およびy軸(上下)のいずれに沿っても移動することができる。こうしたすべてのパラメータは、速度または精度の所望の利点に従って設定することができる。その結果、こうした多数の代替実装形態が、本発明の範囲に含まれる。
図8A、8B、8C、および8Dの上記の説明では、最終的なタイル抽出に必要とされる画像の整合の計算を詳細に示している。図5A、5B、および5Cに関して示され述べられている別の関連した問題は、固定のステップサイズでのステージの移動に伴う位置決めの誤差がそれほど大きくならないようにさせ、相関後、より小さなタイルを切除するのに十分な領域が大きな画像中に残されないようにすることである。これは、本発明の他方の態様により、図5A、5B、および5Cに示されているように、画像の相互相関の結果に基づくフィードバック制御によってステップサイズを変えることで、解決される。上記にさらに詳しく説明されているように、これは、中心タイル抽出用に理想的x,y設定点を選び、整合における前の誤差に基づいて次のステップのステップサイズ変えることによって、実現された。画像整合の周囲の区域が比較的大きい場合、これにより、後続の画像は、その画像にタイルが含まれるように位置決めされる傾向になる。したがって、図8A、8B、8C、および8Dに示されている領域間の大きな画像オーバーラップおよび相関は、どちらの目的にも使用される。この実施形態では、第1の画像Image0、Image1などが、フィードバック情報を使用して十分にオーバーラップされて保存された後、第1の画像と同一だが保存画像上の第2の画像が実装され、その場合、保存された画像と相関関係があり、最終的なDa0、Da1などの抽出タイルが、抽出され、仮想スライドデータ構造として保存される。元の大きな画像はその後、破棄される。
図9Aは、より具体的な本発明の実施形態による、ステージステップ1.25μmを使って画像をキャプチャするための抽出プロセスの流れ図を示しており、それは全体的に300で示されている。このプロセスはまず、変数を初期化する(ブロック302)。具体的には、Xoffset値、Yoffset値、SumXoffset値、およびSumYoffset値が、すべてゼロに設定される。さらに、初期化中、第1のタイル画像がキャプチャされる(ブロック302)。この実施形態では、第1のタイル画像の次のタイル画像は好ましくは、右側である(ブロック304)。その結果、このプロセスはまず、右移動を生じさせるx軸の右方向に沿ったタイルが存在するかどうかを判定する(ブロック306)。存在する場合、Xcorrection値が算出され、それは図9Bに示されている。
図9Bに移ると、Xcorrection値を算出するための流れ図が示されており、全体的に310で示されている。このプロセスは開始すると(ブロック312)、SumXoffsetを、SumXoffset+Xoffsetに設定する(ブロック314)。図9Aでの初期化より、このプロセスの第1の反復では、SumXoffset=0+0となる。次に、SumXoffsetがXthreshold値3よりも大きいかどうかが判定される(ブロック316)。SumXoffsetがXthreshold値3よりも大きい場合(ブロック316)、すなわち整合画像のオフセット値がx軸の正の方向(例えば、右側)で補償される必要のある場合、Xcorrectionが、値4に設定され(ブロック318)、これにより、ステージは、デフォルトステップから4ピクセルステップだけ上に移動することになる。この特定の実施形態では、Xthreshold値3およびXcorrection値4は、1.25μmステージステップを用いる安価なステージに使用される。しかし、ステージ装置の仕様によっては、他のXthreshold値およびXcorrection値を使用することもでき、それは当業者によって容易に理解される。Xcorrection値が設定された後、このプロセスは終了し、図9Aに戻る(ブロック320)。
しかし、SumXoffsetがXthreshold値以下の場合(ブロック316)、このプロセスは、引き続きチェックし、SumXoffsetが負のXthreshold値−3より小さいかどうかを判定する(ブロック322)。−3より小さい場合、整合画像のオフセット値は、x軸の負の方向(例えば、左側)で補償される必要がある。Xcorrectionが−4に設定され(ブロック324)、それによりこの場合も、このプロセスは、Xcorrection値が得られたので終了する(ブロック320)。そうでない場合、すなわちSumXoffsetがXthreshold値−3より小さくないとき(ブロック322)、Xcorrectionは、補正が必要とされないのでゼロに設定される(ブロック326)。このプロセスはこの場合も、Xcorrection値が得られるので完了し、図9Aに戻る。再び、Xcorrection値は左側であり、ステージ装置の仕様に応じて、多数の異なる値を負のXthresholdおよびXcorrectionに対して使用することができる。これらの代替実施形態は、当業者によって容易に理解され、したがって、それらは本発明の範囲内である。
図9Aに戻ると、Xcorrection値が算出された後、Xsteps値が、Xdefault−Xcorrectionに設定される(ブロック308)。ステージは、このXstepsに基づいて右に移動し(ブロック308)、画像をキャプチャする(ブロック328)。キャプチャ画像は次に、前の画像のアルファ画像との右整合のために、デルタ画像に設定される(ブロック328)。したがって、XoffSetは、デルタとアルファ画像の間の右整合の結果に基づいて算出される(ブロック328)。このプロセスは、ループして戻り、まだ右移動があるかどうかをチェックする(ブロック306)。タイルがx軸上の右方向に残っている場合(ブロック306)、このプロセスは、戻って、新しいXcorrectionを新しいXoffset値で算出する(ブロック306)。
そうでない場合、すなわち、もう右移動がないとき(ブロック306)、このプロセスは、次のタイルに対する下移動があるかどうかを判定する(ブロック330)。言い換えれば、このプロセスは、x軸の右方向でキャプチャされた最後のタイルから下方の次のタイルが存在するかどうかをチェックする。存在しない場合、すなわちすべてのタイルが処理された場合、このプロセスは終了する(ブロック332)。しかし、下移動を必要とするタイルがまだ存在する場合、Ycorrection値が算出され(ブロック334)、それは、図9Cにサブルーチンとして示されている。
次に図9Cに移ると、Ycorrection値を算出するための流れ図が示されており、全体的に340で示されている。図9Bに示されているXcorrectionプロセスと同様に、このプロセスは開始すると(ブロック342)、SumYoffsetをSumYoffset+Yoffsetに設定する(ブロック344)。これらの変数は図9Aで初期化されているので、このプロセスの第1の反復もまた、SumYoffset=0+0となる。しかし、その後の反復では、画像の整合中にわかった何らかのオフセットによるSumYoffset値を有することになる。このプロセスは次に、SumYoffsetがYthreshold値3よりも大きいかどうかを判定する(ブロック346)。SumYoffsetがYthreshold値3よりも大きい場合(ブロック346)、すなわち、整合画像のオフセット値がy軸の正の方向(例えば、上方)で補償される必要がある場合、Ycorrectionは、値4に設定され(ブロック348)、それによりステージは、デフォルトステップから4ピクセルステップだけ下に移動する。1.25μmステージステップをもつ安価なステージを用いるこの特定の実施形態によれば、Ythreshold値3およびYcorrection値4が使用される。しかし、図9Bに示されているXcorrectionプロセスと同様に、Ythreshold値およびYcorrection値は、ステージ装置の仕様によっては異なってもよく、そのことは、当業者によって容易に理解される。Ycorrection値が設定された後、このプロセスは終了し、図9Aに戻る(ブロック350)。
他方、SumYoffsetが、Ythreshold値以下の場合(ブロック346)、このプロセスは引き続き、SumYoffsetが負のYthreshold値−3より小さいかどうかを判定する(ブロック352)。−3より小さい場合、整合画像のオフセット値は、y軸の負の方向(例えば、下方)で補償される必要がある。Ycorrectionはしたがって、y軸上で4ステップ下方に補償するために、−4に設定される(ブロック354)。このプロセスはこの場合も、Ycorrection値が得られたので、この時点で終了する(ブロック350)。そうでない場合、SumYoffsetが負のYthreshold値−3より小さくないとき(ブロック352)、Ycorrectionは、補正が必要とされないのでゼロに設定される(ブロック356)。このプロセスはこの場合も、Ycorrection値が得られるので完了し(ブロック350)、それにより図9Aに戻る。この場合も、ステージ装置の仕様に応じて、多数の異なる値をYthresholdおよびYcorrection値に使用することができる。これらの代替実施形態は、当業者によって容易に理解され、したがってそれらは、本発明の範囲に含まれる。
再び図9Aを参照すると、「Ysteps=Ydefault値−算出されたYcorrection値」が算出される(ブロック334)。ステージは、Ydefault値およびYcorrection値から得られたYstepsだけ下に移動し(ブロック334)、画像をキャプチャする(ブロック360)。キャプチャ画像はデルタ画像と設定され(ブロック360)、このキャプチャ画像の前の画像は、アルファ画像と設定される(ブロック334)。アルファ画像およびデルタ画像の下整合が行われ、それにより、Yoffset値の算出が可能になる(ブロック360)。
Y方向の下整合が行われた後、x軸の左側のタイルが次に、キャプチャされる(ブロック362)。このプロセスはしたがって、前にキャプチャされたタイルの左に位置するタイルをキャプチャするために、ステージが左に移動すべきかどうかを判定する(ブロック364)。左に移動すべき場合(ブロック364)、左移動に対するXcorrectionを算出するために、図9Bに示されているサブルーチンが再び実行される(ブロック366)。Xcorrectionを用いて、Xsteps値が再び算出され、それは、Xdefault−Xcorrection値に基づく(ブロック366)。ステージは、Xstepsだけ左に移動し(ブロック366)、画像をキャプチャする(ブロック368)。キャプチャ画像は、デルタ画像と設定され(ブロック368)、一方、前のキャプチャ画像は、アルファ画像となる(ブロック366)。アルファおよびデルタ画像の左整合が行われ、その左整合に基づいて別のXoffset値が算出される(ブロック368)。このプロセスは、ループして左移動に戻り(ブロック362)、引き続き別の左移動を要するようなタイルをチェックする(ブロック364)。
もう左移動は必要とされない場合(ブロック364)、このプロセスは、別の下移動プロセスに進み、それは、下移動があるかどうかをチェックする(ブロック370)。y軸の下方にまだタイルが存在する場合、図9Cに示されているサブルーチンを用いて、Ycorrection値が再び算出される(ブロック372)。その後、YdefaultおよびYcorrectionを用いて、Ystepsが算出される(ブロック372)。ステージは、y軸上で下に移動し(ブロック372)、画像をキャプチャし(ブロック374)、その画像は、デルタ画像と設定される。この場合も、前のキャプチャ画像のアルファ画像が、y軸上でデルタ画像と整合され、下整合の結果から別のYoffset値が算出される(ブロック374)。このプロセスは、右移動にループして戻り(ブロック304)、次のタイルに対する右移動が存在するかどうかを判定する(ブロック306)。下移動が必要とされない場合(ブロック370)、すべてのタイルが処理され、キャプチャされたので、このプロセスは終了する(ブロック332)。
図9Dは、一連の、キャプチャされ保存されたより大きな画像Image0、Image1などからの、最終的な、名目的に中心合わせされたDa0、Da1などのタイルをキャプチャするための、抽出プロセスの流れ図を示す。すべての画像で、全体的に380で示される別の整合プロセスが、図9A、9B、および9Cからのこれらのキャプチャ画像を用いて実行される。このプロセスは、Image0から開始する(ブロック382)。Image0の中心Da0タイルが抽出され、仮想スライドデータ構造に保存される。Image0 x,y座標での抽出されたタイルの座標は、図8Aに示されているようにx=264、y=240で開始する。抽出されたタイルのx,yタイルサイズは、752×480である。現画像の次画像へと右に移動して(ブロック384)、現タイルの右隣が存在するかどうかが判定される(ブロック386)。存在する場合、現画像は、アルファと設定され、現タイルの右隣は、デルタと設定され、アルファ画像とデルタ画像の間の右整合が行われる(ブロック388)。右整合後、ImageN+1の中心DaN+1タイルが抽出され、仮想スライドデータ構造中に保存される。ImageN x,y座標での抽出されたタイルの座標は、x=264+xオフセット、およびy=240+yオフセットで開始する。抽出されたタイルのx,yタイルサイズは、752×480である。デルタ画像ImageN+1は、現アルファ画像ImageNとなる(ブロック388)。このプロセスは、ループして、「右」(ブロック384)に戻り、現画像の右隣をチェックする(ブロック386)。別の右隣画像が存在する場合(ブロック386)、プロセスは、右隣画像の整合を続行し(ブロック388)、最後の抽出されたタイル位置からの、x,yでのその開始オフセットによって補正されたタイルを抽出する。もう右隣画像が存在しない場合(ブロック386)、下隣がチェックされる(ブロック390)。下隣が存在しない場合(ブロック390)、すべての画像が処理されているはずであるので、このプロセスは終了する(ブロック392)。
他方、下隣が存在する場合、現画像はアルファ画像と設定され、下隣画像はデルタ画像と設定され、下整合が行われ(ブロック394)、このプロセスは、最後の抽出されたタイル位置からの、x,yでのその開始オフセットによって補正されたタイルを抽出する。このプロセスは、左に移動し(ブロック396)、左隣画像が存在するかどうかを判定する(ブロック398)。存在する場合、左整合が行われるために、現画像はアルファ画像に設定され、左隣画像はデルタ画像に設定され(ブロック400)、このプロセスは、最後の抽出されたタイル位置からの、x,yでのその開始オフセットによって補正されたタイルを抽出する。このプロセスは、別の左移動に戻る(ブロック396)。この反復は、左隣がもう存在しなくなるまで行われ(ブロック398)、その後、下隣画像が存在するかどうかが判定される(ブロック402)。下隣画像が存在する場合(ブロック402)、現画像および下隣がそれぞれアルファおよびデルタと設定され、両画像に対して下整合が行われ(ブロック404)、このプロセスは、最後の抽出されたタイル位置からの、x,yでのその開始オフセットによって補正されたタイルを抽出する。この時点で、このプロセスは、ループして右移動(ブロック384)に戻り、それにより、右隣が存在するかどうかがチェックされる(ブロック386)。他方、下隣が存在しない場合(ブロック402)、このプロセスは終了する(ブロック392)。
本発明の特定の実施形態が示され説明されているが、多くの変更形態および改変形態が当業者には想到され、本発明は、添付の特許請求の範囲において、本発明の真の趣旨および範囲に従ったそうしたすべての変更形態および改変形態を包含するものであることが理解されよう。
本発明を実装することのできる例示的なコンピュータ環境10を示す図である。 本発明のすべてまたは一部が実装され得る、図1に示されるコンピュータについての全体構成を示す図である。 本発明の一実施形態に従って実装されるデジタル顕微鏡12の概要図である。 本発明の一実施形態によるスライドの選択区域の長方形領域を示す図である。 本発明の一実施形態によるプロセスの流れ図である。 本発明の一実施形態によるプロセスの流れ図である。 本発明の一実施形態によるプロセスの流れ図である。 画像センサの互いに異なるパラメータの例示的な値を示す表である。 ステージ装置の互いに異なるパラメータの例示的な値を示す表である。 本発明の一実施形態による複数のタイル画像の例示的な図である。 本発明の一実施形態による複数のタイル画像の整合の例示的な図である。 本発明の一実施形態による複数のタイル画像の整合の例示的な図である。 図7Aに示されるタイル画像の整合移動の例示的なピクセル値を示す図である。 図7Aに示されるタイル画像の整合移動の例示的なピクセル値を示す図である。 図7Aに示されるタイル画像の整合移動の例示的なピクセル値を示す図である。 図7Aに示されるタイル画像の整合移動の例示的なピクセル値を示す図である。 本発明の一実施形態によるプロセスを示す流れ図である。 本発明の一実施形態によるプロセスを示す流れ図である。 本発明の一実施形態によるプロセスを示す流れ図である。 本発明の一実施形態によるプロセスを示す流れ図である。

Claims (16)

  1. 整列させた複数の画像タイルから標本の拡大合成画像を作成する方法であって、
    標本を対物レンズに対して所定の距離だけ移動させ、所定のサイズを有し、第1のキャプチャ区域によって周囲を囲まれた第1の中心区域を有する第1の拡大画像についてのデータをキャプチャすること、
    前記標本を前記対物レンズに対して前記所定の距離だけ移動させ、前記所定のサイズを有し、第2のキャプチャ区域によって周囲を囲まれた第2の中心区域を有し、前記第1のキャプチャ区域と前記第2のキャプチャ区域は少なくとも部分的にオーバーラップする、第2の拡大画像についてのデータをキャプチャすること、
    前記第1および第2のキャプチャ区域のオーバーラップした部分についてのデータの比較に基づいて、補正オフセットを算出すること、および、
    前記所定のサイズを有し、第3のキャプチャ区域によって周囲を囲まれた第3の中心区域を有する第3の拡大画像をキャプチャするために、前記標本を前記対物レンズに対して、前記所定の距離から前記補正オフセットだけ修正した距離だけ移動させること
    を含むことを特徴とする方法。
  2. 記第1、第2、および第3の中区域についてのデータを抽出して、前記拡大合成画像のための第1、第2、および第3の前記タイルを形成することをさらに含むことを特徴とする請求項1に記載の方法。
  3. 前記補正オフセットを算出することは、前記第1および第2のキャプチャ区域のオーバーラップした部分のそれぞれの画像の前記データのピクセル値を評価することを含むことを特徴とする請求項1に記載の方法。
  4. 顕微鏡ステージを、前記対物レンズに対して移動させるための親ねじを用いた駆動装置を提供すること、および、
    出された前記補正オフセットをフィードバックとして使用して、前記顕微鏡ステージが前記親ねじを用いた駆動装置によって駆動される前記所定の距離を調整すること
    をさらに含むことを特徴とする請求項1に記載の方法。
  5. 移動のX方向に、前記移動させることおよび前記算出することを実行すること、ならびに、
    Y方向に、前記移動させることおよび前記算出することを実行すること
    をさらに含むことを特徴とする請求項1に記載の方法。
  6. ステージおよび対物レンズおよび前記ステージを前記対物レンズに対して移動させるための駆動装置を有する顕微鏡を使用して、整列させた複数の画像タイルから形成された標本のタイル化された合成拡大画像を作成する方法であって、
    画像センサによって、各々が、所定のサイズを有し、キャプチャ区域によって周囲を囲まれた中心区域を有し、該キャプチャ区域が互いに少なくとも部分的にオバーラップする、複数の大画像についてのデータをキャプチャすること、
    連続する前記拡大画像の前記中心域を、前記標本の前記合成拡大画像のための前記画像タイルとして保持すること、および、
    記対物レンズに対する前記ステージの移動の誤りを補償するように前記ステージの移動を変更するためにフィードバック制御信号を生成するのに、前記キャプチャ区域のオーバーラップした部分を用いること
    を含むことを特徴とする方法。
  7. 中心区域を前記画像センサの中心に維持するように前記フィードバック制御信号を用いることをさらに含むことを特徴とする請求項6に記載の方法。
  8. 仮想顕微鏡スライド用の画像データをキャプチャするために、対物レンズに対して標本を移動可能に保持するステージに対するコンピュータ実行可能命令を有するコンピュータ可読媒体であって、前記コンピュータ実行可能命令は、
    所定のサイズを有し、第1のキャプチャ区域によって周囲を囲まれた第1の中心区域を有する第1の拡大画像と、前記所定のサイズを有し、第2のキャプチャ区域によって周囲を囲まれた第2の中心区域を有し、前記第1のキャプチャ区域と前記第2のキャプチャ区域は少なくとも部分的にオーバーラップする、第2の拡大画像についてのデータをキャプチャすること、
    ーバーラップした前記第1および第2のキャプチャ区域のデータの比較に基づいてオフセット値を算出すること、および、
    第3の拡大画像についてのデータの後続のキャプチャのために、前記オフセット値を、前記対物レンズに対する前記ステージの次の移動に対するフィードバック制御信号として使用すること
    をコンピュータに実行させることを特徴とするコンピュータ可読媒体。
  9. 整列させた複数の画像タイルから標本の拡大合成画像を作成する装置であって、
    前記標本の一部を拡大するように構成された対物レンズと、
    前記標本を保持するように構成されたサポートと、
    前記標本を前記対物レンズに対して所定の距離だけ移動させるように構成された駆動装置と、
    所定のサイズを有し、第1のキャプチャ区域によって周囲を囲まれた第1の中心区域を有する第1の拡大画像についてのデータをキャプチャするように構成された画像キャプチャシステムと、
    を有し、
    前記駆動装置は、前記所定のサイズを有し、第2のキャプチャ区域によって周囲を囲まれた第2の中心区域を有し、前記第1のキャプチャ区域は前記第2のキャプチャ区域の少なくとも一部にオーバーラップする、第2の拡大画像についてのデータを前記画像キャプチャシステムでキャプチャするために、前記標本を前記対物レンズに対して前記所定の距離だけ移動させるように構成されており、
    前記所定のサイズを有し、第3のキャプチャ区域によって周囲を囲まれた第3の中心区域を有する第3の拡大画像のキャプチャのために、前記駆動装置に、前記標本を、前記対物レンズに対して前記所定の距離から補正オフセットだけ修正した距離だけ移動させるために、前記それぞれの第1および第2のキャプチャ区域のオーバーラップした部分についてのデータの比較に基づいて前記補正オフセットを算出するように構成された算出システムをさらに備えることを特徴とする装置。
  10. 前記算出システムは、前記合成拡大画像のための第1、第2、および第3の前記タイルを形成するために記第1、第2、および第3の中区域についてのデータを抽出するように構成されていることを特徴とする請求項9に記載の装置。
  11. 前記算出システムは、複数の前記タイルの縁部を揃えるために、オーバーラップした前記キャプチャ区域のそれぞれの画像の前記データのピクセル値を評価することを特徴とする請求項9に記載の装置。
  12. 前記駆動装置は、顕微鏡ステージを前記対物レンズに対して移動させるための親ねじを備え、算出された前記補正オフセットをフィードバックとして使用して、前記顕微鏡ステージが、前記親ねじの駆動によって駆動される前記所定の距離を調整することを特徴とする請求項9に記載の装置。
  13. 前記駆動装置は、
    X方向に駆動するためのX軸親ねじと、
    Y方向に駆動するためのY軸親ねじと
    を備えることを特徴とする請求項9に記載の装置。
  14. 整列させた複数の画像タイルから形成される標本のタイル化された合成拡大画像を作成する装置であって、
    前記本の画像を拡大するように構成された対物レンズを有する顕微鏡と、
    前記標本を支持するように構成されたステージと、
    前記ステージを前記対物レンズに対して移動させるように構成された駆動装置と、
    所定のサイズを有し、第1のキャプチャ区域によって周囲を囲まれた第1の中心区域を有する第1の大画と、前記所定のサイズを有し、第2のキャプチャ区域によって周囲を囲まれた第2の中心区域を有し、前記第1のキャプチャ区域と前記第2のキャプチャ区域は少なくとも部分的にオーバーラップする、第2の拡大画像についてのデータをキャプチャするように構成された画像センサと、
    前記第1および第2の中心区域を、前記標本の前記タイル化された合成拡大画像のための画像の前記タイルとして保持するように構成されたメモリ媒体と、
    前記駆動装置にフィードバック制御信号を提供するためのフィードバック制御を有する
    前記駆動装置による次の移動のためにフィードバック制御信号を算出するように構成された算出システムであって、前記フィードバック制御信号は、前記対物レンズに対する前記ステージ移動の誤りを補償するために、前記第1および第2のキャプチャ領域のオーバーラップした部分から導出される、算出システムと
    を備えることを特徴とする装置。
  15. 中心区域を前記画像センサの中心に維持するように前記フィードバック制御信号を用いることを特徴とする請求項14に記載の装置。
  16. 標本の仮想顕微鏡スライド画像をキャプチャする顕微鏡画像キャプチャシステムであって、
    対物レンズを有する顕微鏡と、
    前記標本を支持するように構成されたステージと、
    前記ステージを前記対物レンズに対してシフトさせるように構成された親ねじを用いた駆動装置と、
    コンピュータ実行可能命令を有するコンピュータ可読媒体を備えるコンピュータ制御システムであって、該コンピュータ実行可能命令は、
    所定のサイズを有し、第1のキャプチャ区域によって周囲を囲まれた第1の中心区域を有する第1の拡大画像と、前記所定のサイズを有し、第2のキャプチャ区域によって周囲を囲まれた第2の中心区域を有し、前記第1のキャプチャ区域と前記第2のキャプチャ区域は少なくとも部分的にオーバーラップする、第2の拡大画像についてのデータをキャプチャするための命令、
    前記第1および第2のキャプチャ区域のオーバーラップした部分のデータの比較に基づいてオフセット値を算出するための別の命令、および
    第3の拡大画像についてのデータの後続のキャプチャのために、前記オフセット値を、前記対物レンズに対する前記ステージの次の相対的な移動のためのフィードバック制御信号として使用するための命令
    を備えるコンピュータ制御システムと
    を備えることを特徴とする顕微鏡画像キャプチャシステム。
JP2007527913A 2004-08-16 2005-08-15 仮想顕微鏡画像キャプチャにおいてステージを機械的に位置決めする方法および機器 Active JP4863998B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60179404P 2004-08-16 2004-08-16
US60/601,794 2004-08-16
US60558304P 2004-08-30 2004-08-30
US60/605,583 2004-08-30
PCT/US2005/028982 WO2006023443A2 (en) 2004-08-16 2005-08-15 Method and apparatus of mechanical stage positioning in virtual microscopy image capture

Publications (2)

Publication Number Publication Date
JP2008510201A JP2008510201A (ja) 2008-04-03
JP4863998B2 true JP4863998B2 (ja) 2012-01-25

Family

ID=35968092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007527913A Active JP4863998B2 (ja) 2004-08-16 2005-08-15 仮想顕微鏡画像キャプチャにおいてステージを機械的に位置決めする方法および機器

Country Status (5)

Country Link
US (1) US7792338B2 (ja)
EP (1) EP1794706B1 (ja)
JP (1) JP4863998B2 (ja)
CA (1) CA2576183C (ja)
WO (1) WO2006023443A2 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518652B2 (en) * 2000-05-03 2009-04-14 Aperio Technologies, Inc. Method and apparatus for pre-focus in a linear array based slide scanner
US7653260B2 (en) * 2004-06-17 2010-01-26 Carl Zeis MicroImaging GmbH System and method of registering field of view
US7792338B2 (en) * 2004-08-16 2010-09-07 Olympus America Inc. Method and apparatus of mechanical stage positioning in virtual microscopy image capture
DE102006042157B4 (de) 2006-09-06 2013-03-21 Leica Microsystems Cms Gmbh Verfahren und Mikroskopiersystem zum Scannen einer Probe
CN101197044B (zh) * 2006-12-06 2011-02-02 鸿富锦精密工业(深圳)有限公司 图像合成系统及方法
US8044972B2 (en) * 2006-12-21 2011-10-25 Sectra Mamea Ab Synchronized viewing of tomosynthesis and/or mammograms
US8051386B2 (en) * 2006-12-21 2011-11-01 Sectra Ab CAD-based navigation of views of medical image data stacks or volumes
US7992100B2 (en) * 2006-12-21 2011-08-02 Sectra Ab Dynamic slabbing to render views of medical image data
US8098956B2 (en) 2007-03-23 2012-01-17 Vantana Medical Systems, Inc. Digital microscope slide scanning system and methods
DE102008014030B4 (de) * 2008-03-12 2017-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Kalibrieren eines Bühne-Kamera-Systems sowie Bühne-Kamera-System und Mikroskop mit derartigem Bühne-Kamera-System
US20100166268A1 (en) * 2008-12-30 2010-07-01 Ebm Technologies Incorporated Storage system for storing the sampling data of pathological section and method thereof
CN101769475B (zh) * 2008-12-31 2013-04-24 鸿富锦精密工业(深圳)有限公司 影像测量仪光源及利用该光源的自动定位系统
TWI417517B (zh) * 2009-02-27 2013-12-01 Hon Hai Prec Ind Co Ltd 影像測量儀光源及利用該光源的自動定位系統
US8891851B2 (en) * 2009-07-15 2014-11-18 Glenn F. Spaulding Home healthcare management system and hardware
WO2011038402A2 (en) * 2009-09-28 2011-03-31 Bryan Dangott Apparatus, system, and method for simulating physical movement of a digital image
US8705623B2 (en) * 2009-10-02 2014-04-22 Texas Instruments Incorporated Line-based compression for digital image data
CN102576464B (zh) * 2009-10-22 2015-09-09 皇家飞利浦电子股份有限公司 对准来自标本的有序堆叠的图像
JP5452180B2 (ja) 2009-11-13 2014-03-26 オリンパス株式会社 顕微鏡装置
US20110228071A1 (en) * 2010-02-10 2011-09-22 Rohde Mitchell M Microscope for Forensic Examination
JP5665369B2 (ja) 2010-05-27 2015-02-04 キヤノン株式会社 撮像装置
JP2012002923A (ja) 2010-06-15 2012-01-05 Canon Inc 撮像装置
DE102010039652A1 (de) 2010-08-23 2012-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mosaikaufnahmeerzeugung
JP4975177B2 (ja) 2010-09-10 2012-07-11 キヤノン株式会社 撮像装置
US8542274B2 (en) 2010-10-18 2013-09-24 Olympus America Inc. Wide field microscopic imaging system and method
JP2013011856A (ja) * 2011-06-01 2013-01-17 Canon Inc 撮像システムおよびその制御方法
JP5732353B2 (ja) * 2011-08-31 2015-06-10 株式会社キーエンス 拡大観察装置、拡大観察方法および拡大観察プログラム
US20130141736A1 (en) * 2011-12-01 2013-06-06 Mingwu Bai Control method and apparatus for positioning a moving object
JP6102749B2 (ja) * 2012-01-11 2017-03-29 ソニー株式会社 情報処理装置、撮像制御方法、プログラム、デジタル顕微鏡システム、表示制御装置、表示制御方法及びプログラム
JP5923824B2 (ja) 2012-02-21 2016-05-25 株式会社ミツトヨ 画像処理装置
EP2642279B1 (en) * 2012-03-19 2015-07-01 Universidad de Barcelona Method and system for improving characteristic peak signals in analytical electron microscopy
JP6172146B2 (ja) * 2012-07-04 2017-08-02 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び顕微鏡システム
JP2014178357A (ja) * 2013-03-13 2014-09-25 Sony Corp デジタル顕微鏡装置、その撮像方法およびプログラム
US9591268B2 (en) * 2013-03-15 2017-03-07 Qiagen Waltham, Inc. Flow cell alignment methods and systems
JP6455829B2 (ja) * 2013-04-01 2019-01-23 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
US9720218B2 (en) * 2013-08-06 2017-08-01 Howard Hughes Medical Institute Volume imaging
JP6127926B2 (ja) * 2013-11-11 2017-05-17 ソニー株式会社 画像処理装置及び画像処理方法
US10015527B1 (en) * 2013-12-16 2018-07-03 Amazon Technologies, Inc. Panoramic video distribution and viewing
CN107076980A (zh) * 2014-08-18 2017-08-18 维斯科技有限公司 用于大视场显微扫描中嵌入图像的系统和方法
US20160299498A1 (en) * 2015-04-10 2016-10-13 Nanovea, Inc. System for navigating a field of view of a displayed and magnified surface
JP6572117B2 (ja) * 2015-12-04 2019-09-04 オリンパス株式会社 顕微鏡、画像貼り合わせ方法、プログラム
US10359613B2 (en) * 2016-08-10 2019-07-23 Kla-Tencor Corporation Optical measurement of step size and plated metal thickness
US10157457B2 (en) * 2016-08-10 2018-12-18 Kla-Tencor Corporation Optical measurement of opening dimensions in a wafer
US10168524B2 (en) * 2016-08-10 2019-01-01 Kla-Tencor Corporation Optical measurement of bump hieght
US10373290B2 (en) * 2017-06-05 2019-08-06 Sap Se Zoomable digital images
JP6842387B2 (ja) * 2017-08-31 2021-03-17 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
JP7297783B2 (ja) 2018-04-11 2023-06-26 アルコン インコーポレイティド デジタル顕微鏡のための自動xyセンタリング
EP4067965A1 (en) * 2021-03-31 2022-10-05 PreciPoint GmbH Method of providing an assembled image using a digital microscope, digital microscope system, and program for providing an assembled image using a digital microscope
WO2023112002A1 (en) * 2021-12-18 2023-06-22 Imageprovision Technology Private Limited Photomicrographic image-processing method for automatic scanning, detection and classification of particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107379A (ja) * 1993-10-01 1995-04-21 Sharp Corp 静止画像撮像装置
US20040114218A1 (en) * 2001-04-12 2004-06-17 Adam Karlsson Method in microscopy and a microscope, where subimages are recorded and puzzled in the same coordinate system to enable a precise positioning of the microscope stage
US20040119817A1 (en) * 2001-12-18 2004-06-24 Maddison John R. Method and apparatus for acquiring digital microscope images

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999047A (en) * 1972-09-05 1976-12-21 Green James E Method and apparatus utilizing color algebra for analyzing scene regions
US4150360A (en) * 1975-05-29 1979-04-17 Grumman Aerospace Corporation Method and apparatus for classifying biological cells
US4199748A (en) * 1976-11-01 1980-04-22 Rush-Presbyterian-St. Luke's Medical Center Automated method and apparatus for classification of cells with application to the diagnosis of anemia
US4175860A (en) * 1977-05-31 1979-11-27 Rush-Presbyterian-St. Luke's Medical Center Dual resolution method and apparatus for use in automated classification of pap smear and other samples
US4213036A (en) * 1977-12-27 1980-07-15 Grumman Aerospace Corporation Method for classifying biological cells
DE2903855A1 (de) * 1979-02-01 1980-08-14 Bloss Werner H Prof Dr Ing Verfahren zum automatischen markieren von zellen und bestimmung der merkmale von zellen aus zytologischen abstrichpraeparaten
US4742558A (en) * 1984-02-14 1988-05-03 Nippon Telegraph & Telephone Public Corporation Image information retrieval/display apparatus
US4760385A (en) * 1985-04-22 1988-07-26 E. I. Du Pont De Nemours And Company Electronic mosaic imaging process
FR2583545B1 (fr) 1985-06-13 1987-08-07 Primat Didier Amelioration aux procedes et dispositifs de digitalisation automatique d'une scene comportant des elements significatifs discrets
US4741043B1 (en) * 1985-11-04 1994-08-09 Cell Analysis Systems Inc Method of and apparatus for image analyses of biological specimens
US4777525A (en) * 1985-12-23 1988-10-11 Preston Jr Kendall Apparatus and method for a multi-resolution electro-optical imaging, display and storage/retrieval system
US5216596A (en) * 1987-04-30 1993-06-01 Corabi International Telemetrics, Inc. Telepathology diagnostic network
JP2686274B2 (ja) * 1988-03-24 1997-12-08 東亜医用電子株式会社 細胞画像処理方法および装置
US5544650A (en) * 1988-04-08 1996-08-13 Neuromedical Systems, Inc. Automated specimen classification system and method
US4965725B1 (en) * 1988-04-08 1996-05-07 Neuromedical Systems Inc Neural network based automated cytological specimen classification system and method
US5163095A (en) * 1988-04-22 1992-11-10 Toa Medical Electronics Co., Ltd. Processor for extracting and memorizing cell images, and method of practicing same
JP2813348B2 (ja) * 1988-04-22 1998-10-22 東亜医用電子株式会社 細胞画像切出記憶処理装置および方法
JP2671393B2 (ja) 1988-06-21 1997-10-29 ソニー株式会社 地図情報の表示装置
US5252487A (en) * 1989-05-19 1993-10-12 Cell Analysis Systems, Inc. Method and apparatus for determining the amount of oncogene protein product in a cell sample
US5073857A (en) * 1989-06-01 1991-12-17 Accuron Corporation Method and apparatus for cell analysis
US5268966A (en) * 1989-08-10 1993-12-07 International Remote Imaging Systems, Inc. Method of differentiating particles based upon a dynamically changing threshold
US5072382A (en) * 1989-10-02 1991-12-10 Kamentsky Louis A Methods and apparatus for measuring multiple optical properties of biological specimens
US5107422A (en) * 1989-10-02 1992-04-21 Kamentsky Louis A Method and apparatus for measuring multiple optical properties of biological specimens
US5313532A (en) * 1990-01-23 1994-05-17 Massachusetts Institute Of Technology Recognition of patterns in images
US5123056A (en) * 1990-02-02 1992-06-16 Siemens Medical Systems, Inc. Whole-leg x-ray image processing and display techniques
US5655029A (en) * 1990-11-07 1997-08-05 Neuromedical Systems, Inc. Device and method for facilitating inspection of a specimen
JPH06503415A (ja) * 1990-11-07 1994-04-14 ニューロメディカル システムズ インコーポレイテッド ディスプレイに表示された像に対し検査の監査を行いながら検査する装置及び方法
US5257182B1 (en) * 1991-01-29 1996-05-07 Neuromedical Systems Inc Morphological classification system and method
US5218645A (en) * 1991-03-29 1993-06-08 Cell Analysis Systems, Inc. Method and apparatus for separating cell objects for analysis
US5216500A (en) * 1991-07-15 1993-06-01 Rj Lee Group, Inc. Simultaneously recording of video image and microscope stage position data
US5260871A (en) * 1991-07-31 1993-11-09 Mayo Foundation For Medical Education And Research Method and apparatus for diagnosis of breast tumors
US5428690A (en) * 1991-09-23 1995-06-27 Becton Dickinson And Company Method and apparatus for automated assay of biological specimens
CA2077781A1 (en) * 1991-09-23 1993-03-24 James W. Bacus Method and apparatus for automated assay of biological specimens
JPH05303621A (ja) 1992-04-24 1993-11-16 Fujitsu Ltd イメージ情報の表示方法
JP3018733B2 (ja) 1992-05-13 2000-03-13 株式会社ニコン 静止画像伝送装置
JP3321197B2 (ja) 1992-06-22 2002-09-03 オリンパス光学工業株式会社 顕微鏡静止画像伝送システム
JP3448847B2 (ja) 1992-07-29 2003-09-22 オリンパス光学工業株式会社 顕微鏡静止画像観察システム
JPH06118307A (ja) 1992-10-02 1994-04-28 Nikon Corp 検鏡支援装置
EP0610916A3 (en) * 1993-02-09 1994-10-12 Cedars Sinai Medical Center Method and device for generating preferred segmented numerical images.
US5505948A (en) * 1993-06-01 1996-04-09 Dermatology Home Products, Inc. Home skin peel composition for producing healthy and attractive skin
JPH0715721A (ja) 1993-06-28 1995-01-17 Nikon Corp 画像伝送装置
US5793969A (en) * 1993-07-09 1998-08-11 Neopath, Inc. Network review and analysis of computer encoded slides
US5625765A (en) * 1993-09-03 1997-04-29 Criticom Corp. Vision systems including devices and methods for combining images for extended magnification schemes
US5505946A (en) 1994-04-01 1996-04-09 Trustees Of Univ Of Pa Bowman-birk inhibitor concentrate compositions and methods for the treatment of pre-malignant tissue
JP3557246B2 (ja) 1994-06-08 2004-08-25 オリンパス株式会社 顕微鏡画像遠隔観察装置および顕微鏡画像の遠隔観察方法
US5499097A (en) * 1994-09-19 1996-03-12 Neopath, Inc. Method and apparatus for checking automated optical system performance repeatability
JPH08287218A (ja) * 1995-04-10 1996-11-01 Sharp Corp 画像合成装置
EP0839336A1 (en) * 1995-07-19 1998-05-06 Morphometrix Technologies Inc. Automated scanning of microscope slides
US6430309B1 (en) * 1995-09-15 2002-08-06 Monogen, Inc. Specimen preview and inspection system
US6148096A (en) * 1995-09-15 2000-11-14 Accumed International, Inc. Specimen preview and inspection system
US6091842A (en) * 1996-10-25 2000-07-18 Accumed International, Inc. Cytological specimen analysis system with slide mapping and generation of viewing path information
US6151405A (en) * 1996-11-27 2000-11-21 Chromavision Medical Systems, Inc. System and method for cellular specimen grading
US6078681A (en) * 1996-03-18 2000-06-20 Marine Biological Laboratory Analytical imaging system and process
US5978804A (en) * 1996-04-11 1999-11-02 Dietzman; Gregg R. Natural products information system
US5796861A (en) * 1996-07-12 1998-08-18 Frim International, Inc. Mosaic construction, processing, and review of very large electronic micrograph composites
US6272235B1 (en) * 1997-03-03 2001-08-07 Bacus Research Laboratories, Inc. Method and apparatus for creating a virtual microscope slide
US6396941B1 (en) * 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US6031930A (en) * 1996-08-23 2000-02-29 Bacus Research Laboratories, Inc. Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing
US6404906B2 (en) * 1997-03-03 2002-06-11 Bacus Research Laboratories,Inc. Method and apparatus for acquiring and reconstructing magnified specimen images from a computer-controlled microscope
US5874162A (en) * 1996-10-10 1999-02-23 International Business Machines Corporation Weighted sintering process and conformable load tile
US5836877A (en) * 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6091930A (en) * 1997-03-04 2000-07-18 Case Western Reserve University Customizable interactive textbook
US5993001A (en) * 1997-06-05 1999-11-30 Joslin Diabetes Center, Inc. Stereoscopic imaging system for retinal examination with remote examination unit
AU1182401A (en) 1999-10-15 2001-04-23 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6711283B1 (en) * 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US7027628B1 (en) * 2000-11-14 2006-04-11 The United States Of America As Represented By The Department Of Health And Human Services Automated microscopic image acquisition, compositing, and display
US6816606B2 (en) * 2001-02-21 2004-11-09 Interscope Technologies, Inc. Method for maintaining high-quality focus during high-throughput, microscopic digital montage imaging
US7062091B2 (en) * 2001-01-16 2006-06-13 Applied Precision, Llc Coordinate calibration for scanning systems
US7116440B2 (en) * 2003-02-28 2006-10-03 Aperio Technologies, Inc. Image processing and analysis framework
US7792338B2 (en) * 2004-08-16 2010-09-07 Olympus America Inc. Method and apparatus of mechanical stage positioning in virtual microscopy image capture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107379A (ja) * 1993-10-01 1995-04-21 Sharp Corp 静止画像撮像装置
US20040114218A1 (en) * 2001-04-12 2004-06-17 Adam Karlsson Method in microscopy and a microscope, where subimages are recorded and puzzled in the same coordinate system to enable a precise positioning of the microscope stage
US20040119817A1 (en) * 2001-12-18 2004-06-24 Maddison John R. Method and apparatus for acquiring digital microscope images

Also Published As

Publication number Publication date
US20060034543A1 (en) 2006-02-16
EP1794706A4 (en) 2009-10-21
WO2006023443A2 (en) 2006-03-02
EP1794706A2 (en) 2007-06-13
EP1794706B1 (en) 2014-11-26
CA2576183A1 (en) 2006-03-02
CA2576183C (en) 2013-04-02
JP2008510201A (ja) 2008-04-03
WO2006023443A3 (en) 2006-09-28
US7792338B2 (en) 2010-09-07

Similar Documents

Publication Publication Date Title
JP4863998B2 (ja) 仮想顕微鏡画像キャプチャにおいてステージを機械的に位置決めする方法および機器
JP4779041B2 (ja) 画像撮影システム、画像撮影方法、および画像撮影プログラム
US8581996B2 (en) Imaging device
CA2827703C (en) Method for assessing image focus quality
JP5132867B2 (ja) 仮想顕微鏡スライドを形成し使用する方法および装置、ならびにプログラム
CN102662229B (zh) 具有触摸屏的显微镜
US8508587B2 (en) Imaging device
US20020113946A1 (en) Image input apparatus
JP6196832B2 (ja) 画像処理装置、画像処理方法、顕微鏡システム及び画像処理プログラム
US20040114218A1 (en) Method in microscopy and a microscope, where subimages are recorded and puzzled in the same coordinate system to enable a precise positioning of the microscope stage
US11067771B2 (en) Observation apparatus, control method, and computer-readable medium for changing a relative distance between a stage and optical system based on determined reliability of in-focus position
WO2005104524A1 (ja) 超解像処理に適するサブピクセルモーション画像を撮影するための移動決定方法及びそれを用いた撮像装置
TW202012878A (zh) 用於使用相機焦距的絕對和相對深度測量的方法和設備
WO2020110712A1 (ja) 検査システム、検査方法およびプログラム
US20070280550A1 (en) Lens defect correction
KR20130102465A (ko) 높이 측정 방법 및 높이 측정 장치
KR20220164771A (ko) 스캐닝 시스템 및 그것의 교정
KR102654705B1 (ko) 촬상 장치 및 방법
EP1377865B1 (en) A method in microscopy and a microscope, where subimages are recorded and puzzled in the same coordinate system to enable a precise positioning of the microscope stage
JP4670194B2 (ja) 顕微鏡システム
JP2010266750A (ja) 観察装置および観察システム
JP2007178380A (ja) 流水孔閉塞率の算出方法、流水孔閉塞率の算出装置、プログラム及び記録媒体
JP2006003276A (ja) 3次元形状計測システム
US20140363095A1 (en) Image processing device, image processing method, and program
JP2015102694A (ja) アライメント装置、顕微鏡システム、アライメント方法、及びアライメントプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080815

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090714

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250