JP6127926B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP6127926B2
JP6127926B2 JP2013233436A JP2013233436A JP6127926B2 JP 6127926 B2 JP6127926 B2 JP 6127926B2 JP 2013233436 A JP2013233436 A JP 2013233436A JP 2013233436 A JP2013233436 A JP 2013233436A JP 6127926 B2 JP6127926 B2 JP 6127926B2
Authority
JP
Japan
Prior art keywords
image
visual field
information
image processing
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013233436A
Other languages
English (en)
Other versions
JP2015094827A5 (ja
JP2015094827A (ja
Inventor
武史 大橋
武史 大橋
拓也 成平
拓也 成平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013233436A priority Critical patent/JP6127926B2/ja
Priority to US14/525,693 priority patent/US20150130921A1/en
Publication of JP2015094827A publication Critical patent/JP2015094827A/ja
Publication of JP2015094827A5 publication Critical patent/JP2015094827A5/ja
Application granted granted Critical
Publication of JP6127926B2 publication Critical patent/JP6127926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Description

本技術は、病理画像等の画像処理に供する画像処理装置及び画像処理方法に関する。
従来より、病理診断を行う医師等は、病理組織標本のスライド等を顕微鏡装置により観察することで病理診断を行っている。医師等は、顕微鏡装置による観察に慣れており、スライド標本の操作や診断等を円滑に行うことが可能であった。一方、顕微鏡による観察像を直接撮像した顕微鏡画像は、解像度が低く、類似検体との間の画像認識等の画像処理に供することが難しかった。また、顕微鏡画像は、一般に画像情報しか取得できないため、カルテに含まれる患者の情報を適宜参照する必要がある等、診断効率の点で問題があった。
そこで、近年、病理組織標本等をデジタル画像化したバーチャルスライドが用いられている。バーチャルスライドは、病理組織標本上の病理画像等から得られる情報のみならず、患者の既往歴等の付加情報(アノテーション)と紐付けされて保存されることが可能である。さらに、バーチャルスライドは、顕微鏡装置等で撮像した画像よりも解像度が大きいため、画像処理を容易にすることができる。これにより、バーチャルスライドは、顕微鏡による観察と併せて、病理診断等における有用なツールとして用いられている。
例えば、特許文献1及び特許文献2には、バーチャルスライド上のタッチパネルを用いた操作により、病理組織標本のスライドが載置される顕微鏡のステージを移動させ、このスライドの観察位置を操作する技術が記載されている。
特開2013−72994号公報 特開2013−72995号公報
しかしながら、顕微鏡による観察に慣れた医師等にとっては、バーチャルスライドの操作がしにくく、所望の領域を表示させる等の操作が円滑に行えないという問題があった。
以上のような事情に鑑み、本技術の目的は、デジタル画像化された標本画像の操作性を高めることが可能な画像処理装置及び画像処理方法を提供することにある。
以上の目的を達成するため、本技術の一形態に係る画像処理装置は、画像取得部と、視野情報生成部と、表示部とを具備する。
上記画像取得部は、ユーザの観察対象の観察像を撮像することにより生成された第1の解像度を有する入力画像を取得する。
上記視野情報生成部は、上記観察対象の画像を含み上記第1の解像度よりも大きい第2の解像度を有する標本画像と、上記入力画像とを照合することで、上記標本画像中の、上記入力画像に対応する視野範囲を特定するための視野情報を生成する。
上記表示部は、上記視野情報に基づいて、上記標本画像中の上記視野範囲に対応する情報を取得し、上記情報を表示するための信号を出力する。
上記画像処理装置によれば、ユーザが観察している観察対象の観察像に対応する、バーチャルスライド中の視野範囲に対応する画像や、アノテーション情報等を出力することができる。これにより、顕微鏡装置側の操作により、バーチャルスライド側の顕微鏡画像に対応する画像や、アノテーション情報を取得することが可能となる。したがって、医師等にとって扱いやすい顕微鏡装置の操作性を利用しつつ、バーチャルスライドの利便性を享受することが可能となる。
上記視野情報生成部は、上記観察像の拡大率の情報を取得し、上記標本画像の拡大率と上記観察像の拡大率との比を利用して、上記標本画像と上記入力画像とを照合してもよい。
顕微鏡装置における観察像の拡大率は、一般に、対物レンズ等に固有の所定の値を採り得る。したがって、観察像の拡大率と、バーチャルスライドの拡大率との比を利用して照合を行うことにより、照合処理の負担を軽減することが可能となる。
上記視野情報生成部は、上記視野情報を生成できなかった場合に、ユーザに対し、上記観察対象の他の観察像を撮像するように指示してもよい。
これにより、画像の照合が失敗した場合であっても、画像として特徴的な部分を有する入力画像を取得することが可能となり、照合を成功させることが可能となる。
上記視野情報生成部は、
上記視野情報を生成できなかった場合に、上記観察像の拡大率が所定の拡大率以下であるか否か判定し、
上記所定の拡大率以下でなかった場合に、上記所定の拡大率以下の拡大率の観察像を撮像するように指示してもよい。
これにより、より特徴的な部分を抽出しやすい拡大率の低い入力画像を取得することが可能となる。
上記視野情報生成部は、
上記視野情報を生成できなかった場合に、上記観察像と上記観察対象上の位置が異なる他の観察像を撮像するように指示してもよい。
これにより、照合が失敗した場合に、観察対象を移動させ、より特徴的な部分を有する入力画像を取得することが可能となる。
上記視野情報生成部は、上記視野情報を生成する際に、上記標本画像の上記視野範囲に対応する領域に付随するアノテーション情報を併せて取得してもよい。
これにより、病理診断時に、標本画像に付随するカルテ情報等のアノテーション情報を利用することが可能となる。したがって、顕微鏡装置側の操作に基づき、標本画像に付随する豊富な情報を利用することができ、病理診断を効率化することが可能となる。
上記画像取得部は、上記観察対象の識別情報を上記入力画像と併せて取得し、
上記視野情報生成部は、上記識別情報に基づいて、上記標本画像のうち上記観察対象に対応する画像領域を特定し、上記画像領域と入力画像とを照合してもよい。
これにより、標本画像の照合範囲を限定することが可能となる。したがって、画像照合時の処理の負担を軽減することが可能となる。
上記視野情報生成部は、上記標本画像から抽出される複数のSIFT特徴量と、上記入力画像から抽出される複数のSIFT特徴量とに基づいて、上記標本画像と上記入力画像とを照合してもよい。
これにより、標本画像中の対応する視野範囲が、入力画像に対して回転している場合や、スケールの異なる場合であっても、精度の高い画像照合を行うことが可能となる。
本技術の一形態に係る画像処理方法は、観察対象の観察像を撮像することにより生成された第1の解像度を有する入力画像を取得する工程を含む。
上記観察対象の画像を含み上記第1の解像度よりも大きい第2の解像度を有する標本画像と、上記入力画像とが照合される。
照合結果に基づいて、上記標本画像中の、上記入力画像に対応する視野範囲を特定するための視野情報が生成される。
上記視野情報に基づいて、上記標本画像中の上記視野範囲に対応する情報を取得し、上記情報を表示するための信号が出力される。
以上のように、本技術によれば、デジタル画像化された標本画像の操作性を高めることが可能な画像処理装置及び画像処理方法を提供することができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施形態に係る画像処理装置を含む画像処理システムの模式図である。 上記画像処理システムのブロック図である。 上記画像処理装置の視野情報生成部の動作例を示すフローチャートである。 Aは、複数の第2の特徴点が抽出された入力画像の模式的な図であり、Bは、Aに示すコードブック番号6番の第2の特徴点のSIFT特徴量と、入力画像の基準点及び視野ベクトルとの関係について説明する模式的な図である。 バーチャルスライドの各第1の特徴点に対して投票を行った結果を示す模式的な図である。 第1の実施形態の変形例に係る画像処理装置の作用効果を説明するための図であり、Aは顕微鏡装置のみを用いることにより得られる情報の例を示し、Bは画像処理装置を用いることにより得られる情報の例を示す。 本技術の第2の実施形態に係る画像処理装置を含む画像処理システムのブロック図である。 バーチャルスライドの各第1の特徴点に対して投票を行った結果を示す模式的な図であり、図5に対応する図である。 本技術の第3の実施形態に係る画像処理装置を含む画像処理システムのブロック図である。 上記画像処理装置の視野情報生成部の動作例を示すフローチャートである。 上記画像処理装置の画像取得指示部による指示が表示部に表示された例を示す図である。 上記画像処理装置の画像取得指示部による指示が表示部に表示された例を示す図である。 本技術の第3の実施形態の変形例に係る画像処理装置を含む画像処理システムのブロック図である。 上記変形例に係る画像処理装置の視野情報生成部の動作例を示すフローチャートである。 本技術の第4の実施形態に係る画像処理装置を含む画像処理システムのブロック図である。 本技術の第5の実施形態に係る画像処理装置を含む画像処理システムの模式図である。 上記画像処理システムのブロック図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
<第1の実施形態>
[画像処理システム]
図1は、本技術の第1の実施形態に係る画像処理システム1の模式図、図2は画像処理システム1のブロック図である。画像処理システム1は、画像処理装置100と、顕微鏡装置200と、標本画像(バーチャルスライド)が記憶された病理画像データベース(DB)310を有するサーバ装置300(図2参照)とを備える。画像処理装置100と、サーバ装置300とは、それぞれ、画像処理装置100に接続されている。
図1に示すように、画像処理システム1は、画像処理装置100に、顕微鏡装置200で観察された観察像Wと同じ視野範囲のバーチャルスライドの画像(出力画像F)を表示させることが可能に構成される。画像処理システム1は、例えば、医師等のユーザが、顕微鏡装置200を用いて病理組織切片を含むスライド標本Sを観察し、スライド標本Sから得られる情報に基づいて診断を行う、いわゆる病理診断の際に用いるものとすることができる。
(顕微鏡装置)
顕微鏡装置200は、顕微鏡本体210と、撮像部220(図2参照)とを有し、観察対象の観察像Wを撮像することにより、入力画像を取得する。観察対象としては、例えば、スライド標本Sが用いられる。スライド標本Sは、HE(Haematoxylin Eosin)染色等を施された病理組織切片がスライドガラス上に貼り付けられたものとして形成される。
顕微鏡本体210は、スライド標本等を所定の拡大率で明視野観察することが可能であれば特に限定されず、例えば正立顕微鏡、偏光顕微鏡、倒立顕微鏡等、種々のものが適用され得る。
顕微鏡本体210は、ステージ211と、接眼レンズ212と、複数の対物レンズ213と、対物レンズ保持部214とを有する。接眼レンズ212は、典型的には右目、左目にそれぞれ対応する2つ(両眼)の接眼レンズを含み、所定の拡大率を有する。ユーザは、接眼レンズ212を覗き込むことで、スライド標本Sを観察する。
ステージ211は、スライド標本等を載置可能に構成され、載置面と平行な平面内及び載置面と垂直な方向に移動可能に構成される。医師等のユーザは、載置面と平行な平面内でステージ211を移動させることにより、スライド標本S中の視野を移動させ、接眼レンズ212を介して所望の観察像を取得することができる。また、載置面と垂直な方向にステージ211を移動させることで、拡大率に応じて焦点を合わせることができる。
対物レンズ保持部214は、複数の対物レンズ213を保持し、かつ、光路中に配置される対物レンズ213を切り替え可能に構成される。対物レンズ保持部214は、具体的には、複数の対物レンズ213を取付可能なレボルバ等を適用することができる。また、複数の対物レンズ213の切り替え方法としては、対物レンズ保持部214を手動で駆動してもよいし、ユーザの操作等に基づいて自動で駆動可能であってもよい。
複数の対物レンズ213は、一般に、それぞれ固有の拡大率を有する。対物レンズ213の拡大率としては、例えば、1.25倍、2.5倍、5倍、10倍、40倍等が適用される。
撮像部220は、顕微鏡本体210に接続され、顕微鏡本体210により取得された観察像Wを撮像し、入力画像を生成することが可能に構成される。撮像部220の具体的な構成は特に限定されず、例えばCCDイメージセンサ、CMOSイメージセンサ等の撮像素子を有する構成とすることができる。「観察像」とは、ここでは、ユーザが顕微鏡装置200により観察した、スライド標本S中の視野を示す。入力画像は、典型的には、観察像Wの一部を撮像して生成される。
顕微鏡装置200は、撮像部220により生成された入力画像を、画像処理装置100に出力可能に構成される。通信方法は特に限定されず、ケーブル等を介した有線通信でもよいし、無線通信であってもよい。
(サーバ装置)
サーバ装置300は、画像処理装置100に対し、病理画像DB310を提供することが可能に構成される。すなわち、サーバ装置300は、病理画像DB310を格納するメモリ、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等を有していてもよい。メモリは、例えば、HDD(Hard Disk Drive)や、フラッシュメモリ(SSD;Solid State Drive)等の不揮発性メモリで構成されることができる。これらのメモリ、CPU、ROM、RAMの図示は省略する。
病理画像DB310は、バーチャルスライドを含む。バーチャルスライドは、観察対象であるスライド標本を含む複数のスライド標本について、各々のスライド標本全体を、専用のバーチャルスライドスキャナ等によってデジタル画像化したものである。例えば、病理画像DB310には、例えば、数千〜数万枚のスライド標本に対応するバーチャルスライドが含まれていてもよい。なお、以下の説明において単に「バーチャルスライド」という場合には、複数のスライド標本のデジタル画像を指すものとする。
バーチャルスライドは、第1の解像度よりも大きい第2の解像度を有し、入力画像よりも高精細な画像である。またバーチャルスライドは、焦点の異なる複数のレイヤー画像を含んでいてもよい。
バーチャルスライドには、複数のスライド標本各々の識別番号や、電子カルテに含まれる患者情報(年齢、性別、既往歴等)等のアノテーション情報(付属情報)が、それぞれ対応する画像領域に紐付けされる。あるいは、アノテーション情報として、図1の出力画像Fに示すような、例えば腫瘍と判断された部位のマークN等も含まれ得る。このように、バーチャルスライドによれば、ユーザである医師等の判断やメモ等をアノテーション情報として画像とともに記憶することが可能となる。これらのアノテーション情報は、サーバ装置300のメモリに格納されていてもよいし、サーバ装置300と接続される他のサーバ装置等に格納されていてもよい。
サーバ装置300と画像処理装置100との間の通信方法は特に限定されず、例えばネットワークを経由した通信でもよい。
画像処理装置100は、顕微鏡装置200によって撮像された入力画像と、サーバ装置300中のバーチャルスライドとを照合することで、バーチャルスライド中の、入力画像に対応する画像や、それに付随するアノテーション情報等を表示させることが可能に構成される。以下、画像処理装置100の構成について説明する。
[画像処理装置]
画像処理装置100は、画像取得部110と、視野情報生成部120と、表示制御部130と、表示部131とを有する。画像処理装置100は、例えば、PC(Personal Computer)や、タブレット端末等の情報処理装置として構成されてもよい。
(画像取得部)
画像取得部110は、観察対象の観察像を撮像することにより生成された第1の解像度を有する入力画像を取得する。画像取得部110は、顕微鏡装置200と接続され、所定の規格により顕微鏡装置200と通信するインターフェイスとして構成される。画像取得部110は、取得した入力画像を視野情報生成部120へ出力する。
(視野情報生成部)
視野情報生成部120は、観察対象の画像を含み第1の解像度よりも大きい第2の解像度を有するバーチャルスライドと、入力画像とを照合することで、バーチャルスライド中の、入力画像に対応する視野範囲を特定するための視野情報を生成する。視野情報生成部120は、例えば、CPUで構成される。視野情報生成部120は、図示しないメモリ等に格納されたプログラムに従って、処理を実行することが可能である。
視野情報生成部120は、画像照合部121と、視野情報出力部122とを有する。
画像照合部121は、バーチャルスライドと入力画像とを照合する。画像照合部121は、例えば、サーバ装置300へ必要な処理の要求を送信し、サーバ装置300が当該要求に対して応答することで、画像照合処理を進めることができる。
画像照合部121は、本実施形態において、バーチャルスライドから抽出される複数のSIFT(Scale Invariant Feature Transform)特徴量と、入力画像から抽出される複数のSIFT特徴量とに基づいて、バーチャルスライドと入力画像とを照合することができる。SIFT特徴量は、各特徴点周辺の画素の128次元の輝度勾配情報を含む特徴量であり、スケール、方向(オリエンテーション)等のパラメータによって表すことができる。SIFT特徴量を用いることで、入力画像とバーチャルスライド中の視野範囲との拡大率や回転角が異なっていた場合であっても、精度よく照合を行うことが可能となる。
なお、画像の照合方法は、他の方法を採用することも可能である。
視野情報出力部122は、照合結果に基づいて、入力画像に対応する視野範囲を特定する視野情報を表示制御部130へ出力する。
視野情報は、バーチャルスライドから、入力画像に対応する視野範囲を特定することが可能な複数のパラメータが含まれる。このようなパラメータとして、例えば、当該視野範囲が含まれるスライド標本の識別番号(スライドID)、当該視野範囲の中心点の座標、視野範囲の大きさ、回転角等が挙げられる。また、バーチャルスライドが焦点の異なる複数のレイヤー画像を含む場合には、視野情報のパラメータとして、入力画像に対応する焦点の深さを有するレイヤー番号が追加されてもよい。
(表示制御部)
表示制御部130は、上記視野情報に基づいて、バーチャルスライド中の入力画像に対応する視野範囲に対応する情報を取得し、その情報を表示するための信号を出力する。当該情報は、例えば、バーチャルスライドの視野範囲に対応する領域の画像(以下、出力画像とする)でもよいし、バーチャルスライドの視野範囲に対応する領域に付随するアノテーション情報でもよい。あるいは、表示制御部130は、上記情報として、出力画像と上記アノテーション情報との双方を表示するように制御してもよい。
(表示部)
表示部131は、表示制御部130から出力された信号に基づいて、上記情報を表示することが可能に構成される。表示部131は、例えばLCD、OELD(Organic ElectroLuminescence Display)等を用いた表示デバイスであり、タッチパネルディスプレイとして構成されてもよい。
[視野情報生成部の動作]
図3は、視野情報生成部120の動作例を示すフローチャートである。
視野情報生成部120は、画像取得部110から、標本スライドの観察像を撮像することにより生成された第1の解像度を有する入力画像を取得する(ST11)。
次に、視野情報生成部120の画像照合部121は、バーチャルスライドと入力画像とを照合する(ST12)。本実施形態において、視野情報生成部120は、バーチャルスライドから抽出される複数のSIFT特徴量と、入力画像から抽出される複数のSIFT特徴量とに基づいて、バーチャルスライドと入力画像とを照合する。以下、本工程について詳細に説明する。
まず画像照合部121は、バーチャルスライドから、それぞれ固有のSIFT特徴量を有する複数の第1の特徴点を抽出する(ST121)。具体的には、画像照合部121は、バーチャルスライドに対してSIFT特徴量の抽出処理を行い、多数のSIFT特徴量を取得する。さらに、このSIFT特徴量群に対して、k-means処理等のクラスタリング処理を行うことで、各クラスタのセントロイドとしての複数の第1の特徴点を得ることができる。ここで例えば、k-means処理においてk=100とした場合、100個の第1の特徴点の集合(コードブック)を得ることができる。
上記処理により、各第1の特徴点に対し、ID(コードブック番号)を付すことが可能となる。例えばk-means処理においてk=100とした場合には、1〜100までのコードブック番号を付すことができる。同一のコードブック番号が付された第1の特徴点は、略同一のSIFT特徴量を有する点である。また、バーチャルスライド全体の中に、同一のコードブック番号が付された第1の特徴点が複数個あってもよい。なお、以下の説明において、「略同一のSIFT特徴量」という場合には、同一、又は所定のクラスタリング処理により同一のクラスタに分類されることで同一とみなされるSIFT特徴量を示すものとする。
次に、画像照合部121は、入力画像から、それぞれ固有のSIFT特徴量を有する複数の第2の特徴点を抽出する(ST122)。具体的には、画像照合部121が入力画像に対してSIFT特徴量の抽出処理を行い、多数のSIFT特徴量を取得する。さらに、これらのSIFT特徴量を有する点に対し、略同一のSIFT特徴量を有する第1の特徴点と同一のコードブック番号を割り当てることで、第1の特徴点のいずれかと対応付けられた第2の特徴点を規定する。これにより、例えば1〜100までのいずれかのコードブック番号が付された複数の第2の特徴点が抽出される。なお、当該処理においても、k-means処理等のクラスタリング処理を適宜行ってもよい。
図4Aは、複数の第2の特徴点Cmnが抽出された入力画像Mの模式的な図であり、それぞれのSIFT特徴量のスケールを円の大きさで、オリエンテーションをベクトルの向きで示す。同図に示すように、各第2の特徴点Cmnは、円の中心、すなわちベクトルの始点で表され、対応するコードブック番号nが付されている。同図に示す入力画像Mには、例えば、コードブック番号6,22,28,36,87番が付された第2の特徴点Cm6,Cm22,Cm28,Cm36,Cm87が抽出されている。これらの各第2の特徴点Cmnは、同一のコードブック番号nを有するバーチャルスライド中の第1の特徴点と略同一のSIFT特徴量を有する。
次に画像照合部121は、入力画像の基準点・視野ベクトルと複数の第2の特徴点各々のSIFT特徴量との相対的な関係を記述する(ST123)。基準点は、入力画像において任意に定められた点であり、視野ベクトルは、任意の向き及び大きさを有するベクトルである。入力画像の基準点・視野ベクトルは、入力画像の視野範囲を既定するパラメータとして機能する。
図4Bは、図4Aに示すコードブック番号6番の第2の特徴点Cm6のSIFT特徴量と、入力画像Mの基準点Pm及び視野ベクトルVmとの関係について説明する模式的な図であり、図中のx軸及びy軸は、それぞれ直交する2軸を示す。基準点Pmは、同図中の星印で示された点であり、例えば入力画像Mの中心点とすることができる。また視野ベクトルVmは、例えばx軸方向に平行で所定の大きさを有するベクトルとすることができる。
同図に示すように、第2の特徴点Cm6から基準点Pmへ向かう位置ベクトルを(dx,dy)と表す。また、第2の特徴点Cm6のオリエンテーションOm6は、視野ベクトルVmを基準とした回転角がθm6と表される。
このように、入力画像の基準点及び視野ベクトルを既定することで、入力画像の視野範囲内での各第2の特徴点の座標、及び各第2の特徴量のSIFT特徴量のオリエンテーションの回転角を記述することができる。これにより、複数の第2の特徴点各々のSIFT特徴量と入力画像の視野範囲との相対的な関係を記述することが可能となる。
次に、画像照合部121は、複数の第2の特徴点各々に対応する複数の第1の特徴点各々に対して、上記関係に基づき、基準点及び視野ベクトルの投票を行う(ST124)。基準点及び視野ベクトルの投票とは、本動作例において、各第1の特徴点Cvnに対し、基準点候補Pvnのバーチャルスライド中の座標と、視野ベクトル候補Vvnのバーチャルスライド中の回転角とを算出する処理を示す。
各第1の特徴点Cvnに対応する基準点候補Pvnのバーチャルスライド中の座標は、ST123で算出した、第2の特徴点Cmnから基準点Pmへ向かう位置ベクトルに基づいて算出される。同様に、視野ベクトル候補Vvnのバーチャルスライド中の回転角は、ST123で算出した、視野ベクトルVmを基準とした第2の特徴点Cm6のオリエンテーションOm6の回転角に基づいて算出される。
ここで、視野範囲候補Fnを既定するための基準点候補Pvn、視野ベクトル候補Vvnの具体的な算出例について説明する。まず、図4Bにおいて説明したように、入力画像Mの第2の特徴点Cmnについて、各パラメータを以下のように定義する。
第2の特徴点Cmnに係るSIFT特徴量のスケールの大きさ:σm
第2の特徴点Cmnに係るSIFT特徴量のオリエンテーションの回転角:θm
基準点Pmから第2の特徴点Cmnへ向かう位置ベクトル:(dx,dy)
同様に、バーチャルスライドVの第1の特徴点Cvnについて、各パラメータを以下のように定義する。
第1の特徴点CvnのバーチャルスライドV中の座標:(Xvn、Yvn)
第1の特徴点Cvnに係るSIFT特徴量のスケールの大きさ:σv
第2の特徴点Cmnに係るSIFT特徴量のオリエンテーションの、視野ベクトル候補Vvnを基準とした回転角:θv
これにより、視野ベクトル候補Vvnの大きさr、視野ベクトル候補Vvnの回転角(x軸方向を基準とした回転角)φ、バーチャルスライドV中の基準点候補Pvnの座標(Xn、Yn)は、視野ベクトルVmnの大きさをRとして、以下のように算出できる。
r=R×(σv/σm)…(1)
φ=θv−θm…(2)
Xn=Xvn+(dx+dy)1/2 ×(σv/σm)×cos (θ+θm−θv)…(3)
Yn=Yvn+(dx+dy)1/2 ×(σv/σm)×sin (θ+θm−θv)…(4)
(ここで、θ=arctan(dy/dx))
図5は、バーチャルスライドの各第1の特徴点に対して投票を行った結果を示す模式的な図である。画像照合部121は、同図に示すように、算出された基準点候補Pvn、視野ベクトル候補Vvnに基づいて視野範囲候補Fnを既定する。同図において、星印が各基準点候補を表すものとし、当該星印の近傍に符号Pvnを付している。同一のコードブック番号のi個の特徴点がある場合には、符号の末尾に「−i」を付けてこれらを区別している。
ここで、視野範囲候補Fkは、重複している複数の視野範囲候補を示し、具体的には、F6-1,F22−1,F28−1,F36−1,F87−1を示す。同様に、基準点候補Pvkは、重複しているPv6-1,Pv22−1,Pv28−1,Pv36−1,Pv87−1を示し、視野ベクトル候補Vvkは、重複しているVv6-1,Vv22−1,Vv28−1,Vv36−1,Vv87−1を示す。
これらの基準点候補Pvk及び視野ベクトル候補Vvkに対応する第1の特徴点Cv6−1,Cv22−1,Cv28−1,Cv36−1,Cv87−1は、それぞれ、入力画像Mの第2の特徴点Cm6,Cm22,Cm28,Cm36,Cm87と、類似する位置関係で配置される。このように、第2の特徴点Cmnに類似する位置関係で配置される第1の特徴点Cvnに対応する基準点候補Pvn及び視野ベクトル候補Vvnに対しては、多数の投票が得られることとなる。
そこで、複数の第1の特徴点全てに対して投票を行った後、略同一の座標及び回転角を有する基準点候補Pvn及び視野ベクトル候補Vvnの数(投票数)を求めることで、基準点候補Pvn及び視野ベクトル候補Vvnに対応する視野範囲候補Fnと入力画像Mとの相関度を求めることが可能となる。
なお、投票された基準点候補Pvnの位置(Xn、Yn)、視野ベクトル候補Vvnの角度φ等をクラスタリング処理してもよい。これにより、基準点候補Pvn、視野ベクトル候補Vvnに多少のバラつきが見られた場合であっても、近い位置の基準点候補Pvn、近い角度の視野ベクトル候補Vvnに対する投票を同一の基準点、視野ベクトルに対して投票されたものとみなし、妥当な投票数を求めることができる。
そこで、画像照合部121は、投票結果に基づいて、各視野範囲候補と入力画像との相関度を算出する(ST125)。当該相関度は、例えば、以下のように定められる。
(相関度)=(投票数)/(入力画像中の第2の特徴点数)…(5)
図5に示す例では、視野範囲候補Fkの相関度は、5/5=1、他の視野範囲候補Fnの相関度は、いずれも1/5と算出される。
以上のように、バーチャルスライドの視野範囲候補と入力画像との相関度を参照することで、バーチャルスライドと入力画像とが照合される。
続いて、視野情報出力部122は、照合結果に基づいて、相関度が最も大きかった視野範囲候補を入力画像に対応する視野範囲と決定し、当該視野範囲を特定するための視野情報を生成する(ST13)。視野情報出力部122は、上記相関度が最も大きかった視野範囲に係る視野情報を視野範囲と決定する。図5に示す例では、視野範囲候補Fkが視野範囲と決定されることとなる。
視野情報は、例えば、スライドID、中心座標、角度、範囲、及び焦点の深さ、の各パラメータを含む情報である。これらの各パラメータは、それぞれ以下の値に対応する値となる。
スライドID:相関度が最大の視野範囲候補を含むスライド標本のID
中心座標:相関度が最大の基準点の位置(Xn、Yn)
角度:視野ベクトルの角度φ
範囲:視野ベクトル候補Vvnの大きさr
焦点の深さ:入力画像に対応する焦点の深さを有するレイヤー番号
視野情報出力部122は、視野情報を表示制御部130に出力する(ST14)。これにより、表示制御部130は、視野情報に基づいて、バーチャルスライド中の視野範囲に対応する出力画像を表示するための信号を表示部131に出力する。そして、表示部131により、出力画像が表示される。
さらに、ユーザが観察対象とするスライド標本を移動し、新たな観察像を撮像すること等により、画像取得部110が、新たな入力画像を取得する。そして、再び、視野情報生成部120が入力画像を取得し(ST11)、上記処理を繰り返す。これにより、入力画像の視野範囲の移動に追従して、表示部131に表示される出力画像の視野範囲も移動することが可能となる。
以上のように、本実施形態によれば、顕微鏡装置200の観察像に対応するバーチャルスライド中の視野範囲を表示部131に表示することができる。これにより、顕微鏡装置200によってバーチャルスライド中の視野範囲を操作することが可能となる。したがって、顕微鏡装置200の使い慣れた操作性と両眼視による高い視認性を享受しつつ、バーチャルスライドを制御することが可能となる。
具体的に、本実施形態によれば、従来の顕微鏡装置200を用いた観察による診断と比較して以下のような利点が得られる。
一点目として、バーチャルスライドの解像度の高い画像を用いて、腫瘍診断等の際の画像認識を行うことも容易になり、またアノテーションの利用等も容易になる。したがって、診断の効率化と精度の向上に寄与することができる。
二点目として、顕微鏡装置200でのスライド標本等を観察することにより、即座に、それに対応するバーチャルスライドを表示させることが可能となる。従来は、顕微鏡とバーチャルスライドとが別個のシステムとして構成されていたため、顕微鏡で見ている視野範囲をバーチャルスライドで表示し直す作業が必要となった。これにより、顕微鏡を観察しつつバーチャルスライドの画像を利用しようとした場合、効率的とは言えなかった。本実施形態によれば、このような問題を解消し、バーチャルスライドを用いた診断の効率化に貢献することができる。
三点目として、視野情報を取得することで、現在観察しているスライド標本のスライドIDを取得することができる。これにより、スライドIDを電子カルテ等に入力する手間を省くことが可能となる。さらに、入力スライド標本の取り違いや電子カルテ入力時のIDの誤入力等を防止することができ、作業や診断の正確性を高めることができる。
また、バーチャルスライドのみによる診断と比較すると、以下のような利点が得られる。
一点目は、病理診断において、顕微鏡の両眼視による豊富な視覚情報を得ることができる。二点目は、バーチャルスライドに基づいた診断ログのみならず、顕微鏡に基づいた診断ログを作成し、バーチャルスライドの対応する領域に紐付けて管理することが可能となる。これにより、顕微鏡に基づいた診断ログを用いた情報解析や、医学生等向けの学習教材の作成が可能となり、これらの品質の向上が期待できる。
さらに、顕微鏡の観察像を顕微鏡装置200により撮像した画像と比較した場合には、以下のような利点が得られる。
すなわち、腫瘍認識や類似画像検索等の画像認識処理に、低解像度の顕微鏡撮像画像ではなく、バーチャルスライドの高解像度の画像を利用することができる。これにより、画像認識の処理効率が向上し、画像認識の精度も高めることができる。
以下、本実施形態に係る変形例1−1〜1−4について説明する。
[変形例1−1]
視野情報生成部12は、視野情報を生成する際に、バーチャルスライドの視野範囲に対応する領域に付随するアノテーション情報を併せて取得してもよい。上述のように、バーチャルスライドには、スライドIDや、電子カルテに含まれる患者情報等のアノテーション情報が、それぞれ対応する領域に紐付けられて記憶される。視野情報を取得することにより、視野情報により特定される視野範囲に紐付けられたアノテーション情報を容易に取得することができる。
図6は、本変形例に係る画像処理装置100の作用効果を説明するための図であり、Aは顕微鏡装置200のみを用いることにより得られる情報の例を示し、Bは画像処理装置100を用いることにより得られる情報の例を示す。
図6Aに示すように、顕微鏡装置200のみを用いた場合には、ユーザが観察している視野範囲の画像M1に表示された情報しか得ることができない。また、顕微鏡装置200により撮像された画像M1は、バーチャルスライドVと比較して解像度が低い。このため、画像M1を拡大して細胞の核等の微細な構成を確認しようとした場合に、画像が粗くなり、十分に観察することができない。
一方で、図6Bに示すように、画像処理装置100を用いることで、例えば、画像M1に対応する視野範囲F1を含むスライド標本S11に紐付けられた電子カルテ400の情報を取得することができる。これにより、画像情報と併せて患者の年齢、性別、既往歴等を取得できる。したがって、診断に必要な情報を効率よく取得でき、診断の効率化と迅速化に貢献することができる。
具体的には、アノテーション情報は、視野範囲F1として表示される出力画像とともに、表示部131に表示されてもよい。これにより、病理画像情報とともに、アノテーション情報を確認することができる。あるいは、アノテーション情報のみが、表示部131に表示されてもよい。これにより、顕微鏡装置200側の操作によって、バーチャルスライドVに付随する豊富な情報を容易に利用することができる。
また、バーチャルスライドの視野範囲外の画像情報の取得が容易になる。例えば、スライド標本S11の視野範囲F1外の領域R1,R2等の画像情報や、同一患者の他のスライド標本S12内の領域R3の画像情報を容易に取得できる。これにより、視野範囲F1が含まれるスライド標本S11の画像と、スライド標本S11よりも前に作製されたスライド標本S12の画像とを比較することが容易になり、病態の変化や進行をより的確に把握することが可能となる。
さらに、バーチャルスライドVは顕微鏡装置200により撮像された画像M1よりも高い解像度を有する。これにより、仮に視野範囲F1の一部を拡大して確認しようとした場合であっても、精細な画像F11を得ることができる。したがって、腫瘍の病理検査で特に重要な細胞の詳細な状態等を容易に把握することができ、診断の効率化及び診断精度の向上に寄与することができる。
[変形例1−2]
視野情報生成部120は、病理画像DB310に格納されたバーチャルスライドのうち、一部の領域と入力画像とを照合することができる。これにより、バーチャルスライド全体を対象として画像照合する場合と比較して、画像照合処理のコストを大幅に削減し、処理時間を短縮することが可能となる。以下に構成例1〜3を挙げて説明するが、照合対象を限定する例としてはこれに限定されず、種々の構成を採り得る。
(構成例1)
視野情報生成部120は、バーチャルスライドのうち、既に生成された視野情報から特定される観察対象の画像に対応する領域と、入力画像とを照合することができる。すなわち、ある入力画像から第1の視野情報を生成した後、他の入力画像から第2の視野情報を生成する場合に、第1の視野情報によって得られたスライドIDに対応するバーチャルスライド中の領域と、入力画像とを照合することができる。これにより、連続して画像照合処理を行う際に、同一のスライド標本に対応するバーチャルスライド中の領域のみを照合の対象とすることができる。
例えば、画像取得部110が連続的に入力画像を取得する場合には、観察対象であるスライド標本は、原則として入れ替わらないと考えられる。このような場合に、本構成例を適用することで、画像照合処理のコストを大幅に削減し、処理時間を短縮することが可能となる。
また、本構成例に係る処理を行うに際し、適宜条件を設定することができる。例えば第1の視野情報を生成する際に、式(5)で算出される相関度が所定の閾値以上であった場合に、本構成例を適用することとしてもよい。
(構成例2)
視野情報生成部120は、バーチャルスライドの照合対象として、所定の期間内に作成された領域のみを対象とすることができる。具体的には、照合の対象領域を、上記画像処理を行う日を基準として過去一週間以内に作成した領域、あるいは過去一年以内に作成した領域等と制限することができる。これにより、照合対象の領域を、大幅に制限することが可能となる。
(構成例3)
視野情報生成部120は、バーチャルスライドの照合対象として、所定のカルテ番号に係るスライド標本に対応する領域のみを対象とすることができる。この場合には、例えば、医師等のユーザが、予め画像処理装置100に患者のカルテ番号等を入力するようにしてもよい。これにより、現に診断すべき患者のバーチャルスライドの出力画像等を、迅速に表示させることができる。
[変形例1−4]
表示制御部130は、バーチャルスライドに係る出力画像やアノテーション情報の他、顕微鏡装置200によって撮像された入力画像を併せて表示する信号を出力してもよい。これにより、表示部131に、同一の視野範囲に係る顕微鏡画像(入力画像)とバーチャルスライドの画像等とが表示され、これらの画像を同時に参照することが可能となる。
[変形例1−5]
視野情報生成部120は、画像照合処理を行う第1のモードと、画像照合処理を行わない第2のモードとを切り替え可能に構成されてもよい。これにより、バーチャルスライドとして表示させるべき観察像をユーザ自身が選択することが可能となる。したがって、ユーザが顕微鏡装置200のみを用いて観察を行いたい場合にまで、この顕微鏡画像を追従したバーチャルスライドの画像が表示されることを防止し、煩わしさを解消することができる。
<第2の実施形態>
図7は、本技術の第2の実施形態に係る画像処理システムのブロック図である。本実施形態に係る画像処理システム2は、第1の実施形態と同様に、画像処理装置102と、顕微鏡装置202と、サーバ装置300とを備える。一方、画像処理装置102が顕微鏡装置202から拡大率に関する情報を取得可能に構成される点、及び、画像処理装置102が、視野情報の生成に際し、顕微鏡装置202から入力された観察像の拡大率の情報を利用する点で、第1の実施形態と異なる。以下の説明において、第1の実施形態と同様の構成については、その説明を省略又は簡略化し、異なる部分を中心に説明する。
[顕微鏡装置の構成]
顕微鏡装置202は、顕微鏡本体210と、撮像部220と、拡大率情報出力部230とを有する。顕微鏡本体210は、第1の実施形態と同様に、ステージ211と、接眼レンズ212と、複数の対物レンズ213と、対物レンズ保持部214とを有する。
拡大率情報出力部230は、画像処理装置102に対し、観察像の拡大率に関する情報を出力することが可能に構成される。拡大率情報出力部230の具体的な構成については特に限定されない。例えば、拡大率情報出力部230は、観察像の光路中に配置されている対物レンズ213の拡大率を検出するためのセンサを有していてもよい。あるいは、対物レンズ保持部214が駆動に関する情報を出力可能な電動レボルバ等で構成される場合には、対物レンズ保持部214が拡大率情報出力部230として機能してもよい。
[画像処理装置の構成]
画像処理装置102は、画像取得部110と、視野情報生成部140と、表示制御部130と、表示部131とを有する。
視野情報生成部140は、第1の実施形態と同様に、第1の解像度を有する入力画像と、観察対象の画像を含み第1の解像度よりも大きい第2の解像度を有するバーチャルスライドとを照合することで、バーチャルスライド中の、入力画像に対応する視野範囲を特定するための視野情報を生成する。視野情報生成部140は、この視野情報生成時に、上記拡大率に関する情報を利用する。すなわち、視野情報生成部140は、観察像の拡大率の情報を取得し、バーチャルスライドの拡大率と観察像の拡大率との比を利用して、バーチャルスライドと入力画像とを照合する。
具体的には、視野情報生成部140は、画像照合部141と、視野情報出力部142と、拡大率情報取得部143とを有する。
拡大率情報取得部143は、顕微鏡装置202から出力された観察像の拡大率の情報を取得する。当該拡大率は、本実施形態において、画像照合部141がバーチャルスライドと入力画像とを照合する処理に用いられる。以下の説明において、「観察像の拡大率」とは、対物レンズの拡大率をいうものとするが、接眼レンズ及び対物レンズを含む顕微鏡装置202の光学系全体における拡大率としてもよい。
画像照合部141は、第1の実施形態に係る画像照合部121と同様に、バーチャルスライドと入力画像とを照合する。この際、バーチャルスライドの拡大率と観察像の拡大率との比を利用する。また、本実施形態においても、SIFT特徴量を用いた投票を行うことで、入力画像とバーチャルスライドとを照合することができる。
[視野情報生成部の動作]
以下、図3のフローチャートを参照し、視野情報生成部140の動作例について説明する。
視野情報生成部140は、画像取得部110から入力画像を取得する(ST11)。
次に、視野情報生成部140の画像照合部141は、バーチャルスライドと入力画像とを照合する(ST12)。まず、画像照合部141は、バーチャルスライドから、それぞれ固有のSIFT特徴量を有する複数の第1の特徴点を抽出する(ST121)。続いて、画像照合部141は、入力画像から、それぞれ固有のSIFT特徴量を有する複数の第2の特徴点を抽出する(ST122)。ここでは、図4Aに示す、コードブック番号6,22,28,36,87番が付された第2の特徴点Cm6,Cm22,Cm28,Cm36,Cm87が抽出されたものとして説明する。さらに、画像照合部141は、入力画像の視野範囲と複数の第2の特徴点各々のSIFT特徴量との相対的な関係を記述する(ST123)。
次に、画像照合部141は、複数の第2の特徴点各々に対応する複数の第1の特徴点各々に対して、ST123で得られた結果に基づき、基準点及び視野ベクトルの投票を行う(ST124)。本工程において、画像照合部141は、投票に際し、第1の特徴点Cvnに係るSIFT特徴量のスケールの大きさσvと、第2の特徴点Cmnに係るSIFT特徴量のスケールの大きさσmとの比(σv/σm)が、バーチャルスライドの拡大率Σvと入力画像の拡大率(観察像の拡大率)Σmとの比(Σv/Σm)に等しくなるような、スケールσvを有する第1の特徴点Cvnのみを抽出し、当該第1の特徴点Cvnを対象として、投票する。
図8は、本実施形態において、バーチャルスライドの各第1の特徴点に対して投票を行った結果を示す模式的な図であり、図5に対応する図である。同図に示すように、投票に用いた第1の特徴点Cvnが図5と比較して大幅に減少している。これにより、本工程における投票の処理のコストを低減することができる。
なお、実際の観察像の拡大率は、同一の拡大率の対物レンズを用いていた場合であっても、顕微鏡装置202の光学系の焦点等の条件により、若干の変動することがある。そこで、この変動を考慮し、投票対象とすべき第1の特徴点Cvnのスケールσvに若干の幅を持たせることも可能である。
そして、画像照合部141は、投票結果に基づいて、各視野範囲候補と入力画像との相関度を算出し(ST125)、相関度が最も大きかった視野範囲候補を、入力画像に対応する視野範囲と決定する(ST126)。最後に、視野情報出力部142は、照合結果に基づいて、入力画像に対応する視野範囲を特定するための視野情報を生成し(ST13)、表示制御部130に出力する(ST14)。
以上のように、本実施形態によれば、投票の処理のコストのみならず、投票後のクラスタリング処理等のコストを低減することができ、結果として、照合処理全体の処理コストを大幅に低減することができる。したがって、入力画像に対するバーチャルスライドの追従性を高め、より操作性の高い構成とすることができる。
[変形例2−1]
本実施形態の変形例として、顕微鏡装置202が拡大率情報出力部230を有さず、画像処理装置102が、ユーザにより観察像の拡大率の情報を入力されることが可能に構成されてもよい。この場合、ユーザは、顕微鏡装置202の観察像の光路中に配置されている対物レンズ213の拡大率を確認し、画像処理装置102にその情報を入力することができる。これによっても、視野情報出力部142の処理コストを低減することが可能となる。
<第3の実施形態>
図9は、本技術の第3の実施形態に係る画像処理システムのブロック図である。本実施形態に係る画像処理システム3は、第1の実施形態と同様に、画像処理装置103と、顕微鏡装置202と、サーバ装置300とを備える。一方、画像処理装置103が顕微鏡装置202から観察像の拡大率に関する情報を取得可能に構成される点、及び、画像の照合に失敗した際に、拡大率に関する情報を用いて処理を行うことが可能な点で、第1の実施形態と異なる。以下の説明において、第1の実施形態と同様の構成については、その説明を省略又は簡略化し、異なる部分を中心に説明する。
[顕微鏡装置の構成]
顕微鏡装置202は、第2の実施形態と同様に、顕微鏡本体210と、撮像部220と、拡大率情報出力部230とを有する。顕微鏡本体210は、第1の実施形態と同様に、ステージ211と、接眼レンズ212と、複数の対物レンズ213と、対物レンズ保持部214とを有する。
拡大率情報出力部230は、画像処理装置103に対し、観察像の拡大率に関する情報を出力することが可能に構成される。拡大率情報出力部230の具体的な構成については特に限定されない。例えば、拡大率情報出力部230は、観察像の光路中に配置されている対物レンズ213の拡大率を検出するためのセンサを有していてもよい。あるいは、対物レンズ保持部214が駆動に関する情報を出力可能な電動レボルバ等で構成される場合には、対物レンズ保持部214が拡大率情報出力部230として機能してもよい。
[画像処理装置の構成]
画像処理装置103は、画像取得部110と、視野情報生成部150と、表示制御部130と、表示部131とを有する。
視野情報生成部150は、第1の実施形態と同様に、第1の解像度を有する入力画像と、観察対象の画像を含み第1の解像度よりも大きい第2の解像度を有するバーチャルスライドとを照合することで、バーチャルスライド中の、入力画像に対応する視野範囲を特定するための視野情報を生成する。これに加え、視野情報生成部150は、視野情報を生成できなかった場合に、ユーザに対し、観察しているスライド標本の他の観察像を撮像するように指示することが可能に構成される。
具体的には、視野情報生成部150は、画像照合部151と、視野情報出力部152と、拡大率情報取得部153と、画像取得指示部154とを有する。
画像照合部151は、バーチャルスライドと入力画像とを照合する。視野情報出力部152は、照合結果に基づいて、バーチャルスライド中の入力画像に対応する視野範囲を求め、当該視野範囲を特定する視野情報を表示制御部130へ出力する。
拡大率情報取得部153は、顕微鏡装置202から出力された観察像の拡大率の情報を取得する。当該拡大率情報は、画像取得指示部154により、視野情報を生成できなかった場合の処理に用いられる。以下の説明において、「拡大率」とは、対物レンズの拡大率をいうものとするが、接眼レンズ及び対物レンズを含む顕微鏡装置202の光学系全体における拡大率を用いてもよい。
画像取得指示部154は、視野情報を生成できなかった場合に、ユーザに対し、スライド標本の他の観察像を撮像するように指示する。当該指示の例としては、拡大率が小さい、いわゆる弱拡の入力画像を取得する旨の指示や、顕微鏡装置202のステージ211に載置されたスライド標本を移動させる旨の指示等が挙げられる。
[視野情報生成部の動作]
図10は、視野情報生成部150の動作例を示すフローチャートである。
視野情報生成部150は、画像取得部110から入力画像を取得する(ST21)。
次に、視野情報生成部150の画像照合部151は、バーチャルスライドと入力画像とを照合する(ST22)。本実施形態においても、視野情報生成部150は、バーチャルスライドから抽出される複数のSIFT特徴量と、入力画像から抽出される複数のSIFT特徴量とに基づいて、バーチャルスライドと入力画像とを照合する。本工程(ST22)の具体的な処理は、第1の実施形態に係る図3のST12に含まれるST121〜ST125と同様に行われるため、図3を参照しつつ、説明する。
すなわち、画像照合部151は、バーチャルスライドから、それぞれ固有のSIFT特徴量を有する複数の第1の特徴点を抽出する(ST121に対応)。次に、画像照合部151は、入力画像から、それぞれ固有のSIFT特徴量を有する複数の第2の特徴点を抽出する(ST122に対応)。続いて画像照合部151は、複数の第2の特徴点各々と入力画像の視野範囲との関係を求める(ST123に対応)。さらに画像照合部151は、複数の第2の特徴点各々に対応する複数の第1の特徴点各々に対して、上記関係に基づき、基準点及び視野ベクトルの投票を行う(ST124に対応)。そして、画像照合部151は、投票結果に基づいて、各視野範囲候補の入力画像との相関度を求める(ST125に対応)。相関度は、上記(5)式により求めることができる。
次に、画像照合部151は、第1の閾値以上の相関度の視野範囲候補が存在するか否か判定する(ST23)。「第1の閾値」は、バーチャルスライドから抽出した第1の特徴点のコードブック数等を参照し、適宜設定することが可能である。このような視野範囲候補が存在しない場合は、相関度が最大の視野範囲候補であったとしても、入力画像に対応する視野範囲でなく、画像照合が失敗した可能性が高い。したがって、画像取得指示部154により、以下の照合失敗処理(ST26〜ST28)が行われる。
すなわち、第1の閾値以上の相関度の視野範囲候補が存在しないと判定した場合に(ST23でNo)、画像取得指示部154は、拡大率情報取得部153が取得した観察像の拡大率が所定の拡大率以下であるか否か判定する(ST26)。例えば、画像取得指示部154は、対物レンズの拡大率が1.25倍以下であるか否か判定することができる。
「所定の拡大率以下か否か」の判定に当たっては、「所定の拡大率以下の特定の拡大率を有する対物レンズを使用しているか否か」について判定してもよい。上述のように、拡大率は、各対物レンズ213に固有の数値であり、各対物レンズ213は、1.25倍、2.5倍、5倍、10倍、40倍等の予め定められた数値を有する。したがって、例えば、2.5倍以下の拡大率であるか否か判定しようとする場合には、2.5倍の対物レンズ及び1.25倍のいずれかの対物レンズを使用しているか否かについて判定すればよい。あるいは、例えば1.25倍未満の対物レンズ213が顕微鏡装置202に取り付けられていないことが明らかな場合には、1.25倍の対物レンズであるか否か判定してもよい。
現在見ている観察像の拡大率が所定の拡大率以下でないと判定した場合に(ST26でNo)、画像取得指示部154は、ユーザに対し、所定の拡大率以下の観察像を撮像するように指示する(ST27)。指示の具体的な内容については、「所定の拡大率以下の観察像を撮像する」ことを促す内容であれば、特に限定されない。
図11は、画像取得指示部154による指示が表示部131に表示された例を示す図である。同図に示すように、画像取得指示部154は、対物レンズ213の拡大率を1.25倍にするようにユーザに指示してもよい。また、指示の方法としては、同図に示すような表示部131を介した方法に限定されず、画像処理装置103が図示しないスピーカ等を有する場合には、当該スピーカ等を介して指示を行ってもよい。
対物レンズの拡大率を小さくする(弱拡にする)ことで、画像取得部110は、より広い視野範囲の入力画像を取得することができる。広い視野範囲の入力画像は、狭い視野範囲の入力画像と比較して、特徴的な部分を多く有する可能性が高く、多数のSIFT特徴量を抽出しやすいという利点がある。したがって、ユーザに対し、拡大率を弱拡にして観察像を撮像するように指示し、再度画像の照合を行うことで、画像の照合が成功する可能性を高めることができる。
上記指示をした後、視野情報生成部150は、再び画像取得部110から入力画像を取得し(ST21)、画像照合部151が、画像照合処理を行う(ST22)。
一方、拡大率が所定の拡大率以下であると判定した場合に(ST26でYes)、画像取得指示部154は、ユーザに対し、現在見ている観察像とスライド標本上の位置が異なる他の観察像を撮像するように指示する(ST28)。指示の具体的な内容については、「現在見ている観察像とスライド標本上の位置が異なる他の観察像を撮像する」ことを促す内容であれば、特に限定されない。
図12は、画像取得指示部154による指示が表示部131に表示された例を示す図である。同図に示すように、画像取得指示部154は、具体的に、顕微鏡装置202のステージ211に載置されたスライド標本を移動するようにユーザに指示してもよい。また、指示の方法としては、同図に示すような表示部131を介した方法に限定されず、画像処理装置103が図示しないスピーカ等を有する場合には、当該スピーカ等を介して指示を行ってもよい。
スライド標本上の観察像の位置を移動させることにより、特徴的な部分を多く有する画像が取得できる可能性がある。したがって、上記指示をした後、再度画像の照合を行うことで、画像の照合が成功する可能性を高めることができる。
上記指示をした後、視野情報生成部150は、再び画像取得部110から入力画像を取得し(ST21)、画像照合部151が、画像照合処理を行う(ST22)。
画像照合処理に戻り、相関度が第1の閾値以上の視野範囲候補が存在すると判定された場合(ST23でYes)、画像照合部151は、相関度が最も高い視野範囲候補と相関度が2番目に高い視野範囲候補との相関度の差が第2の閾値以上であるか判定する(ST24)。「第2の閾値」も、特に限定されず、適宜設定することが可能である。
入力画像に対応する視野範囲は、一般に、バーチャルスライド中に一箇所であると考えられる。このため、入力画像に対応する視野範囲とそれ以外の領域との相関度の差は大きいものと考えられる。そこで、相関度の差が第2の閾値以上であると判定された場合には(ST24でYes)、視野情報出力部152は、相関度が最も大きかった視野範囲に対応する視野情報を生成し、表示制御部130に出力する(ST25)。
一方、相関度の差が第2の閾値未満であると判定された場合には(ST24でNo)、画像照合が失敗した可能性が高いとして、照合失敗処理が行われる(ST26〜ST28)。
以上のように、本実施形態によれば、画像照合に失敗した場合であっても、ユーザに対して指示を行うことで、再度画像照合を行うことが可能となる。これにより、画像照合失敗に伴うストレスをユーザに過度に与えることなく、円滑に画像照合処理を進めることができる。また、ユーザに対し的確な指示を提示することで、画像照合処理を効率的に成功させることが可能となる。したがって、顕微鏡装置200によるバーチャルスライドの操作性をより高めることが可能となる。
以下、本実施形態に係る変形例3−1〜3−3について説明する。
[変形例3−1]
図13は本変形例に係る画像処理システム3aのブロック図である。本変形例は、画像処理装置103aが、画像取得部110と、視野情報生成部150と、表示制御部130と、表示部131とに加え、さらに入力部160を有する点で上記画像処理装置103と異なる。これにより、仮に、確実な視野範囲が見つからなかった場合でも、視野範囲候補が数個に絞れる場合には、ユーザが入力部160を用いて妥当な視野範囲を選ぶことが可能となる。
入力部160は、ユーザが、表示部131に表示された複数の視野範囲候補の中から視野範囲を選択することが可能に構成される。入力部160の具体的な構成は特に限定されないが、例えば、タッチパネル、マウス等のポインティングデバイスや、キーボード装置等であってもよい。
図14は、本変形例に係る視野情報生成部150の動作例を示すフローチャートである。図10で説明したフローチャートと異なる処理は、相関度が最も高い視野範囲候補と相関度が2番目に高い視野範囲候補との相関度の差が第2の閾値以上であるか判定する工程(ST24)後の処理である。したがって、この部分を中心に説明する。
相関度の差が第2の閾値以上であると判定された場合には(ST24でYes)、図10に係る処理と同様に、視野情報出力部152は、相関度が最も大きかった視野範囲に対応する視野情報を生成し、表示制御部130に出力する(ST25)。
一方で、相関度の差が第2の閾値未満であると判定された場合には(ST24でNo)、画像照合部151は、相関度が最も大きい視野範囲候補との相関度の差が第2の閾値未満の視野範囲候補の数が、所定の数以下であるか否か判定する(ST29)。ここで、「所定の数」とは、ユーザがその視野範囲候補の中から妥当な視野範囲を選択可能な数であればよく、例えば、2〜20程度の数をいう。視野範囲候補の数が所定の数よりも大きかった場合には(ST29でNo)、ユーザに妥当な視野範囲を選択させることが難しいため、照合失敗処理を行う(ST26〜ST28)。
一方、視野範囲候補の数が所定の数以下であった場合は(ST29でYes)、視野情報出力部152は、相関度の差が第2の閾値未満の複数の視野範囲候補に対応する視野情報を表示制御部130に出力する(ST30)。
これにより、表示部131には、複数の視野範囲候補についての情報が表示される。例えば、表示部131には、視野範囲候補のサムネイル画像等が表示されてもよい。また、視野情報に含まれるスライドIDや、患者名等が表示されてもよい。ユーザは、これらの視野範囲候補のうちから、入力画像に対応する視野範囲として妥当なものを選択し、入力部160により当該妥当な視野範囲を選択する。この場合の入力操作の例としては、入力部160がタッチパネルで構成される場合には、選択すべき視野範囲の画像等の上をタッチする操作であってもよい。
視野情報出力部152は、ユーザにより選択された視野範囲の情報を、入力部160から取得したか否か判定する(ST31)。当該情報を取得していないと判定した場合には(ST31でNo)、再度当該情報を取得したか否か判定する(ST31)。
一方、当該情報を取得したと判定した場合には(ST31でYes)、選択された視野範囲に対応する視野情報を生成し、表示制御部130に出力する(ST25)。
このように、本変形例によれば、視野範囲候補を絞り込める場合には、ユーザに妥当な視野範囲を選択させることが可能となる。したがって、照合失敗処理を行った場合よりも、迅速な処理が可能となる。また、ユーザが自ら妥当な視野範囲候補を判断するため、紛らわしい複数の視野範囲候補がある場合であっても、視野情報生成部150の誤処理を防止することができる。さらに、画像照合処理を行う場合と比較して、視野情報生成部150の処理コストを低減することが可能となる。
[変形例3−2]
視野情報生成部150は、バーチャルスライドと入力画像との照合により、第1の閾値以上の相関度の視野範囲候補が存在しないと判定した場合(図10のST23でNo)、所定の拡大率以下か判定せず、ユーザに対し、スライド標本の他の観察像を撮像するように指示してもよい。これにより、拡大率情報が取得できない場合であっても、画像照合に失敗した際に、再度画像照合を行うことが可能となる。
指示の具体的な内容については、「スライド標本の他の観察像を撮像する」ことを促す内容であれば、特に限定されない。例えば、表示部131に、「画像照合をやりなおして下さい」と表示してもよい。
これによっても、ユーザが他の観察像を撮像し、画像照合を成功させる可能性を高めることが可能となる。したがって、視野情報生成部150の処理コストを低減することが可能となる。
[変形例3−3]
変形例1−2の構成例1と同様に、視野情報生成部150は、ある入力画像から第1の視野情報を生成した後、他の入力画像から第2の視野情報を生成する場合に、第1の視野情報によって得られたスライドIDに対応するバーチャルスライド中の領域と、入力画像とを照合することができる。
さらに本変形例においては、同一のスライドIDに対応するバーチャルスライド中の領域内で繰り返し照合を行った場合、相関度が第1の閾値以上の視野範囲候補が存在しないという判定(図10のST23参照)が、所定の数以上の複数の入力画像に対して行われた場合には、バーチャルスライド全体と入力画像とを照合することができる。すなわち、同一のスライドIDに対応するバーチャルスライド内で照合処理を行った場合、所定の回数以上照合失敗処理を繰り返した場合には、スライド標本が入れ替わったとみなして、バーチャルスライド全体を照合の対象とする。
これにより、画像の照合処理のコストを大幅に削減できる。これに加えて、スライド標本の差し替えも自動的に判定可能な構成とすることができ、利便性を高めることができる。
<第4の実施形態>
図15は、本技術の第4の実施形態に係る画像処理システムのブロック図である。本実施形態に係る画像処理システム4は、第1の実施形態と同様に、画像処理装置104と、顕微鏡装置200と、病理画像DB310を有するサーバ装置300とを備える。第1の実施形態と異なる点は、画像処理装置104が記憶部170をさらに有する点である。以下の説明において、第1の実施形態と同様の構成については、その説明を省略又は簡略化し、異なる部分を中心に説明する。
画像処理装置104は、画像取得部110と、視野情報生成部120aと、表示制御部130と、表示部131と、記憶部170とを有する。
記憶部170は、病理画像DB310に格納されたバーチャルスライドの全部又は一部を記憶することが可能に構成される。すなわち、画像処理装置104は、サーバ装置300から、バーチャルスライドを適宜ダウンロードし、記憶部170に格納することが可能である。記憶部170は、具体的には、HDDや、SSD等の不揮発性メモリで構成することができる。
視野情報生成部120aは、第1の実施形態と同様に構成され、画像照合部121aと、視野情報出力部122aとを有する。視野情報出力部122aは、第1の実施形態に係る視野情報出力部122aと同様に、照合結果に基づいて、バーチャルスライド中の入力画像に対応する視野範囲を求め、当該視野範囲を特定する視野情報を表示制御部130へ出力する。
画像照合部121aは、上述のように、バーチャルスライドと入力画像とを照合する。画像照合部121aは、第1の実施形態とは異なり、記憶部170に格納されたバーチャルスライドを用いて、画像照合処理を進めることができる。
画像照合部121aは、さらに、記憶部170に保持されたバーチャルスライドに対し、予め画像照合処理の一部を実行することが可能である。例えば画像照合部121aは、画像照合処理に先立ち、バーチャルスライドから、それぞれ固有のSIFT特徴量を有する複数の第1の特徴点を抽出しておくことができる。
このように、本実施形態によれば、入力画像を取得してから視野情報を生成するまでの処理時間を短縮することが可能となる。これにより、ユーザの待ち時間を短縮し、診断効率の効率化を図ることができる。また、患者との問診時等に画像処理装置104を用いる場合には、診察時間を短縮することも可能となる。
また、記憶部170は、病理画像DB310に格納されたバーチャルスライドの一部を記憶する場合には、種々の内容のバーチャルスライドを記憶することが可能である。以下にその例を示す。
(記憶部に格納されるバーチャルスライドの内容について)
記憶部170は、例えば、ある入力画像から第1の視野情報を生成した後、当該第1の視野情報によって得られたスライドIDに対応する領域のバーチャルスライドを記憶することができる。これにより、変形例1−2の構成例1で説明したように、視野情報生成部120が、ある入力画像から第1の視野情報を生成した後、他の入力画像から第2の視野情報を生成する場合に、記憶部170に格納したバーチャルスライド中の領域と、入力画像とを照合することができる。したがって、画像照合処理のコストを大幅に削減し、処理時間を短縮することが可能となる。
記憶部170は、例えば、同一の患者のスライド標本に対応する領域のバーチャルスライドを記憶することができる。これにより、同一の患者における病態の変化や進行をより的確に把握することが容易になる。
また、記憶部170は、変形例1−1を参照し、記憶されたバーチャルスライドに紐付けられたアノテーション情報も併せて記憶することができる。これにより、診断をより効率よく進めることができる。
<第5の実施形態>
図16は本技術の第5の実施形態に係る画像処理システム5の模式図、図17は、画像処理システム5のブロック図である。本実施形態に係る画像処理システム5は、画像処理装置105と、顕微鏡装置200と、病理画像DB310を有するサーバ装置300とに加えて、さらに表示装置400とを備える。以下の説明において、第1の実施形態と同様の構成については、その説明を省略又は簡略化し、異なる部分を中心に説明する。
画像処理システム5は、図16に示すように、医師D1と医師D2とによる遠隔診断時に用いることができる。画像処理装置105は、顕微鏡装置200とともに、医師D1のもとに配置される。一方、表示装置400は、医師D2のもとに配置される。画像処理装置105と表示装置400との通信方法は特に限定されず、例えばネットワークを経由した通信でもよい。
画像処理装置105は、画像取得部110と、視野情報生成部120bと、表示制御部130bとを有する。画像処理装置105は、第1の実施形態等と異なり、表示部を有しない構成であってもよい。画像処理装置105は、PCや、タブレット端末等の情報処理装置として構成されてもよい。
視野情報生成部120bは、画像照合部121bと、視野情報出力部122bとを有する。画像照合部121bは、第1の実施形態に係る画像照合部121と同様に構成され、バーチャルスライドと入力画像とを照合する。
視野情報出力部122bは、照合結果に基づいて、バーチャルスライド中の入力画像に対応する視野範囲を求め、当該視野範囲を特定する視野情報を表示制御部130bへ出力する。
表示制御部130bは、視野情報に基づいて、バーチャルスライド中の入力画像の視野範囲に対応する情報を取得し、その情報を表示するための信号を表示装置400へ出力する。当該情報は、上記出力画像とすることができる。
表示装置400は、表示部410と、記憶部420とを有し、画像処理装置105と有線又は無線により接続される。表示装置400は、PCや、タブレット端末等の情報処理装置として構成されてもよい。
表示部410は、表示制御部130bから出力された信号に基づいて、上記情報を表示する。表示部131は、例えばLCD、OELD等を用いた表示デバイスであり、タッチパネルディスプレイとして構成されてもよい。
記憶部420は、バーチャルスライドを全部又は一部を記憶することが可能に構成される。すなわち、表示装置400は、バーチャルスライドを適宜ダウンロードし、記憶部420に格納することが可能である。表示装置400のバーチャルスライドのダウンロード方法は特に限定されず、サーバ装置300から直接ダウンロードしてもよいし、あるいは画像処理装置105を経由してダウンロードしてもよい。記憶部420は、具体的には、HDDや、SSD等の不揮発性メモリで構成することができる。
画像処理システム5は、上述のように、遠隔診断時に用いることができる。例えば、図16に示す医師D1は、病理診断の依頼元の医師であり、同図に示す医師D2は、病理診断の専門医等であり、病理診断の依頼先の医師とする。医師D1は、手元にある患者のスライド標本に基づいて、医師D2に診断を依頼したいと考えている。以下、このような前提のもと、画像処理装置105及び表示装置400の動作例について説明する。
(画像処理装置及び表示装置の動作例)
まず、画像処理装置105の画像取得部110は、顕微鏡装置200から、医師D1により撮像された入力画像を取得し、当該入力画像を視野情報生成部120bに出力する。
画像照合部121bは、バーチャルスライドと入力画像とを照合する。ここでのバーチャルスライドは、上述の実施形態と同様に、サーバ装置300の病理画像DB310に格納されたもの等を用いることができる。視野情報出力部122bは、照合結果に基づいて、入力画像に対応する視野範囲を特定するための視野情報を表示制御部130bに出力する。表示制御部130bは、視野情報に基づいて、バーチャルスライド中の入力画像の視野範囲に対応する出力画像を表示するための信号を表示装置400へ出力する。
一方、医師D2のもとにある表示装置400には、予め、バーチャルスライドが送信されている。当該バーチャルスライドは、サーバ装置300から直接送信されてもよいし、サーバ装置300から画像処理装置105を経由して送信されてもよい。なお、送信されるバーチャルスライドは、サーバ装置300に格納されたバーチャルスライドを複製したものとすることができる。表示装置400に送信されたバーチャルスライドは、記憶部420に格納される。
表示制御部130bからの上記信号を受信した表示装置400の表示部410は、記憶部420に記憶されたバーチャルスライドを用いて、視野情報に対応する当該バーチャルスライドの視野範囲を出力画像として表示する。これにより、医師D2は、医師D1により観察された入力画像に対応する、バーチャルスライドの出力画像を確認することが可能となる。
このように、本実施形態によれば、画像処理装置105から表示装置400へ入力画像そのものを送信する必要はなく、視野情報を送信するだけでよい。したがって、一枚(一フレーム)の出力画像の出力に際して送信されるデータ量を低減することが可能となる。
一方、従来は、医師D1が撮像した入力画像(顕微鏡画像)を医師D2の表示装置400へ直接送信していた。これにより、医師D1がスライド標本を移動させつつ連続的に顕微鏡画像を撮像するような場合には、一枚の顕微鏡画像のデータ送信量が大きいため、フレームレートが低くなるという問題があった。結果として、医師D1のスライド標本の移動に対する医師D2への出力画像の追従性が悪く、円滑な遠隔診断が難しかった。
そこで、本実施形態によれば、従来の遠隔診断と比較して、通信時のデータ量を大幅に低減することができることとなる。これにより、病理診断におけるデータ送信時のコストを抑制することが可能となる。さらに、医師D1のスライド標本の移動に対する医師D2への出力画像の追従性を高めることが可能となる。これにより、医師D1が観察する顕微鏡画像を、低レイテンシかつ高フレームレートで、医師D2に提示することが可能となる。したがって、遠隔診断をより円滑に行うことが可能となる。
以上、本技術の各実施形態を説明したが、本技術は上述の実施形態にのみ限定され
るものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿
論である。以下、その他の変形例6−1〜6−3について説明する。
[変形例6−1]
視野情報生成部は、ある入力画像から第1の視野情報を生成した後、顕微鏡装置から得られるスライド標本の変位についての情報に基づいて、第2の視野情報を生成してもよい。
具体的には、顕微鏡装置は、ステージの平面内での変位についての情報を取得する変位検出部を有する構成とすることができる。変位検出部の具体的な構成は特に限定されず、例えば、ステージの平面内での変位そのものを検出可能であってもよい。あるいは、ステージの平面内での速度を検出可能な構成であってもよい。
画像処理装置の視野情報生成部は、顕微鏡装置の変位検出部から出力されたステージの変位についての情報に基づいて、バーチャルスライドの変位量を算出可能に構成される。さらに、視野情報生成部は、第1の視野情報に、当該算出されたバーチャルスライドの変位量を加えることで、第2の視野情報を生成可能に構成される。
本変形例により、画像処理装置は、画像照合の処理コストを大幅に低減することが可能となる。
[変形例6−2]
以上の各実施形態では、画像処理装置が、例えば、PCや、タブレット端末等の情報処理装置として構成されると説明したが、これに限定されない。例えば、画像取得部、表示制御部等が、PC、タブレット端末等の第1の装置本体に格納され、画像処理装置の視野情報生成部が、第1の装置本体と接続されたPC、サーバ等の第2の装置本体に格納されていてもよい。すなわちこの場合、画像処理装置は、第1の装置本体及び第2の装置本体を備える。これにより、画像照合に係るデータ処理量が大きい場合であっても、各装置本体に対する負荷を軽減することができる。また、第2の装置本体は、病理画像DBが格納されたサーバ装置であってもよい。
[変形例6−3]
以上の各実施形態では、画像処理装置を含む画像処理システムが、病理画像診断時に用いられると説明したが、これに限定されない。例えば、生理学、薬理学等の分野の研究において、組織切片を観察する際に本技術を適用することも可能である。
なお、本技術は以下のような構成もとることができる。
(1)ユーザの観察対象の観察像を撮像することにより生成された第1の解像度を有する入力画像を取得する画像取得部と、
上記観察対象の画像を含み上記第1の解像度よりも大きい第2の解像度を有する標本画像と、上記入力画像とを照合することで、上記標本画像中の、上記入力画像に対応する視野範囲を特定するための視野情報を生成する視野情報生成部と、
上記視野情報に基づいて、上記標本画像中の上記視野範囲に対応する情報を取得し、上記情報を表示するための信号を出力する表示制御部と
を具備する画像処理装置
(2)上記(1)に記載の画像処理装置であって、
上記視野情報生成部は、上記観察像の拡大率の情報を取得し、上記標本画像の拡大率と上記観察像の拡大率との比を利用して、上記標本画像と上記入力画像とを照合する
画像処理装置。
(3)上記(1)又は(2)に記載の画像処理装置であって、
上記視野情報生成部は、上記視野情報を生成できなかった場合に、ユーザに対し、上記観察対象の他の観察像を撮像するように指示する
画像処理装置。
(4)上記(3)に記載の画像処理装置であって、
上記視野情報生成部は、
上記視野情報を生成できなかった場合に、上記観察像の拡大率が所定の拡大率以下であるか否か判定し、
上記所定の拡大率以下でなかった場合に、上記所定の拡大率以下の拡大率の観察像を撮像するように指示する
画像処理装置。
(5)上記(3)に記載の画像処理装置であって、
上記視野情報生成部は、
上記視野情報を生成できなかった場合に、上記観察像と上記観察対象上の位置が異なる他の観察像を撮像するように指示する
画像処理装置。
(6)上記(1)から(5)のうちいずれか1つに記載の画像処理装置であって、
上記視野情報生成部は、上記視野情報を生成する際に、上記標本画像の上記視野範囲に対応する領域に付随するアノテーション情報を併せて取得する
画像処理装置。
(7)上記(1)から(6)のうちいずれか1つに記載の画像処理装置であって、
上記画像取得部は、上記観察対象の識別情報を上記入力画像と併せて取得し、
上記視野情報生成部は、上記識別情報に基づいて、上記標本画像のうち上記観察対象に対応する画像領域を特定し、上記画像領域と入力画像とを照合する
画像処理装置。
(8)上記(1)から(7)のうちいずれか1つに記載の画像処理装置であって、
視野情報生成部は、上記標本画像から抽出される複数のSIFT特徴量と、上記入力画像から抽出される複数のSIFT特徴量とに基づいて、上記標本画像と上記入力画像とを照合する
画像処理装置。
(9)観察対象の観察像を撮像することにより生成された第1の解像度を有する入力画像を取得し、
上記観察対象の画像を含み上記第1の解像度よりも大きい第2の解像度を有する標本画像と、上記入力画像とを照合し、
照合結果に基づいて、上記標本画像中の、上記入力画像に対応する視野範囲を特定するための視野情報を生成し、
上記視野情報に基づいて、上記標本画像中の上記視野範囲に対応する情報を取得し、上情報を表示するための信号を出力する
画像処理方法。
100,102,103,103a,104,105…画像処理装置
110…画像取得部
120,120a,120b,140,150…視野情報生成部
130,130b…表示制御部
W…観察像
V…バーチャルスライド(標本画像)
M…入力画像
F…出力画像

Claims (11)

  1. ユーザによる観察対象の移動に伴って顕微鏡装置で観察された異なる観察像各々を前記顕微鏡装置によって撮像することにより生成された第1の解像度を有する入力画像と、前記観察対象の画像を含み前記第1の解像度よりも大きい第2の解像度を有する標本画像を照合することで、前記標本画像中の、前記入力画像に対応する視野範囲を特定するための視野情報を生成する視野情報生成部と、
    前記視野情報に基づいて、前記ユーザによる前記観察像の移動に伴って移動する前記標本画像中の前記視野範囲に対応する情報を取得し、前記視野範囲の移動に追従して前記情報を表示するための信号を出力する表示制御部と
    を具備する画像処理装置。
  2. 請求項1に記載の画像処理装置であって、
    前記視野情報生成部は、前記観察像の拡大率の情報を取得し、前記標本画像の拡大率と前記観察像の拡大率との比を利用して、前記標本画像と前記入力画像とを照合する
    画像処理装置。
  3. 請求項1又は2に記載の画像処理装置であって、
    前記視野情報生成部は、前記視野情報を生成できなかった場合に、ユーザに対し、前記観察対象の他の観察像を撮像するように指示する
    画像処理装置。
  4. 請求項3に記載の画像処理装置であって、
    前記視野情報生成部は、
    前記視野情報を生成できなかった場合に、前記観察像の拡大率が所定の拡大率以下であるか否か判定し、
    前記所定の拡大率以下でなかった場合に、前記所定の拡大率以下の拡大率の観察像を撮像するように指示する
    画像処理装置。
  5. 請求項3に記載の画像処理装置であって、
    前記視野情報生成部は、
    前記視野情報を生成できなかった場合に、前記観察像と前記観察対象上の位置が異なる他の観察像を撮像するように指示する
    画像処理装置。
  6. 請求項1から5のうちいずれか1項に記載の画像処理装置であって、
    前記視野情報生成部は、前記視野情報を生成する際に、前記標本画像の前記視野範囲に対応する領域に付随するアノテーション情報を併せて取得する
    画像処理装置。
  7. 請求項1から6のうちいずれか1項に記載の画像処理装置であって、
    前記視野情報生成部は、標本画像のうち、既に生成された視野情報から特定される観察対象の画像に対応する領域と、前記入力画像とを照合する
    画像処理装置。
  8. 請求項1から7のうちいずれか1項に記載の画像処理装置であって、
    視野情報生成部は、前記標本画像から抽出される複数のSIFT特徴量と、前記入力画像から抽出される複数のSIFT特徴量とに基づいて、前記標本画像と前記入力画像とを照合する
    画像処理装置。
  9. 請求項1から8のうちいずれか1項に記載の画像処理装置であって、
    前記標本画像は、病理画像である
    画像処理装置。
  10. 請求項9に記載の画像処理装置であって、
    前記病理画像は、焦点の異なる複数のレイヤー画像を含む
    画像処理装置。
  11. ユーザによる観察対象の移動に伴って顕微鏡装置で観察された異なる観察像各々前記顕微鏡装置によって撮像することにより生成された第1の解像度を有する入力画像を取得し、
    前記観察対象の画像を含み前記第1の解像度よりも大きい第2の解像度を有する標本画像と、前記入力画像とを照合し、
    照合結果に基づいて、前記標本画像中の、前記入力画像に対応する視野範囲を特定するための視野情報を生成し、
    前記視野情報に基づいて、前記ユーザによる前記観察像の移動に伴って移動する前記標本画像中の前記視野範囲に対応する情報を取得し、前記視野範囲の移動に追従して前記情報を表示するための信号を出力する
    画像処理方法。
JP2013233436A 2013-11-11 2013-11-11 画像処理装置及び画像処理方法 Active JP6127926B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013233436A JP6127926B2 (ja) 2013-11-11 2013-11-11 画像処理装置及び画像処理方法
US14/525,693 US20150130921A1 (en) 2013-11-11 2014-10-28 Image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233436A JP6127926B2 (ja) 2013-11-11 2013-11-11 画像処理装置及び画像処理方法

Publications (3)

Publication Number Publication Date
JP2015094827A JP2015094827A (ja) 2015-05-18
JP2015094827A5 JP2015094827A5 (ja) 2016-03-31
JP6127926B2 true JP6127926B2 (ja) 2017-05-17

Family

ID=53043484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233436A Active JP6127926B2 (ja) 2013-11-11 2013-11-11 画像処理装置及び画像処理方法

Country Status (2)

Country Link
US (1) US20150130921A1 (ja)
JP (1) JP6127926B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455829B2 (ja) * 2013-04-01 2019-01-23 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
DE112017007927T5 (de) * 2017-10-16 2020-05-28 Hitachi High-Tech Corporation Bildgebungsvorrichtung
WO2020045536A1 (en) * 2018-08-31 2020-03-05 Sony Corporation Medical system, medical apparatus, and medical method
JP7322409B2 (ja) * 2018-08-31 2023-08-08 ソニーグループ株式会社 医療システム、医療装置および医療方法
CN109740669B (zh) * 2018-12-29 2022-12-06 大连大学 一种基于深度特征聚合的乳腺癌病理图像分类方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272235B1 (en) * 1997-03-03 2001-08-07 Bacus Research Laboratories, Inc. Method and apparatus for creating a virtual microscope slide
US7292251B1 (en) * 2000-10-06 2007-11-06 The Research Foundation Of State University Of New York Virtual telemicroscope
GB2398196B (en) * 2003-02-05 2005-06-01 Fairfield Imaging Ltd Microscope system and method
US7792338B2 (en) * 2004-08-16 2010-09-07 Olympus America Inc. Method and apparatus of mechanical stage positioning in virtual microscopy image capture
JP4917329B2 (ja) * 2006-03-01 2012-04-18 浜松ホトニクス株式会社 画像取得装置、画像取得方法、及び画像取得プログラム
US8509565B2 (en) * 2008-12-15 2013-08-13 National Tsing Hua University Optimal multi-resolution blending of confocal microscope images
US20100150472A1 (en) * 2008-12-15 2010-06-17 National Tsing Hua University (Taiwan) Method for composing confocal microscopy image with higher resolution
JP5152077B2 (ja) * 2009-04-01 2013-02-27 ソニー株式会社 生体像提示装置、生体像提示方法及びプログラム並びに生体像提示システム
JP2010281800A (ja) * 2009-06-08 2010-12-16 Gunma Univ 細胞解析装置、及び細胞解析方法
US9341835B2 (en) * 2009-07-16 2016-05-17 The Research Foundation Of State University Of New York Virtual telemicroscope
JP5498129B2 (ja) * 2009-11-09 2014-05-21 オリンパス株式会社 バーチャル顕微鏡システム
JP5561027B2 (ja) * 2009-11-30 2014-07-30 ソニー株式会社 情報処理装置、情報処理方法及びそのプログラム
JP5555014B2 (ja) * 2010-03-10 2014-07-23 オリンパス株式会社 バーチャルスライド作成装置
JP5537281B2 (ja) * 2010-06-21 2014-07-02 オリンパス株式会社 顕微鏡装置および画像取得方法
JP2012118448A (ja) * 2010-12-03 2012-06-21 Sony Corp 画像処理方法、画像処理装置及び画像処理プログラム
US8941720B2 (en) * 2011-02-02 2015-01-27 National Tsing Hua University Method of enhancing 3D image information density
JP2012256272A (ja) * 2011-06-10 2012-12-27 Seiko Epson Corp 生体識別装置、及び、生体識別方法
US8970618B2 (en) * 2011-06-16 2015-03-03 University Of Leeds Virtual microscopy
JP2013152701A (ja) * 2011-12-26 2013-08-08 Canon Inc 画像処理装置、画像処理システム、画像処理方法

Also Published As

Publication number Publication date
JP2015094827A (ja) 2015-05-18
US20150130921A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
US20240248294A1 (en) Point- of-care- computational microscopy based-systems and methods
AU2020200835B2 (en) System and method for reviewing and analyzing cytological specimens
JP6127926B2 (ja) 画像処理装置及び画像処理方法
JP6811837B2 (ja) 病理データ捕捉
JP6378701B2 (ja) ホール・スライド画像レジストレーションおよび画像間注釈デバイス、システム、ならびに方法
JP6348504B2 (ja) 生体試料の分割画面表示及びその記録を取り込むためのシステム及び方法
US11125660B2 (en) Systems and methods for meso-dissection
CN106030610B (zh) 移动设备的实时3d姿势识别和跟踪系统
US20150301732A1 (en) Selection and display of biomarker expressions
JP6836994B2 (ja) メソダイセクションのためのシステム及び方法
US11990227B2 (en) Medical system, medical apparatus, and medical method
CN111598899A (zh) 图像处理方法、装置及计算机可读存储介质
CN113485555A (zh) 医学影像阅片方法、电子设备和存储介质
US10922899B2 (en) Method of interactive quantification of digitized 3D objects using an eye tracking camera
JPWO2021024301A1 (ja) コンピュータプログラム、内視鏡用プロセッサ、及び情報処理方法
CN116235223A (zh) 使用基于目光的跟踪的注释数据收集
JP2019215781A (ja) 製造管理システム及び方法
US20230031240A1 (en) Systems and methods for processing electronic images of pathology data and reviewing the pathology data
Alvarez et al. Tele-pathology: A use case in colombia
US20240303952A1 (en) System and method for real-time variable resolution microscope slide imaging
WO2023010048A1 (en) Systems and methods for processing electronic images of pathology data and reviewing the pathology data
CN118502096A (zh) 显示样本图像的计算机系统、显微镜系统以及显示样本图像的方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R151 Written notification of patent or utility model registration

Ref document number: 6127926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250