JP4848591B2 - 炭化珪素半導体装置及びその製造方法 - Google Patents

炭化珪素半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4848591B2
JP4848591B2 JP2001098453A JP2001098453A JP4848591B2 JP 4848591 B2 JP4848591 B2 JP 4848591B2 JP 2001098453 A JP2001098453 A JP 2001098453A JP 2001098453 A JP2001098453 A JP 2001098453A JP 4848591 B2 JP4848591 B2 JP 4848591B2
Authority
JP
Japan
Prior art keywords
region
gate
silicon carbide
conductivity type
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001098453A
Other languages
English (en)
Other versions
JP2002299349A (ja
Inventor
淳 小島
クマール ラジェシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001098453A priority Critical patent/JP4848591B2/ja
Publication of JP2002299349A publication Critical patent/JP2002299349A/ja
Application granted granted Critical
Publication of JP4848591B2 publication Critical patent/JP4848591B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素半導体装置及びその製造方法に係り、詳しくは、低オン抵抗のノーマリーオフ型接合型電界効果トランジスタ(以下、「JFET」という。)及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、ノーマリーオフ型JFETを製作するには、構造的には、図18に示す様に、第2導電型(p型)のゲートG1とゲートG2とがオーバーラップしていることが必要で、かつ電気的にはゲートG1から伸びる空乏層とゲートG2から伸びる空乏層が、ゲートG1とゲートG2に印加する電圧が0Vの状態でつながっていることが必要である。
【0003】
【発明が解決しようとする課題】
ここで、高耐圧・低オン抵抗のノーマリーオフ型JFETにおける問題として、高耐圧化のためには、エピタキシャル層の厚さAを小さくし、チャネル幅Bを長くし、エピタキシャル濃度Cを低くすることが要求されるのに対し、低オン抵抗化のためには、エピタキシャル層の厚さAを大きくし、チャネル幅Bを短くし、エピタキシャル濃度Cを高くすることが要求され、互いにトレードオフの関係になっている点をあげることができる。従って、ノーマリーオフ型のJFETで、耐圧を維持したままで低オン抵抗化を成り立たせることは難しいという問題がある。
【0004】
そこで、本発明は、上記問題を解決し、ノーマリーオフ型JFETにおいて、耐圧を維持したままで低オン抵抗化を成り立たせることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成しようとしてなされた本発明の炭化珪素半導体装置は、
第1導電型の半導体基板と、前記第1導電型の半導体基板の表面に形成され、該半導体基板よりもドーパント濃度が低く、表面部分が表面チャネル層として機能する第1導電型の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の内部の所定領域に形成される第2導電型のゲート1領域と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成される第1導電型のソース領域と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成される第2導電型のゲート2領域と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備え、ノーマリーオフ型接合型電界効果トランジスタを構成する炭化珪素半導体装置において、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする。
【0006】
らに、本発明の炭化珪素半導体装置においては、前記切欠又は切欠穴の大きさは、耐圧を損なわない程度の値としておくことが望ましい。
【0007】
この本発明の炭化珪素半導体装置によれば、ゲート1領域に形成した切欠又は切欠穴は、Vg=0Vのときに空乏層により閉じているので、切欠又は切欠穴を形成していない従来構造の炭化珪素半導体装置と同様の高耐圧を維持することができる。一方、Vgを印加すると、切欠又は切欠穴の空乏層が開くので、従来構造の炭化珪素半導体装置よりも、電流経路の面積が増加する。従って、本発明の炭化珪素半導体装置によれば、オン電流が増加し、低オン抵抗化を果たすことができる。よって、本発明の炭化珪素半導体装置によれば、ノーマリーオフ型JFETにおいて、耐圧を維持したままで低オン抵抗化を成り立たせることができる。
【0008】
なお、本発明の炭化珪素半導体装置は、より具体的には、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート1領域と、前記ゲート1領域の表面部において、前記炭化珪素エピタキシャル層とつながるように配置され、炭化珪素からなる第1導電型の表面チャネル層と、前記表面チャネル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記表面チャネル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置として構成することができる。ここで、前記表面チャネル層のドーパント濃度は、前記炭化珪素エピタキシャル層のドーパント濃度以下としておくことが望ましい。
【0009】
また、本発明の炭化珪素半導体装置は、より具体的には、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表面上に形成され、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有する第1導電型の第2の炭化珪素エピタキシャル層と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、該第2の炭化珪素エピタキシャル層の深さと同一の深さを有する第2導電型のゲート1領域と、前記ゲート1領域の表面部において、前記第1導電型の炭化珪素エピタキシャル層とつながるように配置され、炭化珪素からなる第1導電型の表面チャネル層と、前記表面チャネル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記表面チャネル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置として構成することができる。ここで、前記表面チャネル層のドーパント濃度は、前記第2の炭化珪素エピタキシャル層のドーパント濃度以下であることが望ましい。
【0010】
また、本発明の炭化珪素半導体装置は、より具体的には、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表面上に形成され、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有し、表面チャネル層を兼ねる第1導電型の第2の炭化珪素エピタキシャル層と、前記第2の炭化珪素エピタキシャル層の内部の所定領域に形成される第2導電型のゲート1領域と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置として構成することができる。ここで、前記第2導電型のゲート1領域の下面は、前記第1導電型の第1の炭化珪素エピタキシャル層の上面と接するものとしておいてもよい。
【0011】
また、上記目的を達成するためになされた本発明の炭化珪素半導体装置の製造方法は、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表層部の所定領域に、所定深さを有する第2導電型のゲート1領域を形成する第2の工程と、前記ゲート1領域の表面部において、前記炭化珪素エピタキシャル層とつながるように、炭化珪素からなる第1導電型の表面チャネル層を形成する第3の工程と、前記表面チャネル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第4の工程と、前記表面チャネル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第5の工程と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上にソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第6の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第2の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする。この炭化珪素半導体装置の製造方法によれば、ゲート1領域に切欠又は切欠穴を有する本発明の半導体装置を製造することができる。
【0012】
また、上記以外にも、本発明の炭化珪素半導体装置の製造方法としては、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表面上に、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有する第1導電型の第2の炭化珪素エピタキシャル層を形成する第2の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、該第2の炭化珪素エピタキシャル層の深さと同一の深さを有する第2導電型のゲート1領域を形成する第3の工程と、前記ゲート1領域の表面部において、前記第1導電型の炭化珪素エピタキシャル層とつながるように、炭化珪素からなる第1導電型の表面チャネル層を形成する第4の工程と、前記表面チャネル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第5の工程と、前記表面チャネル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第6の工程と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上に形成されたソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第7の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第3の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする炭化珪素半導体装置の製造方法を採用することができる。この炭化珪素半導体装置の製造方法によっても、ゲート1領域に切欠又は切欠穴を有する本発明の半導体装置を製造することができる。
【0013】
また、さらに他の炭化珪素半導体装置の製造方法として、本発明は、主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表面上に、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有し、表面チャネル層を兼ねる第1導電型の第2の炭化珪素エピタキシャル層を形成する第2の工程と、前記第2の炭化珪素エピタキシャル層の内部の所定領域に、第2導電型のゲート1領域を形成する第3の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第4の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第4の工程と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上に形成されたソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第5の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第3の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする炭化珪素半導体装置の製造方法を提案する。この炭化珪素半導体装置の製造方法によっても、ゲート1領域に切欠又は切欠穴を有する本発明の半導体装置を製造することができる。
【0014】
なお、本発明の炭化珪素半導体装置の製造方法において、前記ゲート1領域の形成は、B,Al,Gaなどの III属元素のイオン注入で行う様にすることができる。また、前記ゲート1領域の形成は、BとCとを組合せたイオン注入で行う様にすることもできる。さらに、前記ゲート1領域の形成は、B,Al,Gaなどの III属元素を不純物としたエピタキシャル成長法(p型選択的エピタキシャル成長法)で行うこともできる。
【0015】
また、本発明の炭化珪素半導体装置の製造方法としては、前記イオン注入後の熱処理によってBを拡散させて、前記切欠又は切欠穴の大きさを調整する様にすることができる。即ち、ゲート1領域に切欠又は切欠穴を形成する際には、切欠又は切欠穴を大きめに形成しておき、その後、Bの拡散によって切欠又は切欠穴の内部に向かってゲート1領域を拡散させることにより、所望の大きさの切欠又は切欠穴を形成する様にするのである。この方法は、解像度が低くて、小さな切欠又は切欠穴を精度よく形成することができない様な設備においても、本発明の炭化珪素半導体装置を製造することができるというメリットを有する。従って、半導体装置の製造設備をコストアップしなくてもよいという特有の効果を奏する。
【0016】
なお、本発明の炭化珪素半導体装置の製造方法において、前記ゲート2領域の形成は、B,Al,Gaなどの III属元素のイオン注入で行う様にすることができる。また、前記ゲート2領域の形成は、BとCとを組合せたイオン注入で行うことができる。さらに、前記ゲート2領域の形成は、B,Al,Gaなどの III属元素を不純物としたエピタキシャル成長法で行うことができる。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態を図面と共に説明する。
【0018】
[第1の実施の形態]
図1に従来構造の炭化珪素半導体装置100と第1の実施の形態としての新規構造の炭化珪素半導体装置10を示している。図示の様に、本実施の形態の炭化珪素半導体装置10は、ゲート1領域(G1)に、複数の切欠穴11を形成したものである。
【0019】
この切欠穴11は、図2に示す様に、ゲート1領域(G1)とゲート2領域(G2)とがオーバーラップする範囲内において、ゲート1領域(G1)を貫通する様に形成されている。ここで、切欠穴の幅aは、ゲート電圧Vg=0Vのときに形成される空乏層によってピンチオフされる大きさとする。この部分がピンチオフされることで、本実施の形態の炭化珪素半導体装置10の耐圧は、従来構造の炭化珪素半導体装置100と変わらない。
【0020】
図3に、Vg=0のときに、切欠穴11が、空乏層(斜線で示した部分)によりピンチオフされている様子を示している。即ち、図3において、ゲート1領域(G1)の切欠穴11の中の空乏層は閉じている。また、ゲート1領域(G1)とゲート2領域(G2)との間の空乏層も、当然ながら閉じている。
【0021】
一方、Vgを印加すると、図4に示す様に、ゲート1領域(G1)の切欠穴11の中の空乏層が開く。同じく、ゲート1領域(G1)とゲート2領域(G2)との間の空乏層も開く。このとき、本実施の形態の炭化珪素半導体装置10では、従来構造の炭化珪素半導体装置100よりも、切欠穴11内を通る分だけ電流経路(図示矢印)の面積が増加するので、オン電流が増加する。このようにして、本実施の形態の炭化珪素半導体装置10では、従来構造の炭化珪素半導体装置100と比べて耐圧の変化はなく、オン電流の増加が達成できる。図5に、従来構造の炭化珪素半導体装置100と本実施の形態の炭化珪素半導体装置10のVd−Id特性を示している。図示の様に、本実施の形態の炭化珪素半導体装置10によれば、従来構造の炭化珪素半導体装置100に比べて、Vd−Id特性が向上していることが分かる。この様に、本実施の形態の炭化珪素半導体装置10によれば、ゲート1領域(G1)に切欠穴11を形成するこおにより、高耐圧を維持したままで低オン抵抗化が達成できている。
【0022】
なお、上述の第1の実施の形態の炭化珪素半導体装置10においては、切欠穴11の形状を長方形としていたが、これに限るものではなく、正方形、円形、六角形などとしてもよい。また、図6の様に、ゲート1領域(G1)に切欠13を形成する様にして、ゲート1領域(G1)を櫛形に構成してもよい。これらの切欠穴11又は切欠13の面積とp型層の面積の比によって、耐圧とオン抵抗は決定される。従って、目標とする耐圧とオン抵抗の値に応じて、切欠穴11又は切欠13の面積を決定していけばよい。
【0023】
[第2の実施の形態]
次に、第2の実施の形態の炭化珪素半導体装置について説明する。この第2の実施の形態の炭化珪素半導体装置20は、図7(b)に示す様に、六角セル構造となっている。そして、そのゲート1領域には、ゲート2領域とのオーバーラップ範囲内に、図7(b)及び図8(a)に示す様に、放射状の切欠21が多数形成されている。この第2の実施の炭化珪素半導体装置20においても、ゲート1領域に切欠21を形成することで、Vgを印加したときの電流経路を増加し、オン抵抗を低下することができる。そして、これらの切欠21は、第1の実施の形態で説明したのと同様に、Vg=0Vのときには空乏層で閉じられることにより、所定の耐圧を維持できる様になっている。なお、図8(b)に示す様に、縦横に伸びる切欠23を形成する様にすれば、耐圧を維持しつつ切欠面積を増大することができ、より一層の低オン抵抗化を図ることができる。
【0024】
【実施例】
次に、本発明の炭化珪素半導体装置を具体的に製造する方法を実施例として説明する。
【0025】
[第1実施例]
第1実施例としての炭化珪素半導体装置の製造方法を、図9、図10に基づいて説明する。第1実施例においては、n/n+シングルエピタキシャル基板上にマスクMを形成した上で、B,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図9の(1−2)に示す様に、切欠穴のあいたp型層(ゲート1領域)を形成する。(1−2’)に、上面から見たマスキングの様子を示す。図示の様な状態にマスキングすることにより、実施の形態で説明した様な切欠穴のあいたゲート1領域を形成することができる。
【0026】
続いて、(1−3)に示す様に、後工程のp型層、n型層の活性化熱処理温度より低い温度で、n−型層をエピタキシャル成長させる。ここで成長させたエピタキシャル層の濃度Nd1は、エピタキシャル基板の濃度Nd2と比べたとき、Nd1≦Nd2となっている。
【0027】
その後、n−型エピタキシャル層の所定の位置にB,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図9の(1−4)に示す様に、p型層(ゲート2領域)を形成する。そして、図10の(1−5)に示す様に、イオン注入により、ソース領域となるn+型層を形成し、活性化熱処理を行う。
【0028】
そして、(1−6)に示す様に、素子分離およびゲート1領域のコンタクトを取るためにエピタキシャル層の除去を行う。最後に、金属を蒸着して、(1−7)に示す様に、ゲート電極G1,G2、ソース電極S、ドレイン電極Dを形成する。以上の様にすることにより、実施の形態で説明した様な炭化珪素半導体装置を製造することができる。
【0029】
[第2実施例]
第2実施例としての炭化珪素半導体装置の製造方法を、図11、図12に基づいて説明する。第2実施例においては、n−/n/n+ダブルエピタキシャル基板上にマスクMを形成した上で、B,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図11の(2−2)に示す様に、切欠穴のあいたp型層(ゲート1領域)を形成する。(2−2’)に、上面から見たマスキングの様子を示す。図示の様な状態にマスキングすることにより、実施の形態で説明した様な切欠穴のあいたゲート1領域を形成することができる。
【0030】
続いて、(2−3)に示す様に、後工程のp型層、n型層の活性化熱処理温度より低い温度で、n−型層をエピタキシャル成長させる。ここで成長させたエピタキシャル層の濃度Nd1は、ダブルエピタキシャル基板の下側のエピタキシャル層の濃度Nd2と比べたとき、Nd1≦Nd2となっている。また、ダブルエピタキシャル基板の上側のエピタキシャル層の濃度Nd3とは、Nd1=Nd3の関係になっている。
【0031】
その後、n−型エピタキシャル層の所定の位置にB,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図10の(2−4)に示す様に、p型層(ゲート2領域)を形成する。そして、図11の(2−5)に示す様に、イオン注入により、ソース領域となるn+型層を形成し、活性化熱処理を行う。
【0032】
そして、(2−6)に示す様に、素子分離およびゲート1領域のコンタクトを取るためにエピタキシャル層の除去を行う。最後に、金属を蒸着して、(2−7)に示す様に、ゲート電極G1,G2、ソース電極S、ドレイン電極Dを形成する。以上の様にすることにより、実施の形態で説明した様な炭化珪素半導体装置を製造することができる。
【0033】
[第3実施例]
第3実施例としての炭化珪素半導体装置の製造方法を、図13、図14に基づいて説明する。第3実施例においては、n−/n/n+ダブルエピタキシャル基板上にマスクMを形成した上で、B,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図13の(3−2)に示す様に、ダブルエピタキシャル基板の上側のエピタキシャル層の中程に、切欠穴のあいたp型層(ゲート1領域)を形成する。(3−2’)に、上面から見たマスキングの様子を示す。図示の様な状態にマスキングすることにより、実施の形態で説明した様な切欠穴のあいたゲート1領域を形成することができる。ここで、ダブルエピタキシャル基板の上側のn−型エピタキシャル層の濃度Nd1と下側のn型エピタキシャル層の濃度Nd2とは、Nd1≦Nd2の関係となっている。
【0034】
続いて、(3−3)に示す様に、n−型エピタキシャル層の所定の位置にB,Al,Gaなどの III属元素をイオン注入するか、もしくは、BとCを組み合わせてイオン注入することにより、図13の(3−3)に示す様に、p型層(ゲート2領域)を形成する。そして、図14の(3−4)に示す様に、イオン注入により、ソース領域となるn+型層を形成し、活性化熱処理を行う。
【0035】
そして、(3−5)に示す様に、素子分離およびゲート1領域のコンタクトを取るためにエピタキシャル層の除去を行う。最後に、金属を蒸着して、(3−6)に示す様に、ゲート電極G1,G2、ソース電極S、ドレイン電極Dを形成する。以上の様にすることにより、実施の形態で説明した様な炭化珪素半導体装置を製造することができる。
【0036】
[第4実施例]
第4実施例としての炭化珪素半導体装置の製造方法を、図15に基づいて説明する。第4実施例においては、n/n+シングルエピタキシャル基板上にマスクMを形成した上で、n型エピタキシャル層の除去を行い、その後、p型選択エピタキシャル成長法を用いて、ゲート1領域となるp+型エピタキシャル層を形成することにより、切欠穴のあいたゲート1領域を形成する。後は、第1実施例の(1−3)〜(1−7)の工程を実行することにより、実施の形態の炭化珪素半導体装置を製造することができる。
【0037】
[第5実施例]
第5実施例としての炭化珪素半導体装置の製造方法を、図16に基づいて説明する。第5実施例においては、第1実施例の(1−3)までの工程を実施した上で、n−型エピタキシャル層の表層部に、n+型ソース領域をイオン注入で形成し、さらに、ゲート1領域とのコンタクトをとるためにn−型エピタキシャル層の除去を行った上で、p型選択エピタキシャル成長法を用いて、ゲート2領域となるp+型エピタキシャル層を形成する。最後に、金属を蒸着して、(3−6)に示す様に、ゲート電極G1,G2、ソース電極S、ドレイン電極Dを形成する。以上の様にすることにより、実施の形態で説明した様な炭化珪素半導体装置を製造することができる。
【0038】
[第6実施例]
次に、第6実施例としての炭化珪素半導体装置の製造方法を、図17に基づいて説明する。第6実施例においては、第1実施例の(1−1)、(1−2)の工程を実行して、切欠穴のあいたゲート1領域を形成する。この際、ゲート1領域はBイオン注入で形成する。そして、このゲート1領域の活性化熱処理のときの拡散を利用して、図示(b)に示す様に、切欠穴の大きさを調整する。切欠穴の大きさの調整は、拡散時間により制御することができるので、はじめに大きめの切欠穴を形成しておき、これを最適な大きさの切欠穴へと容易に調整することができる。その後は、第1実施例の(1−3)〜(1−7)の工程を実行することにより、実施の形態の炭化珪素半導体装置を製造することができる。
【0039】
以上、本発明の実施の形態及び実施例について説明したが、本発明はこの実施の形態に限られるものではなく、その要旨を逸脱しない範囲内においてさらに種々の形態を採用することができることはもちろんである。
【0040】
【発明の効果】
以上説明した様に、本発明によれば、ノーマリーオフ型JFETにおいて、耐圧を維持したままで低オン抵抗化を成り立たせることができる。
【図面の簡単な説明】
【図1】 第1の実施の形態の炭化珪素半導体装置の構造を従来構造と比較して示す斜視図である。
【図2】 第1の実施の形態の炭化珪素半導体装置の要部を示す説明図である。
【図3】 第1の実施の形態の炭化珪素半導体装置の要部を示す説明図であり、(b)は(a)を白矢印の方向から見た状態を示し、(c)は同じく(a)を黒矢印の方向から見た状態を示している。
【図4】 第1の実施の形態の炭化珪素半導体装置の要部を示す説明図であり、(b)は(a)を白矢印の方向から見た状態を示し、(c)は同じく(a)を黒矢印の方向から見た状態を示している。
【図5】 第1の実施の形態の炭化珪素半導体装置のVd−Id特性を示すグラフである。
【図6】 変形例の要部を示す平面図である。
【図7】 第2の実施の形態の炭化珪素半導体装置の構造を従来構造と比較して示す斜視図である。
【図8】 第2の実施の形態の炭化珪素半導体装置の要部及び変形例の要部を示す平面図である。
【図9】 第1実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図10】 第1実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図11】 第2実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図12】 第2実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図13】 第3実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図14】 第3実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図15】 第4実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図16】 第5実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図である。
【図17】 第6実施例としての炭化珪素半導体装置の製造方法の各工程を示す説明図であり、(b)は(a)の円で囲んだ部分を拡大して示している。
【図18】 従来の問題点を説明するための説明図であり、(b)は(a)の円で囲んだ部分の拡大して示している。
【符号の説明】
10・・・炭化珪素半導体装置、11・・・切欠穴、13・・・切欠、20・・・炭化珪素半導体装置、21・・・切欠、23・・・切欠。

Claims (19)

  1. 第1導電型の半導体基板と、前記第1導電型の半導体基板の表面に形成され、該半導体基板よりもドーパント濃度が低く、表面部分が表面チャネル層として機能する第1導電型の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の内部の所定領域に形成される第2導電型のゲート1領域と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成される第1導電型のソース領域と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成される第2導電型のゲート2領域と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備え、ノーマリーオフ型接合型電界効果トランジスタを構成する炭化珪素半導体装置において、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置。
  2. 請求項記載の炭化珪素半導体装置において、前記切欠又は切欠穴の大きさは、耐圧を損なわない程度の値とされていることを特徴とする炭化珪素半導体装置。
  3. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート1領域と、前記ゲート1領域の表面部において、前記炭化珪素エピタキシャル層とつながるように配置され、炭化珪素からなる第1導電型の表面チャネル層と、前記表面チャネル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記表面チャネル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置。
  4. 請求項記載の炭化珪素半導体装置において、前記表面チャネル層のドーパント濃度は、前記炭化珪素エピタキシャル層のドーパント濃度以下であることを特徴とする炭化珪素半導体装置。
  5. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表面上に形成され、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有する第1導電型の第2の炭化珪素エピタキシャル層と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、該第2の炭化珪素エピタキシャル層の深さと同一の深さを有する第2導電型のゲート1領域と、前記ゲート1領域の表面部において、前記第1導電型の炭化珪素エピタキシャル層とつながるように配置され、炭化珪素からなる第1導電型の表面チャネル層と、前記表面チャネル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記表面チャネル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置。
  6. 請求項記載の炭化珪素半導体装置において、前記表面チャネル層のドーパント濃度は、前記第2の炭化珪素エピタキシャル層のドーパント濃度以下であることを特徴とする炭化珪素半導体装置。
  7. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板と、前記半導体基板の主表面上に形成され、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層と、前記炭化珪素エピタキシャル層の表面上に形成され、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有し、表面チャネル層を兼ねる第1導電型の第2の炭化珪素エピタキシャル層と、前記第2の炭化珪素エピタキシャル層の内部の所定領域に形成される第2導電型のゲート1領域と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、前記ゲート1領域よりも浅い第1導電型のソース領域と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に形成され、所定深さを有する第2導電型のゲート2領域と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するように形成されたゲート電極と、前記ソース領域上に形成されたソース電極と、前記半導体基板の裏面に形成されたドレイン電極とを備えている炭化珪素半導体装置であって、前記ゲート1領域には、前記ゲート2領域と上下に重なり合う部分に、第1導電型の切欠又は切欠穴を形成し、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされていることを特徴とする炭化珪素半導体装置。
  8. 請求項記載の炭化珪素半導体装置において、前記第2導電型のゲート1領域の下面は、前記第1導電型の第1の炭化珪素エピタキシャル層の上面と接することを特徴とする炭化珪素半導体装置。
  9. 請求項7又は8記載の炭化珪素半導体装置において、前記切欠又は切欠穴の大きさは、耐圧を損なわない程度の値とされていることを特徴とする炭化珪素半導体装置。
  10. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表層部の所定領域に、所定深さを有する第2導電型のゲート1領域を形成する第2の工程と、前記ゲート1領域の表面部において、前記炭化珪素エピタキシャル層とつながるように、炭化珪素からなる第1導電型の表面チャネル層を形成する第3の工程と、前記表面チャネル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第4の工程と、前記表面チャネル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第5の工程と、前記ゲート1領域およびゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上にソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第6の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第2の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする炭化珪素半導体装置の製造方法。
  11. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表面上に、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有する第1導電型の第2の炭化珪素エピタキシャル層を形成する第2の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、該第2の炭化珪素エピタキシャル層の深さと同一の深さを有する第2導電型のゲート1領域を形成する第3の工程と、前記ゲート1領域の表面部において、前記第1導電型の炭化珪素エピタキシャル層とつながるように、炭化珪素からなる第1導電型の表面チャネル層を形成する第4の工程と、前記表面チャネル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第5の工程と、前記表面チャネル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第6の工程と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上に形成されたソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第7の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第3の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする炭化珪素半導体装置の製造方法。
  12. 主表面および主表面の反対面である裏面を有し、単結晶炭化珪素よりなる第1導電型の半導体基板の主表面上に、前記半導体基板よりも低いドーパント濃度を有する第1導電型の第1の炭化珪素エピタキシャル層を形成する第1の工程と、前記炭化珪素エピタキシャル層の表面上に、該炭化珪素エピタキシャル層よりもさらに低いドーパント濃度を有し、表面チャネル層を兼ねる第1導電型の第2の炭化珪素エピタキシャル層を形成する第2の工程と、前記第2の炭化珪素エピタキシャル層の内部の所定領域に、第2導電型のゲート1領域を形成する第3の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、前記ゲート1領域よりも浅い第1導電型のソース領域を形成する第4の工程と、前記第2の炭化珪素エピタキシャル層の表層部の所定領域に、所定深さを有する第2導電型のゲート2領域を形成する第4の工程と、前記ゲート1領域、ゲート2領域のそれぞれに個々に接触するようにゲート電極を形成し、前記ソース領域上に形成されたソース電極を形成し、前記半導体基板の裏面に形成されたドレイン電極を形成する第5の工程とにより構成される炭化珪素半導体装置の製造方法であって、前記第3の工程においては、前記ゲート1領域と前記ゲート2領域とが上下に重なり合うこととなる部分のゲート1領域に、第1導電型の切欠又は切欠穴を形成するようにマスキングし、これらの工程を通じて、前記ゲート1領域の上面と前記ゲート2領域の下面との間隔、前記表面チャネル層のドーパント濃度と前記ゲート1領域および前記ゲート2領域のドーパント濃度、前記切欠又は切欠穴の大きさ、および、前記エピタキシャル層のドーパント濃度と前記ゲート1領域のドーパント濃度が、Vg=0Vのときに、空乏層がちょうどつながるような値とされ、前記ゲート1領域と同一平面でゲート1領域外の領域が電流経路とされることを特徴とする炭化珪素半導体装置の製造方法。
  13. 請求項10〜請求項12のいずれか記載の炭化珪素半導体装置の製造方法において、前記ゲート1領域の形成は、III属元素のイオン注入で行うことを特徴とする炭化珪素半導体装置の製造方法。
  14. 請求項10〜請求項12のいずれか記載の炭化珪素半導体装置の製造方法において、前記ゲート1領域の形成は、BとCとを組合せたイオン注入で行うことを特徴とする炭化珪素半導体装置の製造方法。
  15. 請求項10又は請求項11記載の炭化珪素半導体装置の製造方法において、前記ゲート1領域の形成は、III属元素を不純物としたエピタキシャル成長法で行うことを特徴とする炭化珪素半導体装置の製造方法。
  16. 請求項13記載の炭化珪素半導体装置の製造方法において、前記イオン注入後の熱処理によってBを拡散させて、前記切欠又は切欠穴の大きさを調整することを特徴とする炭化珪素半導体装置の製造方法。
  17. 請求項10〜請求項12のいずれか記載の炭化珪素半導体装置の製造方法において、前記ゲート2領域の形成は、III属元素のイオン注入で行うことを特徴とする炭化珪素半導体装置の製造方法。
  18. 請求項10〜請求項12のいずれか記載の炭化珪素半導体装置の製造方法において、前記ゲート2領域の形成は、BとCとを組合せたイオン注入で行うことを特徴とする炭化珪素半導体装置の製造方法。
  19. 請求項10〜請求項12のいずれか記載の炭化珪素半導体装置の製造方法において、前記ゲート2領域の形成は、III属元素を不純物としたエピタキシャル成長法で行うことを特徴とする炭化珪素半導体装置の製造方法。
JP2001098453A 2001-03-30 2001-03-30 炭化珪素半導体装置及びその製造方法 Expired - Fee Related JP4848591B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098453A JP4848591B2 (ja) 2001-03-30 2001-03-30 炭化珪素半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098453A JP4848591B2 (ja) 2001-03-30 2001-03-30 炭化珪素半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002299349A JP2002299349A (ja) 2002-10-11
JP4848591B2 true JP4848591B2 (ja) 2011-12-28

Family

ID=18952102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098453A Expired - Fee Related JP4848591B2 (ja) 2001-03-30 2001-03-30 炭化珪素半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4848591B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845720A (zh) * 2016-03-30 2016-08-10 上海华虹宏力半导体制造有限公司 Jfet及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098514B2 (ja) 2011-08-29 2017-03-22 富士電機株式会社 双方向素子、双方向素子回路および電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055995B2 (ja) * 1976-04-20 1985-12-07 日本電気株式会社 接合型電界効果トランジスタ
JPS5478675A (en) * 1977-12-05 1979-06-22 Nec Corp Junction-type field effect transistor
JPH0799325A (ja) * 1993-09-28 1995-04-11 Fuji Electric Co Ltd 炭化けい素半導体素子
KR950015809A (ko) * 1993-11-29 1995-06-17 윌리엄 이. 힐러 에피택셜 과성장 방법 및 디바이스
JPH10341025A (ja) * 1997-06-06 1998-12-22 Toyota Central Res & Dev Lab Inc 縦形接合形電界効果トランジスタ
JP3666280B2 (ja) * 1999-01-20 2005-06-29 富士電機ホールディングス株式会社 炭化けい素縦形fetおよびその製造方法
JP3706267B2 (ja) * 1999-03-03 2005-10-12 関西電力株式会社 電圧制御型半導体装置とその製法及びそれを用いた電力変換装置
JP2000312008A (ja) * 1999-04-27 2000-11-07 Fuji Electric Co Ltd 炭化珪素静電誘導トランジスタおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845720A (zh) * 2016-03-30 2016-08-10 上海华虹宏力半导体制造有限公司 Jfet及其制造方法
CN105845720B (zh) * 2016-03-30 2019-02-05 上海华虹宏力半导体制造有限公司 Jfet及其制造方法

Also Published As

Publication number Publication date
JP2002299349A (ja) 2002-10-11

Similar Documents

Publication Publication Date Title
JP6472776B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US8421151B2 (en) Semiconductor device and process for production thereof
US7301202B2 (en) Semiconductor device and method of manufacturing the same
US4554570A (en) Vertically integrated IGFET device
US20090134402A1 (en) Silicon carbide mos field-effect transistor and process for producing the same
KR100592749B1 (ko) 실리콘과 실리콘 게르마늄 이종 구조를 가지는 고전압전계효과 트랜지스터 및 그 제조 방법
JP2017005140A (ja) 絶縁ゲート型スイッチング装置とその製造方法
KR19990013112A (ko) 모스 트랜지스터 및 그 제조방법
JP3319215B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
TW201409699A (zh) 帶有累積增益植入物之橫向雙擴散金屬氧化物半導體及其製造方法
JPH06204484A (ja) 高速低ゲ−ト/ドレイン容量dmosデバイス
KR20200017358A (ko) 전력 장치의 기판 도펀트 외부 확산 감소를 위한 산소 삽입형 Si 층
KR100978452B1 (ko) 반도체 장치 및 그 제조 방법
JPH10229193A (ja) コンタクト窓からベース注入されたpチャネルmosゲート制御素子の製造方法及び半導体素子
JP2013530527A (ja) 逆方向バイアス下においてゲート−ソース漏れが低減された自己整合半導体デバイスおよび作製方法
US9837320B2 (en) MOSFET devices with asymmetric structural configurations introducing different electrical characteristics
JP4848591B2 (ja) 炭化珪素半導体装置及びその製造方法
JPH10173174A (ja) 半導体装置とその製造方法
JP2015099920A (ja) 横チャネル領域を有する接合型電界効果トランジスタセル
US9728599B1 (en) Semiconductor device
US5970343A (en) Fabrication of conductivity enhanced MOS-gated semiconductor devices
JP2000164525A (ja) 炭化珪素半導体装置及びその製造方法
JP7115145B2 (ja) 半導体装置の製造方法
KR100624053B1 (ko) 펀치스루를 방지하기 위한 전력용 반도체 소자 및 그 제조방법
JPS6332273B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees