JP4824023B2 - 磁気式位置センサ - Google Patents

磁気式位置センサ Download PDF

Info

Publication number
JP4824023B2
JP4824023B2 JP2007526090A JP2007526090A JP4824023B2 JP 4824023 B2 JP4824023 B2 JP 4824023B2 JP 2007526090 A JP2007526090 A JP 2007526090A JP 2007526090 A JP2007526090 A JP 2007526090A JP 4824023 B2 JP4824023 B2 JP 4824023B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
detection
gap
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007526090A
Other languages
English (en)
Other versions
JPWO2008081533A1 (ja
Inventor
竜一 西浦
博志 西沢
隆美 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2008081533A1 publication Critical patent/JPWO2008081533A1/ja
Application granted granted Critical
Publication of JP4824023B2 publication Critical patent/JP4824023B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

この発明は、磁気検出素子を用いて測定対象物の位置を検出する磁気式位置センサに関するものである。
従来の磁気式位置センサは、副エアギャップを挟んで並設された一対の第1の強磁性体固定子と、主エアギャップを介して第1の強磁性体固定子に対向する第2の強磁性体固定子とを有している。主エアギャップには、二極着磁された永久磁石が配置されている。永久磁石は、その中央を分岐点とする2つの磁束ループを発生し、主エアギャップに沿って変位可能である。磁石副エアギャップには、磁気検出素子が配置されている。測定対象物の変位により主エアギャップ内で永久磁石が変位されると、磁束ループの位置が変化し、これが磁気検出素子により検出される(例えば、特許文献1参照)。
特許第3264929号公報
上記のような従来の磁気式位置センサでは、磁束ループの分岐点が常に永久磁石の中央であるため、原点位置に対して両方向へのストロークを均等にする必要がある。このため、原点位置が全ストロークの中央に一致しない場合(偏っている場合)、測定精度が低下する。
この発明は、上記のような課題を解決するためになされたものであり、適用場所に応じて原点位置を調整することができ、測定精度の低下を抑制することができる磁気式位置センサを得ることを目的とする。
この発明による磁気式位置センサは、検出ギャップを挟んで互いに並設された第1及び第2の検出側コア、原点ギャップを挟んで互いに並設された第1及び第2の磁石側コアと、原点ギャップを境とする2つの磁束ループを第1及び第2の検出側コアと第1及び第2の磁石側コアとの間に発生させる磁石とを有し、測定対象物の変位に伴って第1及び第2の検出側コアに対して相対的に変位される磁石ユニット、及び検出ギャップに配置され、検出ギャップを通過する磁束を検出する磁気検出素子を備えている。
この発明の実施の形態1による磁気式位置センサの断面図である。 図1の磁気検出素子を示す正面図である。 図1の磁気式位置センサに発生する磁束ループの一例を示す説明図である。 図3の可動体が変位した場合の磁束ループの一例を示す説明図である。 最大ストローク位置において磁石の端部と第1の固定コアとの重なりがない場合の磁束ループを示す説明図である。 最大ストローク位置において第2の可動コアが第2の固定コアの端面より外側へ突出する場合の磁束ループを示す説明図である。 図1の磁気式位置センサをエレベータの秤装置に適用した例を示す構成図である。 図7のVIII部を拡大して示す構成図である。 図1の磁気式位置センサを自動車の排気ガス再循環弁の開度測定器に適用した例を示す構成図である。 この発明の実施の形態2による磁気式位置センサの要部を示す構成図である。 この発明の実施の形態3による磁気式位置センサの要部を示す構成図である。 この発明の実施の形態4による磁気式位置センサの要部を示す構成図である。 この発明の実施の形態5による磁気式位置センサの要部を示す構成図である。 図13の磁石端ギャップを設けない場合の最大ストローク位置における磁束ループを示す説明図である。 図13の磁石端ギャップを設けた場合の最大ストローク位置における磁束ループを示す説明図である。 図13の第1及び第2の可動コア及び磁石の保持部品への組付構成例を示す分解斜視図である。 この発明の実施の形態6による磁気式位置センサの要部を示す構成図である。 この発明の実施の形態7による磁気式位置センサの要部を示す構成図である。 図18の第1及び第2の可動コア及び磁石が第1及び第2の固定コアに対して傾斜した状態を示す構成図である。 この発明の実施の形態8による磁気式位置センサの要部を示す構成図である。 この発明の実施の形態9による磁気式位置センサの断面図である。 図21のXXII−XXII線に沿う断面図である。 図21の固定コアを示す斜視図である。 図21の可動コアを示す斜視図である。 この発明の実施の形態10による磁気式位置センサの第1及び第2の固定コアと磁気検出素子との関係を示す説明図である。 この発明の実施の形態11による磁気式位置センサの可動コア8,9を示す斜視図である。 この発明の実施の形態12による磁気式位置センサの要部を示す構成図である。 図27のXXVIII−XXVIII線に沿う断面図である。 この発明の実施の形態13による磁気式位置センサの要部を示す構成図である。 図29のXXX−XXX線に沿う断面図である。 図29のXXXI−XXXI線に沿う断面図である。 この発明の実施の形態14による磁気式位置センサの要部断面図である。 この発明の実施の形態15による磁気式位置センサの要部を示す分解斜視図である。 図33の磁気式位置センサの要部断面図である。 この発明の実施の形態16による磁気式位置センサの要部断面図である。 この発明の実施の形態17による磁気式位置センサの要部断面図である。 この発明の実施の形態18による磁気式位置センサの要部を示す構成図である。 図37のXXXVIII−XXXVIII線に沿う断面図である。 この発明の実施の形態19による磁気式位置センサの要部を示す構成図である。 図39のXXXX−XXXX線に沿う断面図である。 図39の固定コアを示す斜視図である。 この発明の実施の形態20による磁気式位置センサの要部断面図である。 この発明の実施の形態21による磁気式位置センサの要部断面図である。 この発明の実施の形態22による磁気式位置センサの要部断面図である。 図44の可動コアを示す正面図である。 この発明の実施の形態23による磁気式位置センサの要部断面図である。
以下、この発明の好適な実施の形態について図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1による磁気式位置センサの断面図である。図において、筐体1内には、例えば鉄等の強磁性体からなる平板状の第1及び第2の固定コア(検出側コア)2,3が固定されている。固定コア2,3は、検出ギャップg1を挟んで一直線上に並設されている。検出ギャップg1には、磁気検出素子5が配置されている。
筐体1内には、固定コア2,3に沿って検出ギャップg1に直交する方向(図の左右方向)へスライド変位可能な可動体(磁石ユニット)6が設けられている。可動体6は、保持部品7、例えば鉄等の強磁性体からなる第1及び第2の可動コア(磁石側コア)8,9、及び平板状の磁石(永久磁石)10を有している。
可動コア8,9は、保持部品7により保持されている。また、可動コア8,9は、断面L字形であり、互いに反対向きに配置されている。さらに、可動コア8,9は、原点ギャップg2を挟んで互いに対向する原点ギャップ面8a,9aと、固定コア2,3に対向し接触する固定コア対向面8b,9bとを有している。
磁石10は、固定コア2,3と可動コア8,9との間に挟持されている。磁石10は、二極着磁されており、その着磁方向は図の上下方向である。
可動体6の移動方向の両端部には、非磁性材製の第1及び第2のシャフト11,12が固定されている。第1のシャフト11には、測定対象物13が当接されている。第2のシャフト12は、ばね14に挿通されている。ばね14は、筐体1と可動体6との間に設けられ、可動体6及び第1のシャフト11を測定対象物13側へ付勢する。
図2は図1の磁気検出素子5を示す正面図である。磁気検出素子5としては、例えばホールICなど、一軸のみの感度を持つ磁気センサが用いられている。磁気検出素子5には、例えばホール素子からなる感磁部5aが設けられている。また、磁気検出素子5の感磁方向は、図1の左右方向、即ち可動体6の移動方向に平行な方向である。
図3は図1の磁気式位置センサに発生する磁束ループの一例を示す説明図、図4は図3の可動体6が変位した場合の磁束ループの一例を示す説明図である。上記のような磁気式位置センサでは、原点ギャップg2を境として2つの磁束ループが発生される。可動コア8,9と磁石10とは一体化されており、これらが図の左右方向へ移動することにより、磁束ループも左右に移動する。このとき、磁気検出素子5を通過する磁束が可動体6の位置に比例して変化するため、磁気検出素子5が検出された磁束に基づいて測定対象物13の位置を検出することができる。
例えば、図4は最大ストローク位置における磁束ループを示している。また、例えば図3に示すように、磁束ループの分岐点(原点ギャップg2)が磁気検出素子5の位置と一致した場合、磁気検出素子5を通過する磁束は図の上下方向のみとなり、一軸の感度を持つ磁気検出素子5で検出される磁束はゼロとなる。
ここで、磁気検出素子5による誤差(絶対値)は、磁気検出素子5の出力に比例して増加するため、最も測定したい部分に磁気検出素子5の原点(ゼロ点)が来るように調整することによって、測定精度の低下を抑制することができる。例えば、磁気検出素子5の原点が測定対象位置から5mmずれている場合、5mmの位置の測定を行っても、磁気検出素子5の原点からは10mmの位置に相当するため、誤差の絶対量が2倍となる。
上記のような磁気式位置センサによれば、原点ギャップg2の位置によって磁束ループの分岐点の位置を調整することが可能であり、適用場所に応じて原点位置を調整することができ、測定精度の低下を抑制することができる。
また、実施の形態1では、図4に示すように、可動体6が位置検出可能な最大ストローク位置に移動した場合でも、磁石10が第1及び第2の固定コア2,3に重なっている。即ち、磁石10の端部が第1の固定コア2に重なっている。このため、最大ストローク位置においても、検出ギャップg1を通過する磁束を磁気検出素子5の感磁方向に平行に保つことができる。これにより、最大ストローク位置付近でのセンサ出力のリニアリティを向上させることができる。
これに対して、図5に示すように、最大ストローク位置で磁石10の端部が第1の固定コア2に重ならない場合、検出ギャップg1を通過する磁束が磁気検出素子5の感磁方向に対して斜めになる。これにより、最大ストローク位置付近でのセンサ出力のリニアリティが低下する。
さらに、実施の形態1では、図4に示すように、可動体6が位置検出可能な最大ストローク位置に移動した場合でも、第1及び第2の可動コア8,9が第1及び第2の固定コア2,3の範囲内に位置している。即ち、第2の可動コア9が第2の固定コア3の端面から外側へ突出しない。このため、最大ストローク位置においても、漏れ磁束の発生を防止することができ、測定精度の低下を防止できる。
これに対して、図6に示すように、最大ストローク位置で第2の可動コア9が第2の固定コア3の端面から外側へ突出する場合、磁路の一部に磁束飽和が生じ、漏れ磁束が発生してしまう。
図7は図1の磁気式位置センサをエレベータの秤装置に適用した例を示す構成図、図8は図7のVIII部を拡大して示す構成図である。図において、乗客を収容するかご15は、主索16により昇降路内に吊り下げられ、巻上機(図示せず)の駆動力により昇降される。かご15は、かご枠17と、かご枠17に支持されたかご室18とを有している。
かご室18の床部とかご枠17の下梁との間には、かご室18内の積載重量に応じて伸縮されるばね(弾性体)19と、かご室18の床部の変位を検出する秤装置としての磁気式位置センサ20とが設けられている。磁気式位置センサ20の基本原理は図1と同様であり、測定対象物13がかご室18に相当する。磁気式位置センサ20からは、かご室18の床部の位置に応じた信号、即ち積載重量に応じた信号が得られる。従って、磁気式位置センサ20を秤装置として用いることができる。
なお、秤装置は、例えばロープシャックルや綱止め部など、エレベータの他の場所に設けることもできる。
次に、図9は図1の磁気式位置センサを自動車の排気ガス再循環弁の開度測定器に適用した例を示す構成図である。図において、エンジン21には、エアクリーナ22及びスロットルバルブ23を介して空気が供給される。エンジン21からの排気ガスは、触媒24を通して外部に排出される。また、排気ガスの一部は、排気ガス再循環弁25を介してエンジン21に再供給される。
排気ガス再循環弁25は、アクチュエータ26により開閉される。アクチュエータ26には、排気ガス再循環弁25の開度を測定するための開度測定器として磁気式位置センサ27が設けられている。磁気式位置センサ27の基本原理は図1と同様であり、測定対象物13が排気ガス再循環弁25又はアクチュエータ26の駆動軸に相当する。磁気式位置センサ27からは、排気ガス再循環弁25の開度に応じた信号が得られる。従って、磁気式位置センサ27を開度測定器として用いることができる。
このように、この発明の磁気式位置センサは、あらゆる用途に適用することができ、適用場所に応じて原点位置を調整することができ、測定精度の低下を抑制することができる。
実施の形態2.
次に、図10はこの発明の実施の形態2による磁気式位置センサの要部を示す構成図である。この例では、第1の可動コア8の長さ寸法が第2の可動コア9の長さ寸法よりも短くなっている。これにより、原点の両側でストロークが非対称となっている。他の構成は、実施の形態1と同様である。
このように、ストロークを非対称としてもよく、適用場所に応じて原点位置を調整することができ、測定精度の低下を抑制することができる。
実施の形態3.
次に、図11はこの発明の実施の形態3による磁気式位置センサの要部を示す構成図である。この例では、固定コア2,3と可動コア8,9及び磁石10との間に、変動抑制ギャップg3が設けられている。即ち、可動体6(図1)は、間隔をおいて固定コア2,3に対向している。従って、可動体6の変位を案内するガイド部材(図示せず)が用いられている。他の構成は、実施の形態1と同様である。
このような磁気式位置センサでは、変動抑制ギャップg3により、固定コア2,3に接離する方向(図の上下方向)への可動コア8,9及び磁石10の変位によるギャップ変動に対する耐性が高くなる。
例えば、初期状態として可動コア8,9及び磁石10を固定コア2,3に接触させた場合、両者の間に0.1mmでもギャップが生じると、強磁性体と比較して空気の磁気抵抗は3桁以上も高いため、全体としての磁気抵抗の変動は何倍も大きくなる。これに対して、予め変動抑制ギャップg3が存在する場合、変動抑制ギャップg3が例えば1.0mmから0.1mm変動しても、全体としての磁気抵抗の変化率は10%程度に抑えられる。
ここで、磁気検出素子5は、検出ギャップg1を通過する磁束に応じて信号を発生するものであるが、上記の磁気抵抗変化の影響も少なくはない。従って、変動抑制ギャップg3を予め設けておくことにより、固定コア2,3に接離する方向への可動コア8,9及び磁石10の変位に対して安定した出力を得ることができる。
また、変動抑制ギャップg3の大きさを調整することにより、磁気検出素子5の感度に適した磁束密度に調整することができる。
実施の形態4.
次に、図12はこの発明の実施の形態4による磁気式位置センサの要部を示す構成図である。この例では、磁石10の可動コア8,9側の磁極面と可動コア8,9との間に変動抑制ギャップg4が設けられている。他の構成は、実施の形態1と同様である。
このような磁気式位置センサであっても、磁束ループの一部に予め磁気的なギャップが設けられているため、実施の形態3と同様に、固定コア2,3に接離する方向への可動コア8,9及び磁石10の変位に対して安定した出力を得ることができる。
実施の形態5.
次に、図13はこの発明の実施の形態5による磁気式位置センサの要部を示す構成図である。この例では、磁石10の移動方向の両端面と可動コア8,9との間に、磁石端ギャップg5が設けられている。他の構成は、実施の形態1と同様である。
ここで、図14は図13の磁石端ギャップg5を設けない場合の最大ストローク位置における磁束ループを示す説明図、図15は図13の磁石端ギャップg5を設けた場合の最大ストローク位置における磁束ループを示す説明図である。
磁石端ギャップg5を設けない場合、最大ストローク位置において、検出ギャップg1を通過する磁束が磁気検出素子5の感磁方向に対して斜めになる。これにより、最大ストローク位置付近でのセンサ出力のリニアリティが低下する。これに対して、磁石端ギャップg5を設けた場合、最大ストローク位置においても、検出ギャップg1を通過する磁束を磁気検出素子5の感磁方向に平行に保つことができる。これにより、最大ストローク位置付近でのセンサ出力のリニアリティを向上させることができる。
図16は図13の第1及び第2の可動コア8,9及び磁石10の保持部品7への組付構成例を示す分解斜視図である。保持部品7には、磁石10が挿入される磁石挿入孔7aと、可動コア8,9の端部が挿入されるコア挿入孔7b,7cとが設けられている。磁石端ギャップg5を設けたことにより、磁石10の両端部は磁束密度の大きさに殆ど影響を与えないため、磁石端ギャップg5に保持部品7を挿入することにより、可動コア8,9及び磁石10を容易に一体化できる。
実施の形態6.
次に、図17はこの発明の実施の形態6による磁気式位置センサの要部を示す構成図である。この例では、可動コア8,9及び磁石10の移動方向への原点ギャップg2の寸法が、同方向への検出ギャップg1の寸法よりも大きくなっている(g2>g1)。他の構成は、実施の形態1と同様である。
このような磁気式位置センサでは、原点ギャップg2が検出ギャップg1よりも広いため、原点ギャップg2の磁気抵抗が高くなり、磁束ループの分岐を明確にすることができ、原点の設定を容易にすることができる。
実施の形態7.
次に、図18はこの発明の実施の形態7による磁気式位置センサの要部を示す構成図である。この例では、磁石10の固定コア2,3側の磁極面と固定コア2,3との間に変動抑制ギャップg3が設けられている。
また、磁石10の固定コア2,3側の磁極面が、固定コア対向面8b,9bよりも固定コア2,3側へ突出している。逆に言うと、固定コア対向面8b,9bと固定コア2,3との間の間隔は、磁石10と固定コア2,3との間の間隔よりも大きくなっている。他の構成は、実施の形態1と同様である。
このような磁気式位置センサでは、可動コア8,9及び磁石10が固定コア2,3に対して傾いた場合の誤差を低減することができる。例えば図19に示すように、可動コア8,9及び磁石10が傾斜した場合、変動抑制ギャップg3のギャップ変動は、固定コア対向面8b,9b付近で大きくなる。これに対して、固定コア対向面8b,9bと固定コア2,3との間の距離を大きくすることにより、ギャップ変動に対する耐性を高めることができる。
実施の形態8.
次に、図20はこの発明の実施の形態8による磁気式位置センサの要部を示す構成図である。この例では、可動コア8,9及び磁石10と固定コア2,3との間に変動抑制ギャップg3が設けられている。
また、磁気検出素子5の端部が固定コア2,3から磁石10側及びその反対側へ突出している。逆に言うと、固定コア2,3の厚さ寸法が同方向への磁気検出素子5の寸法よりも小さくされている。他の構成は実施の形態1と同様である。
固定コア2,3の厚さは、磁気検出素子5に平行な磁束を供給できるように設定される。また、変動抑制ギャップg3を設けた場合、磁気検出素子5の一部を固定コア2,3から突出させても磁石10に干渉しない。このため、固定コア2,3の厚さ寸法を同方向への磁気検出素子5の寸法より小さくしても、感磁部5aには平行な磁束を供給することができ、磁気式位置センサの小型軽量化及び低コスト化(材料費)を図ることができる。
実施の形態9.
次に、図21はこの発明の実施の形態9による磁気式位置センサの断面図、図22は図21のXXII−XXII線に沿う断面図、図23は図21の固定コアを示す斜視図、図24は図21の可動コアを示す斜視図である。
図において、円筒状の筐体31内には、例えば鉄等の強磁性体からなる円筒状の第1及び第2の固定コア(検出側コア)32,33が固定されている。固定コア32,33は、リング状の検出ギャップg1を挟んで同軸線上に配置されている。検出ギャップg1の周方向の1箇所には、磁気検出素子5が配置されている。
固定コア32,33内には、固定コア32,33に沿って固定コア32,33の軸方向(図の左右方向)へスライド変位可能な可動体(磁石ユニット)36が設けられている。可動体36は、例えば鉄等の強磁性体からなる円筒状の第1及び第2の可動コア(磁石側コア)38,39、及び円筒状の磁石(永久磁石)40を有している。
可動コア38,39の軸方向一端部には、図24に示すようにフランジ部38a,39aが設けられている。フランジ部38a,39aの径は、可動コア38,39のフランジ部38a,39aを除く部分の径よりも大きい。可動コア38,39は、フランジ部38a,39aとは反対側の端面がリング状の原点ギャップg2を挟んで互いに対向するように、同軸線上に互いに逆向きに配置されている。
磁石40は、可動コア38,39のフランジ部38a,39aを除く部分と原点ギャップg2とを囲繞している。磁石40は、二極着磁されており、その着磁方向は半径方向(肉厚方向)である。
可動体36には、非磁性材製のシャフト41が貫通されている。シャフト41には、可動コア38,39が固定されている。シャフト41には、測定対象物13が当接されている。筐体31と可動体36との間には、可動体36及びシャフト41を測定対象物13側へ付勢するばね44が設けられている。
このような磁気式位置センサの固定コア32,33、可動コア38,39及び磁石40の構成は、実施の形態1の固定コア2,3、可動コア8,9及び磁石10を回転させて円筒形にしたものである。従って、位置検出の基本原理は実施の形態1と同様であり、適用場所に応じて原点位置を調整することができ、測定精度の低下を抑制することができる。
また、固定コア32,33、可動コア38,39及び磁石40をそれぞれ円筒形としたことにより、ギャップ変動による誤差に対して差動構造となるため、測定精度を向上させることができる。
さらに、可動コア8,9及び磁石40が固定コア32,33のどの方向へ偏ったとしても、固定コア32,33に比べて空気の磁気抵抗が非常に大きいため、検出ギャップg1を渡る磁束密度はほぼ均一化される。従って、検出ギャップg1の周方向の1箇所のみに磁気検出素子5を配置しても、十分な測定精度を得ることができる。
なお、実施の形態9では、固定コア32,33、可動コア38,39及び磁石40をそれぞれ円筒形としたが、断面に3つ以上の角部を有する多角形筒形としてもよい。
また、実施の形態2に示したように、原点の両側でストロークが非対称となっていてもよい。
さらに、実施の形態3に示したように、固定コア32,33と可動コア38,39及び磁石40との間に変動抑制ギャップを設けてもよい。
さらにまた、実施の形態4に示したように、磁石40の可動コア38,39側の磁極面と可動コア38,39との間に変動抑制ギャップを設けてもよい。
また、実施の形態5に示したように、磁石40の移動方向の両端面と可動コア38,39との間に磁石端ギャップを設けてもよい。
さらに、実施の形態6に示したように、可動コア38,39及び磁石40の移動方向への原点ギャップの寸法を、同方向への検出ギャップの寸法よりも大きくしてもよい。
さらにまた、実施の形態7に示したように、可動コア38,39の固定コア32,33に対向する面と固定コア32,33との間の間隔を、磁石40と固定コア32,33との間の間隔よりも大きくしてもよい。
また、実施の形態8に示すように、磁気検出素子5の端部を固定コア32,33から磁石40側及びその反対側へ突出させてもよい。
実施の形態10.
次に、図25はこの発明の実施の形態10による磁気式位置センサの第1及び第2の固定コア32,33と磁気検出素子5との関係を示す説明図である。この例では、固定コア32,33の周方向に互いに等間隔をおいて4個の磁気検出素子5が配置されている。他の構成は、実施の形態9と同様である。
このような磁気式位置センサでは、4個の磁気検出素子5からの出力を平均化することにより、検出ギャップg1間を渡る磁束密度の位置による僅かな誤差を補正することができ、測定精度をさらに向上させることができる。
実施の形態11.
次に、図26はこの発明の実施の形態11による磁気式位置センサの可動コア38,39を示す斜視図である。この例では、可動コア38,39に中空部を設けず、可動コア38,39を円柱状としたものである。他の構成は、実施の形態9と同様である。
このように、可動コア38,39の貫通孔を省略することにより、可動コア38,39の構造が単純化され、製作コストを低減することができる。
実施の形態12.
次に、図27はこの発明の実施の形態12による磁気式位置センサの要部を示す構成図、図28は図27のXXVIII−XXVIII線に沿う断面図である。図において、固定コア32,33の互いに対向する端面の周方向の一部には、磁気検出素子5へ向けて突出した突起部32a,33aが設けられている。他の構成は、実施の形態9と同様である。
このような磁気式位置センサでは、突起部32a,33a間の磁気抵抗を低減することができ、磁力の弱い磁石40(図21)を用いた場合でも、十分な測定精度を得ることができる。
実施の形態13.
次に、図29はこの発明の実施の形態13による磁気式位置センサの要部を示す構成図、図30は図29のXXX−XXX線に沿う断面図、図31は図29のXXXI−XXXI線に沿う断面図である。
図において、固定コア32,33の互いに対向する端部には、径方向外側へ突出した突起部32b,33bが設けられている。突起部32b,33bは、固定コア32,33の周方向の磁気検出素子5と同じ位置に設けられている。即ち、磁気検出素子5の一部は、突起部32b,33b間に配置されている。他の構成は、実施の形態9と同様である。
このような磁気式位置センサでは、固定コア32,33の外周部に突起部32b,33bを設け、突起部32b,33b間に磁気検出素子5を配置したので、磁気検出素子5への磁束の供給を確保しつつ、固定コア32,33の突起部32b,33bを除く部分の肉厚を薄くすることができる。これにより、センサ全体の小型軽量化を図ることができる。
実施の形態14.
次に、図32はこの発明の実施の形態14による磁気式位置センサの要部断面図である。この例では、実施の形態13の突起部32b,33bの代わりに、固定コア32,33とは別体の突起部45,46が固定コア32,33の外周部に取り付けられている。突起部45,46は、例えば接着剤47により固定コア32,33に接着されている。
このように、固定コア32,33と突起部45,46との間のギャップが検出ギャップg1に比べて十分に小さければ、突起部45,46を固定コア32,33とは別体で構成することが可能であり、固定コア32,33の構造を複雑にすることなく、固定コア32,33の肉厚を薄くすることができる。
実施の形態15.
次に、図33はこの発明の実施の形態15による磁気式位置センサの要部を示す分解斜視図、図34は図33の磁気式位置センサの要部断面図である。図において、筐体31の軸方向の中間部には、開口部(窓部)31aが設けられている。突起部45,46は、開口部31aに挿入され、固定コア32,33の外周部に接着されている。磁気検出素子5は、開口部31aを通して検出ギャップg1に配置されている。
このような磁気式位置センサでは、筐体31に開口部31aを設けたので、固定コア32,33を筐体31に挿入した後に突起部45,46及び磁気検出素子5の装着が可能であり、筐体31及び固定コア32,33の形状を単純化でき、かつ突起部45,46及び磁気検出素子5と固定コア32,33との位置合わせが容易である。
なお、磁気検出素子5は、突起部45,46を開口部31aに挿入する前に予め突起部45,46間に固定しておいてもよい。この場合、突起部45,46と磁気検出素子5との間には、接着剤や非磁性スペーサ等が介在してもよい。
実施の形態16.
次に、図35はこの発明の実施の形態16による磁気式位置センサの要部断面図である。この例では、固定コア32,33間の間隔よりも突起部45,46間の間隔(検出ギャップg1)が小さくなっている。他の構成は、実施の形態15と同様である。
このように構成することにより、実施の形態12と同様に、突起部45,46間の磁気抵抗を低減することができ、磁力の弱い磁石40(図21)を用いた場合でも、十分な測定精度を得ることができる。
実施の形態17.
次に、図36はこの発明の実施の形態17による磁気式位置センサの要部断面図である。この例では、突起部45,46が、固定コア32,33の外周部ではなく、軸方向の端面に接着されている。このような構成によっても、実施の形態15と同様の効果を得ることができる。
実施の形態18.
次に、図37はこの発明の実施の形態18による磁気式位置センサの要部を示す構成図、図38は図37のXXXVIII−XXXVIII線に沿う断面図である。図において、固定コア32,33の互いに対向する端部には、径方向外側へ突出した突起部32c,33cが設けられている。突起部32c,33cは、固定コア32,33の全周に渡って設けられている。他の構成は、実施の形態13と同様である。
このような磁気式位置センサでは、固定コア32,33の外周部に突起部32c,33cを設け、突起部32c,33c間に磁気検出素子5を配置したので、磁気検出素子5への磁束の供給を確保しつつ、固定コア32,33の突起部32b,33bを除く部分の肉厚を薄くすることができる。これにより、センサ全体の小型軽量化を図ることができる。また、突起部32b,33bを固定コア32,33の全周に渡って設けたので、固定コア32,33の形状を単純化することができる。
実施の形態19.
次に、図39はこの発明の実施の形態19による磁気式位置センサの要部を示す構成図、図40は図39のXXXX−XXXX線に沿う断面図、図41は図39の固定コア32,33を示す斜視図である。
この例では、固定コア32,33の端部に突起部32c,33cを設ける代わりに、固定コア32,33の外径が固定コア32,33の軸方向に沿って連続的に変化されている。即ち、固定コア32,33の互いに対向する端部の外径は、反対側の端部の外径よりも大きくなっている。但し、固定コア32,33の内径は、軸方向に沿って一定である。この構成は、実施の形態9と同様である。
このような磁気式位置センサでは、固定コア32,33の磁気検出素子5側の端部の外径を反対側の端部の外径よりも大きくしたので、磁気検出素子5への磁束の供給を確保しつつ、固定コア32,33の肉厚を磁気検出素子5とは反対側の端部へ向けて徐々に薄くすることができる。これにより、センサ全体の小型軽量化を図ることができる。
実施の形態20.
次に、図42はこの発明の実施の形態20による磁気式位置センサの要部断面図である。図において、磁石40は、周方向に複数に分割されている。即ち、磁石40は、断面半円状の第1及び第2の磁石片40a,40bに分割されている。磁石片40a,40b間には、磁石片ギャップg6,g7が設けられている。可動コア38,39及び磁石40と固定コア32,33との間には、実施の形態3で説明したような変動抑制ギャップg3が設けられている。
固定コア32,33の断面は、楕円形状である。また、変動抑制ギャップg3の大きさは、センサの周方向について、磁石片ギャップg6,g7の付近で最も小さくされ(d1)、磁石片ギャップg6,g7から最も離れた位置で最も大きくされている(d2)。他の構成は、実施の形態9と同様である。
このように、円筒形の磁石40を磁石片40a,40bに分割することにより、磁石40の製作を容易にすることができる。また、磁石片40a,40b間に磁石片ギャップg6,g7を設けることにより、磁石片40a,40bの製作精度を低くすることができるとともに、可動コア38,39への磁石片40a,40bの組み付けを容易にすることができる。
但し、磁石片ギャップg6,g7を設けた場合、磁石片ギャップg6,g7の部分で磁束密度が低下するため、センサを円筒形にしたことによる差動構造の効果が低下する。これに対して、変動抑制ギャップg3の大きさを磁石片ギャップg6,g7の位置で他の位置よりも小さくすることにより、磁束ループの強度をセンサの周方向で均等化し、差動構造による効果の低減を抑制することができる。
実施の形態21.
次に、図43はこの発明の実施の形態21による磁気式位置センサの要部断面図である。この例では、固定コア32,33の断面は円形である。また、磁石片40a,40bの断面の厚さ寸法は、磁石片ギャップg6,g7に隣接する両端部で最も大きく、中間部で最も小さくなっている。他の構成は、実施の形態20と同様である。
このような磁気式位置センサでは、磁束密度は磁石40の肉厚に比例するので、磁石片ギャップg6,g7付近の磁石片40a,40bの肉厚を他の部分の肉厚よりも厚くすることにより、磁石片ギャップg6,g7付近の磁束密度を高め、磁束ループの強度をセンサの周方向で均等化することができる。
実施の形態22.
次に、図44はこの発明の実施の形態22による磁気式位置センサの要部断面図、図45は図44の可動コア38,39を示す正面図である。図において、可動コア38,39のフランジ部38a,39aの断面は、楕円形状である。即ち、フランジ部38a,39aの外周面と固定コア32,33の内周面との間の距離は、センサの周方向について、磁石片ギャップg6,g7の付近で最も小さくされ、磁石片ギャップg6,g7から最も離れた位置で最も大きくされている。他の構成は、実施の形態20と同様である。
このように、磁石片ギャップg6,g7の位置における磁束密度を高めるようにフランジ部38a,39aの外周形状を変形させた場合にも、磁束ループの強度をセンサの周方向で均等化することができる。
実施の形態23.
次に、図46はこの発明の実施の形態23による磁気式位置センサの要部断面図である。図において、磁石40は、断面円弧状の第1ないし第3の磁石片40c〜40eに分割されている。磁石片40c〜40e間には、磁石片ギャップg8〜g10が設けられている。可動コア38,39及び磁石40と固定コア32,33との間には、実施の形態3で説明したような変動抑制ギャップg3が設けられている。
固定コア32,33の断面は、三角形である。また、変動抑制ギャップg3の大きさは、センサの周方向について、磁石片ギャップg8〜g10の付近で最も小さくされ、磁石片ギャップg8〜g10から最も離れた位置で最も大きくされている。他の構成は、実施の形態9と同様である。
このように、固定コア32,33の断面形状を磁石片ギャップg8〜g10の数に対応した多角形とすることによっても、変動抑制ギャップg3の大きさを磁石片ギャップg6,g7の位置で他の位置よりも小さくすることができ、磁束ループの強度をセンサの周方向で均等化し、差動構造による効果の低減を抑制することができる。
なお、この発明の磁気式位置センサの用途は、エレベータの秤装置及び弁の開度測定器に限定されるものではない。
また、上記の例では、第1及び第2の検出側コアを固定し、磁石ユニットを移動可能としたが、逆であってもよい。
さらに、第1及び第2の検出側コア、第1及び第2の磁石側コア、及び磁石を筒状にする場合、磁石ユニットの内側に第1及び第2の検出側コアを配置することもできる。

Claims (16)

  1. 検出ギャップを挟んで互いに並設された第1及び第2の検出側コア、
    原点ギャップを挟んで互いに並設された第1及び第2の磁石側コアと、上記原点ギャップを境とする2つの磁束ループを上記第1及び第2の検出側コアと上記第1及び第2の磁石側コアとの間に発生させる磁石とを有し、測定対象物の変位に伴って上記第1及び第2の検出側コアに対して相対的に変位される磁石ユニット、及び
    上記検出ギャップに配置され、上記検出ギャップを通過する磁束を検出する磁気検出素子
    を備えている磁気式位置センサ。
  2. 上記磁石ユニットが位置検出可能な最大ストローク位置に移動した場合でも、上記磁石の上記磁気検出素子側の端部が上記第1及び第2の検出側コアに重なっている請求項1記載の磁気式位置センサ。
  3. 上記磁石ユニットが位置検出可能な最大ストローク位置に移動した場合でも、上記第1及び第2の磁石側コアが上記第1及び第2の検出側コアの範囲内に位置している請求項1記載の磁気式位置センサ。
  4. 上記第1及び第2の磁石側コア及び上記磁石と上記第1及び第2の検出側コアとの間には、上記第1及び第2の検出側コアに接離する方向への上記磁石ユニットの変位による磁束密度の変動を抑制する変動抑制ギャップが設けられている請求項1記載の磁気式位置センサ。
  5. 上記磁気検出素子の端部は、上記第1及び第2の検出側コアから上記磁石側へ突出している請求項4記載の磁気式位置センサ。
  6. 上記磁石の上記第1及び第2の磁石側コア側の磁極面と上記第1及び第2の磁石側コアとの間には、上記第1及び第2の検出側コアに接離する方向への上記磁石ユニットの変位による磁束密度の変動を抑制する変動抑制ギャップが設けられている請求項1記載の磁気式位置センサ。
  7. 上記磁石ユニットの移動方向の上記磁石の端面と上記第1及び第2の磁石側コアとの間には、磁石端ギャップが設けられている請求項1記載の磁気式位置センサ。
  8. 上記磁石ユニットの移動方向への上記原点ギャップの寸法が、同方向への上記検出ギャップの寸法よりも大きくなっている請求項1記載の磁気式位置センサ。
  9. 上記第1及び第2の検出側コア、上記第1及び第2の磁石側コア、及び上記磁石は、筒状であり、
    上記第1及び第2の検出側コアの内側に上記磁石ユニットが配置されている請求項1記載の磁気式位置センサ。
  10. 上記第1及び第2の検出側コアの互いに対向する端面の周方向の一部には、上記磁気検出素子へ向けて突出した突起部がそれぞれ設けられている請求項9記載の磁気式位置センサ。
  11. 上記第1及び第2の検出側コアの互いに対向する端部には、径方向外側へ突出した突起部がそれぞれ設けられており、
    上記磁気検出素子は、上記突起部間に配置されている請求項9記載の磁気式位置センサ。
  12. 上記突起部は、上記第1及び第2の検出側コアとは別体で構成され上記第1及び第2の検出側コアに取り付けられている請求項11記載の磁気式位置センサ。
  13. 上記第1及び第2の磁石側コア及び上記磁石と上記第1及び第2の検出側コアとの間には、上記第1及び第2の検出側コアに接離する方向への上記磁石ユニットの変位による磁束密度の変動を抑制する変動抑制ギャップが設けられており、
    上記磁石は、周方向に複数の磁石片に分割されており、
    上記磁石片間には、少なくとも1つの磁石片ギャップが設けられており、
    上記第1及び第2の検出側コアの断面形状は、上記変動抑制ギャップの大きさが上記磁石片ギャップの位置で他の位置よりも小さくなるように変形されている請求項9記載の磁気式位置センサ。
  14. 上記第1及び第2の検出側コアの断面形状が多角形である請求項13記載の磁気式位置センサ。
  15. 上記磁石は、周方向に複数の磁石片に分割されており、
    上記磁石片間には、少なくとも1つの磁石片ギャップが設けられており、
    上記磁石片の肉厚は、上記磁石片ギャップ付近で他の部分よりも厚くなっている請求項9記載の磁気式位置センサ。
  16. 上記第1及び第2の磁石側コア及び上記磁石と上記第1及び第2の検出側コアとの間には、上記第1及び第2の検出側コアに接離する方向への上記磁石ユニットの変位による磁束密度の変動を抑制する変動抑制ギャップが設けられており、
    上記第1及び第2の磁石側コアは、上記第1及び第2の検出側コアの内周面に対向するフランジ部をそれぞれ有し、
    上記磁石は、周方向に複数の磁石片に分割されており、
    上記磁石片間には、少なくとも1つの磁石片ギャップが設けられており、
    上記フランジ部の外周形状は、上記第1及び第2の検出側コアの内周面との間の距離が上記磁石片ギャップ付近で小さくなるように変形されている請求項9記載の磁気式位置センサ。
JP2007526090A 2006-12-28 2006-12-28 磁気式位置センサ Expired - Fee Related JP4824023B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/326217 WO2008081533A1 (ja) 2006-12-28 2006-12-28 磁気式位置センサ

Publications (2)

Publication Number Publication Date
JPWO2008081533A1 JPWO2008081533A1 (ja) 2010-04-30
JP4824023B2 true JP4824023B2 (ja) 2011-11-24

Family

ID=39588224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526090A Expired - Fee Related JP4824023B2 (ja) 2006-12-28 2006-12-28 磁気式位置センサ

Country Status (6)

Country Link
US (1) US20100219814A1 (ja)
EP (1) EP2105712B1 (ja)
JP (1) JP4824023B2 (ja)
KR (1) KR100943797B1 (ja)
CN (1) CN101317072B (ja)
WO (1) WO2008081533A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084221B (zh) * 2008-07-29 2013-12-04 三菱电机株式会社 磁式位置传感器
FR2937722B1 (fr) * 2008-10-24 2010-11-26 Moving Magnet Tech Mmt Capteur de position magnetique a mesure de direction de champ et a collecteur de flux
FR2959011B1 (fr) * 2010-04-14 2012-08-10 Moving Magnet Tech Mmt Capteur de position perfectionne, utilisant un element ferromagnetique mobile
FR2970350B1 (fr) * 2011-01-07 2013-11-01 Bosch Rexroth Dsi Sas Dispositif de regulation de pression avec detection de la position neutre
US20130043111A1 (en) * 2011-08-15 2013-02-21 Honeywell International Inc. Circuit breaker position sensing and health monitoring system
CN103630064A (zh) * 2012-08-22 2014-03-12 大银微系统股份有限公司 封闭式位置量测器的可动原点构造
US8749005B1 (en) * 2012-12-21 2014-06-10 Allegro Microsystems, Llc Magnetic field sensor and method of fabricating a magnetic field sensor having a plurality of vertical hall elements arranged in at least a portion of a polygonal shape
WO2015079625A1 (ja) * 2013-11-26 2015-06-04 パナソニックIpマネジメント株式会社 移動量検出器および移動量検出器を用いたブレーキペダルシステム
DE102014213869A1 (de) * 2014-07-16 2016-01-21 Continental Automotive Gmbh Sensorvorrichtung zum Bestimmen einer Verschiebung einer Welle
CN104655002B (zh) * 2015-02-13 2017-07-07 中国科学院武汉岩土力学研究所 一种岩石试件变形测量装置及径向轴向变形测试方法
US10564004B2 (en) * 2015-12-10 2020-02-18 Bourns, Inc. Long range magnetic proximity sensor
US11136083B2 (en) * 2016-09-20 2021-10-05 Shimano Inc. Bicycle telescopic apparatus
JP6782971B2 (ja) * 2016-12-16 2020-11-11 株式会社カワノラボ 磁場生成装置、測定セル、分析装置、及び粒子分離装置
CN108592778B (zh) * 2018-05-07 2020-09-01 重庆交通大学 一种基于电容变化的锚碇结构位移监测装置
CN108534687B (zh) * 2018-05-07 2019-12-27 重庆交通大学 一种基于光斑位移变化的锚碇结构位移监测装置
CN108534652B (zh) * 2018-05-07 2020-09-01 重庆交通大学 一种基于电感量变化的锚碇结构位移监测装置及方法
KR102531031B1 (ko) 2021-01-11 2023-05-10 충남대학교 산학협력단 자기변형원리를 이용한 초음파 방식의 위치 측정 장치 및 그의 측정 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197715A (ja) * 2000-01-13 2001-07-19 Mikuni Corp 弁駆動装置
JP2003139560A (ja) * 2001-10-30 2003-05-14 Mitsubishi Electric Corp 回転位置検出装置
JP2004177398A (ja) * 2002-09-30 2004-06-24 Japan Servo Co Ltd 磁気式リニアポジションセンサ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210493A (en) * 1992-02-27 1993-05-11 General Motors Corporation Method for embedding wires within a powder metal core and sensor assembly produced by such a method
FR2691534B1 (fr) * 1992-05-19 1994-08-26 Moving Magnet Tech Capteur de position à aimant permanent et sonde de hall.
DE4425904A1 (de) * 1994-07-21 1996-01-25 Vacuumschmelze Gmbh Magnetischer Wegsensor
JPH10239002A (ja) * 1997-02-24 1998-09-11 Zexel Corp 直線変位センサのコア構造およびその製造方法
FR2790549B1 (fr) * 1999-03-03 2001-04-13 Moving Magnet Tech Capteur de position a sonde magneto-sensible et aimant encastre dans le fer
KR100702919B1 (ko) * 1999-06-21 2007-04-03 후루카와 덴키 고교 가부시키가이샤 회전센서 및 그 측정회로
JP4038308B2 (ja) * 1999-09-09 2008-01-23 株式会社ミクニ 非接触式ポジションセンサ
US6703829B2 (en) * 2001-09-07 2004-03-09 Jeff Tola Magnetic position sensor
JP4545406B2 (ja) * 2003-09-03 2010-09-15 三菱電機株式会社 位置検出装置
CN1731097A (zh) * 2005-07-01 2006-02-08 孙钢 无牵连霍尔线性位移传感器
FR2894023B1 (fr) * 2005-11-29 2008-02-22 Electricfil Automotive Soc Par Capteur magnetique de position pour un mobile ayant une course lineaire limitee
US20080094057A1 (en) * 2006-10-23 2008-04-24 Ascension Technology Corporation Position measurement system employing total transmitted flux quantization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197715A (ja) * 2000-01-13 2001-07-19 Mikuni Corp 弁駆動装置
JP2003139560A (ja) * 2001-10-30 2003-05-14 Mitsubishi Electric Corp 回転位置検出装置
JP2004177398A (ja) * 2002-09-30 2004-06-24 Japan Servo Co Ltd 磁気式リニアポジションセンサ

Also Published As

Publication number Publication date
KR100943797B1 (ko) 2010-02-23
EP2105712B1 (en) 2016-04-27
KR20080083622A (ko) 2008-09-18
EP2105712A1 (en) 2009-09-30
WO2008081533A1 (ja) 2008-07-10
CN101317072B (zh) 2010-05-19
EP2105712A4 (en) 2013-05-15
CN101317072A (zh) 2008-12-03
US20100219814A1 (en) 2010-09-02
JPWO2008081533A1 (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP4824023B2 (ja) 磁気式位置センサ
US8453523B2 (en) Magnetic force sensor
JP5680287B2 (ja) 電流センサ
JP4621987B2 (ja) 磁気式エンコーダ装置およびアクチュエータ
WO2013080557A1 (ja) 電流センサ
JP2002206913A (ja) 非接触式回転位置センサ及び非接触式回転位置センサを有する絞弁組立体
JP2006153879A (ja) リニアポジションセンサ
WO2016098750A1 (ja) 電流センサおよび測定装置
WO2010026948A1 (ja) 角度センサ
US8547083B2 (en) Apparatus for determination of the axial position of the armature of a linear motor
JP6008756B2 (ja) 電流センサおよび三相交流用電流センサ装置
JP5374739B2 (ja) リニアセンサ
JP6893267B1 (ja) 磁気検出装置
JP2010185854A (ja) 位置検出センサ及び位置検出装置
JPH095016A (ja) 磁気センサ
JP5675009B2 (ja) 位置検出装置
JP2024074746A (ja) ストロークセンサとこれを備えたストロークセンサ組立体
JP2005189097A (ja) 位置検出装置
JP2002228405A (ja) 変位検出装置
JP2006038872A (ja) 非接触式回転位置センサを有する絞弁組立体
WO2018193738A1 (ja) 位置検出装置およびその製造方法
JP3891045B2 (ja) 回転角検出装置
JP6157850B2 (ja) スロットルバルブ装置
JP2005257276A (ja) 位置検出装置
JPH048728B2 (ja)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees