JP4820542B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP4820542B2
JP4820542B2 JP2004286576A JP2004286576A JP4820542B2 JP 4820542 B2 JP4820542 B2 JP 4820542B2 JP 2004286576 A JP2004286576 A JP 2004286576A JP 2004286576 A JP2004286576 A JP 2004286576A JP 4820542 B2 JP4820542 B2 JP 4820542B2
Authority
JP
Japan
Prior art keywords
power supply
supply wiring
wiring
cell
vias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004286576A
Other languages
English (en)
Other versions
JP2006100673A (ja
Inventor
英敏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004286576A priority Critical patent/JP4820542B2/ja
Priority to US11/229,503 priority patent/US7514795B2/en
Publication of JP2006100673A publication Critical patent/JP2006100673A/ja
Priority to US12/397,883 priority patent/US7932610B2/en
Application granted granted Critical
Publication of JP4820542B2 publication Critical patent/JP4820542B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体集積回路に関し、特に、電源配線でのIRドロップ量及び電流の最適化を目的とした電源配線構造に関するものである。
近年、チップに搭載される半導体デバイスの個数は、その微細化に伴い年々増加の一途をたどり、電源配線についても、その長距離化及び細線化が余儀なくされている。また、シグナルインテグリティ(Signal Integrity)を如何に保証するかという課題が顕在化して来ており、特に、電源配線におけるIRドロップやエレクトロマイグレーション(Electro Migration、以下、EMと記述する)への対策が重要な課題となっている。
以下、これら電源配線におけるIRドロップ及びEMに対する解決策としての従来技術を説明する。
いま、微細化による半導体デバイスのスケーリング係数をkとすると、半導体デバイスへの影響を従来の製造プロセスと同程度とするためには、電源配線の配線長、配線幅、配線間隔、配線膜厚の各々は同じスケーリング係数kで縮小することになる。その結果、電源配線の単位長さ当りの配線抵抗はスケーリング係数kの2乗倍に増加し、電源配線の高抵抗化によるIRドロップが半導体デバイスの動作信頼性を低下させる原因となっている。このようなIRドロップによる課題への対策案として、従来、例えば特許文献1に記載された技術がある。
図12は、前記特許文献1に開示された電源配線の配置方法に関する従来技術である。同図において、半導体チップ100には、内部回路に電源電圧を供給する垂直方向及び水平方向に延びる格子状の電源配線110及びグランド配線120が配置されている。前記格子状電源配線110には、外部からの電源電圧を供給する電源パッド130が接続され、同様に、格子状グランド配線120にもグランドパッド140が接続されている。
また、図12において、前記格子状電源配線110及びグランド配線120を各々補強するために、補強電源配線150及び補強グランド配線160が配置されている。前記補助電源配線150は、前記電源パッド130とは独立に配置された電源パッド170に接続されると共に、更に分岐しつつ前記格子状電源配線110に接続されている。同様に、補助グランド配線160は、前記グランドパッド140とは独立に配置されたグランドパッド180に接続されると共に、更に分岐しつつ前記格子状グランド配線120に接続される。
このように前記特許文献1の電源配線構造では、電源パッド130とは独立の電源パッド170に接続された補助電源配線150を格子状電源配線110に接続すると共に、グランドパッド140とは独立のグランドパッド180に接続された補助グランド配線160を格子状グランド配線120に接続することにより、IRドロップを回路動作に影響を及ぼさない範囲内に抑制することが可能である。
一方、半導体デバイスのスケーリングが係数kで縮小され、同様に電源配線の配線長、配線幅、配線間隔、配線膜厚もスケーリング係数kで縮小されたときには、電源配線の電流密度はk倍となる。このような電源配線における電流密度の増加は、EMによる断線発生率を上昇させる。EMは配線中の金属原子と配線を通過する電子との相互作用によって金属原子が拡散する現象であって、配線の陰極側でボイドを発生させて、オープン不良を引き起こすか、又は配線の陽極側でヒロックやウィスカを成長させて、ショート不良を引き起こす原因となる。このようなEMによる課題への対策案として、従来、例えば特許文献2に記載される技術がある。
図13は、前記特許文献2に開示された電源配線構造を示す。同図において、垂直方向の複数の配線トラックY0〜Y3は等間隔であるが、水平方向の複数の配線トラックX0〜X6は2種類の間隔を有している。すなわち、第1の間隔を有する配線トラックX1〜X3、X4〜X6、及び、前記第1の間隔よりも狭い第2の間隔を有する配線トラックX0〜X1、X3〜X4によって水平方向の線群が規定されている。この構造では、例えば、配線チャネル格子を構成する配線トラックX2に沿って形成される電源配線200と、配線トラックX5に沿って形成される電源配線210とを太い配線幅に形成することができる。このように、ある配線トラックのピッチを他の配線トラックのピッチよりも広く設定すれば、電源配線の配線幅の拡大が可能であり、その結果、その電源配線の配線断面積が増加して、EMによる配線歩留りの低下が有効に抑制できる。
また、前記EMによる課題に対する他の対策案として、例えば、特許文献3に記載される技術がある。図14は、前記特許文献3に開示された電源配線構造を示す。同図において、第1層配線320は、細線の信号配線であって、コンタクト310により半導体基板300と接続されると共に、ビア330により第3層配線340と接続されている。一方、第1層の電源配線350と第2層の電源配線360とはビアを介さずに直接に接している。前記第1層配線350は、コンタクト310により前記半導体基板300と接続され、前記第2層配線360は、ビア370により第3層配線340と接続されている。このような電源配線構造では、第2層の電源配線360の分、電源配線350の断面積が増加したに等しくなり、EM耐性の強化が可能である。
特開平11−45979号公報 特開平10−56162号公報 特開平8−46049号公報
しかしながら、前記IRドロップに対する解決策として、特許文献1の技術を用いた場合に、上層の格子状電源配線110から下層のセルに対して電源供給をするに際しては、その格子状電源配線110とその下層のセル内のセル電源配線とを、この両層間の絶縁層中に形成するビアによって直接に接続することになる。このとき、IRドロップ対策として補助電源配線150からも電源供給がある関係上、セル電源配線のビア接続箇所では、電流密度が増大するため、セル電源配線の配線幅を広く確保して、セル電源配線の最大許容電流密度基準を越えないように対処する必要がある。従って、セルの面積を縮小しようとして、セル電源配線の配線幅を縮小することは困難であり、セルの面積は大きくなる。
一方、セル電源配線の最大許容電流密度に対する解決策、すなわち、EM耐性改善策として、前記特許文献2の技術を用いた場合には、特許文献2記載の技術がゲートアレイセルへの適用を目的としているために、標準セル方式に適用する場合には、セル電源配線とセルグランド配線との間の距離が広がって、各セルの面積が増大し、結果的に半導体チップの面積増大を招く欠点がある。
更に、EM耐性改善策として、前記特許文献3の技術を用いた場合には、第1層の電源配線350と第2層の電源配線360とが直接に接して、配線膜厚が増加するために、この両電源配線350、360の側面と、それに近接する信号配線320とのフリンジ容量が無視できなくなり、近接する信号配線320とのクロストークが原因となって、信号配線320中の信号の伝搬遅延が増大したり、ノイズの原因となる欠点がある。
本発明は、前記の課題に着目してなされたものであり、その目的は、セルの面積の増大を招かず、且つ、近接する信号配線とのクロストーク等を有効に抑制しつつ、上層の電源配線から下層のセル電源配線に電源供給する際の電流集中を抑制して,EM断線に対する信頼性の向上を図ることにある。
前記の目的を達成するために、本発明では、上層の電源配線と下層のセル電源配線との間に補助電源配線を新たに配置し、この補助電源配線から下層のセル電源配線への電源供給を、複数のビアを介して行う構成とする。これにより、セル電源配線の配線幅を拡げる必要をなくして、セルの面積の拡大を防止すると共に、セル電源配線の膜厚も増加させる必要もなくして、近接する信号配線とのクロストークをも防止する。
具体的に、請求項1記載の発明の半導体集積回路は、セルを複数個備えた半導体集積回路であって、前記各セルに形成されたセル電源配線と、前記セル電源配線よりも上層に配置された補助電源配線とを備え、前記セル電源配線と前記補助電源配線とは、2つのビアにより接続されていて、前記補助電源配線から前記2つのビアを介して前記セル電源配線に電源供給され、前記補助電源配線の上層には、上層電源配線が配置され、前記上層電源配線と前記補助電源配線とは、1つ以上のビアにより接続されていて、前記上層電源配線から前記1つ以上のビアを介して前記補助電源配線に電源供給され、前記セル電源配線と前記補助電源配線とを接続する2つのビアは、前記補助電源配線と前記上層電源配線とを接続する1つのビアを中心として、相互に反対方向に所定間隔隔てて配置されていることを特徴とする。
請求項2記載の発明は、前記請求項1に記載の半導体集積回路において、前記補助電源配線は、その配線幅が、前記セル電源配線の配線幅よりも太いことを特徴とする。
請求項3記載の発明は、前記請求項1及び2の何れか1項に記載の半導体集積回路において、前記上層電源配線は、格子状に配置された格子状電源配線であることを特徴とする。
請求項4記載の発明は、前記請求項1〜3の何れか1項に記載の半導体集積回路において、前記セル電源配線と前記補助電源配線とを接続する2つのビア間には、複数個のセルが位置していることを特徴とする。
請求項5記載の発明は、前記請求項1〜4の何れか1項に記載の半導体集積回路において、前記セル電源配線と前記補助電源配線とを接続する2つのビア間には、前記各セルの内部に配置され且つ前記セル電源配線に接続されたセル内電源配線が複数本位置していることを特徴とする。
以上により、請求項1〜5記載の発明では、下層のセル電源配線とその上層の補助電源配線とが2つのビアにより接続されるので、補助電源配線から下層のセル電源配線に電源供給する場合に、補助電源配線からの電流は2つのビアで分岐されるので、セル電源配線の2つ以上のビア接続箇所での電流集中が緩和されて、この各箇所でのEMによる金属配線の断線が有効に防止される。
特に、請求項2記載の発明では、上層電源配線から補助電源配線への電源供給については、上層電源配線から1つのビアを介して補助電源配線に電源供給されて、補助電源配線のビア接続箇所での電流密度が大きくなる状況であるが、この補助電源配線の配線幅が太いので、補助電源配線の断面積が拡大して、その分、補助電源配線のビア接続箇所での電流密度が小さくなって、最大許容値未満に抑えることが容易である。しかも、補助電源配線の配線幅が太くても、この補助電源配線は、セルに形成されるセル電源配線の上層の配線層に配線されて、各セルの面積とは無関係であるので、各セルの面積を縮小でき、ひいてはチップ面積を縮小することが可能である。
また、請求項3記載の発明では、上層電源配線から補助電源配線に電源供給する場合に、その上層電源配線が格子状電源配線で構成されるので、セル電源配線に至るまでのIRドロップが十分に抑制されて、セルの内部回路の誤動作が有効に防止される。
更に、請求項1記載の発明では、上層電源配線から補助電源配線を介してセル電源配線に電源供給する際に、上層電源配線から電流は、1つのビアを介して補助電源配線に供給された後、一方向及びその反対方向に分岐して各々1つのビアを介して下層のセル電源配線に供給される。その結果、補助電源配線からの電流量がほぼ等分に分配されて下層のセル電源配線に供給されるので、セル電源配線の各ビア接続箇所での電流集中が効果的に緩和される。
加えて、請求項4、5記載の発明では、補助電源配線と下層のセル電源配線との間の2つのビアの間には、設定個数以上のセルや、セル電源配線に接続された設定本数以上のセル内電源配線が位置したり、又は、その2つのビア間のセル電源配線の電流密度が設定値以下となっているので、セル電源配線での単位断面積当りの電流密度が有効に緩和され、従って、下層のセル電源配線の配線幅を縮小することが可能である。
以上説明したように、請求項1〜5記載の発明の半導体集積回路によれば、上層の電源配線と下層のセル電源配線との中間層に補助電源配線を新たに配置し、この補助電源配線と下層のセル電源配線とを2つ以上のビアを介して接続する構成としたので、セル電源配線のビア接続箇所での電流密度を最大許容値未満に確実に下げることができて、EM断線に対する信頼性の向上を図ることができると共に、セル電源配線自体の配線幅や膜厚を増加する必要をなくして、セルの面積の縮小及び、セル電源配線に近接する信号配線との間のクロストーク等を有効に抑制できる効果を奏する。
特に、請求項3記載の発明の半導体集積回路によれば、上層の電源配線が格子状の電源構造であるので、セル電源配線へのIRドロップ量を有効に抑制できる。
また、請求項4、5記載の発明の半導体集積回路によれば、中間層の補助電源配線から下層のセル電源配線への電源供給に際して、セル電源配線のビア接続箇所間隔である電流分岐間隔を適切にしたので、下層のセル電源配線の単位断面積当りの電流密度を緩和できて、下層のセル電源配線の配線幅の縮小が可能である。
以下、本発明の実施形態の半導体集積回路を図面に基づいて説明する。
(第1の実施形態)
図1及び図2は、本発明の第1の実施形態の半導体集積回路の電源配線構造を示す。
図1は同半導体集積回路の電源配線構造の平面図である。同図では、水平方向に配置された複数本の上層の水平方向電源配線50と、これ等の電源配線50よりも下層で垂直方向に配置された複数の上層の垂直方向電源配線40とが交差して、全体として格子状に配置されている。これ等の水平方向電源配線50と垂直方向電源配線40とは、複数の交点において、各々、1つのビア45により接続されている。これ等の接続は1つのビア45だけでなく、2つ以上のビアを用いても良い。
尚、図1には図示しないが、前記格子状の上層の電源配線50、40の下方には、図7に拡大詳示するように、上層の2本の水平方向電源配線50、50間に、複数個の標準セル60が2列に水平方向に並んで配置される。
更に、図1において、前記上層の垂直方向電源配線40よりも下層には、前記上層の水平方向電源配線50と同一方向に延びる補助電源配線30が配置されている。前記補助電源配線30は、前記上層の垂直方向電源配線40と1つのビア35により接続されている。このビア35の個数は1個に限らず、2個以上でも良い。
そして 前記補助電源配線30よりも下層には、前記標準セル60に形成したセル電源配線20が前記補助電源配線30と同一方向に配置されている。このセル電源配線20は、2本の上層の水平方向電源配線50、50の間に位置する2列の標準セル60、60間で共用されるように、2本の上層の水平方向電源配線50、50の中間に位置する。前記補助電源配線30とセル電源配線20とは、2つのビア25、25により接続されている。尚、このビア25の個数は最小限2つであり、3つ以上でも良い。図1に示したように、前記補助電源配線30の配線幅WAは、前記セル電源配線20の配線幅WSよりも太く設定されている。
図2は、前記図1の電源配線構造におけるX−X'線断面図を示す。同図から判るように、半導体基板10上には、トランジスタ等の多数の半導体デバイス70(同図では1つのみ図示)が形成され、この半導体デバイス70は、同図では2つのコンタクト15を介して前記セル電源配線20と接続される。セル電源配線20は、2つのビア25を介して補助電源配線30に接続された後、この補助電源配線30から1つのビア35を介して上層の垂直方向電源配線40、更には1つのビア45を介して上層の水平方向電源配線50に接続されている。尚、コンタクト15、ビア25、35、45は、図2では図示していないが、絶縁層中に形成されている。
前記セル電源配線20と補助電源配線30とを接続する2つのビア25、25の離隔は、所定間隔Dに設定されている。更に、この所定間隔D内において、前記補助電源配線30と上層の電源配線40、50とを接続するビア35、45が位置している。即ち、前記上層のビア35、45の位置を中心とすると、セル電源配線20に接続される2つのビア25、25は、その一方が左方向に、その他方が右方向に各々等距離(D/2)づつ隔てて位置している。
図2から判るように、上層の電源配線50、40からセル電源配線20への電源供給については、上層の水平方向電源配線50からの電流は、1つのビア45を介して上層の垂直方向電源配線40へ流れた後、1つのビア35を介して補助電源配線30へ流れる。ここで、電流は、補助電源配線30のビア35の接続箇所にて2分岐して、左右方向に分かれ、2つのビア25を介してセル電源配線20へと流れる。そして、セル電源配線20の電流は、コンタクト15を介して標準セル60内の複数の半導体デバイス70を介してセル60内のグランド配線(図示せず)へと流れる。
ここで、補助電源配線30にまで流れた電流は、ビア35の接続箇所で2分岐して、2つのビア25、25を介してセル電源配線20に流れ込むので、セル電源配線20の各ビア25との接続箇所での電流密度は、ビア25が1個の場合に比して半減する。従って、セル電源配線20のビア25との接続箇所での電流密度を下げることが可能であり、最大許容値未満に確実に抑えることが容易である。よって、EM断線に対する信頼性の向上を図ることができる。しかも、セル電源配線20の膜厚を増大させないので、セル電源配線に近接する信号配線との間のクロストーク等を有効に抑制できる。更に、セル電源配線20の配線幅は通常の配線幅WSであるので、標準セル60の面積の拡大が防止できる。上層の垂直方向電源配線40と補助電源配線30とは1つのビア35で接続されるため、補助電源配線30のビア35との接続箇所では電流密度が増大する状況ではあるが、この補助電源配線30の配線幅WAがセル電源配線20の配線幅WSよりも太いので、補助電源配線30の断面積が増大して、ビア35との接続箇所での電流密度は下がり、最大許容値を越えることはない。また、補助電源配線30の配線幅WAを太くしても、標準セル60の上層の配線層であるので、標準セル60自体の面積には影響がない。
本実施の形態のように、セル電源配線20に接続する2つのビア25を配置した場合、電流の分岐を効率良く行うには、補助電源配線30が形成されている平面上において、2つのビア25、25間の中心座標にビア35を配置することが好ましい。しかし、配置配線時の配線効率を維持しようとすると、このビア35の中心配置が困難になると予想される場合もあるため、必ずしも2つのビア25の中心にビア35を配置する必要はない。
前記2つのビア25は、補助電源配線30から下層のセル電源配線20への電流路を分岐する目的で配置され、その2つのビア25、25の離隔は所定距離Dに設定されている。この所定距離Dは、セル電源配線20と各ビア25との接続箇所での電流密度を低減するためには、この両ビア25間に、セル電源配線20から半導体デバイス70を介してセルグランド配線へと電流が流れる経路(望ましくは複数の経路)の存在が必要である。
(断面構造の変形例)
図3は、セル電源配線20に接続するビア25の個数が3つの場合の電源配線の断面構造を示す。ビア25の個数が3つであるので、2つの場合に比して、セル電源配線20の各ビア25との接続箇所における単位断面積当りの電流密度を大きく低減できると共に、この電流密度の低減により、セル電源配線20の配線幅を有効に縮小することが可能である。
(平面構造の変形例)
前記実施形態では、補助電源配線30の上層に垂直方向電源配線40を配置し、更にその上層に水平方向電源配線50を配置した例を示したが、本変形例では、図4に示すように、補助電源配線30の上層に水平方向電源配線40を配置し、更にその上層に垂直方向電源配線50を配置した例を示している。
また、図5は、平面構造の他の変形例を示す。同図では、上層の水平方向電源配線50を、図1に示した上層の水平方向電源配線50よりも配線幅の太い電源配線としたものである。
(第2の実施形態)
図6は本発明の第2の実施形態の半導体集積回路の電源配線構造を示す。
同図では、上層の水平方向電源配線50とその下層の垂直方向電源配線40とが各々多数本配置され、その各交点でビア45により接続されて、広範囲で格子状電源配線を構成しており、前記垂直方向電源配線40に1つのビア35を介して補助電源配線30が接続されている。
従って、本実施形態においては、上層の電源配線50、40からの電源供給に際してのIRドロップ量を所定値以内に有効に抑制することができる。
尚、図6では、同列の標準セル(同図には図示せず)には、上層の水平方向電源配線50の各々の下方に位置して、各上層の水平方向電源配線50と同一方向に延びる複数本のセルグランド配線80が配置される。
(第3の実施形態)
図7は本発明の第3の実施形態の半導体集積回路の電源配線構造を示す。
同図の電源配線構造は、前記図6に示した電源配線構造において、同図に点線で囲んだ要部を拡大した詳細図を示す。
本実施形態の半導体集積回路の特徴点は、補助電源配線30とその下層のセル電源配線20とを接続する2つのビア25、25間の所定間隔Dを、その所定間隔D内に配置される標準セルの個数によって決定する点である。本実施形態では、図7に示すように、補助電源配線30とセル電源配線20とを接続する2つのビア25、25間に標準セル60を2個水平配置している。
すなわち、セル60の内部には、回路動作に寄与する半導体デバイス70が多数配置されており、これ等の半導体デバイス70が動作することによって、これ等の半導体デバイス70を介してセル電源配線20からセルグランド配線80(図6に図示し、図7では図示せず)へと電流が流れるので、2つのビア25、25間の所定間隔D内に設定個数(2個)の標準セル60が配置されていると、各ビア25からの電流は、その近傍の標準セル60からグランド配線80へと電流が流れ、他方のビア25に到達せず、他方のビア25部分での電流密度が高くなることはない。従って、セル電源配線20の各ビア25、25の接続箇所での電流密度を最大許容値未満に確実に低減することができる。
以上のような電源配線構造を適用する場合の設計フローを図8に従って説明する。同図において、ステップS10では、2つのビア25、25の間隔内に位置すべき標準セルの個数を設定する。
その後、ステップS11では、フロアプラン及びセル配置を実施し、ステップS12では、格子状電源配線50、40を配置する。次いで、ステップS13では、複数個の標準セルで構成される機能ブロック内にセル電源配線20を配置する。
そして、ステップS14では、前記ステップS12で配置された格子状電源配線のうち下層の電源配線40と、前記ステップS13で配置されたセル電源配線20とが平面的に交点を成し得る座標を検索し、この交点座標をビア35の配置座標として予約する。すなわち、この交点座標は、ビア35により下層の電源配線40と補助電源配線30とを接続するために予約される。
その後、ステップS15では、前記ステップS14で得られた座標を中心として補助電源配線30を配置する。
次に、ステップS16では、前記ステップS10で設定された標準セルの個数に従って、前記ステップS13で配置されたセル電源配線20と、前記ステップS15で配置された補助電源配線30とを少なくとも2つのビア25により接続する。このとき、少なくとも2つのビア25、25の間に、前記ステップS10で設定された個数の標準セルが配置されるようにビア25、25の所定間隔Dを設定する。特に、望ましくは、少なくとも2つのビア25、25の位置座標から得られるその間の中心座標が、前記ステップS14で得られたビア35の位置座標と一致しているのが良い。
以上で述べた設計フローにより、前記第1の実施形態の半導体集積回路の電源配線構造の設計の容易化が可能となる。
(第4の実施形態)
次に、本発明の第4の実施形態を図9に基づいて説明する。
前記第3の実施形態では、セル電源配線20に接続される2つのビア25、25間の所定間隔Dを、その間隔D内に位置すべき標準セルの個数により決定したが、本実施形態では、図7に示すように、各標準セル60の内部に設けられた多数のセル内電源配線90であって前記セル電源配線20と接続される電源配線の本数が前記所定間隔D内に設定本数以上位置するように、この所定間隔Dを決定するようにしたものである。
すなわち、本実施形態では、図9に示す設計フローにおいて、ステップS20において、2つのビア25、25間の所定間隔D内に位置すべきセル内電源配線90の本数を予め設定する。そして、ステップS26において、セル電源配線20と補助電源配線30とを接続する2つのビア25、25間の所定間隔D内に、前記ステップS20で設定した設定本数のセル内電源配線90が位置するように、前記所定間隔Dを決定し、その所定間隔Dとなる位置座標に2つのビア25、25を配置する。他のステップS21〜S25は、図8のステップS11〜S15と同一であるので、その説明を省略する。
従って、本実施形態においても、前記第3の実施形態と同様に、前記第1の実施形態の半導体集積回路の電源配線構造の設計の容易化が可能となると共に、第3の実施形態と比べて、セル内電源配線90の本数により所定間隔Dを決定するので、その所定間隔Dを適切に決定でき、補助電源配線30の配線長を短くすることができ、その分、配線効率への影響を軽減できる。
(第5の実施形態)
続いて、本発明の第5の実施形態を図10に基づいて説明する。
本実施形態では、セル電源配線20に接続される2つのビア25、25間の所定間隔Dを、電流密度の解析結果をフィードバックして、決定している点に特徴を有する。
以下、本実施の形態の半導体集積回路の電源配線構造の設計フローを図10に従って説明する。同図において、ステップS30では、フロアプラン及びセル配置を実施し、ステップS31では、格子状電源配線50、40を配置する。次いで、ステップS32では、複数個の標準セルで構成される機能ブロック内にセル電源配線20を配置する。
その後、ステップS33では、前記ステップS31で配置された格子状電源配線のうち下層の電源配線40と、前記ステップS32で配置されたセル電源配線20とが平面的に交点を成し得る座標を検索し、この交点座標をビア35の配置座標として予約する。
そして、ステップS34では、前記ステップS30〜S32までの結果を基に仮配線を行う。このステップS34により得られた仮配線情報に基づいて、ステップS35では、セル電源配線20における電流密度を解析すると共に、半導体チップの各領域でのセル電源配線20の電流密度解析結果が規格値内にあるか否かを判定する。前記判定の結果、セル電源配線20の電流密度が各領域で規格値内である場合には、ステップS36の詳細配線工程へと進む。
一方、電流密度が規格値を超える領域が存在する場合には、ステップS37〜S39の工程に進む。前記ステップS37では、前記ステップS33で予約されたビア35の配置箇所のうち、電流密度が規格値を超える領域に最も近い予約座標を選択し、その座標に補助電源配線30を配置する。次のステップS38では、電流密度が規格値を超える領域に含まれる標準セルの個数をカウントし、ステップS39では、前記ステップS37で配置された補助電源配線30を、前記ステップS38で得られた標準セルの個数を包含する領域にまで延長し、この延長した補助電源配線30と前記ステップS32で配置したセル電源配線20とを少なくとも2つのビア25により接続する。この2つのビア25、25の位置座標は、これ等の座標から算出されるその間の中心座標が前記ステップS33で得られた座標のうち電流密度が規格値を超える領域に最も近いとして選択された位置座標に一致しているように、決定するのが望ましい。
前記ステップS39の後は、前記ステップS34の仮配線工程に戻って、再度、電流密度を解析して、電流密度が規格値内になるまで、前記ステップS34〜S39を繰り返す。
従って、本実施形態では、電流密度が規格値を超える領域に対しても、補助電源配線30の長さを適切に決定して配置することが可能である。
(第6の実施形態)
次に、本発明の第6の実施形態を図11に基づいて説明する。
前記第5の実施形態では、何れかの領域で電流密度が規格値を超える場合には、図10のステップS38において、電流密度が規格値を超える領域に含まれる標準セルの個数をカウントしたが、本実施形態では、ステップS48において、前記第4の実施形態と同様に、電流密度が規格値を超える領域に含まれるセル内電源配線90の本数をカウントしている。
そして、ステップS49では、補助電源配線30を、前記カウントされた本数のセル内電源配線90を包含する領域にまで延長し、この延長した補助電源配線30とセル電源配線20とを少なくとも2つのビア25により接続する。その他のステップS40〜S47については、図10に示したステップS30〜S37と同一であるので、その説明を省略する。
従って、本実施形態では、前記第5の実施形態の作用効果に加えて、セル電源配線20に接続される2つのビア25、25間の所定間隔Dを適切に決定でき、補助電源配線30の配線長を短くできる分、配線効率への影響を軽減できる効果をも奏する。
尚、以上の説明では、セル電源配線20について補助電源配線30を配置する構成を説明したが、セルグランド配線80に関しても、同様に補助電源配線30を配置することができるのは、勿論である。
また、以上の説明では、セルは標準セルであるとして説明したが、ゲートアレイセルとしても本発明を適用できる。
以上説明したように、本発明は下層のセル電源配線のビア接続箇所での電流密度を最大許容値未満に確実に下げることができて、EM断線に対する信頼性の向上を図ることができると共に、セルの面積の縮小及び、セル電源配線に近接する信号配線との間のクロストーク等を有効に抑制できるので、特に、複数の標準セルを備えた半導体集積回路等として有用である。
本発明の第1の実施形態の半導体集積回路における電源配線構造を示す平面図である。 同電源配線構造の断面図である。 同電源配線構造の断面構造を変形した図である。 同電源配線構造の平面構造を変形した図である。 同電源配線構造の平面構造を更に変形した図である。 本発明の第2の実施形態の半導体集積回路における電源配線構造を示す平面図である。 本発明の第3の実施形態の半導体集積回路における電源配線構造の要部を示す平面図である。 同電源配線構造を設計するフローチャート図である。 本発明の第4の実施形態の半導体集積回路における電源配線構造を設計するフローチャート図である。 本発明の第5の実施形態の半導体集積回路における電源配線構造を設計するフローチャート図である。 本発明の第6の実施形態の半導体集積回路における電源配線構造を設計するフローチャート図である。 従来の電源配線構造を示す平面図である。 従来の他の電源配線構造を示す平面図である。 従来の更に他の電源配線構造を示す断面図である。
10 半導体基板
15 ビア
20 セル電源配線
30 補助電源配線
35、45 ビア
40、50 上層電源配線
60 セル
70 セル内の半導体デバイス
80 セルグランド配線
90 セル内電源配線

Claims (5)

  1. セルを複数個備えた半導体集積回路であって、
    前記各セルに形成されたセル電源配線と、
    前記セル電源配線よりも上層に配置された補助電源配線とを備え、
    前記セル電源配線と前記補助電源配線とは、2つのビアにより接続されていて、
    前記補助電源配線から前記2つのビアを介して前記セル電源配線に電源供給され、
    前記補助電源配線の上層には、上層電源配線が配置され、
    前記上層電源配線と前記補助電源配線とは、1つ以上のビアにより接続されていて、
    前記上層電源配線から前記1つ以上のビアを介して前記補助電源配線に電源供給され、
    前記セル電源配線と前記補助電源配線とを接続する2つのビアは、前記補助電源配線と前記上層電源配線とを接続する1つのビアを中心として、相互に反対方向に所定間隔隔てて配置されている
    ことを特徴とする半導体集積回路。
  2. 前記請求項1に記載の半導体集積回路において、
    前記補助電源配線は、その配線幅が、前記セル電源配線の配線幅よりも太い
    ことを特徴とする半導体集積回路。
  3. 前記請求項1及び2の何れか1項に記載の半導体集積回路において、
    前記上層電源配線は、格子状に配置された格子状電源配線である
    ことを特徴とする半導体集積回路。
  4. 前記請求項1〜3の何れか1項に記載の半導体集積回路において、
    前記セル電源配線と前記補助電源配線とを接続する2つのビア間には、複数個のセルが位置している
    ことを特徴とする半導体集積回路。
  5. 前記請求項1〜4の何れか1項に記載の半導体集積回路において、
    前記セル電源配線と前記補助電源配線とを接続する2つのビア間には、前記各セルの内部に配置され且つ前記セル電源配線に接続されたセル内電源配線が複数本位置している
    ことを特徴とする半導体集積回路。
JP2004286576A 2004-09-30 2004-09-30 半導体集積回路 Expired - Fee Related JP4820542B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004286576A JP4820542B2 (ja) 2004-09-30 2004-09-30 半導体集積回路
US11/229,503 US7514795B2 (en) 2004-09-30 2005-09-20 Semiconductor integrated circuit having improved power supply wiring
US12/397,883 US7932610B2 (en) 2004-09-30 2009-03-04 Semiconductor integrated circuit having improved power supply wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286576A JP4820542B2 (ja) 2004-09-30 2004-09-30 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2006100673A JP2006100673A (ja) 2006-04-13
JP4820542B2 true JP4820542B2 (ja) 2011-11-24

Family

ID=36124723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286576A Expired - Fee Related JP4820542B2 (ja) 2004-09-30 2004-09-30 半導体集積回路

Country Status (2)

Country Link
US (2) US7514795B2 (ja)
JP (1) JP4820542B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194461B2 (ja) * 2007-01-30 2013-05-08 富士通セミコンダクター株式会社 電流密度制限チェック方法及び電流密度制限チェック装置
US8063415B2 (en) 2007-07-25 2011-11-22 Renesas Electronics Corporation Semiconductor device
JP5293939B2 (ja) * 2007-07-25 2013-09-18 ルネサスエレクトロニクス株式会社 半導体装置
US8438519B2 (en) * 2008-03-04 2013-05-07 Texas Instruments Incorporated Via-node-based electromigration rule-check methodology
JP2010021349A (ja) * 2008-07-10 2010-01-28 Nec Electronics Corp 半導体記憶装置
US8566776B2 (en) * 2008-11-13 2013-10-22 Qualcomm Incorporated Method to automatically add power line in channel between macros
JP2010283269A (ja) * 2009-06-08 2010-12-16 Renesas Electronics Corp 半導体装置
US8164190B2 (en) * 2009-06-25 2012-04-24 International Business Machines Corporation Structure of power grid for semiconductor devices and method of making the same
KR101040851B1 (ko) * 2010-03-23 2011-06-14 삼성모바일디스플레이주식회사 터치 스크린 패널
FR2972079B1 (fr) 2011-02-25 2014-01-03 St Microelectronics Sa Circuit intégré numérique
JP5820412B2 (ja) * 2013-03-08 2015-11-24 株式会社東芝 半導体集積回路
US9786663B2 (en) * 2013-08-23 2017-10-10 Qualcomm Incorporated Layout construction for addressing electromigration
US9972624B2 (en) 2013-08-23 2018-05-15 Qualcomm Incorporated Layout construction for addressing electromigration
US9887209B2 (en) 2014-05-15 2018-02-06 Qualcomm Incorporated Standard cell architecture with M1 layer unidirectional routing
US9793211B2 (en) * 2015-10-20 2017-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Dual power structure with connection pins
JP6966686B2 (ja) 2016-10-21 2021-11-17 株式会社ソシオネクスト 半導体装置
US10811357B2 (en) * 2017-04-11 2020-10-20 Samsung Electronics Co., Ltd. Standard cell and an integrated circuit including the same
US10664641B2 (en) * 2017-11-30 2020-05-26 Taiwan Semiconductor Manufacturing Company Ltd. Integrated device and method of forming the same
US11444073B2 (en) 2020-10-27 2022-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Power distribution network

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3306439C2 (de) * 1983-02-24 1987-01-02 Phoenix Ag, 2100 Hamburg Verwendung eines Schmelzklebers zum Verbinden von Artikeln aus EPDM
JPS6114248A (ja) * 1984-06-30 1986-01-22 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JPH03145743A (ja) * 1989-10-31 1991-06-20 Hitachi Ltd 半導体集積回路装置
JP3101077B2 (ja) * 1992-06-11 2000-10-23 株式会社日立製作所 半導体集積回路装置
JPH0846049A (ja) 1994-08-02 1996-02-16 Hitachi Ltd 集積回路の配線方法及びその製造方法並びにそれを用いた集積回路
JPH1056162A (ja) 1996-05-24 1998-02-24 Toshiba Corp 半導体集積回路およびその設計方法
JPH1145979A (ja) 1997-05-26 1999-02-16 Toshiba Corp 半導体集積回路装置及び電源配線の敷設方法
JP4228418B2 (ja) * 1998-07-30 2009-02-25 沖電気工業株式会社 半導体装置
US6031293A (en) * 1999-04-26 2000-02-29 United Microelectronics Corporation Package-free bonding pad structure
US6630532B1 (en) * 1999-09-15 2003-10-07 Kraton Polymer U.S. Llc Modified styrenic block copolymer compounds having improved elastic performance
JP4748867B2 (ja) * 2001-03-05 2011-08-17 パナソニック株式会社 集積回路装置
JP2004165453A (ja) * 2002-11-13 2004-06-10 Fujitsu Ltd 半導体集積回路、電源配線方法、及びコンピュータプログラム
EP1426411A1 (en) * 2002-12-06 2004-06-09 KRATON Polymers Research B.V. Styrenic block copolymer compositions to be used for the manufacture of transparent, gel free films

Also Published As

Publication number Publication date
US20090166883A1 (en) 2009-07-02
JP2006100673A (ja) 2006-04-13
US7932610B2 (en) 2011-04-26
US20060071319A1 (en) 2006-04-06
US7514795B2 (en) 2009-04-07

Similar Documents

Publication Publication Date Title
JP4820542B2 (ja) 半導体集積回路
JP4786836B2 (ja) 配線接続部設計方法及び半導体装置
US6645842B2 (en) Semiconductor integrated circuit device, semiconductor integrated circuit wiring method, and cell arranging method
US5977574A (en) High density gate array cell architecture with sharing of well taps between cells
JP4882455B2 (ja) 半導体集積回路のユニットセルおよびユニットセルを使用した配線方法および配線プログラム
US8549460B2 (en) Supplying power to integrated circuits using a grid matrix formed of through-silicon vias
JP3964575B2 (ja) 半導体集積回路装置、半導体集積回路配線方法およびセル配置方法
JPH0529456A (ja) 半導体集積回路装置
JP4296051B2 (ja) 半導体集積回路装置
JP2006324380A (ja) 半導体装置
JP2006202924A (ja) 半導体集積回路
JP2007250933A (ja) 半導体集積回路およびそのレイアウト設計方法
US20070200238A1 (en) Semiconductor integrated circuit apparatus and method of designing the same
JP2005093575A (ja) 半導体集積回路装置と配線レイアウト方法
WO2010084533A1 (ja) 半導体集積回路の電源配線構造
JP2000068383A (ja) 半導体集積回路装置の設計方法および半導体集積回路装置
JPH08213466A (ja) 半導体集積回路
JP4535311B2 (ja) 半導体装置の配線構造
JPS5929441A (ja) 半導体装置の多層配線構造
JP3353397B2 (ja) 半導体集積回路
JPH03145743A (ja) 半導体集積回路装置
JP2000040744A (ja) 半導体装置及び自動配線手法
JP2005005601A (ja) 印刷回路配線板の配線レイアウト構造
JPS60113945A (ja) 半導体集積回路
JPH0364947A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees