JP2004165453A - 半導体集積回路、電源配線方法、及びコンピュータプログラム - Google Patents
半導体集積回路、電源配線方法、及びコンピュータプログラム Download PDFInfo
- Publication number
- JP2004165453A JP2004165453A JP2002329903A JP2002329903A JP2004165453A JP 2004165453 A JP2004165453 A JP 2004165453A JP 2002329903 A JP2002329903 A JP 2002329903A JP 2002329903 A JP2002329903 A JP 2002329903A JP 2004165453 A JP2004165453 A JP 2004165453A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- lines
- line
- reinforcing
- supply line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
【課題】本発明は、一般信号配線に対する制限を必要最低限に抑えながら補強電源線を配置した半導体集積回路を提供することを目的とする。
【解決手段】半導体集積回路は、半導体基板上に形成されるセルと、電源幹線と、第1のビアを介してセルに接続され電源幹線上の第1の位置からセルに電源を供給する第1の配線層に設けられる固定電源線と、固定電源線と重なるように平行して第2の配線層に設けられ、第2の位置で第2のビアを介して固定電源線に接続され電源幹線上の第1の位置から固定電源線に電源を供給する補強電源線を含むことを特徴とする。
【選択図】 図4
【解決手段】半導体集積回路は、半導体基板上に形成されるセルと、電源幹線と、第1のビアを介してセルに接続され電源幹線上の第1の位置からセルに電源を供給する第1の配線層に設けられる固定電源線と、固定電源線と重なるように平行して第2の配線層に設けられ、第2の位置で第2のビアを介して固定電源線に接続され電源幹線上の第1の位置から固定電源線に電源を供給する補強電源線を含むことを特徴とする。
【選択図】 図4
Description
【0001】
【発明の属する技術分野】
本発明は、一般に半導体集積回路及びその設計方法に関し、詳しくは補強電源線を配置された半導体集積回路、及びその電源配線方法に関する。
【従来の技術】
半導体集積回路の内部セルに電源を供給する電源配線は、集積度が高くなるほどより細く形成する必要があるが、細い電源配線に大きな電流を流すと電流密度が大きくなってしまう。大きい電流密度の電流が長い時間流れると、電源配線の分子間距離が互いに開いてしまうエレクトロマイグレーション現象が発生する。これは経年劣化であり、長時間かけて徐々に電流が流れ難くなる。
【0002】
半導体集積回路のエレクトロマイグレーション耐性を強化する電源配線方法として、特許文献1又は特許文献2等に記された技術が知られている。これらの技術は、半導体素子又はユニットセルに給電する電源配線に対し、これと直交する方向に電源補強線を布設している。
【0003】
また従来技術として、特許文献3に記された技術も知られている。この技術は半導体素子又はユニットセルに給電する電源配線を太くすることにより、電源補強の機能を実現している。
【0004】
【特許文献1】
特開平5−190671号公報
【0005】
【特許文献2】
特開平6−85066号公報
【0006】
【特許文献3】
特開平8−264656号公報
【発明が解決しようとする課題】
直交する補強電源線を布設する従来技術は、エレクトロマイグレーション耐性を強化する可能性があるが、根本的な解決にはならない。
【0007】
図1は、直交する補強電源線を布設した場合の電源配線を示す図である。図1において、電源幹線11及び12から、設計時にセルに付随して固定的に発生される固定電源線13及び14に、それぞれ電源電位及びグランド電位が供給される。この固定電源線13及び14は、コンタクト位置17及び18において、この位置にあるセルに接続される。また複数の固定電源線13及び14は、それに直交する方向に延展する補強電源線15及び16によって互いに接続されている。この補強電源線15及び16によりセルへの電源供給経路として複数の経路を確保し、特定のセルによる電流消費が多い場合等でも、特定の電源線を流れる電流の電流密度が高くならないようにしている。
【0008】
しかしながら図1の構成では、セルへのコンタクト位置17及び18が図面右側の電源幹線11及び12に近い。従って、これらの電源幹線11及び12から固定電源線13及び14を介して直接に供給される電源の経路は、補強電源線15及び16を間接的に迂回して供給される電源の経路と比較して配線抵抗が大幅に小さい。この結果、直接に供給される電源の経路において電流密度が大きくなってしまう。また補強電源線13及び14を布設すると、直下のセルに対する信号配線ができなくなるという問題点がある。
【0009】
固定電源線を太くする従来技術は、敷き詰め型(チャネルレス)のレイアウト設計に適用すると設計ルール違反となるため現実的ではない。また電源幹線間を広くする結果となるので、冗長なレイアウトとなり、一般信号配線のレイアウトに余計な制限を加えるという問題がある。
【0010】
以上を鑑みて本発明は、一般信号配線に対する制限を必要最低限に抑えながら補強電源線を配置した半導体集積回路、及びそのような補強電源線を配置する電源配線方法を提供することを目的とする。
【課題を解決するための手段】
本発明による半導体集積回路は、半導体基板上に形成されるセルと、電源幹線と、第1のビアを介して該セルに接続され該電源幹線上の第1の位置から該セルに電源を供給する第1の配線層に設けられる固定電源線と、該固定電源線と重なるように平行して第2の配線層に設けられ、第2の位置で第2のビアを介して該固定電源線に接続され該電源幹線上の該第1の位置から該固定電源線に電源を供給する補強電源線を含むことを特徴とする。
【0011】
上記半導体集積回路では、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【0012】
また本発明による補強電源線を配置する電源配線方法は、レイアウトデータから電源補強が必要なセルの位置を抽出し、該セルの位置に基づいて関連する固定電源線及び電源幹線を抽出し、該固定電源線上にビアを生成し、該固定電源線とは別の層において該固定電源線と重なり平行するように、該生成したビアと該電源幹線とを接続する補強電源線をレイアウトする各段階を含む。
【0013】
上記電源配線方法では、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【発明の実施の形態】
以下に、本発明の実施例を添付の図面を用いて詳細に説明する。
【0014】
図2は、本発明の基本となる補強電源線の構成を示す図である。
【0015】
図2において、電源幹線21及び22から、設計時にセルに付随して固定的に発生される固定電源線23及び24に、それぞれ電源電位及びグランド電位が供給される。この固定電源線23及び24は、例えばセル27及び28に接続される。これら固定電源線23及び24が形成されるのとは異なる配線層に、補強電源線25及び26が、固定電源線23及び24と重なるように平行して設けられる。補強電源線25及び26は、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25及び26はまた更に、ビア31を介して図面右側の電源幹線21及び22にそれぞれ接続される。図面左側の電源幹線21及び22はビア32に接続される。
【0016】
この補強電源線25及び26によりセルへの電源供給経路として複数の経路を確保し、特定のセルによる電流消費が多い場合等でも、特定の電源線を流れる電流の電流密度が高くならないようにしている。なお図示の都合上、補強電源線25及び26は固定電源線23及び24よりも幅が狭いものとして示されているが、幅に関して特に制限は無く、固定電源線23及び24と同一幅であっても異なる幅であってもよい。
【0017】
補強電源線25及び26の配線層は、例えば以下の表1のようにして一意に決定することができる。
【0018】
表1
固定電源線 M1 M2
電源幹線 M2又はM4又はM6 M1又はM3又はM5
補強電源線 M3 M4
ここでM1乃至M6はメタル1層乃至6層を示す。このように、縦方向に配線する電源幹線を偶数番目の配線層に配置する場合には、横方向に配線する固定電源線を第1層とし、同じく横方向に配線する補強電源線を第3層とする。また縦方向に配線する電源幹線を奇数番目の配線層に配置する場合には、横方向に配線する固定電源線を第2層とし、同じく横方向に配線する補強電源線を第4層とする。
【0019】
このようにして、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【0020】
図3は、本発明による補強電源線の第1の実施例を示す図である。図3において、図2と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0021】
図3において、補強電源線25a及び26aは、図2の補強電源線25及び26よりも短く、図面右側の電源幹線21及び22にのみ接続されている。この例では、補強電源線25a及び26aはセル27及び28にのみ電源を供給しているので、これらのセル27及び28の近傍に存在する電源幹線21及び22から電源を補強すれば充分である。また図2の構成と比較して、余計な補強電源線を無くすことで、水平方向の信号配線の自由度を向上させることができる。
【0022】
図4は、図3の電源配線の断面構成の一例を示す図である。図4において、図3と同一の構成要素は同一の番号で参照する。
【0023】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、及びメタル3層M3が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル2層M2には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25a及び26aが設けられる。
【0024】
補強電源線25a及び26aは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。また電源幹線21及び22は、ビア33を介してそれぞれ固定電源線23及び24に接続される。
【0025】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22からビア33、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0026】
図5は、図3の電源配線の断面構成の別の一例を示す図である。図5において、図3と同一の構成要素は同一の番号で参照する。
【0027】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル4層M4には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25a及び26aが設けられる。
【0028】
補強電源線25a及び26aは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。またビア31の直下の位置において、補強電源線25a及び26aが、ビア34を介してそれぞれ固定電源線23及び24に接続される。
【0029】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22から補強電源線25a及び26aを間に挟むビア31及びビア34、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0030】
図6は、図3の電源配線の断面構成の更に別の一例を示す図である。図6において、図3と同一の構成要素は同一の番号で参照する。
【0031】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には電源幹線21及び22が設けられ、メタル2層M2には固定電源線23及び24が設けられる。またメタル4層M4には補強電源線25a及び26aが設けられる。
【0032】
固定電源線23及び24は、ビア35を介してそれぞれ電源幹線21及び22に接続される。補強電源線25a及び26aは、固定電源線23及び24を間に挟むビア31及びビア35を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。
【0033】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22からビア35、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22から固定電源線23及び24を間に挟むビア35及びビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0034】
図7は、本発明による補強電源線の第2の実施例を示す図である。図7において、図2と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0035】
図7において、補強電源線25b及び26bは、図2の補強電源線25及び26よりも短く、図面右側の電源幹線21及び22にのみ接続されている。補強電源線25b及び26bがビア30bを介してセル29に接続されるが、このビア30bは、セル29の枠上に設けられている。このようにビアをセルの枠上に設けることの利点について以下に説明する。
【0036】
図8は、ビアをセルの中心付近に設けた場合に起こりえる問題について説明するための図である。
【0037】
図8においては、補強電源線25b及び26bは、セル29の中心付近の位置でビア52を介して固定電源線23及び24に接続されている。また固定電源線23及び24は、ビア51を介して、セル29に接続されている。ここでビア51は、セル29に最も距離が近い電源幹線21及び22からみて、ビア52よりも遠い位置に設けられている。
【0038】
図9は、図8の電源配線の断面構成を示す図である。
【0039】
図9に示されるように、セル29に最も距離が近い電源幹線21及び22からみて、ビア51はビア52よりも遠い位置に設けられているので、固定電源線23及び24の丸で囲まれている部位Aにおいて、電流密度が高い状態となってしまう。即ち、電源幹線21及び22から固定電源線23及び24を介して直接供給される電流と、電源幹線21及び22から補強電源線25b及び26bを介して供給される電流とが、部位Aにおいて合流することで、部位Aにおける電流密度が高くなりエレクトロマイグレーションの問題が発生してしまう。
【0040】
それに対して図7に示す第2の実施例の構成では、補強電源線25b及び26bと固定電源線23及び24とを接続するビア30bは、セル29に最も近い電源幹線21及び22からみて、セル29の遠い側の枠上に設けられている。この場合、固定電源線23及び24からセル29へ電気接続するビアは、ビア30bよりも上記電源幹線21及び22に近い位置に設けられることになる。従って、直接経路からの電流と電源補強経路からの電流とが固定電源線23及び24上で合流することはなく、図9の部位Aのように電流密度が高くなりエレクトロマイグレーションの問題が発生することはない。
【0041】
上記説明でビア30bは、セル29に最も近い電源幹線21及び22からみて、セル29の遠い側の枠上に設けられているとしたが、更に遠い位置である例えば図7に矢印でBとして示される位置などに設けてもよい。
【0042】
図10は、図7の電源配線の断面構成の一例を示す図である。図10において、図7と同一の構成要素は同一の番号で参照する。
【0043】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、及びメタル3層M3が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル2層M2には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25b及び26bが設けられる。
【0044】
シリコン基板40に形成されたセルには、電源幹線21及び22からビア33、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0045】
図11は、図7の電源配線の断面構成の別の一例を示す図である。図11において、図7と同一の構成要素は同一の番号で参照する。
【0046】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル4層M4には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25b及び26bが設けられる。
【0047】
シリコン基板40に形成されたセルには、電源幹線21及び22から補強電源線25b及び26bを間に挟むビア31及びビア34、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0048】
図12は、図7の電源配線の断面構成の更に別の一例を示す図である。図12において、図7と同一の構成要素は同一の番号で参照する。
【0049】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には電源幹線21及び22が設けられ、メタル2層M2には固定電源線23及び24が設けられる。またメタル4層M4には補強電源線25b及び26bが設けられる。
【0050】
シリコン基板40に形成されたセルには、電源幹線21及び22からビア35、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22から固定電源線23及び24を間に挟むビア35及びビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0051】
図13は、本発明による更なる実施例を説明するための図である。図13において、(a)はセルのレイアウトの一例を示し、(b)は当該セルの回路構成を示す。
【0052】
図13(b)に示されるように、このセルの回路は、インバータ61乃至65を含む。この回路は、例えばクロックバッファ等として使用される。(a)に示されるように、セル70は、ポリシリコンゲート71乃至75、P型拡散領域76、N型拡散領域77、VDD側固定電源線78、VSS側固定電源線79、信号配線80、及びビア81を含む。ポリシリコンゲート71乃至75のそれぞれが、インバータ61乃至65を構成するPMOSトランジスタ及びNMOSトランジスタのゲート端子に相当し、信号配線80がインバータ61乃至65の入出力間を接続する信号配線に相当する。固定電源線78及び79は、ビア81を介してセル70に接続される。
【0053】
図14は、本発明による補強電源線の第3の実施例を示す図である。図14において、図13と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0054】
補強電源線25c及び26cは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25c及び26cは更に、ビア30cを介してそれぞれ固定電源線78及び79に接続される。補強電源線25c及び26cがビア30cを介して固定電源線78及び79に接続される位置の直下において、固定電源線78及び79が、ビア81を介してシリコン基板90に形成されたセル70に接続される。また電源幹線21及び22は、ビア33を介してそれぞれ固定電源線78及び79に接続される。
【0055】
従って、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25c及び26c、及び固定電源線78及び79を間に挟むビア30c及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0056】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合には、これら複数のコンタクトの位置と同一の位置において、補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。
【0057】
図15は、図14の本発明による補強電源線の構成の変形例を示す図である。図15において、図14と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0058】
図15の構成は、図14の構成と比較して、補強電源線と固定電源線とのビアによる接続位置がセル70の中心位置にのみ設けられている点が異なる。この構成では、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25d及び26d、セル中心にあるビア30d、固定電源線78及び79、及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0059】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合であっても、セル中心位置において補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。この場合、電源幹線21及び22からみてセル中心点よりも遠い部位においては、電流密度が高くなり、充分なエレクトロマイグレーション耐性向上の効果が実現されない可能性がある。しかし固定電源線からセルへのコンタクト位置を検出してその位置に補強電源線からのビアを発生させるという設計時の処理の必要が無く、図14の構成と比較して設計が容易になるという利点がある。
【0060】
図16は、図14の本発明による補強電源線の構成の更なる変形例を示す図である。図16において、図14と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0061】
図16の構成は、図14の構成と比較して、補強電源線と固定電源線とのビアによる接続位置がセル70の外枠位置にのみ設けられている点が異なる。この構成では、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25e及び26e、セル外枠上にあるビア30e、固定電源線78及び79、及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0062】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合であっても、セル外枠位置において補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。この場合、電源幹線21及び22からみて最も遠い位置にあるセル70の外枠上において補強電源線と固定電源線とをビアにより接続するので、セル70への供給電流が合流して電流密度が高くなる部位は無く、充分なエレクトロマイグレーション耐性向上の効果が期待できる。更に、固定電源線からセルへのコンタクト位置を検出してその位置に補強電源線からのビアを発生させるという設計時の処理の必要が無く、図14の構成と比較して設計が容易になるという利点がある。
【0063】
図17は、本発明による補強電源線を配置する電源配線方法を示すフローチャートである。
【0064】
主な入力データは、配線前レイアウトデータ、要電源補強セルリストデータ、電源補強配線層指定データの3つである。
【0065】
一般的な要電源補強セルリストデータは、電力解析シミュレーションから電流消費量の多いセルを抽出し、配置情報を勘案して電源補強が必要な位置にあるセルをリストアップすることで作成される。要電源補強セルリストデータをより簡単に作成するために、例えばクロックバッファやクロックインバータ等のクロックコンポーネントだけをリストアップしてもよい。電源補強配線層指定データは、補強電源線を配線する層を指定するデータであり、例えば前述の表1のようにして、固定電源線及び電源幹線の配線層を勘案して決定することができる。
【0066】
まずステップST1で、要補強電源セル位置を抽出する。具体的には、要電源補強セルリスト中のセルそれぞれに対して、配線前レイアウトデータから位置情報を抽出する。
【0067】
次にステップST2で、固定電源線および電源幹線位置を抽出する。具体的には、ステップST1で抽出したセル位置から固定電源線位置を特定する。電源幹線位置は、固定電源線を辿って抽出することが可能であり、またセル位置から電源幹線位置を特定することも可能である。
【0068】
ステップST3で、電源補強線の幅を確定する。電源補強線の幅は、電力解析シミュレーション結果から算出することができる。また要電源補強セルリスト中から、補強すべき電源線(電源幹線に挟まれた線分)に接続しているセル品種及びセル数に関する情報を抽出し、これに応じて電源補強線の幅を決めることも可能である。最も簡単な手順として、電源補強線の幅を固定値として入力データとして与えてもよい。
【0069】
ステップST4で、固定電源線上にビアを生成する。例えば、ステップST1で抽出したセル位置とステップST2で抽出した電源幹線位置とから、生成するビアの位置を特定してビアを生成する。この際、電源補強配線層指定データが指示する配線層と固定電源配線層とを認識して、必要であればスタックビアとしてビアを生成する。
【0070】
ステップST5で、電源補強線を生成する。具体的には、ステップST4で生成したビアとステップST2で位置情報を抽出した電源幹線とを接続するように、補強電源線をレイアウトする。
【0071】
以上の処理により、電源補強が必要なセルに対して補強電源線を配置することができる。
【0072】
図18は、本発明による電源配線方法を実行する装置の構成を示す図である。
【0073】
図18に示されるように、本発明による電源配線方法を実行する装置は、例えばパーソナルコンピュータやエンジニアリングワークステーション等のコンピュータにより実現される。図18の装置は、コンピュータ510と、コンピュータ510に接続されるディスプレイ装置520、通信装置523、及び入力装置よりなる。入力装置は、例えばキーボード521及びマウス522を含む。コンピュータ510は、CPU511、RAM512、ROM513、ハードディスク等の二次記憶装置514、可換媒体記憶装置515、及びインターフェース516を含む。
【0074】
キーボード521及びマウス522は、ユーザとのインターフェースを提供するものであり、コンピュータ510を操作するための各種コマンドや要求されたデータに対するユーザ応答等が入力される。ディスプレイ装置520は、コンピュータ510で処理された結果等を表示すると共に、コンピュータ510を操作する際にユーザとの対話を可能にするために様々なデータ表示を行う。通信装置523は、遠隔地との通信を行なうためのものであり、例えばモデムやネットワークインターフェース等よりなる。
【0075】
本発明による電源配線方法は、コンピュータ510が実行可能なコンピュータプログラムとして提供される。このコンピュータプログラムは、可換媒体記憶装置515に装着可能な記憶媒体Mに記憶されており、記憶媒体Mから可換媒体記憶装置515を介して、RAM512或いは二次記憶装置514にロードされる。或いは、このコンピュータプログラムは、遠隔地にある記憶媒体(図示せず)に記憶されており、この記憶媒体から通信装置523及びインターフェース516を介して、RAM512或いは二次記憶装置514にロードされる。
【0076】
キーボード521及び/又はマウス522を介してユーザからプログラム実行指示があると、CPU511は、記憶媒体M、遠隔地記憶媒体、或いは二次記憶装置514からプログラムをRAM512にロードする。CPU511は、RAM512の空き記憶空間をワークエリアとして使用して、RAM512にロードされたプログラムを実行し、適宜ユーザと対話しながら処理を進める。なおROM513は、コンピュータ510の基本動作を制御するための制御プログラムが格納されている。
【0077】
本発明による電源配線方法を実行するためのコンピュータプログラムは、図17に示される処理の流れの手順に従って、上記実施例で説明されたような補強電源線を生成する。
【0078】
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。
【発明の効果】
本発明によれば、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【図面の簡単な説明】
【図1】従来技術において直交する補強電源線を布設した場合の電源配線を示す図である。
【図2】本発明の基本となる補強電源線の構成を示す図である。
【図3】本発明による補強電源線の第1の実施例を示す図である。
【図4】図3の電源配線の断面構成の一例を示す図である。
【図5】図3の電源配線の断面構成の別の一例を示す図である。
【図6】図3の電源配線の断面構成の更に別の一例を示す図である。
【図7】本発明による補強電源線の第2の実施例を示す図である。
【図8】ビアをセルの中心付近に設けた場合に起こりえる問題について説明するための図である。
【図9】図8の電源配線の断面構成を示す図である。
【図10】図7の電源配線の断面構成の一例を示す図である。
【図11】図7の電源配線の断面構成の別の一例を示す図である。
【図12】図7の電源配線の断面構成の更に別の一例を示す図である。
【図13】本発明による更なる実施例を説明するための図である。
【図14】本発明による補強電源線の第3の実施例を示す図である。
【図15】図14の本発明による補強電源線の構成の変形例を示す図である。
【図16】図14の本発明による補強電源線の構成の更なる変形例を示す図である。
【図17】本発明による補強電源線を配置する電源配線方法を示すフローチャートである。
【図18】本発明による電源配線方法を実行する装置の構成を示す図である。
【符号の説明】
21、22 電源幹線
23、24 固定電源線
25、26 補強電源線
27、28 セル
30、31、32 ビア
510 コンピュータ
520 ディスプレイ装置
523 通信装置
521 キーボード
522 マウス
【発明の属する技術分野】
本発明は、一般に半導体集積回路及びその設計方法に関し、詳しくは補強電源線を配置された半導体集積回路、及びその電源配線方法に関する。
【従来の技術】
半導体集積回路の内部セルに電源を供給する電源配線は、集積度が高くなるほどより細く形成する必要があるが、細い電源配線に大きな電流を流すと電流密度が大きくなってしまう。大きい電流密度の電流が長い時間流れると、電源配線の分子間距離が互いに開いてしまうエレクトロマイグレーション現象が発生する。これは経年劣化であり、長時間かけて徐々に電流が流れ難くなる。
【0002】
半導体集積回路のエレクトロマイグレーション耐性を強化する電源配線方法として、特許文献1又は特許文献2等に記された技術が知られている。これらの技術は、半導体素子又はユニットセルに給電する電源配線に対し、これと直交する方向に電源補強線を布設している。
【0003】
また従来技術として、特許文献3に記された技術も知られている。この技術は半導体素子又はユニットセルに給電する電源配線を太くすることにより、電源補強の機能を実現している。
【0004】
【特許文献1】
特開平5−190671号公報
【0005】
【特許文献2】
特開平6−85066号公報
【0006】
【特許文献3】
特開平8−264656号公報
【発明が解決しようとする課題】
直交する補強電源線を布設する従来技術は、エレクトロマイグレーション耐性を強化する可能性があるが、根本的な解決にはならない。
【0007】
図1は、直交する補強電源線を布設した場合の電源配線を示す図である。図1において、電源幹線11及び12から、設計時にセルに付随して固定的に発生される固定電源線13及び14に、それぞれ電源電位及びグランド電位が供給される。この固定電源線13及び14は、コンタクト位置17及び18において、この位置にあるセルに接続される。また複数の固定電源線13及び14は、それに直交する方向に延展する補強電源線15及び16によって互いに接続されている。この補強電源線15及び16によりセルへの電源供給経路として複数の経路を確保し、特定のセルによる電流消費が多い場合等でも、特定の電源線を流れる電流の電流密度が高くならないようにしている。
【0008】
しかしながら図1の構成では、セルへのコンタクト位置17及び18が図面右側の電源幹線11及び12に近い。従って、これらの電源幹線11及び12から固定電源線13及び14を介して直接に供給される電源の経路は、補強電源線15及び16を間接的に迂回して供給される電源の経路と比較して配線抵抗が大幅に小さい。この結果、直接に供給される電源の経路において電流密度が大きくなってしまう。また補強電源線13及び14を布設すると、直下のセルに対する信号配線ができなくなるという問題点がある。
【0009】
固定電源線を太くする従来技術は、敷き詰め型(チャネルレス)のレイアウト設計に適用すると設計ルール違反となるため現実的ではない。また電源幹線間を広くする結果となるので、冗長なレイアウトとなり、一般信号配線のレイアウトに余計な制限を加えるという問題がある。
【0010】
以上を鑑みて本発明は、一般信号配線に対する制限を必要最低限に抑えながら補強電源線を配置した半導体集積回路、及びそのような補強電源線を配置する電源配線方法を提供することを目的とする。
【課題を解決するための手段】
本発明による半導体集積回路は、半導体基板上に形成されるセルと、電源幹線と、第1のビアを介して該セルに接続され該電源幹線上の第1の位置から該セルに電源を供給する第1の配線層に設けられる固定電源線と、該固定電源線と重なるように平行して第2の配線層に設けられ、第2の位置で第2のビアを介して該固定電源線に接続され該電源幹線上の該第1の位置から該固定電源線に電源を供給する補強電源線を含むことを特徴とする。
【0011】
上記半導体集積回路では、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【0012】
また本発明による補強電源線を配置する電源配線方法は、レイアウトデータから電源補強が必要なセルの位置を抽出し、該セルの位置に基づいて関連する固定電源線及び電源幹線を抽出し、該固定電源線上にビアを生成し、該固定電源線とは別の層において該固定電源線と重なり平行するように、該生成したビアと該電源幹線とを接続する補強電源線をレイアウトする各段階を含む。
【0013】
上記電源配線方法では、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【発明の実施の形態】
以下に、本発明の実施例を添付の図面を用いて詳細に説明する。
【0014】
図2は、本発明の基本となる補強電源線の構成を示す図である。
【0015】
図2において、電源幹線21及び22から、設計時にセルに付随して固定的に発生される固定電源線23及び24に、それぞれ電源電位及びグランド電位が供給される。この固定電源線23及び24は、例えばセル27及び28に接続される。これら固定電源線23及び24が形成されるのとは異なる配線層に、補強電源線25及び26が、固定電源線23及び24と重なるように平行して設けられる。補強電源線25及び26は、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25及び26はまた更に、ビア31を介して図面右側の電源幹線21及び22にそれぞれ接続される。図面左側の電源幹線21及び22はビア32に接続される。
【0016】
この補強電源線25及び26によりセルへの電源供給経路として複数の経路を確保し、特定のセルによる電流消費が多い場合等でも、特定の電源線を流れる電流の電流密度が高くならないようにしている。なお図示の都合上、補強電源線25及び26は固定電源線23及び24よりも幅が狭いものとして示されているが、幅に関して特に制限は無く、固定電源線23及び24と同一幅であっても異なる幅であってもよい。
【0017】
補強電源線25及び26の配線層は、例えば以下の表1のようにして一意に決定することができる。
【0018】
表1
固定電源線 M1 M2
電源幹線 M2又はM4又はM6 M1又はM3又はM5
補強電源線 M3 M4
ここでM1乃至M6はメタル1層乃至6層を示す。このように、縦方向に配線する電源幹線を偶数番目の配線層に配置する場合には、横方向に配線する固定電源線を第1層とし、同じく横方向に配線する補強電源線を第3層とする。また縦方向に配線する電源幹線を奇数番目の配線層に配置する場合には、横方向に配線する固定電源線を第2層とし、同じく横方向に配線する補強電源線を第4層とする。
【0019】
このようにして、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【0020】
図3は、本発明による補強電源線の第1の実施例を示す図である。図3において、図2と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0021】
図3において、補強電源線25a及び26aは、図2の補強電源線25及び26よりも短く、図面右側の電源幹線21及び22にのみ接続されている。この例では、補強電源線25a及び26aはセル27及び28にのみ電源を供給しているので、これらのセル27及び28の近傍に存在する電源幹線21及び22から電源を補強すれば充分である。また図2の構成と比較して、余計な補強電源線を無くすことで、水平方向の信号配線の自由度を向上させることができる。
【0022】
図4は、図3の電源配線の断面構成の一例を示す図である。図4において、図3と同一の構成要素は同一の番号で参照する。
【0023】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、及びメタル3層M3が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル2層M2には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25a及び26aが設けられる。
【0024】
補強電源線25a及び26aは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。また電源幹線21及び22は、ビア33を介してそれぞれ固定電源線23及び24に接続される。
【0025】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22からビア33、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0026】
図5は、図3の電源配線の断面構成の別の一例を示す図である。図5において、図3と同一の構成要素は同一の番号で参照する。
【0027】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル4層M4には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25a及び26aが設けられる。
【0028】
補強電源線25a及び26aは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。またビア31の直下の位置において、補強電源線25a及び26aが、ビア34を介してそれぞれ固定電源線23及び24に接続される。
【0029】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22から補強電源線25a及び26aを間に挟むビア31及びビア34、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0030】
図6は、図3の電源配線の断面構成の更に別の一例を示す図である。図6において、図3と同一の構成要素は同一の番号で参照する。
【0031】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には電源幹線21及び22が設けられ、メタル2層M2には固定電源線23及び24が設けられる。またメタル4層M4には補強電源線25a及び26aが設けられる。
【0032】
固定電源線23及び24は、ビア35を介してそれぞれ電源幹線21及び22に接続される。補強電源線25a及び26aは、固定電源線23及び24を間に挟むビア31及びビア35を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25a及び26aは更に、ビア30を介してそれぞれ固定電源線23及び24に接続される。補強電源線25a及び26aがビア30を介して固定電源線23及び24に接続される位置の直下において、固定電源線23及び24が、ビア41を介してシリコン基板40に形成されたセルに接続される。
【0033】
従って、シリコン基板40に形成されたセルには、電源幹線21及び22からビア35、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22から固定電源線23及び24を間に挟むビア35及びビア31、補強電源線25a及び26a、及び固定電源線23及び24を間に挟むビア30及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0034】
図7は、本発明による補強電源線の第2の実施例を示す図である。図7において、図2と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0035】
図7において、補強電源線25b及び26bは、図2の補強電源線25及び26よりも短く、図面右側の電源幹線21及び22にのみ接続されている。補強電源線25b及び26bがビア30bを介してセル29に接続されるが、このビア30bは、セル29の枠上に設けられている。このようにビアをセルの枠上に設けることの利点について以下に説明する。
【0036】
図8は、ビアをセルの中心付近に設けた場合に起こりえる問題について説明するための図である。
【0037】
図8においては、補強電源線25b及び26bは、セル29の中心付近の位置でビア52を介して固定電源線23及び24に接続されている。また固定電源線23及び24は、ビア51を介して、セル29に接続されている。ここでビア51は、セル29に最も距離が近い電源幹線21及び22からみて、ビア52よりも遠い位置に設けられている。
【0038】
図9は、図8の電源配線の断面構成を示す図である。
【0039】
図9に示されるように、セル29に最も距離が近い電源幹線21及び22からみて、ビア51はビア52よりも遠い位置に設けられているので、固定電源線23及び24の丸で囲まれている部位Aにおいて、電流密度が高い状態となってしまう。即ち、電源幹線21及び22から固定電源線23及び24を介して直接供給される電流と、電源幹線21及び22から補強電源線25b及び26bを介して供給される電流とが、部位Aにおいて合流することで、部位Aにおける電流密度が高くなりエレクトロマイグレーションの問題が発生してしまう。
【0040】
それに対して図7に示す第2の実施例の構成では、補強電源線25b及び26bと固定電源線23及び24とを接続するビア30bは、セル29に最も近い電源幹線21及び22からみて、セル29の遠い側の枠上に設けられている。この場合、固定電源線23及び24からセル29へ電気接続するビアは、ビア30bよりも上記電源幹線21及び22に近い位置に設けられることになる。従って、直接経路からの電流と電源補強経路からの電流とが固定電源線23及び24上で合流することはなく、図9の部位Aのように電流密度が高くなりエレクトロマイグレーションの問題が発生することはない。
【0041】
上記説明でビア30bは、セル29に最も近い電源幹線21及び22からみて、セル29の遠い側の枠上に設けられているとしたが、更に遠い位置である例えば図7に矢印でBとして示される位置などに設けてもよい。
【0042】
図10は、図7の電源配線の断面構成の一例を示す図である。図10において、図7と同一の構成要素は同一の番号で参照する。
【0043】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、及びメタル3層M3が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル2層M2には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25b及び26bが設けられる。
【0044】
シリコン基板40に形成されたセルには、電源幹線21及び22からビア33、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0045】
図11は、図7の電源配線の断面構成の別の一例を示す図である。図11において、図7と同一の構成要素は同一の番号で参照する。
【0046】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には固定電源線23及び24が設けられ、メタル4層M4には電源幹線21及び22が設けられる。またメタル3層M3には補強電源線25b及び26bが設けられる。
【0047】
シリコン基板40に形成されたセルには、電源幹線21及び22から補強電源線25b及び26bを間に挟むビア31及びビア34、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0048】
図12は、図7の電源配線の断面構成の更に別の一例を示す図である。図12において、図7と同一の構成要素は同一の番号で参照する。
【0049】
シリコン基板40の上部に、メタル1層M1、メタル2層M2、メタル3層M3、及びメタル4層M4が設けられる。メタル1層M1には電源幹線21及び22が設けられ、メタル2層M2には固定電源線23及び24が設けられる。またメタル4層M4には補強電源線25b及び26bが設けられる。
【0050】
シリコン基板40に形成されたセルには、電源幹線21及び22からビア35、固定電源線23及び24、及びビア41を介して電源が供給される経路と、電源幹線21及び22から固定電源線23及び24を間に挟むビア35及びビア31、補強電源線25b及び26b、ビア30b、固定電源線23及び24、及びビア41を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0051】
図13は、本発明による更なる実施例を説明するための図である。図13において、(a)はセルのレイアウトの一例を示し、(b)は当該セルの回路構成を示す。
【0052】
図13(b)に示されるように、このセルの回路は、インバータ61乃至65を含む。この回路は、例えばクロックバッファ等として使用される。(a)に示されるように、セル70は、ポリシリコンゲート71乃至75、P型拡散領域76、N型拡散領域77、VDD側固定電源線78、VSS側固定電源線79、信号配線80、及びビア81を含む。ポリシリコンゲート71乃至75のそれぞれが、インバータ61乃至65を構成するPMOSトランジスタ及びNMOSトランジスタのゲート端子に相当し、信号配線80がインバータ61乃至65の入出力間を接続する信号配線に相当する。固定電源線78及び79は、ビア81を介してセル70に接続される。
【0053】
図14は、本発明による補強電源線の第3の実施例を示す図である。図14において、図13と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0054】
補強電源線25c及び26cは、ビア31を介して電源幹線21及び22と接続され、それぞれ電源電位及びグランド電位を受け取る。補強電源線25c及び26cは更に、ビア30cを介してそれぞれ固定電源線78及び79に接続される。補強電源線25c及び26cがビア30cを介して固定電源線78及び79に接続される位置の直下において、固定電源線78及び79が、ビア81を介してシリコン基板90に形成されたセル70に接続される。また電源幹線21及び22は、ビア33を介してそれぞれ固定電源線78及び79に接続される。
【0055】
従って、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25c及び26c、及び固定電源線78及び79を間に挟むビア30c及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0056】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合には、これら複数のコンタクトの位置と同一の位置において、補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。
【0057】
図15は、図14の本発明による補強電源線の構成の変形例を示す図である。図15において、図14と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0058】
図15の構成は、図14の構成と比較して、補強電源線と固定電源線とのビアによる接続位置がセル70の中心位置にのみ設けられている点が異なる。この構成では、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25d及び26d、セル中心にあるビア30d、固定電源線78及び79、及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0059】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合であっても、セル中心位置において補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。この場合、電源幹線21及び22からみてセル中心点よりも遠い部位においては、電流密度が高くなり、充分なエレクトロマイグレーション耐性向上の効果が実現されない可能性がある。しかし固定電源線からセルへのコンタクト位置を検出してその位置に補強電源線からのビアを発生させるという設計時の処理の必要が無く、図14の構成と比較して設計が容易になるという利点がある。
【0060】
図16は、図14の本発明による補強電源線の構成の更なる変形例を示す図である。図16において、図14と同一の構成要素は同一の番号で参照し、その説明は特に必要でない場合には省略する。
【0061】
図16の構成は、図14の構成と比較して、補強電源線と固定電源線とのビアによる接続位置がセル70の外枠位置にのみ設けられている点が異なる。この構成では、シリコン基板90に形成されたセル70には、電源幹線21及び22からビア33、固定電源線78及び79、及びビア81を介して電源が供給される経路と、電源幹線21及び22からビア31、補強電源線25e及び26e、セル外枠上にあるビア30e、固定電源線78及び79、及びビア81を介して電源が供給される経路との2つの電源伝達経路が存在することになる。
【0062】
このように固定電源線からセルへのビアによるコンタクトが複数ある場合であっても、セル外枠位置において補強電源線と固定電源線とをビアにより接続することで、エレクトロマイグレーション耐性を向上させることができる。この場合、電源幹線21及び22からみて最も遠い位置にあるセル70の外枠上において補強電源線と固定電源線とをビアにより接続するので、セル70への供給電流が合流して電流密度が高くなる部位は無く、充分なエレクトロマイグレーション耐性向上の効果が期待できる。更に、固定電源線からセルへのコンタクト位置を検出してその位置に補強電源線からのビアを発生させるという設計時の処理の必要が無く、図14の構成と比較して設計が容易になるという利点がある。
【0063】
図17は、本発明による補強電源線を配置する電源配線方法を示すフローチャートである。
【0064】
主な入力データは、配線前レイアウトデータ、要電源補強セルリストデータ、電源補強配線層指定データの3つである。
【0065】
一般的な要電源補強セルリストデータは、電力解析シミュレーションから電流消費量の多いセルを抽出し、配置情報を勘案して電源補強が必要な位置にあるセルをリストアップすることで作成される。要電源補強セルリストデータをより簡単に作成するために、例えばクロックバッファやクロックインバータ等のクロックコンポーネントだけをリストアップしてもよい。電源補強配線層指定データは、補強電源線を配線する層を指定するデータであり、例えば前述の表1のようにして、固定電源線及び電源幹線の配線層を勘案して決定することができる。
【0066】
まずステップST1で、要補強電源セル位置を抽出する。具体的には、要電源補強セルリスト中のセルそれぞれに対して、配線前レイアウトデータから位置情報を抽出する。
【0067】
次にステップST2で、固定電源線および電源幹線位置を抽出する。具体的には、ステップST1で抽出したセル位置から固定電源線位置を特定する。電源幹線位置は、固定電源線を辿って抽出することが可能であり、またセル位置から電源幹線位置を特定することも可能である。
【0068】
ステップST3で、電源補強線の幅を確定する。電源補強線の幅は、電力解析シミュレーション結果から算出することができる。また要電源補強セルリスト中から、補強すべき電源線(電源幹線に挟まれた線分)に接続しているセル品種及びセル数に関する情報を抽出し、これに応じて電源補強線の幅を決めることも可能である。最も簡単な手順として、電源補強線の幅を固定値として入力データとして与えてもよい。
【0069】
ステップST4で、固定電源線上にビアを生成する。例えば、ステップST1で抽出したセル位置とステップST2で抽出した電源幹線位置とから、生成するビアの位置を特定してビアを生成する。この際、電源補強配線層指定データが指示する配線層と固定電源配線層とを認識して、必要であればスタックビアとしてビアを生成する。
【0070】
ステップST5で、電源補強線を生成する。具体的には、ステップST4で生成したビアとステップST2で位置情報を抽出した電源幹線とを接続するように、補強電源線をレイアウトする。
【0071】
以上の処理により、電源補強が必要なセルに対して補強電源線を配置することができる。
【0072】
図18は、本発明による電源配線方法を実行する装置の構成を示す図である。
【0073】
図18に示されるように、本発明による電源配線方法を実行する装置は、例えばパーソナルコンピュータやエンジニアリングワークステーション等のコンピュータにより実現される。図18の装置は、コンピュータ510と、コンピュータ510に接続されるディスプレイ装置520、通信装置523、及び入力装置よりなる。入力装置は、例えばキーボード521及びマウス522を含む。コンピュータ510は、CPU511、RAM512、ROM513、ハードディスク等の二次記憶装置514、可換媒体記憶装置515、及びインターフェース516を含む。
【0074】
キーボード521及びマウス522は、ユーザとのインターフェースを提供するものであり、コンピュータ510を操作するための各種コマンドや要求されたデータに対するユーザ応答等が入力される。ディスプレイ装置520は、コンピュータ510で処理された結果等を表示すると共に、コンピュータ510を操作する際にユーザとの対話を可能にするために様々なデータ表示を行う。通信装置523は、遠隔地との通信を行なうためのものであり、例えばモデムやネットワークインターフェース等よりなる。
【0075】
本発明による電源配線方法は、コンピュータ510が実行可能なコンピュータプログラムとして提供される。このコンピュータプログラムは、可換媒体記憶装置515に装着可能な記憶媒体Mに記憶されており、記憶媒体Mから可換媒体記憶装置515を介して、RAM512或いは二次記憶装置514にロードされる。或いは、このコンピュータプログラムは、遠隔地にある記憶媒体(図示せず)に記憶されており、この記憶媒体から通信装置523及びインターフェース516を介して、RAM512或いは二次記憶装置514にロードされる。
【0076】
キーボード521及び/又はマウス522を介してユーザからプログラム実行指示があると、CPU511は、記憶媒体M、遠隔地記憶媒体、或いは二次記憶装置514からプログラムをRAM512にロードする。CPU511は、RAM512の空き記憶空間をワークエリアとして使用して、RAM512にロードされたプログラムを実行し、適宜ユーザと対話しながら処理を進める。なおROM513は、コンピュータ510の基本動作を制御するための制御プログラムが格納されている。
【0077】
本発明による電源配線方法を実行するためのコンピュータプログラムは、図17に示される処理の流れの手順に従って、上記実施例で説明されたような補強電源線を生成する。
【0078】
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。
【発明の効果】
本発明によれば、固定電源線とは異なる配線層に固定電源線と重なるように平行して補強電源線を配置することで、他の一般の信号配線のレイアウトに対する制限を必要最低限に抑えながら、電源供給を補強してエレクトロマイグレーション耐性を向上させることが可能になる。
【図面の簡単な説明】
【図1】従来技術において直交する補強電源線を布設した場合の電源配線を示す図である。
【図2】本発明の基本となる補強電源線の構成を示す図である。
【図3】本発明による補強電源線の第1の実施例を示す図である。
【図4】図3の電源配線の断面構成の一例を示す図である。
【図5】図3の電源配線の断面構成の別の一例を示す図である。
【図6】図3の電源配線の断面構成の更に別の一例を示す図である。
【図7】本発明による補強電源線の第2の実施例を示す図である。
【図8】ビアをセルの中心付近に設けた場合に起こりえる問題について説明するための図である。
【図9】図8の電源配線の断面構成を示す図である。
【図10】図7の電源配線の断面構成の一例を示す図である。
【図11】図7の電源配線の断面構成の別の一例を示す図である。
【図12】図7の電源配線の断面構成の更に別の一例を示す図である。
【図13】本発明による更なる実施例を説明するための図である。
【図14】本発明による補強電源線の第3の実施例を示す図である。
【図15】図14の本発明による補強電源線の構成の変形例を示す図である。
【図16】図14の本発明による補強電源線の構成の更なる変形例を示す図である。
【図17】本発明による補強電源線を配置する電源配線方法を示すフローチャートである。
【図18】本発明による電源配線方法を実行する装置の構成を示す図である。
【符号の説明】
21、22 電源幹線
23、24 固定電源線
25、26 補強電源線
27、28 セル
30、31、32 ビア
510 コンピュータ
520 ディスプレイ装置
523 通信装置
521 キーボード
522 マウス
Claims (10)
- 半導体基板上に形成されるセルと、
電源幹線と、
第1のビアを介して該セルに接続され該電源幹線上の第1の位置から該セルに電源を供給する第1の配線層に設けられる固定電源線と、
該固定電源線と重なるように平行して第2の配線層に設けられ、第2の位置で第2のビアを介して該固定電源線に接続され該電源幹線上の該第1の位置から該固定電源線に電源を供給する補強電源線
を含むことを特徴とする半導体集積回路。 - 該電源幹線は第1の方向に延展し、該固定電源線は該第1の方向に直交する第2の方向に延展することを特徴とする請求項1記載の半導体集積回路。
- 該電源幹線は、該第1の配線層及び該第2の配線層とは異なる第3の配線層に設けられることを特徴とする請求項1記載の半導体集積回路。
- 該第2のビアが設けられる該第2の位置は該第1のビアが設けられる位置と同一の平面上位置であることを特徴とする請求項1記載の半導体集積回路。
- 該第1のビア及び該第2のビアはそれぞれ複数個設けられることを特徴とする請求項4記載の半導体集積回路。
- 該第2のビアが設けられる該第2の位置は、該半導体集積回路上の該セルの領域のうち該電源幹線から最も遠い位置である該セルの枠上の位置であることを特徴とする請求項1記載の半導体集積回路。
- 該第2のビアが設けられる該第2の位置は、該半導体集積回路上の該セルの領域のうち該電源幹線から最も遠い位置である該セルの枠上の位置よりも更に遠い位置であることを特徴とする請求項1記載の半導体集積回路。
- 別の電源幹線を更に含み、該補強電源線及び該固定電源線は該別の電源幹線にも接続されていることを特徴とする請求項1記載の半導体集積回路。
- レイアウトデータから電源補強が必要なセルの位置を抽出し、
該セルの位置に基づいて関連する固定電源線及び電源幹線を抽出し、
該固定電源線上にビアを生成し、
該固定電源線とは別の層において該固定電源線と重なり平行するように、該生成したビアと該電源幹線とを接続する補強電源線をレイアウトする
各段階を含むことを特徴とする補強電源線を配置する電源配線方法。 - レイアウトデータから電源補強が必要なセルの位置を抽出し、
該セルの位置に基づいて関連する固定電源線及び電源幹線を抽出し、
該固定電源線上にビアを生成し、
該固定電源線とは別の層において該固定電源線と重なり平行するように、該生成したビアと該電源幹線とを接続する補強電源線をレイアウトする
各段階をコンピュータに実行させることを特徴とするコンピュータプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002329903A JP2004165453A (ja) | 2002-11-13 | 2002-11-13 | 半導体集積回路、電源配線方法、及びコンピュータプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002329903A JP2004165453A (ja) | 2002-11-13 | 2002-11-13 | 半導体集積回路、電源配線方法、及びコンピュータプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004165453A true JP2004165453A (ja) | 2004-06-10 |
Family
ID=32807768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002329903A Withdrawn JP2004165453A (ja) | 2002-11-13 | 2002-11-13 | 半導体集積回路、電源配線方法、及びコンピュータプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004165453A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006100673A (ja) * | 2004-09-30 | 2006-04-13 | Matsushita Electric Ind Co Ltd | 半導体集積回路 |
JP2007157790A (ja) * | 2005-11-30 | 2007-06-21 | Toshiba Corp | 半導体集積回路 |
JP2009117625A (ja) * | 2007-11-07 | 2009-05-28 | Sony Corp | 半導体集積回路 |
-
2002
- 2002-11-13 JP JP2002329903A patent/JP2004165453A/ja not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006100673A (ja) * | 2004-09-30 | 2006-04-13 | Matsushita Electric Ind Co Ltd | 半導体集積回路 |
JP2007157790A (ja) * | 2005-11-30 | 2007-06-21 | Toshiba Corp | 半導体集積回路 |
JP2009117625A (ja) * | 2007-11-07 | 2009-05-28 | Sony Corp | 半導体集積回路 |
US7750681B2 (en) | 2007-11-07 | 2010-07-06 | Sony Corporation | Semiconductor integrated circuit |
JP4636077B2 (ja) * | 2007-11-07 | 2011-02-23 | ソニー株式会社 | 半導体集積回路 |
US7944243B2 (en) | 2007-11-07 | 2011-05-17 | Sony Corporation | Semiconductor integrated circuit |
US8299818B2 (en) | 2007-11-07 | 2012-10-30 | Sony Corporation | Semiconductor integrated circuit |
US8742793B2 (en) | 2007-11-07 | 2014-06-03 | Sony Corporation | Semiconductor integrated circuit |
US9024662B2 (en) | 2007-11-07 | 2015-05-05 | Sony Corporation | Semiconductor integrated circuit |
KR101611888B1 (ko) | 2007-11-07 | 2016-04-14 | 소니 주식회사 | 반도체 집적회로 |
USRE47629E1 (en) | 2007-11-07 | 2019-10-01 | Sony Corporation | Semiconductor integrated circuit |
USRE48941E1 (en) | 2007-11-07 | 2022-02-22 | Sony Group Corporation | Semiconductor integrated circuit |
USRE49986E1 (en) | 2007-11-07 | 2024-05-28 | Sony Group Corporation | Semiconductor integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3461443B2 (ja) | 半導体装置、半導体装置の設計方法、記録媒体および半導体装置の設計支援装置 | |
US20070101306A1 (en) | Methods, systems, and media to improve manufacturability of semiconductor devices | |
US8219965B2 (en) | Layout design method of semiconductor integrated circuit including regenerating a cell layout to set first and second distances and generating library data | |
JP3231741B2 (ja) | スタンダードセル、スタンダードセル列、スタンダードセルの配置配線装置および配置配線方法 | |
JP2008070924A (ja) | 半導体集積回路設計方法、半導体集積回路設計プログラム、及び半導体集積回路設計装置 | |
US20080203562A1 (en) | Method for designing semiconductor device and semiconductor device | |
JP4368641B2 (ja) | 電源パッドの数及び位置見積もり方法、チップサイズ見積もり方法及び設計装置 | |
US7996796B2 (en) | Method and program for designing semiconductor device | |
JP2002334933A (ja) | タップ・セルを有する集積回路及び集積回路にタップ・セルを配置するための方法 | |
TW201015365A (en) | Post-routing power supply modification for an integrated circuit | |
JP5060991B2 (ja) | 集積回路の設計支援装置、集積回路の設計支援方法、集積回路の設計支援プログラム、及びこのプログラムが記録された記録媒体 | |
US7861204B2 (en) | Structures including integrated circuits for reducing electromigration effect | |
Hsu et al. | Multilayer global routing with via and wire capacity considerations | |
US20050146380A1 (en) | Analysis apparatus for semiconductor LSI circuit | |
JP2004165453A (ja) | 半導体集積回路、電源配線方法、及びコンピュータプログラム | |
US9811625B2 (en) | Computer-implemented method and computer program for generating a layout of a circuit block of an integrated circuit | |
JPH10173058A (ja) | 配置配線方法 | |
JP2008235626A (ja) | 半導体集積回路及び半導体集積回路の設計プログラム | |
Jing et al. | UTACO: A unified timing and congestion optimization algorithm for standard cell global routing | |
JP2004006514A (ja) | ゲートアレイ半導体装置の基本セル,ゲートアレイ半導体装置,および,ゲートアレイ半導体装置のレイアウト方法 | |
JP4824785B2 (ja) | コアサイズ見積もり方法、チップサイズ見積もり方法及び設計装置 | |
Ratna et al. | A post-routing stage IR drop reduction technique with less routing resources | |
Taumar et al. | An Efficient Metal ECO Methodology for Addressing Timing Violations with 10X Turnaround Time | |
US20230229842A1 (en) | Method of fabricating semiconductor device | |
JP2011222895A (ja) | 半導体集積回路の設計方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060207 |