JP4764958B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP4764958B2
JP4764958B2 JP2011508736A JP2011508736A JP4764958B2 JP 4764958 B2 JP4764958 B2 JP 4764958B2 JP 2011508736 A JP2011508736 A JP 2011508736A JP 2011508736 A JP2011508736 A JP 2011508736A JP 4764958 B2 JP4764958 B2 JP 4764958B2
Authority
JP
Japan
Prior art keywords
pixel
phase difference
microlens
difference detection
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011508736A
Other languages
English (en)
Other versions
JPWO2011061998A1 (ja
Inventor
亘平 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011508736A priority Critical patent/JP4764958B2/ja
Application granted granted Critical
Publication of JP4764958B2 publication Critical patent/JP4764958B2/ja
Publication of JPWO2011061998A1 publication Critical patent/JPWO2011061998A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Description

本発明は、複数の撮影専用画素と複数の位相差検出画素とを備え、位相差検出画素から得られる画像に基づいて位相差方式のオートフォーカスを行う固体撮像装置に関する。
CCDイメージセンサやCMOSイメージセンサなどの固体撮像装置を備え、デジタルの画像を生成するデジタルカメラが普及している。デジタルカメラの多くは、撮影レンズの焦点を自動的に調節するオートフォーカス(AF)機能を備えており、AF機能として、コントラスト検出方式が広く採用されている。コントラスト検出方式は、被写体までの距離を測定する専用のセンサやAF用の固体撮像装置などを別途設ける必要がないため、比較的安価にAF機能を実現することができるといった利点がある。
しかし、コントラスト検出方式は、フォーカスレンズを移動させて複数のコントラスト評価値を取得しなければならないことから、他の方式に比べて合焦までに時間が掛かるという問題がある。この問題に対して、特許文献1では、固体撮像装置の撮像面上に凸部及び凸部を形成し、この凸部及び凹部にAF用光電変換素子を設けている。この構成では、凸部及び凹部に設けた各AF用光電素子のコントラスト評価値を比較することにより、焦点が前側か後側のいずれにあるのかを1度の撮影で判定することができるため、フォーカスレンズの移動範囲(サーチ範囲)が狭まり、AF処理が高速化する。
しかしながら、特許文献1の構成では、フォーカスレンズの移動範囲を狭めることができるが、狭めた範囲内においてはフォーカスレンズを移動させなければならないため、AF処理の高速化には限界がある。デジタルカメラでは、機能の充実化、及び低価格が進められており、コストアップを招くことなく、より高速にAF処理を行えるようにすることが望まれている。
こうした要望に応えるため、1度の撮影で焦点検出可能とする位相差AF用固体撮像装置が特許文献2などで提案されている。位相差AF用固体撮像装置は、フォトダイオード(PD)の受光面の中心位置に対し、光軸をずらしてマイクロレンズを配置した複数の第1画素と、PDの受光面の中心位置に対し、第1画素とは反対の方向に光軸を同じ量だけずらしてマイクロレンズを配置した複数の第2画素とを備える。
位相差AF用固体撮像装置では、マイクロレンズのずれ方向に応じて、第1画素と第2画素とが、それぞれ入射する光の角度に選択性を持つ。位相差AF用固体撮像装置をデジタルカメラなどの撮像装置に適用した場合、各第1画素によって構成される画像と各第2画素によって構成される画像とには、デジタルカメラの撮影レンズの合焦状態に応じてずれ(位相差)が生じる。各画像のずれ方向及びずれ量は、撮影レンズの焦点のずれ方向及びずれ量に対応している。各画像は、撮影レンズが合焦しているときに一致し、焦点がすれるほど、そのずれ量も大きくなる。従って、位相差AF用固体撮像装置では、各第1画素によって構成される画像と、各第2画素によって構成される画像とのずれ量、及びそのずれの方向を検知することで、撮影レンズのフォーカス調整量を求めることができる。
このように、位相差AF用固体撮像装置を用いた場合には、フォーカスレンズを移動させる必要がないので、コントラスト検出方式のAFよりも高速なAFを行うことができる。また、コントラスト検出方式と同様に、専用のセンサやAF用の固体撮像装置などを設ける必要がないので、コストアップを招くこともない。
第1画素及び第2画素では、マイクロレンズをPDの受光面の中心位置に対して光軸をずらす必要があるため、マイクロレンズを小さくしなければならず、マイクロレンズを小さくした分だけ通常の画素よりも撮影時の受光感度が低下する。このため、位相差AF用固体撮像装置では、第1画素と第2画素とからなる位相差検出画素に加えて、通常の画素からなる撮影専用画素を設け、位相差検出画素で位相差AFを行い、撮影専用画素で被写体の撮影を行うことが行なわれている。
特開2004−361611号公報 特許第2959142号公報
しかしながら、位相差検出画素と撮影専用画素とを配列して撮像面を構成すると、撮影専用画素は、位相差検出画素に隣接する箇所で受光量が高くなるという問題がある。位相差検出画素のマイクロレンズが小さいため、位相差検出画素と撮影専用画素とが隣接する箇所では、撮影専用画素同士が隣接している箇所に比べてマイクロレンズ間に生じる隙間が大きい。位相差検出画素に隣接する撮影専用画素の受光量の増加は、この隙間から入射した光を撮影専用画素のPDが受光することに起因している。
上記のような撮影専用画素の受光量の増加は、撮影画像にノイズとして表れる。このノイズを抑えるためには、撮影画像を形成する際に、位相差検出画素に隣接する撮影専用画素の受光量の増加分を補正することが考えられる。しかし、補正処理を行うと、その分だけ画像形成に余計に時間が掛かってしまう。このため、各撮影専用画素のPDに均一な光量の光が入射するよう位相差AF用固体撮像装置を構成することが望まれている。
本発明は、上記課題を鑑みてなされたものであり、位相差検出画素と撮影専用画素とを配列して撮像面が構成され、各撮影専用画素のPDに略均一な光量の光を入射させることを可能とする位相差AF用固体撮像装置を提供することを目的とする。
上記目的を達成するため、本発明は、光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列されたマイクロレンズが他のマイクロレンズより小さく形成された複数の撮影専用画素と、を備えたことを特徴とする。
前記複数の撮影専用画素は、3種以上の大きさのマイクロレンズを有し、前記位相差検出画素に近付くに連れてマイクロレンズの大きさが段階的に小さくなっていることがより好適である。
隣接する前記撮影専用画素のマイクロレンズを小さくすることによって生じる空き領域に一部を入り込ませることによって、前記位相差検出画素のマイクロレンズを極力大きく形成することが好ましい。
また、本発明は、光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列されたマイクロレンズの光電変換素子からの高さが、前記位相差検出画素のマイクロレンズの高さより低くされた複数の撮影専用画素と、を備えた構成でもよい。
前記各マイクロレンズが形成されるレンズ形成面には、前記位相差検出画素の周囲に配列された前記撮影専用画素に対応する箇所に凹部が形成され、この凹部の内底面にマイクロレンズを形成することにより、前記位相差検出画素の周囲に配列された前記撮影専用画素のマイクロレンズの高さが、前記位相差検出画素のマイクロレンズより低くされていることが好ましい。
前記レンズ形成面に深さの異なる複数の凹部を形成することにより、前記撮影専用画素のマイクロレンズの高さが、前記位相差検出画素に近付くに連れて段階的に低くされていることがより好適である。
前記位相差検出画素のマイクロレンズは、隣接する前記撮影専用画素のマイクロレンズの高さを低くすることによって生じた空間に一部が侵入していることが好ましい。
前記各マイクロレンズが形成されるレンズ形成面には、前記位相差検出画素に対応する箇所に凸部が形成され、この凸部の上にマイクロレンズを形成することにより、前記位相差検出画素のマイクロレンズの高さが、前記撮影専用画素のマイクロレンズよりも高くされている構成としてもよい。
また、本発明は、光電変換素子の受光面の中心と光軸とが略一致するように配置されたマイクロレンズを有する複数の撮影専用画素と、光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置された、前記撮影専用画素のマイクロレンズより小さなマイクロレンズを有し、該マイクロレンズの形状が、隣接する前記撮影専用画素との境界部分に向かって裾部が伸びた非球状である複数の位相差検出画素と、を備えた構成でもよい。
さらに、本発明は、光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列された光電変換素子の半導体基板上における高さが、前記位相差検出画素の光電変換素子の高さより低くされた複数の撮影専用画素と、を備えた構成でもよい。
半導体基板の表面には、前記位相差検出画素の周囲に配列された前記撮影専用画素に対応する箇所に凹部が形成され、この凹部の内底面に光電変換素子を形成することにより、前記位相差検出画素の周囲に配列された前記撮影専用画素の光電変換素子の高さが、前記位相差検出画素の光電変換素子の高さより低くされているが好ましい。
半導体基板の表面には、前記位相差検出画素に対応する箇所に凸部が形成され、この凸部の上に光電変換素子を形成することにより、前記位相差検出画素の光電変換素子の高さが、前記撮影専用画素の光電変換素子の高さより高くされた構成としてもよい。
前記凸部は、前記位相差検出画素のマイクロレンズの方向を向くように形成された傾斜面を有し、この傾斜面に前記位相差検出画素の光電変換素子が形成されていることが好ましい。
前記撮影専用画素と前記位相差検出画素とは、マイクロレンズの下にインナーレンズを有しており、前記各インナーレンズは、光電変換素子に焦点が合うように、光電変換素子との距離に応じて形状が変えられていることが好ましい。
また、本発明は、光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列された光電変換素子が、前記位相差検出画素と反対の方向に受光面が向くように傾けて形成された複数の撮影専用画素と、を備えた構成でもよい。
本発明では、位相差検出画素の周囲に配列された撮影専用画素のマイクロレンズを、他の撮影専用画素のマイクロレンズよりも小さく形成した。こうすれば、位相差検出画素の周囲の撮影専用画素では、マイクロレンズから光電変換素子に入射する光の光量が低くなる。従って、撮影専用画素のマイクロレンズと位相差検出画素のマイクロレンズとの間に生じる隙間から入射する光の分だけマイクロレンズからの光量が低くなるようにマイクロレンズの大きさを調節することで、各撮影専用画素の光電変換素子に略均一な光量の光を入射させることができる。
CCDイメージセンサの構成を概略的に示す説明図である。 画素群の構成を示す説明図である。 各画素の構成を概略的に示す部分断面図である。 位相差検出画素の周囲の撮影専用画素のマイクロレンズを段階的に小さくする例を示す説明図である。 周囲の撮影専用画素のマイクロレンズを小さくした上で位相差検出画素のマイクロレンズを極力大きくする例を示す説明図である。 位相差検出画素に隣接する撮影専用画素のマイクロレンズの高さを低くする場合の画素群の構成を示す説明図である。 位相差検出画素に隣接する撮影専用画素のマイクロレンズの高さを低くする場合の各画素の構成を概略的に示す部分断面図である。 位相差検出画素の周囲の撮影専用画素のマイクロレンズの高さを段階的に低くする例を示す部分断面図である。 周囲の撮影専用画素のマイクロレンズを低くした上で位相差検出画素のマイクロレンズを極力大きくする場合の画素群の構成を示す説明図である。 周囲の撮影専用画素のマイクロレンズを低くした上で位相差検出画素のマイクロレンズを極力大きくする場合の各画素の構成を概略的に示す部分断面図である。 位相差検出画素のマイクロレンズの高さを高くする例を示す部分断面図である。 位相差検出画素のマイクロレンズを非球状にする場合の画素群の構成を示す説明図である。 位相差検出画素のマイクロレンズを非球状にする場合の各画素の構成を概略的に示す部分断面図である。 位相差検出画素に隣接する撮影専用画素のPDの高さを低くする例を示す部分断面図である。 位相差検出画素に隣接する撮影専用画素のPDの高さを低くする場合の製造手順を示す説明図である。 位相差検出画素のPDの高さを高くする例を示す部分断面図である。 位相差検出画素のPDの高さを高くする場合の製造手順を示す説明図である。 各画素にインナーレンズを設けた例を示す部分断面図である。 位相差検出画素に隣接する撮影専用画素のPDを傾斜させた例を示す部分断面図である。 位相差検出画素に隣接する撮影専用画素のPDを傾斜させる場合の製造手順を示す説明図である。 位相差検出画素のPDを傾斜させた例を示す部分断面図である。 位相差検出画素のPDを傾斜させる場合の製造手順を示す説明図である。
[第1実施形態]
図1において、CCDイメージセンサ(固体撮像装置)10は、複数の画素11、複数の垂直転送路(VCCD)12、水平転送路(HCCD)13、及びフローティングディフュージョンアンプ(FDA)14からなる。画素11は、垂直方向及び水平方向に所定のピッチで配列され、入射光に応じた電荷を蓄積する。VCCD12は、各画素11が蓄積した電荷を垂直方向に転送する。HCCD13は、各VCCD12の末端に接続され、各VCCD12から転送された電荷を水平方向に転送する。FDA14は、HCCD13によって転送された電荷を電圧信号(撮像信号)に変換して出力する。隣接する画素11間には、電荷の移動が起こらないように各画素11を電気的に分離する素子分離領域15が設けられている。
画素11は、正方格子を水平方向及び垂直方向に対して45度回転させた画素配列(いわゆるハニカム配列)となっている。VCCD12と素子分離領域15とは、各画素11の間に沿うように鋸歯状に蛇行している。
VCCD12は、読み出しゲート16を介して画素11と接続されている。画素11に蓄積された電荷は、この読み出しゲート16を介してVCCD12に読み出される。VCCD12は、4相の転送電極(図示せず)により制御され、各画素11から読み出した電荷をHCCD13に向けて垂直方向に転送する。また、VCCD12は、画素11の2列に対して1つずつ設けられており、左右に設けられた画素11から電荷を読み出すように構成されている。
図2において、CCDイメージセンサ10は、上記画素11として、第1画素11a、第2画素11b、第3画素11c、第4画素11dの4種類の画素を有している。これら4種類の各画素11a〜11dは、所定のパターンで配列され、画素群18を構成している。画素群18は、10個の第1画素11aと、1個の第2画素11bと、1個の第3画素11cと、4個の第4画素11dとの16個の画素を、4×4の矩形の枡目状に配列したものである。CCDイメージセンサ10は、この画素群18を連続的に複数並べることによって撮像面を形成している。図1及び図2では、便宜的に1つの画素群18しか図示していないが、実際には、画素群18が隣接して複数設けられている。
第1画素11aは、入射した光を電荷に変換して蓄積する光電変換素子であるフォトダイオード(PD)20aと、このPD20aに光を集光するマイクロレンズ21aとを備える。その他の第2〜第4画素11b、11c、11dも同様に、それぞれPD20b、20c、20dと、マイクロレンズ21b、21c、21dとを備える。各PD20a〜20dは、半導体基板状に略同一の形状、及び同一構成で形成されている。各マイクロレンズ21a〜21dは、略半球状に形成されている。
第1画素11aは、スルー画表示時や撮影実行時の画像形成時に用いられる画素である。第1画素11aのマイクロレンズ21aは、その光軸とPD20aの受光面の中心とが一致し、かつ当該第1画素11aの矩形状の領域に対して略最大の直径となるように形成されている。
第2画素11b及び第3画素11cは、位相差方式のオートフォーカス時に用いられるとともに、画像形成時にも用いられる画素である。第2画素11b及び第3画素11cは、それぞれ画素群18に1個ずつ設けられ、互いに隣接して配置されている。第2画素11bのマイクロレンズ21bは、第1画素11aのマイクロレンズ21aの約半分程度の大きさに形成され、その光軸がPD20bの受光面の中心に対して左側に所定量ずれて配置されている。
第3画素11cのマイクロレンズ21cは、第2画素11bのマイクロレンズ21bと略同一の大きさに形成され、マイクロレンズ21bとは反対の方向(右側)に同じ量ずれて配置されている。
以上の構成により、第2画素11b及び第3画素11cは、入射する光の角度に選択性を有する。具体的には、第2画素11bでは、マイクロレンズ21bが左側にずれているため、右側から進入する光がPD20bに入射せず、左側から進入する光がPD20bに入射する。反対に、第3画素11cでは、マイクロレンズ21cが右側にずれているため、左側から進入する光がPD20cに入射せず、右側から進入する光がPD20cに入射する。
このCCDイメージセンサ10をデジタルカメラなどの撮像装置に用いた場合、撮像面内に設けられた第2画素11bの撮像信号によって構成される画像と、第3画素11cの撮像信号によって構成される画像とには、CCDイメージセンサ10に被写体像を結像する撮影レンズの合焦状態に応じて左右方向にずれ(位相差)が生じる。このずれが生じた画像のずれ量、及びそのずれの方向を検知することで、撮影レンズのフォーカス調整量を求めることができる。位相差方式のオートフォーカスについては、特許第2959142号などに詳細に説明されている。
第4画素11dは、第1画素11aと同様に画像形成にのみ用いられる画素である。第4画素11dのマイクロレンズ21dは、その光軸とPD20dの受光面の中心とが一致するように配置されている。第4画素11dのマイクロレンズ21dは、その面積(直径に円周率を乗じた値)が第1画素11aのマイクロレンズ21aよりも約5%小さくなるように、直径が調整されて形成されている。第4画素11dのマイクロレンズ21dの直径は、第1画素11aのマイクロレンズ21aの直径よりもやや小さく、第2画素11bのマイクロレンズ21b及び第3画素11cのマイクロレンズ21cの直径よりも大きい。
第4画素11dは、第2画素11b又は第3画素11cに隣接して配置されている。但し、第4画素11dは、第2画素11bと第3画素11cとのそれぞれが有する4辺のうち、各マイクロレンズ21b、21cのずれ方向と反対側の辺に隣接して配置されている。具体的には、第2画素11bでは、マイクロレンズ21bが左側にずれて左側の2辺に隣接しているため、右側の2辺に隣接するように第4画素11dが配置されている。一方、第3画素11cでは、マイクロレンズ21cが右側にずれて右側の2辺に隣接しているため、左側の2辺に隣接するように第4画素11dが配置されている。
CCDイメージセンサ10を撮像装置に用いて画像を形成する場合には、各画素11a〜11dのすべての撮像信号が用いられる。第2画素11bの撮像信号と、第3画素11cの撮像信号とは、いずれもマイクロレンズ21b、21cの大きさが小さいことにより、第1画素11aや第4画素11dの撮像信号と比べて信号値が小さい。このため、CCDイメージセンサ10で画像を形成する場合には、第1画素11aや第4画素11dの撮像信号に基づいて、第2画素11b及び第3画素11cの撮像信号を補正する処理が行われる。
切断線X1−Y1の断面を表す図3において、CCDイメージセンサ10は、n型半導体基板25上に構成されている。n型半導体基板25の表面には、pウェル層26が形成されている。このpウェル層26の表層には、PD20a〜20dを構成するn型層27a〜27d、VCCD12を構成するn型層28、素子分離領域15を構成するp+層29、PD20a〜20dとVCCD12とを分離するp+層30が形成されている。
CCDイメージセンサ10は、周知の蒸着、ドーピング、フォトリソグラフィ、エッチングなどの技術を用いてn型半導体基板25の上に形成される。なお、切断線X1−Y1は、各マイクロレンズ21a〜21dの中心を通るように各部を切断している。
PD20a〜20dは、それぞれpウェル層26とn型層27a〜27dとのpn接合部で構成される。PD20a〜20dは、入射した光に応じて電子−正孔対を生成する。生成された電子−正孔対のうち、電子がn型層27a〜27dに蓄積される。n型層27a〜27dは、p+層29を介して、隣接する画素のn型層27a〜27dと離間されている。また、n型層27a〜27dは、p+層30を介して、VCCD12を構成するn型層28と離間されている。これにより、n型層27a〜27dに蓄積された電荷が、意図せず他の領域に移動してしまうことが防止される。
VCCD12は、n型層28と、このn型層28の上に設けられた転送電極31とで構成されている。PD20a〜20dを構成するn型層27a〜27dとVCCD12を構成するn型層28とは、pウェル層26で離間されている。読み出しゲート16は、n型層27a〜27dとn型層28との間のpウェル層26の一部分と、この上に設けられた転送電極32とで構成されている。各転送電極31、32には、例えば、ポリシリコンが用いられる。
n型層27a〜27dに蓄積された電荷は、転送電極32に電圧を印加し、pウェル層26の電位を変化させることで、n型層28に転送される。n型層28に転送された電荷は、転送電極31へ所定のタイミングで印加される電圧に応じて、断面方向(紙面と直交する方向)に転送される。これにより、PD20a〜20dで蓄積された電荷が、HCCD13に向けて転送される。
素子分離領域15は、n型層27a〜27dに蓄積された電荷に対するポテンシャル障壁を形成し、隣接するPD20a〜20dの間で電荷が移動することを防ぐ。
また、pウェル層26の表面全体を覆うように遮光膜33が形成されている。遮光膜33には、各n型層27a〜27dのそれぞれを露呈させる複数の開口33aが設けられている。遮光膜33は、PD20a〜20d以外の部分に余計な光が入射することを防止する。そして、遮光膜33を覆うように平坦化層34が形成されており、この平坦化層34の上に、マイクロレンズ21a〜21dが設けられている。
平坦化層34は、転送電極31、32などによって生じる基板上の凹凸を埋め、マイクロレンズ21a〜21dを形成するための平面状のレンズ形成面34aを構成する。この平坦化層34には、BPSGなどの透光性材料が用いられる。
マイクロレンズ21a〜21dは、前述のようにPD20a〜20dとの位置、及び大きさが調整されてレンズ形成面34aの上に形成される。また、マイクロレンズ21a〜21dは、略半球状であるため、それぞれの直径に応じてレンズ形成面34aからの高さも異なる。
図2及び図3に示すように、第2画素11bと第4画素11dとが隣接する箇所は、マイクロレンズ21bとマイクロレンズ21dとの間の隙間が大きい。同様に、第3画素11cと第4画素11dとが隣接する箇所も、マイクロレンズ21cとマイクロレンズ21dとの間の隙間が大きい。このため、第4画素11dのマイクロレンズ21dを第1画素11aのマイクロレンズ21aと同じサイズで形成した場合には、上記隙間から入射する光の影響により、第4画素11dは第1画素11aよりも受光量が高くなる(具体的には、受光量が約5%高くなる)。
これに対し、本実施形態では、第1画素11aのマイクロレンズ21aよりも小さく(具体的には、面積が約5%小さく)なるように第4画素11dのマイクロレンズ21dを形成している。これにより、上記隙間から入射する光の分だけマイクロレンズ21dからPD20dに入射する光の光量が相対的に低くなり、撮影専用画素である第1画素11aと第4画素11dとのそれぞれのPD20a、20dに、略均一な光量の光が入射される。
以上の構成により、略均一な光量の光がPD20a、20dに入射され、ノイズのない自然な画像が得られるため、補正処理が不要となる。このように、補正処理を行う必要がないので、補正処理の実行にともなう処理時間の増加や、補正処理により新たなノイズの発生を懸念する必要がない。
なお、本実施形態では、第1画素11aのマイクロレンズ21aよりも面積が約5%小さくなるように第4画素11dのマイクロレンズ21dを形成しているが、マイクロレンズ21aに対するマイクロレンズ21dの縮小率は、これに限ることなく、上記隙間から入射する光の光量に応じて適宜決定すればよい。
また、本実施形態では、第1画素11aのマイクロレンズ21aに対する第4画素11dのマイクロレンズ21dの縮小率を全て同一にしているが、第2画素11b又は第3画素11cに隣接する方向や、n型半導体基板25の上に形成された構造物(VCCD12など)の形状などによって、隙間から入射する光の光量が異なる場合には、その光量に合わせて各マイクロレンズ21dの縮小率を適宜調節すればよい。さらに、本実施形態では、第2画素11b又は第3画素11cに隣接するように第4画素11dを配置したが、これに限ることなく、受光量の増加が発生する任意の箇所に第4画素11dを配置してもよい。
[第2実施形態]
次に、本発明の第2の実施形態について説明する。なお、上記第1の実施形態と機能・構成上同一のものについては、同符号を付し、詳細な説明を省略する。上記第1の実施形態では、第1画素11a〜第4画素11dの4種類の画素で画素群18を構成した。これに対して、本実施形態では、図4に示すように、第1画素11a〜第4画素11dに第5画素11eを加えた5種類の画素で画素群50を構成する。画素群50は、上記第1の実施形態の画素群18に含まれる10個の第1画素11aのうち、第4画素11dに隣接する7個の第1画素11aを第5画素11eに置き換えたものである。
第5画素11eは、第1画素11a及び第4画素11dとともに撮影実行時の画像形成に用いられる。第5画素11eは、PD20eとマイクロレンズ21eとを備える。第5画素11eのマイクロレンズ21eは、略半球状に形成され、その光軸とPD21eの受光面の中心とが一致するように配置されている。第5画素11eのマイクロレンズ21eの直径は、第1画素11aのマイクロレンズ21aの直径よりも小さく、第4画素11dのマイクロレンズ21dの直径よりも大きい。
例えば、第4画素11dのマイクロレンズ21dの直径を、第1画素11aのマイクロレンズ21aよりも面積が約5%小さくなるように設定する場合、第5画素11eのマイクロレンズ21eの直径は、第1画素11aのマイクロレンズ21aよりも面積が約2〜3%小さくなるように設定する。
第1の実施形態では、第1画素11aを第4画素11dと隣接するように配置しているため、マイクロレンズ21aとマイクロレンズ21dとの直径の差異により生じる隙間から入射する光の影響により、第4画素11dに隣接する第1画素11aの受光量が高くなることが懸念される。これに対して、本実施形態では、第1画素11aと第4画素11dとの間に、第1画素11aのマイクロレンズ21aよりも小さく、かつ第4画素11dのマイクロレンズ21dよりも大きいマイクロレンズ21eを有する第5画素11eを配置しているため、第4画素11dに隣接する第5画素11eでの受光量の増加が軽減され、さらに第5画素11eに隣接する第1画素11aでの受光量の増加も軽減される。
このように、位相差検出画素(第2画素11b及び第3画素11c)の周囲の画素のマイクロレンズの直径を、位相差検出画素に近付くに連れて段階的に小さくしているため、均一な光量の光が撮影専用画素のPDに入射し、ノイズの少ない画像が得られる。
なお、本実施形態では、第2画素11b及び第3画素11cの周囲の画素のマイクロレンズの大きさを2段階に変化させているが、3段階以上としてもよい。具体的に何段階とするかは、隙間から入射する光の光量や画素群の構成などに応じて適宜決定すればよい。
[第3実施形態]
次に、本発明の第3の実施形態について説明する。図5において、本実施形態の画素群52は、上記第2の実施形態の画素群50と同様に、第1画素11a〜第5画素11eの5種類の画素で構成されている。これらのうち、撮影専用画素である第1画素11a、第4画素11d、第5画素11eは、上記第2の実施形態と同一構成である。
一方、第2画素11bは、第1及び第2の実施形態のマイクロレンズ21bよりも大きな直径のマイクロレンズ53を有する。マイクロレンズ53は、隣接する第3画素11cの空き領域、及び隣接する第5画素11eの空き領域に一部が入り込むように形成されている。ここで、空き領域とは、当該画素のレンズ形成面34aのうち、マイクロレンズが形成されていない領域のことである。
同様に、第3画素11cは、第1及び第2の実施形態のマイクロレンズ21cよりも大きな直径のマイクロレンズ54を有する。マイクロレンズ54は、隣接する第2画素11bの空き領域、及び隣接する第5画素11eの空き領域に一部が入り込むように形成されている。
位相差検出画素である第2画素11b及び第3画素11cでは、それぞれPD20b、20cの受光面の中心とマイクロレンズ53、54の光軸とをずらす必要があるため、マイクロレンズ53、54を撮影専用画素のものと比べて小さくしなければならない。このため、第2画素11b及び第3画素11cでは、撮影専用画素に比べて受光量が低くなり、位相差方式のオートフォーカスの実行にともなって、これらの各画素の撮像信号からなる画像を形成する際に、画像処理を行ってもノイズが残ったり、偽色が発生したりするという問題が生じる。
これに対し、本実施形態では、第2画素11b及び第3画素11cのマイクロレンズ53、54を、隣接する画素の上記空き領域に一部を入り込ませることにより、直径を極力大きくしている。これにより、第2画素11b及び第3画素11cの受光量が増加し、ノイズや偽色の発生が抑えられる。
[第4実施形態]
次に、本発明の第4の実施形態について説明する。図6において、本実施形態の画素群60は、上記第1の実施形態の画素群18と同様に、第1画素61a、第2画素61b、第3画素61c、第4画素61dの4種類の画素で構成されている。画素61a〜61dは、それぞれPD62a〜62dと、マイクロレンズ63a〜63dとを備える。これらの画素61a〜61dのうち、第1画素61a〜第3画素61cは、上記第1の実施形態の第1画素11a〜第3画素11cと同一構成である。
一方、第4画素61dは、上記第1の実施形態の第4画素11dと異なり、第1画素61aのマイクロレンズ63aと略同一形状かつ略同一サイズのマイクロレンズ63dを有する。切断線X2−Y2の断面を表す図7に示すように、平坦化層64のレンズ形成面64aには、第4画素61dに対応する箇所に凹部64bが形成されている。第4画素61dのマイクロレンズ63dは、この凹部64bの内底面に形成されており、レンズ形成面64a上に形成された第1画素61a〜第3画素61cのマイクロレンズ63a〜63cよりもPD62dからの高さが低い。
第1画素61aのマイクロレンズ63aは、レンズ形成面64a上の位置において、集光した光をPD62aに適切に入射させるといった集光特性を有する。第4画素61dのマイクロレンズ63dは、第1画素61aのマイクロレンズ63aと同一の集光特性を有するにも係らず、レンズ形成面64aよりも低い位置に形成されているため、外周部分で集光した光がPD62dに入射せず(いわゆるケラレが生じ)、PD62dに入射する光の光量が低下する。
従って、マイクロレンズ63bとマイクロレンズ63dとの間に生じる隙間、もしくはマイクロレンズ63cとマイクロレンズ63dとの間に生じる隙間から入射する光の分だけPD62dに入射する光の光量が低くなるように、凹部64bの深さ、すなわちPD62dからのマイクロレンズ63dの高さを調節することで、上記第1の実施形態と同様の効果を得ることができる。
[第5実施形態]
次に、本発明の第5の実施形態について説明する。図8において、本実施形態の画素群70は、上記第2の実施形態の画素群50と同様に、第1画素71a〜第5画素71eの5種類の画素で構成されている。画素71a〜71eは、それぞれPD72a〜72eと、マイクロレンズ73a〜73eとを備える。これらの各画素71a〜71eのうち、第1画素71a〜第4画素71dは、上記第4の実施形態の第1画素61a〜第4画素61dと同一構成である。第5画素71eは、第1画素71a及び第4画素71dの各マイクロレンズ73a、73dと略同一形状かつ略同一サイズのマイクロレンズ73eを有する。
平坦化層74のレンズ形成面74aには、第4画素71dに対応する箇所に第1凹部74bが形成されているとともに、第5画素71eに対応する箇所に第2凹部74cが形成されている。第2凹部74cは、第1凹部74bよりも浅く形成されている。第4画素71dのマイクロレンズ73dは、第1凹部74bの内底面に形成されている。第5画素71eのマイクロレンズ73eは、第2凹部74cの内底面に形成されている。
上記第4の実施形態では、第4画素61dのマイクロレンズ63dのみを低い位置に形成した。これに対し、本実施形態では、高さの異なる第1凹部74b及び第2凹部74cを形成することにより、第4画素71dのマイクロレンズ73dと第5画素71eのマイクロレンズ73eを、高さを変えて低くしている。具体的には、位相差検出画素(第2画素71b及び第3画素71c)の周囲の画素のマイクロレンズの高さを、位相差検出画素に近付くに連れて段階的に低くしている。これにより、上記第2の実施形態と同様に、均一な光量の光が撮影専用画素のPDに入射し、ノイズの少ない画像が得られる。
[第6実施形態]
次に、本発明の第6の実施形態について説明する。図9において、本実施形態の画素群75は、上記第5の実施形態の画素群70と同様に、第1画素71a〜第5画素71eの5種類の画素で構成されている。これらのうち、撮影専用画素である第1画素71a、第4画素71d、第5画素71eは、上記第5の実施形態と同一構成である。
一方、第2画素71bは、上記第5の実施形態のマイクロレンズ73bよりも大きな直径のマイクロレンズ76を有する。マイクロレンズ76は、隣接する第3画素71cの空き領域に一部が入り込むとともに、隣接する第5画素71eの領域に一部が入り込み、かつその一部が第5画素71eのマイクロレンズ73eと光軸方向(高さ方向)に重なるように配置されている。
切断線X3−Y3の断面を表す図10において、第2凹部74cの内底面に第5画素71eのマイクロレンズ73eを形成している。第5画素71eのマイクロレンズ73eは、第2画素71bのマイクロレンズ76よりもPD72eからの高さが低いため、マイクロレンズ76の側方には、マイクロレンズ73eの曲率の分だけ空間が生じる。本実施形態では、この空間にマイクロレンズ76の一部を入り込ませることによって、マイクロレンズ76の直径を極力大きくしている。
同様に、第3画素71cは、上記第5の実施形態のマイクロレンズ73cよりも大きな直径のマイクロレンズ77を有する。マイクロレンズ77は、隣接する第2画素71bの空き領域に一部が入り込むとともに、隣接する第5画素71eの領域に一部が入り込み、かつその一部が第5画素71eのマイクロレンズ73eと光軸方向(高さ方向)に重なるように配置されている。
このように、マイクロレンズ76、77を極力大きくすることにより、上記第3の実施形態と同様に、第2画素71b及び第3画素71cの受光量が増加し、ノイズや偽色の発生が抑えられる。
[第7実施形態]
次に、本発明の第7の実施形態について説明する。図11において、本実施形態の画素群80は、撮影専用画素である第1画素81aと、位相差検出画素である第2画素81b及び第3画素81cとの3種類の画素で構成されている。画素81a〜81cは、それぞれ上記各実施形態と同様に構成された、PD82a〜82cと、マイクロレンズ83a〜83cと備える。
平坦化層84のレンズ形成面84aには、第2画素81b及び第3画素81cに対応する箇所に凸部85が形成されている。凸部85は、第2画素81b及び第3画素81cのそれぞれの矩形状の領域をレンズ形成面84aに対して所定量突出させた略四角錐台状に形成されている。凸部85の外周には、隣接する第1画素81aとの境界部分に向かって傾斜した傾斜面85aが形成されている。
第2画素81b及び第3画素81cのマイクロレンズ83b、83cは、凸部85の上に形成されており、第1画素81aのマイクロレンズ83aよりもPD82b、82cからの高さが高い。
このように、マイクロレンズ83b、83cの高さ高くすることにより、隣接する第1画素81aとの隙間を介して第1画素81aのPD82aに入射する光の入射角度範囲が狭くなる。これにより、マイクロレンズ83aとマイクロレンズ83bとの間の隙間、及びマイクロレンズ83aとマイクロレンズ83cとの間の隙間から光が入射し難くなり、隙間から入射する光によって生じる第1画素81aの受光量の増加が低減される。また、凸部85の外周を傾斜面85aとすることにより、上記入射角度範囲をより狭くしている。
ところで、位相差検出画素に隣接する撮影専用画素の受光量が増加する要因としては、上述のように、マイクロレンズ間に生じる隙間から入射した光を撮影専用画素のPDが受光することの他に、製造に起因する要因も存在する。具体的には、撮影専用画素のマイクロレンズを形成する場合に、位相差検出画素に隣接する撮影専用画素では、マイクロレンズが位相差検出画素のマイクロレンズとの間に生じる隙間の部分に向かって広がるため、他の撮影専用画素のマイクロレンズに比べてサイズが大きくなり、受光量が増加するといった要因がある。
この問題に対して、本本実施形態では、凸部85の傾斜面85aが壁として作用し、撮影専用画素である第1画素81aの各マイクロレンズ83aを形成する際に、第2画素81b及び第3画素81cに隣接する第1画素81aのマイクロレンズ83aが広がって大きくなることが防止され、製造起因の光量増加が防止される。
なお、傾斜面85aの傾斜角度は、マイクロレンズ83aや凸部85などの成型性を考慮した任意の角度でよい。また、傾斜面85aを、レンズ形成面84aに対して略垂直な垂直面としてもよい。
[第8実施形態]
次に、本発明の第8の実施形態について説明する。図12において、本実施形態の画素群90は、撮影専用画素である第1画素91aと、位相差検出画素である第2画素91b、第3画素91cとの3種類の画素で構成されている。第1画素91aは、上記各実施形態と同様に構成されたPD92aとマイクロレンズ93aとを備える。第2画素91b及び第3画素91cは、それぞれPD92b、92cと、マイクロレンズ93b、93cとを備える。PD92b、92cは、上記各実施形態と同様に構成されている。
図12、及び切断線X4−Y4の断面を表す図13において、第2画素91bのマイクロレンズ93bは、その光軸中心がPD92bの受光面の中心に対して左側に所定量ずれ、かつレンズ形成面34aと接する裾部が隣接する第1画素91aとの境界部分に向かって伸びた非球状である。同様に、第3画素91cのマイクロレンズ93cは、その光軸中心がPD92cの受光面の中心に対して右側に所定量ずれ、かつレンズ形成面34aと接する裾部が隣接する第1画素91aとの境界部分に向かって伸びた非球状である。
このように、マイクロレンズ93b、93cを非球状にすることにより、隣接するマイクロレンズ93aとの間に隙間が生じることを防ぐことができる。従って、本実施形態では、上記隙間から入射する光を受光したり、レンズ成型時にマイクロレンズ93aが大型化したりして、隣接する第1画素91aの受光量が増加することはない。さらには、裾部の分だけマイクロレンズ93b、93cのサイズが大きくなるので、第2画素91b及び第3画素91cの受光量が増加する。なお、非球状のマイクロレンズの形成方法として、例えば、特開2006−049721号公報に記載された方法を用いることができる。
[第9実施形態]
次に、本発明の第9の実施形態について説明する。図14に示すように、本実施形態の画素群100は、第1画素101a、第2画素101b、第3画素101c、第4画素101dの4種類の画素で構成されている。画素101a〜101dは、それぞれPD102a〜102dと、マイクロレンズ103a〜103dとを備える。マイクロレンズ103a〜103dは、上記第4の実施形態のマイクロレンズ63a〜63dと同一構成である。
pウェル層104の表面104aには、第4画素101dに対応する箇所に凹部105が形成されている。この凹部105は、図15に示すように、周知のリソグラフィ技術やエッチング技術などを用いてpウェル層104の表面104aをエッチングすることによって形成される。
PD102a〜102dのうち、PD102a〜102cは、pウェル層104の表面104aに形成されている。一方、PD102dは、凹部105の内底面に形成されている。これにより、PD102dは、他のPD102a〜102cよりもn型半導体基板25上における高さが低くなっている。
凹部105には、PD102dに対応するVCCD12、及び読み出しゲート16も形成される。これらの各部は、pウェル層104に凹部105を形成した後、周知のリソグラフィ技術やドーピング技術などを用いて所定の位置にn型層27a〜27d、28、及びp+層29、30、106、107を形成することによって構成される。PD102dに蓄積された電荷の移動を防止するp+層106、107は、凹部105の分だけp+層29、30よりも深く形成されている。また、pウェル層104の表面104aには、上記各実施形態と同様に、転送電極31、32を覆うとともに、n型層27a〜27dのそれぞれを露呈させる複数の開口108aを有する遮光膜108が形成される。
このように、PD102dの高さを他のPD102a〜102cよりも低くすることにより、凹部105の縁の部分、及びこの縁に近接してpウェル層104の表面104aの上に設けられた転送電極31、32や遮光膜108などの構造物によって、マイクロレンズ103bとマイクロレンズ103dとの間に生じる隙間、又はマイクロレンズ103cとマイクロレンズ103dとの間に生じる隙間から入射する光が遮られ、PD102dに入射し難くなる。これにより、上記隙間から入射する光によって第4画素101dの受光量が増加することが防止され、撮影専用画素である第1画素101aと第4画素101dとのそれぞれのPD102a、102dに、略均一な光量の光が入射される。
[第10実施形態]
次に、本発明の第10の実施形態について説明する。図16において、本実施形態の画素群110は、第1画素111a、第2画素111b、第3画素111cの3種類の画素で構成されている。画素111a〜111cは、それぞれPD112a〜112cと、マイクロレンズ113a〜113cとを備える。マイクロレンズ113a〜113cは、上記各実施形態と同様に構成されている。
pウェル層114の表面114aには、第2画素111b及び第3画素111cに対応する箇所に凸部115が形成されている。この凸部115は、図17に示すように、周知のリソグラフィ技術やエッチング技術などを用いてpウェル層114の表面114aをエッチングすることによって形成される。
PD112a〜112cのうち、PD112aは、pウェル層114の表面114aに形成されている。一方、PD112b、112cは、凸部115の上に形成されている。これにより、PD112b、112cは、PD112aよりもn型半導体基板25上における高さが高くなっている。
凸部115には、PD112b、112cに対応するVCCD12、及び読み出しゲート16も形成される。これらの各部は、pウェル層114に凸部115を形成した後、周知のリソグラフィ技術やドーピング技術などを用いて所定の位置にn型層27a〜27c、28、及びp+層29、30、116を形成することによって構成される。PD112b、112cと、これらに隣接するPD112aとを仕切るp+層116は、凸部115の分だけp+層30よりも深く形成されている。また、pウェル層114の表面114aには、上記各実施形態と同様に、転送電極31、32を覆うとともに、n型層27a〜27cのそれぞれを露呈させる複数の開口117aを有する遮光膜117が形成される。
このように、PD112b、112cの高さをPD112aよりも高くすることにより、凸部115の角の部分、及びこの角に近接して設けられた転送電極31、32や遮光膜117などの構造物によって、マイクロレンズ113aとマイクロレンズ113bとの間に生じる隙間、又はマイクロレンズ113aとマイクロレンズ113cとの間に生じる隙間から入射する光が遮られ、隣接するPD112aに入射し難くなる。これにより、上記隙間から入射する光によって隣接する第1画素111aの受光量が増加することが防止され、撮影専用画素である第1画素111aの各PD112aに、略均一な光量の光が入射される。
また、PD112b、112cを凸部115の上に設けることにより、PD112b、112cがマイクロレンズ113b、113cに近付くため、ケラレの発生が抑えられる。これにより、第2画素111b及び第3画素111cの受光量が増加する。
なお、図18に示すように、画素111a〜111cのそれぞれにインナーレンズ118a〜118cを設けることも好ましい。この場合には、インナーレンズ118aの形状と、インナーレンズ118b、118cの形状とを変えることがさらに好ましい。
インナーレンズ118a〜118cを全て同じ形状で形成すると、各PD112a〜112cの高さの差異により、第1画素111aと、第2画素111b及び第3画素111cとのいずれかで焦点ズレが生じ、当該画素の受光効率が劣化することが考えられる。これに対し、PD112a〜112cの高さに応じて、インナーレンズ118aの形状と、インナーレンズ118b、118cの形状とを変え、各PD112a〜112cに対して各インナーレンズ118a〜118cの焦点を適切に合わせる。これにより、焦点ズレにともなう受光効率の劣化が防止される。
[第11実施形態]
次に、本発明の第11の実施形態について説明する。図19に示すように、本実施形態の画素群120は、第1画素121a、第2画素121b、第3画素121c、第4画素121dの4種類の画素で構成されている。画素121a〜121dは、それぞれPD122a〜122dと、マイクロレンズ123a〜123dとを備える。マイクロレンズ123a〜123dは、上記第9の実施形態のマイクロレンズ103a〜103dと同一構成である。
図20に示すように、pウェル層124の表面124aには、第4画素121dに対応する箇所に凸部125が形成される。凸部125は、略台形の断面を有する角柱状に形成され、pウェル層124の表面124aに対して所定の角度傾斜した傾斜面125aを有する。また、凸部125は、隣接する第2画素121b又は第3画素121cと反対の方向に傾斜面125aが向くように形成されている。
こうした傾斜面125aを有する凸部125は、例えば、濃淡を持たせたフォトマスク(グレイスケールマスク)を用いて紫外線の透過量を変化させることにより感光材料に到達する光量を制御するグレイスケールリソグラフィ技術を用いて形成することができる。
具体的には、グレイスケールリソグラフィによってpウェル層124の上に凸部125に応じた形状の感光材料を形成する。この後、pウェル層124に対して異方性のエッチングを行うことにより、感光材料の形状をpウェル層124に転写させる。これにより、傾斜面125aを有する凸部125がpウェル層124の表面124aに形成される。
PD122a〜122dのうち、PD122a〜122cは、pウェル層124の表面124aに形成されている。一方、PD122dは、凸部125の傾斜面125aに形成されている。PD122dは、隣接する第2画素121b又は第3画素121cと反対の方向に受光面が向くように傾いている。
凸部125には、PD122dに対応するVCCD12、及び読み出しゲート16も形成される。これらの各部は、pウェル層124に凸部125を形成した後、周知のリソグラフィ技術やドーピング技術などを用いて所定の位置にn型層27a〜27d、28、及びp+層29、30、126を形成することによって構成される。PD122bとPD122d、及びPD122cとPD122dを仕切るp+層126は、凸部125の分だけp+層30よりも深く形成されている。また、pウェル層124の表面124aには、上記各実施形態と同様に、転送電極31、32を覆うとともに、及び各n型層27a〜27dのそれぞれを露呈させる複数の開口127aを有する遮光膜127が形成される。
このように、PD122dの受光面を傾けることにより、マイクロレンズ123bとマイクロレンズ123dとの間に生じる隙間、又はマイクロレンズ123cとマイクロレンズ123dとの間に生じる隙間から入射する光が、PD122dに入射し難くなる。これにより、隙間から入射する光によって第4画素121dの受光量が増加することが防止され、撮影専用画素である第1画素121aと第4画素121dとのそれぞれのPD122a、122dに、略均一な光量の光が入射される。
なお、傾斜面125aの傾斜角度は、隙間から入射する光の入射角度に応じて適宜決定すればよい。具体的には、隙間から入射する光のレンズ形成面34aに対する角度(レンズ形成面34aと平行な場合を0度とする)の最高値よりも、pウェル層124の表面124aに対する傾斜面125aの角度を大きくする。こうすれば、上記隙間からのPD122dへの光の入射を確実に防止することができる。
[第12実施形態]
次に、本発明の第12の実施形態について説明する。図21に示すように、本実施形態の画素群130は、第1画素131a、第2画素131b、第3画素131cの3種類の画素で構成されている。画素131a〜131cは、それぞれPD132a〜132cと、マイクロレンズ133a〜133cとを備える。マイクロレンズ133a〜133cは、上記各実施形態と同様に構成されている。
図22に示すように、pウェル層134の表面134aには、第2画素131bに対応する箇所に凸部135が形成され、第3画素131cに対応する箇所に凸部136が形成される。凸部135、136は、略台形の断面を有する角柱状に形成され、それぞれpウェル層134の表面134aに対して所定の角度傾斜した傾斜面135a、136aを有する。
凸部135は、対応する第2画素131bのマイクロレンズ133bの方向に傾斜面135aが向くように形成されている。同様に、凸部136は、対応する第3画素131cのマイクロレンズ133cの方向に傾斜面136aが向くように形成されている。凸部135、136は、上記第11の実施形態の凸部125と同様に、グレイスケールリソグラフィ技術を用いて形成することができる。
PD132aは、pウェル層134の表面134aに形成されている。PD132bは、凸部135の傾斜面135aに形成されている。PD132cは、凸部136の傾斜面136aに形成されている。これにより、PD132b、132cは、当該画素131b、131cのマイクロレンズ133b、133cの方向に受光面が向くように傾いている。
凸部135、136には、PD132b、132cに対応するVCCD12、及び読み出しゲート16も形成される。これらの各部は、pウェル層134に各凸部135、136を形成した後、周知のリソグラフィ技術やドーピング技術などを用いて所定の位置にn型層27a〜27d、28、及びp+層29、30、137を形成することによって構成される。PD132aとPD132b、及びPD132bとPD132cを仕切るp+層137は、各凸部135、136の分だけp+層30よりも深く形成されている。また、pウェル層134の表面134aには、上記各実施形態と同様に、転送電極31、32を覆うとともに、各n型層27a〜27dのそれぞれを露呈させる複数の開口138aを有する遮光膜138が形成される。
このように、PD132b、132cを各凸部135、136の傾斜面135a、136aに形成することにより、各凸部135、136の角の部分、及びこの角に近接して設けられた転送電極31、32や遮光膜138などの構造物によって、マイクロレンズ133aとマイクロレンズ133bとの間に生じる隙間、又はマイクロレンズ133aとマイクロレンズ133cとの間に生じる隙間から入射する光が遮られ、隣接するPD132aに入射し難くなる。これにより、隙間から入射する光によって隣接する第1画素131aの受光量が増加することが防止され、撮影専用画素である第1画素131aの各PD132aに、略均一な光量の光が入射される。
また、上記のようにPD132b、132cを傾けて形成することにより、マイクロレンズ133b、133cからの光の受光面の法線に対する入射角度が小さくなり、マイクロレンズ133b、133cが集光した光の受光効率が向上する。これにより、本実施形態では、第2画素131b及び第3画素131cの受光量が増加する。
上記各実施形態では、4×4の矩形の枡目状に並べられた16個の画素からなる画素群を例示しているが、画素群に含まれる画素の数、各画素の配列は、上記に限定されるものではなく、画素の数及び配列は適宜変更してよい。また、上記各実施形態では、位相差検出画素である第2画素と第3画素とを隣接させて配置しているが、第2画素と第3画素とは、必ずしも隣接させなくてもよい。
上記各実施形態では、画素をハニカム配列としたCCDイメージセンサ10を例示したが、本発明これに限ることなく、例えば、略矩形の画素を正方格子状に配列したCCDイメージセンサに適用することも可能である。さらに、本発明は、CMOSイメージセンサなどの他のタイプの固体撮像装置に適用することも可能である。
また、第2画素及び第3画素のマイクロレンズを非球状に形成した上で、さらに第2画素及び第3画素のPDの高さを高くするなど、上記各実施形態を適宜組み合わせて固体撮像装置を構成してもよい。
10 CCDイメージセンサ(固体撮像装置)
11 画素
11a 第1画素(撮影専用画素)
11b 第2画素(位相差検出画素)
11c 第3画素(位相差検出画素)
11d 第4画素(撮影専用画素)
18 画素群
20a、20b、20c、20d PD(光電変換素子)
21a、21b、21c、21d マイクロレンズ
64b 凹部
85 凸部
105 凹部
115 凸部
118a、118b、118c インナーレンズ
125 凸部
125a 傾斜面
135、136 凸部
135a、136a 傾斜面

Claims (15)

  1. 光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、
    光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列されたマイクロレンズが他のマイクロレンズより小さく形成された複数の撮影専用画素と、
    を備えたことを特徴とする固体撮像装置。
  2. 前記複数の撮影専用画素は、3種以上の大きさのマイクロレンズを有し、前記位相差検出画素に近付くに連れてマイクロレンズの大きさが段階的に小さくなっていることを特徴とする請求項1記載の固体撮像装置。
  3. 前記位相差検出画素のマイクロレンズは、隣接する前記撮影専用画素の空き領域に一部が侵入していることを特徴とする請求項1又は2記載の固体撮像装置。
  4. 光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、
    光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列されたマイクロレンズの光電変換素子からの高さが、前記位相差検出画素のマイクロレンズの高さより低くされた複数の撮影専用画素と、
    を備えたことを特徴とする固体撮像装置。
  5. 前記各マイクロレンズが形成されるレンズ形成面には、前記位相差検出画素の周囲に配列された前記撮影専用画素に対応する箇所に凹部が形成され、この凹部の内底面にマイクロレンズを形成することにより、前記位相差検出画素の周囲に配列された前記撮影専用画素のマイクロレンズの高さが、前記位相差検出画素のマイクロレンズより低くされていることを特徴とする請求項4記載の固体撮像装置。
  6. 前記レンズ形成面に深さの異なる複数の凹部を形成することにより、前記撮影専用画素のマイクロレンズの高さが、前記位相差検出画素に近付くに連れて段階的に低くされていることを特徴とする請求項5記載の固体撮像装置。
  7. 前記位相差検出画素のマイクロレンズは、隣接する前記撮影専用画素のマイクロレンズの高さを低くすることによって生じた空間に一部が侵入していることを特徴とする請求項5又は6記載の固体撮像装置。
  8. 前記各マイクロレンズが形成されるレンズ形成面には、前記位相差検出画素に対応する箇所に凸部が形成され、この凸部の上にマイクロレンズを形成することにより、前記位相差検出画素のマイクロレンズの高さが、前記撮影専用画素のマイクロレンズよりも高くされていることを特徴とする請求項4記載の固体撮像装置。
  9. 光電変換素子の受光面の中心と光軸とが略一致するように配置されたマイクロレンズを有する複数の撮影専用画素と、
    光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置された、前記撮影専用画素のマイクロレンズより小さなマイクロレンズを有し、該マイクロレンズの形状が、隣接する前記撮影専用画素との境界部分に向かって裾部が伸びた非球状である複数の位相差検出画素と、
    を備えたことを特徴とする固体撮像装置。
  10. 光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、
    光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列された光電変換素子の半導体基板上における高さが、前記位相差検出画素の光電変換素子の高さより低くされた複数の撮影専用画素と、
    を備えたことを特徴とする固体撮像装置。
  11. 半導体基板の表面には、前記位相差検出画素の周囲に配列された前記撮影専用画素に対応する箇所に凹部が形成され、この凹部の内底面に光電変換素子を形成することにより、前記位相差検出画素の周囲に配列された前記撮影専用画素の光電変換素子の高さが、前記位相差検出画素の光電変換素子の高さより低くされていることを特徴とする請求項10記載の固体撮像装置。
  12. 半導体基板の表面には、前記位相差検出画素に対応する箇所に凸部が形成され、この凸部の上に光電変換素子を形成することにより、前記位相差検出画素の光電変換素子の高さが、前記撮影専用画素の光電変換素子の高さより高くされていることを特徴とする請求項10記載の固体撮像装置。
  13. 前記凸部は、前記位相差検出画素のマイクロレンズの方向を向くように形成された傾斜面を有し、
    この傾斜面に前記位相差検出画素の光電変換素子が形成されていることを特徴とする請求項12記載の固体撮像装置。
  14. 前記撮影専用画素と前記位相差検出画素とは、マイクロレンズの下にインナーレンズを有しており、
    前記各インナーレンズは、光電変換素子に焦点が合うように、光電変換素子との距離に応じて形状が変えられていることを特徴とする請求項10から13のいずれか1項に記載の固体撮像装置。
  15. 光電変換素子の受光面の中心に対して光軸を所定の方向にずらして配置されたマイクロレンズを有する複数の位相差検出画素と、
    光電変換素子の受光面の中心と光軸とが略一致するように配置された、前記位相差検出画素のマイクロレンズより大きなマイクロレンズを有し、前記位相差検出画素の周囲に配列された光電変換素子が、前記位相差検出画素と反対の方向に受光面が向くように傾けて形成された複数の撮影専用画素と、
    を備えたことを特徴とする固体撮像装置。
JP2011508736A 2009-11-20 2010-09-30 固体撮像装置 Expired - Fee Related JP4764958B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011508736A JP4764958B2 (ja) 2009-11-20 2010-09-30 固体撮像装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009264758 2009-11-20
JP2009264758 2009-11-20
JP2011508736A JP4764958B2 (ja) 2009-11-20 2010-09-30 固体撮像装置
PCT/JP2010/067035 WO2011061998A1 (ja) 2009-11-20 2010-09-30 固体撮像装置

Publications (2)

Publication Number Publication Date
JP4764958B2 true JP4764958B2 (ja) 2011-09-07
JPWO2011061998A1 JPWO2011061998A1 (ja) 2013-04-04

Family

ID=44059483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011508736A Expired - Fee Related JP4764958B2 (ja) 2009-11-20 2010-09-30 固体撮像装置

Country Status (5)

Country Link
US (1) US8102460B2 (ja)
EP (1) EP2362257B1 (ja)
JP (1) JP4764958B2 (ja)
CN (1) CN102483510B (ja)
WO (1) WO2011061998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135229A (ko) * 2013-03-29 2015-12-02 소니 주식회사 촬상 소자 및 촬상 장치

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298834B2 (en) 2006-12-01 2019-05-21 Google Llc Video refocusing
JP5272433B2 (ja) * 2008-02-15 2013-08-28 富士通セミコンダクター株式会社 画像撮像素子のずらし量算出方法及び装置、画像撮像素子、画像撮像素子内蔵装置
TWI504256B (zh) * 2008-04-07 2015-10-11 Sony Corp 固態成像裝置,其訊號處理方法,及電子設備
JP5232118B2 (ja) * 2009-09-30 2013-07-10 富士フイルム株式会社 撮像デバイスおよび電子カメラ
CN103003944B (zh) * 2010-07-12 2016-01-20 富士胶片株式会社 固态成像装置
JP5513623B2 (ja) * 2010-08-24 2014-06-04 富士フイルム株式会社 固体撮像装置
US9184199B2 (en) 2011-08-01 2015-11-10 Lytro, Inc. Optical assembly including plenoptic microlens array
WO2013047110A1 (ja) * 2011-09-30 2013-04-04 富士フイルム株式会社 撮像装置及び位相差画素の感度比算出方法
US20130135515A1 (en) * 2011-11-30 2013-05-30 Sony Corporation Digital imaging system
JP5661201B2 (ja) * 2011-12-27 2015-01-28 富士フイルム株式会社 固体撮像装置
JP5836821B2 (ja) * 2012-01-30 2015-12-24 オリンパス株式会社 撮像装置
JP6141024B2 (ja) 2012-02-10 2017-06-07 キヤノン株式会社 撮像装置および撮像システム
JP2014089432A (ja) * 2012-03-01 2014-05-15 Sony Corp 固体撮像装置、固体撮像装置におけるマイクロレンズの形成方法、及び、電子機器
CN104303493A (zh) 2012-05-09 2015-01-21 莱特洛公司 用于改进的光场捕获和操作的光学系统的优化
US9858649B2 (en) 2015-09-30 2018-01-02 Lytro, Inc. Depth-based image blurring
US10134267B2 (en) 2013-02-22 2018-11-20 Universal City Studios Llc System and method for tracking a passive wand and actuating an effect based on a detected wand path
TWI636557B (zh) 2013-03-15 2018-09-21 新力股份有限公司 Solid-state imaging device, manufacturing method thereof, and electronic device
CN111430385B (zh) * 2013-03-29 2024-04-23 索尼公司 摄像元件和摄像装置
US10334151B2 (en) 2013-04-22 2019-06-25 Google Llc Phase detection autofocus using subaperture images
JP6295526B2 (ja) 2013-07-11 2018-03-20 ソニー株式会社 固体撮像装置および電子機器
JP2015228466A (ja) * 2014-06-02 2015-12-17 キヤノン株式会社 撮像装置及び撮像システム
KR20160025729A (ko) * 2014-08-28 2016-03-09 에스케이하이닉스 주식회사 깊이 검출 픽셀을 구비한 이미지 센서 및 이를 이용한 깊이 정보 생성 방법
CN113363268A (zh) 2014-12-18 2021-09-07 索尼公司 成像器件和移动设备
US10546424B2 (en) 2015-04-15 2020-01-28 Google Llc Layered content delivery for virtual and augmented reality experiences
US10565734B2 (en) 2015-04-15 2020-02-18 Google Llc Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline
US10275898B1 (en) 2015-04-15 2019-04-30 Google Llc Wedge-based light-field video capture
US10469873B2 (en) 2015-04-15 2019-11-05 Google Llc Encoding and decoding virtual reality video
US10419737B2 (en) 2015-04-15 2019-09-17 Google Llc Data structures and delivery methods for expediting virtual reality playback
US10440407B2 (en) 2017-05-09 2019-10-08 Google Llc Adaptive control for immersive experience delivery
US10444931B2 (en) 2017-05-09 2019-10-15 Google Llc Vantage generation and interactive playback
US10540818B2 (en) 2015-04-15 2020-01-21 Google Llc Stereo image generation and interactive playback
US10412373B2 (en) 2015-04-15 2019-09-10 Google Llc Image capture for virtual reality displays
US10341632B2 (en) 2015-04-15 2019-07-02 Google Llc. Spatial random access enabled video system with a three-dimensional viewing volume
US10567464B2 (en) 2015-04-15 2020-02-18 Google Llc Video compression with adaptive view-dependent lighting removal
US11328446B2 (en) 2015-04-15 2022-05-10 Google Llc Combining light-field data with active depth data for depth map generation
JP6506614B2 (ja) 2015-05-14 2019-04-24 キヤノン株式会社 固体撮像装置およびカメラ
US10566365B2 (en) * 2015-05-27 2020-02-18 Visera Technologies Company Limited Image sensor
KR102374112B1 (ko) 2015-07-15 2022-03-14 삼성전자주식회사 오토 포커싱 픽셀을 포함하는 이미지 센서, 및 이를 포함하는 이미지 처리 시스템
US9979909B2 (en) 2015-07-24 2018-05-22 Lytro, Inc. Automatic lens flare detection and correction for light-field images
JP6789643B2 (ja) * 2016-03-04 2020-11-25 キヤノン株式会社 撮像装置
US10275892B2 (en) 2016-06-09 2019-04-30 Google Llc Multi-view scene segmentation and propagation
US10679361B2 (en) 2016-12-05 2020-06-09 Google Llc Multi-view rotoscope contour propagation
US10594945B2 (en) 2017-04-03 2020-03-17 Google Llc Generating dolly zoom effect using light field image data
US10474227B2 (en) 2017-05-09 2019-11-12 Google Llc Generation of virtual reality with 6 degrees of freedom from limited viewer data
US10354399B2 (en) 2017-05-25 2019-07-16 Google Llc Multi-view back-projection to a light-field
US10545215B2 (en) 2017-09-13 2020-01-28 Google Llc 4D camera tracking and optical stabilization
US10965862B2 (en) 2018-01-18 2021-03-30 Google Llc Multi-camera navigation interface
KR102554417B1 (ko) 2018-06-18 2023-07-11 삼성전자주식회사 이미지 센서
KR102662032B1 (ko) * 2019-06-19 2024-05-03 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 전자 장치
KR20220068034A (ko) 2020-11-18 2022-05-25 삼성전자주식회사 카메라 모듈 및 카메라 모듈을 포함하는 전자 장치
KR20220144549A (ko) * 2021-04-20 2022-10-27 삼성전자주식회사 이미지 센서
US20230307478A1 (en) * 2022-03-25 2023-09-28 Omnivision Technologies, Inc. Image sensor diagonal isolation structures
US11985435B2 (en) * 2022-06-08 2024-05-14 Omnivision Technologies, Inc. Compact camera incorporating microlens arrays for ultra-short distance imaging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332547A (ja) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd 固体撮像素子及びその製造方法
JP2005116939A (ja) * 2003-10-10 2005-04-28 Nikon Corp 固体撮像素子
JP2007103590A (ja) * 2005-10-03 2007-04-19 Nikon Corp 撮像素子、焦点検出装置、および、撮像システム
JP2007281296A (ja) * 2006-04-10 2007-10-25 Nikon Corp 固体撮像装置、および電子カメラ
JP2007335723A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 固体撮像素子用マイクロレンズ及びその製造方法
JP2008071920A (ja) * 2006-09-14 2008-03-27 Sony Corp 撮像素子および撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959142B2 (ja) 1991-02-22 1999-10-06 ソニー株式会社 固体撮像装置
US6909554B2 (en) * 2000-12-27 2005-06-21 Finisar Corporation Wafer integration of micro-optics
JP4348118B2 (ja) 2003-06-04 2009-10-21 富士フイルム株式会社 固体撮像素子及び撮影装置
WO2005101067A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. 集光素子および固体撮像装置
US7012754B2 (en) * 2004-06-02 2006-03-14 Micron Technology, Inc. Apparatus and method for manufacturing tilted microlenses
JP4796287B2 (ja) 2004-08-06 2011-10-19 パナソニック株式会社 固体撮像装置
US7292079B2 (en) * 2005-08-02 2007-11-06 Industrial Technology Research Institute DLL-based programmable clock generator using a threshold-trigger delay element circuit and a circular edge combiner
US7352511B2 (en) * 2006-04-24 2008-04-01 Micron Technology, Inc. Micro-lenses for imagers
US8319846B2 (en) * 2007-01-11 2012-11-27 Raytheon Company Video camera system using multiple image sensors
US7978255B2 (en) * 2007-10-11 2011-07-12 Nikon Corporation Solid-state image sensor and image-capturing device
JP5552214B2 (ja) * 2008-03-11 2014-07-16 キヤノン株式会社 焦点検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332547A (ja) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd 固体撮像素子及びその製造方法
JP2005116939A (ja) * 2003-10-10 2005-04-28 Nikon Corp 固体撮像素子
JP2007103590A (ja) * 2005-10-03 2007-04-19 Nikon Corp 撮像素子、焦点検出装置、および、撮像システム
JP2007281296A (ja) * 2006-04-10 2007-10-25 Nikon Corp 固体撮像装置、および電子カメラ
JP2007335723A (ja) * 2006-06-16 2007-12-27 Fujifilm Corp 固体撮像素子用マイクロレンズ及びその製造方法
JP2008071920A (ja) * 2006-09-14 2008-03-27 Sony Corp 撮像素子および撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135229A (ko) * 2013-03-29 2015-12-02 소니 주식회사 촬상 소자 및 촬상 장치
KR102210675B1 (ko) * 2013-03-29 2021-02-01 소니 주식회사 촬상 소자 및 촬상 장치

Also Published As

Publication number Publication date
EP2362257A4 (en) 2012-10-03
CN102483510A (zh) 2012-05-30
US8102460B2 (en) 2012-01-24
EP2362257B1 (en) 2016-08-17
WO2011061998A1 (ja) 2011-05-26
CN102483510B (zh) 2015-04-15
US20110221947A1 (en) 2011-09-15
EP2362257A1 (en) 2011-08-31
JPWO2011061998A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
JP4764958B2 (ja) 固体撮像装置
KR102618068B1 (ko) 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
KR101477645B1 (ko) 광학 부재, 고체 촬상 장치, 및 제조 방법
KR102268712B1 (ko) 자동 초점 이미지 센서 및 이를 포함하는 디지털 영상 처리 장치
US9070799B2 (en) Solid state imaging device with microlens shifted from the center of the photo diode
JP6314969B2 (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP4500434B2 (ja) 撮像装置及び撮像システム、並びに撮像方法
US8111982B2 (en) Imaging device and electronic camera
JP5157436B2 (ja) 固体撮像素子および撮像装置
JP5814626B2 (ja) 光電変換装置及び光電変換装置の製造方法
US20100230583A1 (en) Solid state image pickup device, method of manufacturing the same, image pickup device, and electronic device
EP1557886A2 (en) Solid-state imaging device and camera
JP4659788B2 (ja) 裏面照射型撮像素子
JP2008005488A (ja) カメラモジュール
US20150357364A1 (en) Image sensor
JP2006502588A (ja) マイクロレンズ付き固体イメージセンサ及び非テレセントリック撮像レンズを備えた光学系
US7608866B2 (en) Solid-state image sensor with micro-lenses for anti-shading
JP7504630B2 (ja) 撮像素子、撮像装置、コンピュータプログラム及び記憶媒体
JP3571982B2 (ja) 固体撮像装置及びそれを備えた固体撮像システム
EP3522223A1 (en) Imaging element and focus adjustment device
JP2012004264A (ja) 固体撮像素子および撮影装置
EP3522219A1 (en) Imaging device and focus adjustment device
JP2009065095A (ja) 固体撮像素子
JP2017054992A (ja) 固体撮像装置および固体撮像装置の製造方法
JP4419658B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees