JP2009065095A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2009065095A
JP2009065095A JP2007233937A JP2007233937A JP2009065095A JP 2009065095 A JP2009065095 A JP 2009065095A JP 2007233937 A JP2007233937 A JP 2007233937A JP 2007233937 A JP2007233937 A JP 2007233937A JP 2009065095 A JP2009065095 A JP 2009065095A
Authority
JP
Japan
Prior art keywords
charge
solid
wiring layer
pixel
charge storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007233937A
Other languages
English (en)
Inventor
Tomohito Nakayama
智史 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007233937A priority Critical patent/JP2009065095A/ja
Publication of JP2009065095A publication Critical patent/JP2009065095A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】クロストークを抑えることで検出精度を高めることが可能な固体撮像素子を提供する。
【解決手段】撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素12の郡を有する固体撮像素子11において、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素13を備え、焦点検出用画素13は、第一電荷蓄積部18aと第二電荷蓄積部18bとを有し、第一電荷蓄積部18aと配線層16との間に第一電荷吸収部17a、第二電荷蓄積部18bと配線層16との間に第二電荷吸収部17bが設けられ、第一電荷蓄積部18aと第一電荷吸収部17a、第二電荷蓄積部18bと第二電荷吸収部17bとがそれぞれ電気的に接続されている固体撮像素子11。
【選択図】図2

Description

この発明は、撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有する固体撮像素子に関するものである。
近年、ビデオカメラや電子スチルカメラが広く一般に普及している。これらのカメラには、CCD型固体撮像素子や増幅型固体撮像素子が使用されている。このような固体撮像素子は、画素が二次元状に複数配置された画素領域を有している。そして、これら画素は電荷蓄積部を有し、入射光に応じて生成された電荷を蓄積し、周辺回路からの駆動信号に従って、各画素の信号電荷が電位となって出力されるように構成されている。
その増幅型固体撮像素子では、入射光に応じて生成・蓄積された信号電荷が各画素に配置された画素アンプ部に導かれ、信号電荷に対応した電気信号が画素毎に出力されるようになっている。
この増幅型固体撮像素子の主なものとして、画素アンプ部にMOSトランジスタを用いたCMOS型固体撮像素子が提案されている(特許文献1参照)。
また、CMOS型固体撮像素子において、焦点検出技術を兼ね備える方法が考えられている。その1つとして瞳分割位相差方式が知られている。この方式は、撮影レンズの通過光束を瞳分割して一対の分割像を形成する。この一対の分割像のパターンずれを検出することで、撮影レンズのデフォーカス量を検出するものである。特許文献2,3には、瞳分割位相差方式の例が示されており、撮像用画素の配列の一部が焦点検出用画素に割り当てられている。1画素内の電荷蓄積部を2つに分割する場合と、1つの電荷蓄積部を半分の大きさにする場合がある。後者の場合には、瞳分割された光束の片方しか検出できないため、電荷蓄積部を設ける場所を交互に変えた2種類の焦点検出用画素が必要となる。
特開2003−258231号公報。 特開2007−127746号公報。 特開2003−244712号公報。
しかしながら、上記のような固体撮像素子では、一部の光が隣接する画素の電荷蓄積部に蓄積されてしまう現象、すなわち、クロストークが発生してしまう。クロストークは、斜めに入射する成分が配線層の間やシリコンの界面等で多重反射すること、若しくは、光が回折することにより起こる。クロストークは、画素が小さくなればなるほど起こりやすく、特に、瞳分割位相差方式を用いて焦点検出技術を採用する場合には、焦点検出用画素の1画素内に設けられる電荷蓄積部は通常の撮像用画素に比べて小さいため、クロストークが大きくなり易い。瞳分割位相差方式では、瞳分割の精度が高いほど焦点検出の精度も高くなるため、クロストークを抑えることは非常に重要である。なお、一般的に、クロストークというと、隣接する画素間で発生する現象をいうが、ここでは、1画素内に複数の電荷蓄積部が設けられている場合に、所望の電荷蓄積部ではなく、異なる電荷蓄積部に光が入射してしまう現象についてもクロストークと称する。
そこで、この発明の課題は、クロストークを抑えることで検出精度を高めることが可能な固体撮像素子を提供することにある。
上記課題を解決するため、請求項1に記載の発明は、撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、前記電荷蓄積部と前記配線層との間に電荷吸収部が設けられ、前記電荷蓄積部と前記電荷吸収部とが電気的に接続されている固体撮像素子としたことを特徴とする。
請求項2に記載の発明は、撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、前記撮像用画素の郡の中に設けられ、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素を備え、前記焦点検出用画素の前記電荷蓄積部と前記配線層との間に電荷吸収部が設けられ、前記電荷蓄積部と前記電荷吸収部とが電気的に接続されている固体撮像素子としたことを特徴とする。
請求項3に記載の発明は、撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、前記撮像用画素の郡の中に設けられ、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素を備え、前記焦点検出用画素は、第一電荷蓄積部と第二電荷蓄積部とを有し、前記第一電荷蓄積部と前記配線層との間に第一電荷吸収部、前記第二電荷蓄積部と前記配線層との間に第二電荷吸収部が設けられ、前記第一電荷蓄積部と前記第一電荷吸収部、前記第二電荷蓄積部と前記第二電荷吸収部とがそれぞれ電気的に接続されている固体撮像素子としたことを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記電荷吸収部の上面は、前記配線層の下面と略同じ高さで、且つ、前記電荷吸収部の上面の幅は、光が通過する前記配線層に形成された開口の幅より狭く形成されていることを特徴とする。
請求項5に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記電荷吸収部の上面は、前記配線層の下面より低い高さで、且つ、前記電荷吸収部の上面の幅は、光が通過する前記配線層に形成された開口の幅より広く形成されていることを特徴とする。
請求項6に記載の発明は、請求項1乃至5の何れか一つに記載の構成に加え、前記電荷吸収部を成形する材質の屈折率と、該電荷吸収部の側方の絶縁層の屈折率との比が4:1.5とし、前記配線層の光が通過する開口の幅をa、該配線層の高さをbとすると、該a及びbの値は、
arctan(b/a)>22°
の条件を満たすことを特徴とする。
請求項7に記載の発明は、請求項1乃至6の何れか一つに記載の構成に加え、前記電荷吸収部は、ポリシリコン又は、選択エピタキシャルシリコンであることを特徴とする。
この発明によれば、電荷蓄積部と配線層との間に電荷吸収部が設けられ、電荷蓄積部と電荷吸収部とが電気的に接続されている固体撮像素子としたため、クロストークを抑え、検出精度を高めることが可能となる。
以下、この発明の実施の形態について説明する。
[発明の実施の形態1]
図1乃至図4には、この発明の実施の形態1に係る固体撮像素子を示す。
まず構成を説明すると、図1中符号11は固体撮像素子で、この固体撮像素子11には、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素12の郡を有し、これら撮像用画素12の郡の中に、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素13が設けられている。ここでは、図1に示すように、1画素おきに焦点検出用画素13が設けられている。
この焦点検出用画素13は、図2に示すように、マイクロレンズ14の下側にカラーフィルタ15が設けられ、このカラーフィルタ15の下側に配線層16が設けられ、更に、この配線層16の下側に2つの第一,第二電荷吸収部17a,17bが設けられると共に、2つの第一,第二電荷蓄積部18a,18bが設けられている。
さらに、配線層16、電荷蓄積部18a,18b、電荷吸収部17a,17b等の周囲には、絶縁層である酸化膜19が形成されている。
その配線層16は、導電性を有するアルミニウムにより、ここでは3層(最上層配線16a,中間層配線16b,最下層配線16c)成形され、幅aの2つの開口16dが形成されている。
これら開口16dの下側に対応する位置に、前記第一,第二電荷蓄積部18a,18bが形成され、これら第一,第二電荷蓄積部18a,18bと前記最下層配線16cとの間に、前記第一,第二電荷吸収部17a,17bが設けられている。
この第一電荷吸収部17a,第二電荷吸収部17bは、第一電荷蓄積部18a,第二電荷蓄積部18bと同じ導電型のポリシリコンによって形成されている。
この第一電荷蓄積部18aと第一電荷吸収部17a、第二電荷蓄積部18bと第二電荷吸収部17bとは、それぞれ電気的に接続されている。これにより、第一電荷蓄積部18aと第一電荷吸収部17a、第二電荷蓄積部18bと第二電荷吸収部17bは、それぞれ一体として電荷を蓄積できる構造となっている。
そして、この第一,第二電荷吸収部17a,17bの上面と、最下層配線16cの下面とが同じ高さに形成され、開口16dの幅aより、第一,第二電荷吸収部17a,17bの幅Lが狭く形成されている。
図3に示すように、その第一電荷蓄積部18aと第一電荷吸収部17aとが第一転送トランジスタ20aに接続され、又、第二電荷蓄積部18bと第二電荷吸収部17bとが第二転送トランジスタ20bに接続されている。
さらに、各々の電荷蓄積層18a,18bの信号電荷を転送して電位に変換するための浮遊拡散層21、この浮遊拡散層21の電位を増幅する増幅トランジスタ22、行を選択するための選択トランジスタ23、浮遊拡散層21の電位をリセットするリセットトランジスタ24、垂直信号線25が設けられている。これらは各画素13に1つずつ設けられている。そして、各画素12,13が垂直走査回路26に接続されると共に、水平走査回路27及び読み出し回路28に接続されている。
そして、カメラレンズを通して焦点検出用画素13に入ってきた光は、瞳分割された後、第一電荷蓄積部18a,第二電荷蓄積部18bに光電変換されて蓄積される。このとき、従来の固体撮像素子では、電荷蓄積部に光が入射してから光電変換が行われていたが、この実施の形態では、第一電荷吸収部17aと第二電荷吸収部17bとでも行われる。従って、従来よりも早い段階から光電変換が行われるので、第一電荷蓄積部18a又は第二電荷蓄積部18bの一方に、蓄積されるべき信号電荷が、他方に蓄積されてしまうのを防止できる。
つまり、従来の場合には、第一電荷吸収部17aと第二電荷吸収部17bとが設けられていないため、最下層配線16cから各電荷蓄積部18a,18bに達するまでの間に、斜め入射による多重反射、若しくは、回折の影響により、本来電荷蓄積部18a,18bの一方に到達すべき光が、他方に到達してしまうクロストーク成分が存在していた。
しかし、この実施の形態のように、第一電荷吸収部17aと第二電荷吸収部17bとを設けて、その成分をそれら電荷吸収部17a,17bで光電変換させてしまうことにより、電気的に接続された第一電荷蓄積部18a,第二電荷蓄積部18bに導くことが可能となり、クロストークを防止することができる。特に、この実施の形態のように、1画素(一つの焦点検出用画素13)中に、2つの電荷蓄積部18a,18bが設けられている場合には、各電荷蓄積部18a,18bが小型で、且つ、互いに接近しているため、よりクロストークが発生し易いことから、第一電荷吸収部17aと第二電荷吸収部17bとを設けることは、クロストーク防止に極めて効果的である。
また、第一電荷吸収部17a及び第二電荷吸収部17bの上面と、最下層配線16cの下面とを同じ高さとすることにより、製造工程も容易にできた上で、第一電荷吸収部17a及び第二電荷吸収部17bの上面を最大限の高さにすることで、クロストークを効果的に防止できる。
さらに、例えば、第一電荷吸収部17aに到達した光のうち、絶縁層(酸化膜19)を透過して第二電荷蓄積部18bに向かう成分も存在するが、これは、第一電荷吸収部17aの側面と酸化膜19との境界で全反射させる条件を満足する構成にすれば回避できる。図2に示すように、光が、第一電荷吸収部17aのポリシリコンから酸化膜19に入射するときの入射角をθ1、屈折角をθ2とし、ポリシリコン、酸化膜19の屈折率をそれぞれ4,1.5(4:1.5)とすると、スネルの法則から、
4sinθ1=1.5sinθ2
となり、全反射する条件としてθ2=90°とすれば、θ1=22°となる。つまり、θ1>22°であれば全反射し、酸化膜19に入る成分は存在しなくなる。してみれば、配線層16の開口16dの幅をa、最下層配線16cの下面から最上層配線16aの上面までの距離をbとすると、最も小さいθ1の値は、arctan(b/a)である。従って、
arctan(b/a)>22°
を満足するように、a,bを決めれば良い。
図4には、固体撮像素子11の焦点検出用画素13を駆動するためのタイミングチャートを示す。焦点検出エリアが存在しない行は、通常のCMOS型固体撮像素子と同じなので説明を省略する。
瞳分割されて各々の電荷蓄積部18a,18bに蓄積された電荷は、別々のタイミングで読み出す必要がある。まず、垂直走査回路26からの駆動パルスRESをOFF状態として、リセットトランジスタ24をOFF状態とすると共に、垂直走査回路26からの駆動パルスSELをON状態として行を選択し、且つ、垂直走査回路26からの駆動パルスTXAをON状態として第一転送トランジスタ20aをON状態とすると共に、駆動パルスTXBをOFF状態として第二転送トランジスタ20bをOFF状態とする。これにより、第一電荷蓄積部18a及び第一電荷吸収部17aの信号電荷に対応する電気信号が垂直信号線25に出力される。
そして、垂直信号線25に出力された電気信号を水平走査回路27により順次走査して読み出し回路28にて電荷を撮像用画素12と同様の同様の方法で読み出す。この第一電荷蓄積部18aの信号電荷は、図4に示すように、第一電荷蓄積部読出期間の間に読み出す。
次に、同様にして、垂直走査回路26からの駆動パルスRESをOFF状態として、リセットトランジスタ24をOFF状態とすると共に、垂直走査回路26からの駆動パルスSELをON状態として行を選択し、且つ、垂直走査回路26からの駆動パルスTXBをON状態として第二転送トランジスタ20bをON状態とすると共に、駆動パルスTXAをOFF状態として第一転送トランジスタ20aをOFF状態とする。
そして、水平走査回路27により順次走査して読み出し回路28にて第二電荷蓄積部18bの信号電荷を撮像用画素12と同様の同様の方法で読み出す。この第二電荷蓄積部18bの信号電荷は、図4に示すように、第二電荷蓄積部読出期間の間に読み出す。
次に、焦点検出の原理について説明する。
まず、1つの焦点検出用画素13に到達する受光光束は、撮影レンズの射出瞳を通過した光束である。この画素単位の受光光束は、焦点検出用画素13内に配置した一組の第一,第二電荷蓄積部18a,18bに分かれて光電変換される。その結果、一組の第一,第二電荷蓄積部18a,18bは、撮影レンズの射出瞳の異なる位置を通過した光束(瞳分割光束)を光電変換する。なお、マイクロレンズ14の集光中心を外した位置に第一,第二電荷蓄積部18a,18bを配置することにより、画素単位の受光光束を効率よく瞳分割することができる。
ところで、合焦被写体の一点(近接点も含む)から出た光束は、撮影レンズの射出瞳のそれぞれ違う位置を通過した後、撮像面上に点像を結ぶため再び集束する。そのため、合焦状態にある場合、一組の第一,第二電荷蓄積部18a,18bは、被写体の同じ一点から出た瞳分割光束を受光する。従って、第一電荷蓄積部18aから得られる像パターンと、第二電荷蓄積部18bから得られる像パターンとは、その位相が略一致してほぼ位相差「0」を示す。
一方、前ピン状態の被写体から出た光束は、撮影レンズの射出瞳の異なる箇所をそれぞれ通過した後、撮像面の手前で交差してずれた画素位置に到達する。この場合、第一電荷蓄積部18aから得られる像パターンと、第二電荷蓄積部18bから得られる像パターンとは、瞳分割方向にずれる。
逆に、後ピン状態の被写体から出た光束は、撮影レンズの射出瞳の異なる箇所をそれぞれ通過した後、集束不足のまま撮像面上のずれた画素位置に到達する。この場合、第一電荷蓄積部18aから得られる像パターンと、第二電荷蓄積部18bから得られる像パターンとは、前ピン状態と逆方向にずれる。
このように、撮影レンズの合焦状態に応じて、像パターン間の位相差が変化する。そこで、焦点検出用信号から双方の像パターンを求め、パターンマッチングなどで像ずれ(位相差)を検出することによって、撮影レンズの合焦状態やデフォーカス量を検出することが可能となる。
また、ここでは、複数の焦点検出用画素13の内、第一電荷蓄積部18a、第二電荷蓄積部18bが図1(a)中左右方向に配置されている場合について説明した。しかし、図1(a)の内、焦点検出用画素13が縦方向に配列されている領域においては、第一,第二電荷蓄積部18a,18bは、上下方向に配置されている。
なお、上述した焦点検出用信号の読み出し手順を、撮像用画素11毎に順次繰り返すことにより、1画面分の画像信号を読み出すことができる。
また、焦点検出用画素13の配置個所については、画像信号が欠落する。この欠落部分の画像信号は、周辺の画像信号を用いて補間することが可能である。さらに、この焦点検出用画素13の第一,第二電荷蓄積部18a,18bの信号に基づいて、欠落部分の画像信号を生成しても良い。
[発明の実施の形態2]
図5乃至図8には、この発明の実施の形態2の固体撮像素子11を示す。
実施の形態1では、焦点検出用画素13が1画素おきに配置されていたが、この実施の形態2では、焦点検出用画素13が隣接して連続して配置されている。
ここでは、隣接する焦点検出用画素13に、それぞれ1つずつ第一電荷蓄積部18a、又は、第二電荷蓄積部18bが配置されており、1画素に1つ設けられているため、終点検出の分解能が低下してしまうことから、焦点検出用画素13が隣接して連続して配置されている。これに伴い、カラーフィルターを同一色(例えば、波長の短い青)としたり、若しくは、カラーフィルタを無くす等の対策を取ることも効果的である。特に、後者の対策をすることで、瞳分割により半減してしまう光量を増加させることが可能である。
図6中左側の焦点検出用画素13では、マイクロレンズ14の光軸を中心として左側に第一電荷蓄積部18a及び第一電荷吸収部17aが設けられ、図6中右側の焦点検出用画素13では、マイクロレンズ14の光軸を中心として右側に第二電荷蓄積部18b及び第二電荷吸収部17bが設けられている。
そして、これら電荷蓄積部18a,18bと対応する位置に、開口16dが設けられている。これら電荷蓄積部18a,18bと最下層配線16cとの間には、第一電荷蓄積部18a及び第二電荷蓄積部18bと同じ導電型のポリシリコンからなる第一,第二電荷吸収部17a,17bが設けられている。
さらに、図7に示すように、各々の電荷蓄積層18a,18bの信号電荷を転送して電位に変換するための浮遊拡散層21、この浮遊拡散層21の電位を増幅する増幅トランジスタ22、行を選択するための選択トランジスタ23、浮遊拡散層21の電位をリセットするリセットトランジスタ24、垂直信号線25が設けられている。
この実施の形態2の焦点検出用画素13の回路図は、撮像用画素12と同じであり、電荷蓄積部18a,18bと開口16dの大きさと位置、又、第一及び第二電荷吸収部17a,17bが設けられていることのみが異なる。
そして、カメラレンズを通して焦点検出用画素13に入ってきた光は、瞳分割され、右側の瞳から入射した光は、左側に電荷蓄積部18aを有する左側の焦点検出用画素13に信号電荷として蓄積され、左側の瞳から入射した光は、右側に電荷蓄積部18bを有する右側の焦点検出用画素13に信号電荷として蓄積される。
実施の形態1の場合と同様に、焦点検出用画素13,13では、電荷蓄積部18a,18bのみならず、電荷吸収部17a,17bでも光電変換されて、第一電荷蓄積部18a,第二電荷蓄積部18bに蓄積される。
従って、従来よりも早い段階から光電変換が行われるので、第一電荷蓄積部18a又は第二電荷蓄積部18bの一方に、蓄積されるべき信号電荷が、他方に蓄積されてしまうクロストークを防止することができる。
つまり、従来の場合には、第一電荷吸収部17aと第二電荷吸収部17bとが設けられていないため、最下層配線16cから各電荷蓄積部18a,18bに達するまでの間に、斜め入射による多重反射、若しくは、回折の影響により、本来電荷蓄積部18a,18bの一方に到達すべき光が、他方に到達してしまうクロストーク成分が存在していた。
しかし、この実施の形態のように、第一電荷吸収部17aと第二電荷吸収部17bとを設けて、その成分をそれら電荷吸収部17a,17bで光電変換させてしまうことにより、電気的に接続された第一電荷蓄積部18a,第二電荷蓄積部18bに導くことが可能となる。
図8には、固体撮像素子11の焦点検出用画素13を駆動するためのタイミングチャートを示す。通常のCMOS型固体撮像素子と同じである。
[発明の実施の形態3]
図9には、この発明の実施の形態3に係る固体撮像素子を示す。
この実施の形態3は、実施の形態1と比較すると、第一,第二電荷吸収部17a,17bの大きさや形状が相違している。
すなわち、実施の形態1の電荷吸収部17a,17bの上面は、配線層16の下面(最下層配線16cの下面)と略同じ高さで、且つ、電荷吸収部17a,17bの上面の幅Lは、光が通過する配線層16に形成された開口16dの幅aより狭く設定されているのに対し、この実施の形態3の電荷吸収部17a,17bの上面は、配線層16の下面(最下層配線16cの下面)より低い高さで、且つ、電荷吸収部17a,17bの上面の幅Lは、その開口16dの幅aより広く設定されている。
このようにすれば、電荷吸収部17a,17bと最下層配線16cとの間から一層光が漏れ難いため、クロストーク防止効果もより向上することとなる。
他の構成及び作用は実施の形態1と同様であるので、重複した説明を省略する。
[発明の実施の形態4]
図10には、この発明の実施の形態4に係る固体撮像素子を示す。
上記実施の形態1では、焦点検出用画素12の電荷蓄積部18a,18bに、電荷吸収部17a,17bを設けているが、この実施の形態4では、撮像用画素12の電荷蓄積部30と配線層16との間に電荷吸収部31を設けている。
このように撮像用画素12に電荷吸収部31を設けることにより、撮像用画素12間でのクロストークを防止することができる。
なお、上記各実施の形態では、電荷吸収部17a…としてポリシリコンを用いているが、これに限らず、選択エピタキシャルシリコンを設けることもできる。選択エピタキシャルシリコンを用いれば、部分的に、且つ、単結晶にすることができるため、ノイズ等を低減することができる。
この発明の実施の形態1に係る固体撮像素子を示す図で、(a)は平面図、(b)は(a)の拡大図である。 同実施の形態1に係る図1のA−A線に沿う拡大断面図である。 同実施の形態1に係る固体撮像素子の一部を示す回路図である。 同実施の形態1に係る固体撮像素子のタイミングチャートを示す図である。 この発明の実施の形態2に係る固体撮像素子を示す図で、(a)は平面図、(b)は(a)の拡大図である。 同実施の形態2に係る図1のB−B線に沿う拡大断面図である。 同実施の形態2に係る固体撮像素子の一部を示す回路図である。 同実施の形態2に係る固体撮像素子のタイミングチャートを示す図である。 この発明の実施の形態3に係る固体撮像素子の図2に相当する断面図である。 この発明の実施の形態4に係る固体撮像素子の図2に相当する断面図である。
符号の説明
11 固体撮像素子
12 撮像用画素
13 焦点検出用画素
14 マイクロレンズ
15 カラーフィルタ
16 配線層
16c 最下層配線
16d 開口
17a 第一電荷吸収部
17b 第二電荷吸収部
18a 第一電荷蓄積部
18b 第二電荷蓄積部
30 電荷蓄積部
31 電荷吸収部
a 開口の幅
b 配線層の高さ
L 電荷吸収部の上面の幅

Claims (7)

  1. 撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、
    前記電荷蓄積部と前記配線層との間に電荷吸収部が設けられ、前記電荷蓄積部と前記電荷吸収部とが電気的に接続されていることを特徴とする固体撮像素子。
  2. 撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、
    前記撮像用画素の郡の中に設けられ、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素を備え、前記焦点検出用画素の前記電荷蓄積部と前記配線層との間に電荷吸収部が設けられ、前記電荷蓄積部と前記電荷吸収部とが電気的に接続されていることを特徴とする固体撮像素子。
  3. 撮像面に複数設けられ、画素単位の受光光束を光電変換して、画素信号を生成する撮像用画素の郡を有し、前記撮像用画素に電荷蓄積部と配線層とが設けられた固体撮像素子において、
    前記撮像用画素の郡の中に設けられ、画素単位の受光光束を瞳分割して光電変換し、焦点検出用信号を生成する焦点検出用画素を備え、前記焦点検出用画素は、第一電荷蓄積部と第二電荷蓄積部とを有し、前記第一電荷蓄積部と前記配線層との間に第一電荷吸収部、前記第二電荷蓄積部と前記配線層との間に第二電荷吸収部が設けられ、前記第一電荷蓄積部と前記第一電荷吸収部、前記第二電荷蓄積部と前記第二電荷吸収部とがそれぞれ電気的に接続されていることを特徴とする固体撮像素子。
  4. 前記電荷吸収部の上面は、前記配線層の下面と略同じ高さで、且つ、前記電荷吸収部の上面の幅は、光が通過する前記配線層に形成された開口の幅より狭く形成されていることを特徴とする請求項1乃至3の何れか一つに記載の固体撮像素子。
  5. 前記電荷吸収部の上面は、前記配線層の下面より低い高さで、且つ、前記電荷吸収部の上面の幅は、光が通過する前記配線層に形成された開口の幅より広く形成されていることを特徴とする請求項1乃至3の何れか一つに記載の固体撮像素子。
  6. 前記電荷吸収部を成形する材質の屈折率と、該電荷吸収部の側方の絶縁層の屈折率との比が4:1.5とし、前記配線層の光が通過する開口の幅をa、該配線層の高さをbとすると、該a及びbの値は、
    arctan(b/a)>22°
    の条件を満たすことを特徴とする請求項1乃至5の何れか一つに記載の固体撮像素子。
  7. 前記電荷吸収部は、ポリシリコン又は、選択エピタキシャルシリコンであることを特徴とする請求項1乃至6の何れか一つに記載の固体撮像素子。
JP2007233937A 2007-09-10 2007-09-10 固体撮像素子 Pending JP2009065095A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233937A JP2009065095A (ja) 2007-09-10 2007-09-10 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233937A JP2009065095A (ja) 2007-09-10 2007-09-10 固体撮像素子

Publications (1)

Publication Number Publication Date
JP2009065095A true JP2009065095A (ja) 2009-03-26

Family

ID=40559383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233937A Pending JP2009065095A (ja) 2007-09-10 2007-09-10 固体撮像素子

Country Status (1)

Country Link
JP (1) JP2009065095A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060815A (ja) * 2009-09-07 2011-03-24 Nikon Corp 固体撮像素子
JP2014064080A (ja) * 2012-09-20 2014-04-10 Olympus Corp 撮像素子、及び撮像装置
WO2014064867A1 (ja) * 2012-10-24 2014-05-01 オリンパス株式会社 撮像素子及び撮像装置
US9165962B2 (en) 2013-07-31 2015-10-20 Kabushiki Kaisha Toshiba Solid state imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060815A (ja) * 2009-09-07 2011-03-24 Nikon Corp 固体撮像素子
JP2014064080A (ja) * 2012-09-20 2014-04-10 Olympus Corp 撮像素子、及び撮像装置
US9819924B2 (en) 2012-09-20 2017-11-14 Olympus Corporation Image pickup element and image pickup apparatus
WO2014064867A1 (ja) * 2012-10-24 2014-05-01 オリンパス株式会社 撮像素子及び撮像装置
JP2014086910A (ja) * 2012-10-24 2014-05-12 Olympus Corp 撮像素子及び撮像装置
US9554116B2 (en) 2012-10-24 2017-01-24 Olympus Corporation Image pickup element and image pickup apparatus
US9165962B2 (en) 2013-07-31 2015-10-20 Kabushiki Kaisha Toshiba Solid state imaging device

Similar Documents

Publication Publication Date Title
US11223758B2 (en) Solid-state imaging device, method for driving the same, and electronic device for improved autofocusing accuracy
JP6721511B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP5157436B2 (ja) 固体撮像素子および撮像装置
US20210373204A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
KR101477645B1 (ko) 광학 부재, 고체 촬상 장치, 및 제조 방법
JP5422889B2 (ja) 固体撮像素子及びこれを用いた撮像装置
JP5202289B2 (ja) 撮像装置
JP4957413B2 (ja) 固体撮像素子及びこれを用いた撮像装置
US8614755B2 (en) Optical device and signal processor
JP4935078B2 (ja) 固体撮像素子及びこれを用いた電子カメラ
JP5276374B2 (ja) 焦点検出装置
US20150358593A1 (en) Imaging apparatus and image sensor
EP3048645A1 (en) Solid-state image sensor and camera
JP5503209B2 (ja) 撮像素子及び撮像装置
US10021326B2 (en) Solid-state image sensor including pixels for detecting focus using a difference in intensity between lights
JP2016139988A (ja) 固体撮像装置
JP2009099817A (ja) 固体撮像素子
US20190273106A1 (en) Image sensor and focus adjustment device
JP2009065095A (ja) 固体撮像素子
JP2012211942A (ja) 固体撮像素子及び撮像装置
JP2017162985A (ja) 撮像装置
US20190258026A1 (en) Image sensor and focus adjustment device
JP6507712B2 (ja) 光電変換素子、画像読取装置及び画像形成装置
US20220102413A1 (en) Image sensing device
JP7383876B2 (ja) 撮像素子、及び、撮像装置