JP4745603B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP4745603B2
JP4745603B2 JP2003165380A JP2003165380A JP4745603B2 JP 4745603 B2 JP4745603 B2 JP 4745603B2 JP 2003165380 A JP2003165380 A JP 2003165380A JP 2003165380 A JP2003165380 A JP 2003165380A JP 4745603 B2 JP4745603 B2 JP 4745603B2
Authority
JP
Japan
Prior art keywords
pressure
fuel cell
fuel
gas
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165380A
Other languages
English (en)
Other versions
JP2004127914A (ja
Inventor
朋範 今村
哲斉 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003165380A priority Critical patent/JP4745603B2/ja
Priority to DE10334405.5A priority patent/DE10334405B4/de
Priority to US10/628,533 priority patent/US7122263B2/en
Publication of JP2004127914A publication Critical patent/JP2004127914A/ja
Application granted granted Critical
Publication of JP4745603B2 publication Critical patent/JP4745603B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素と酸素との電気化学反応により電気エネルギを発生させる燃料電池を備える燃料電池システムに関するもので、車両、船舶及びポータブル発電機等の移動体用発電機、或いは家庭用発電機に適用して有効である。
【0002】
【従来の技術および発明が解決しようとする課題】
水素と酸素との電気化学反応を利用して発電を行う燃料電池システムでは、固体電解質膜の含水量が不足すると電解質膜の導電率が低下して電解質膜の抵抗が増加するため、電池の出力が低下してしまう。
【0003】
また、燃料極や空気極の各電極部位に過剰な水が存在する場合には、電極表面における電気化学反応が阻害されるため電池の出力が低下してしまう。
【0004】
特に、燃料電池システムでは、燃料利用率を向上するために、燃料電池での未使用水素を再供給したり、燃料流路の出口側を閉塞して水素の放出を防止するようにすることが多い。一方、空気流路の出口側は開放状態で動作することが多い。このため、燃料極側には電解質膜を介して空気極側から水が拡散し拡散した水が蓄積しやすく、燃料極側に水が過剰に存在しやすくなる。
【0005】
そこで、燃料極または燃料流路に設けられたバルブ等を開放してパージすることにより、燃料極の水の滞留を防止することで出力の低下を防止できるが、パージの際に大気中に水素が放出されるため、燃費の低下、安全性の低下等の問題が生じる。
【0006】
以上の点から、電解質膜の含水量を適正に維持しつつ、電極部位での水の滞留を防止することが要求されている。
【0007】
ところで、特開平11−191423号公報に記載の燃料電池システムでは、燃料電池の特性に応じて、酸化ガスおよび燃料ガスへの水分供給量を制御し、電解質膜の含水量を調節するようにしている。しかしながら、上記公報に記載のシステムのように、単に酸化ガスおよび燃料ガスへの水分供給量を制御するだけでは、電解質膜の含水量を適正に維持しつつ、電極部位での水分が過剰になるのを防止することができないという問題や、電解質膜への含水を迅速に行えないという問題があった。
【0008】
本発明は上記の点に鑑みてなされたもので、電極部位での水の滞留や電解質膜の含水量の不足による電池の出力低下を防止することを第1の目的とし、電極部位の滞留水の排出や電解質膜への含水を迅速に行えるようにすることを第2の目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとの電気化学反応により電気エネルギを発生する固体高分子電解質型燃料電池(10)と、燃料電池(10)に酸化ガスを供給する空気流路(20)と、燃料電池(10)に燃料ガスを供給する燃料流路(30)と、空気流路(20)における酸化ガスの圧力を調整する第1圧力調整手段(23)および燃料流路(30)における燃料ガスの圧力を調整する第2圧力調整手段(32)のうち少なくとも一方と、燃料電池(10)の水分状態を診断する水分状態診断手段(40)とを備え、燃料流路(30)の下流側は、燃料ガスの放出を防止するように構成され、水分状態診断手段(40)は、燃料電池(10)の内部の水分が過剰であると診断されたときには、燃料極側の水が電解質膜を介して空気極側へ排出されるように、燃料ガスの圧力が酸化ガスの圧力に対して高くなるように水分状態診断手段(40)の診断結果に応じて、酸化ガスの圧力と燃料ガスの圧力との圧力差を制御し、燃料電池(10)の内部の水分が不足であると診断されたときには、空気極側の水が電解質膜を介して燃料極側へ移動するように、燃料ガスの圧力が酸化ガスの圧力に対して低くなるように酸化ガスの圧力と燃料ガスの圧力との圧力差を制御し、燃料電池(10)の内部の水分が適正であると診断されたときには、燃料ガスの圧力と酸化ガスの圧力との圧力差を低減させることを特徴とする。
【0010】
これによると、燃料電池(10)の内部の水分が過剰であると診断されたときには、燃料ガスの圧力が酸化ガスの圧力に対して高くなるように圧力差を制御することにより、空気極側から電解質膜を介して燃料極側への水の拡散が抑制されるため、燃料極または燃料流路をパージしなくても、燃料極の電極部位での水の滞留を防止することができる。一方燃料電池(10)の内部の水分が不足であると診断されたときには、燃料ガスの圧力が酸化ガスの圧力に対して低くなるように圧力差を制御することにより、空気極側から燃料極側への水移動が促進されるため、電解質膜への含水を迅速に行うことができる。また、燃料電池の内部の水分が適正である状態を維持することができる。
【0011】
したがって、水分状態診断手段の診断結果に応じて圧力差を制御することにより、電極部位での水の滞留や電解質膜の含水量の不足による電池の出力低下を防止することができる。
【0013】
請求項に記載の発明では、酸化ガスおよび燃料ガスの少なくとも一方の含水量を制御する水分量調整手段(24)を有し、燃料ガスへの水透過が過剰であると診断されたときには、酸化ガスおよび燃料ガスの少なくとも一方の含水量を低減させることを特徴とする。これによると、水の排出を迅速に行うことができる。
【0014】
請求項に記載の発明では、酸化ガスおよび燃料ガスの少なくとも一方の含水量を制御する水分量調整手段(24)を有し、燃料電池(10)の内部が乾燥状態であると診断されたときには、酸化ガスおよび燃料ガスの少なくとも一方の含水量を増加させることを特徴とする。これによると、電解質膜への含水を迅速に行うことができる。
【0015】
請求項に記載の発明のように、診断結果に応じて一定時間のみ酸化ガスの圧力と燃料ガスの圧力との圧力差を制御することができる。
【0016】
請求項に記載の発明のように、水分状態診断手段(40)は、燃料電池(10)の発電電流の積算値が所定値を上回った場合に、燃料電池(10)の水が過剰であると診断することができる。
【0017】
請求項に記載の発明のように、燃料電池(10)は、多数のセルを有し、水分状態診断手段(40)は、セル間の発生電圧のばらつき状態に基づいて燃料電池(10)の水分状態を診断することができる。
【0018】
請求項に記載の発明では、水分状態診断手段(40)は、燃料電池(10)における酸化ガスの出入口および燃料ガスの出入口の少なくとも一ヶ所に、ガス中の水分量を測定する水分量測定手段(51、52)を有することを特徴とする。これによると、燃料電池の水分状態を診断することができる。
【0019】
請求項に記載の発明では、水分状態診断手段(40)は、燃料電池(10)の電解質膜の抵抗を測定する抵抗測定手段(60)を有することを特徴とする。これによると、燃料電池の水分状態を診断することができる。
【0020】
請求項に記載の発明では、燃料電池(10)の内部における酸化ガスの入口圧力を測定する酸化ガス入口圧力測定手段(71)と、燃料電池(10)の内部における燃料ガスの出口圧力を測定する燃料ガス出口圧力測定手段(82)とを有し、酸化ガス入口圧力測定手段および燃料ガス出口圧力測定手段の測定結果に基づいて、酸化ガスの圧力と燃料ガスの圧力を制御することを特徴とする。
【0021】
これによると、燃料電池の内部全域において燃料ガスの圧力が酸化ガス圧力よりも高くなる制御を容易且つ確実に行うことができる。そして、このような圧力制御により、空気極側から電解質膜を介して燃料極側への水の拡散が抑制されるため、燃料極または燃料流路をパージしなくても、燃料極の電極部位での水の滞留を防止することができる。
【0022】
請求項10に記載の発明では、燃料電池(10)の内部における酸化ガスの入口圧力を測定する酸化ガス入口圧力測定手段(71)と、燃料電池(10)の内部における酸化ガスの出口圧力を測定する酸化ガス出口圧力測定手段(72)と、燃料電池(10)の内部における燃料ガスの入口圧力を測定する燃料ガス入口圧力測定手段(81)と、燃料電池(10)の内部における燃料ガスの出口圧力を測定する燃料ガス出口圧力測定手段(82)とを有し、酸化ガスおよび燃料ガスのうち相対的に圧力を高く制御するガスの出口圧力と、酸化ガスおよび燃料ガスのうち相対的に圧力を低く制御するガスの入口圧力とに基づいて、酸化ガスの圧力と燃料ガスの圧力を制御することを特徴とする。
【0023】
これによると、燃料電池の内部全域において燃料ガスの圧力が酸化ガス圧力よりも高くなる制御、或いは、燃料電池の内部全域において酸化ガスの圧力が燃料ガス圧力よりも高くなる制御を、容易且つ確実に行うことができる。そして、前者の圧力制御により、空気極側から電解質膜を介して燃料極側への水の拡散が抑制されるため、燃料極または燃料流路をパージしなくても、燃料極の電極部位での水の滞留を防止することができる。また、後者の圧力制御により、空気極側から燃料極側への水移動が促進されるため、電解質膜への含水を迅速に行うことができる。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0025】
【発明の実施の形態】
(第1実施形態)
図1は参考例としての第1実施形態に係る燃料電池システムを示す模式図で、この燃料電池システムは例えば電気自動車に適用される。
【0026】
図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。この燃料電池10は、電気負荷11や2次電池(図示せず)等の電気機器に電力を供給するものである。因みに、電気自動車の場合、車両走行用の電動モータが電気負荷11に相当する。
【0027】
本実施形態では燃料電池10として固体高分子電解質型燃料電池を用いており、基本単位となる燃料電池セルが複数個積層され、且つ電気的に直列接続されている。燃料電池10では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。
【0028】
(負極側)H2→2H++2e-
(正極側)2H++1/2O2+2e-→H2
燃料電池システムには、燃料電池10の空気極(正極)側に空気(酸素)を供給するための空気流路20と、燃料電池10の燃料極(負極)側に水素を供給するための燃料流路30が設けられている。なお、空気は本発明の酸化ガスに相当し、水素は本発明の燃料ガスに相当する。
【0029】
空気流路20の最上流部には、大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ21が設けられ、空気流路20における空気ポンプ21と燃料電池10との間には、空気が燃料電池10に流入する部位での空気の圧力を計測するための空気圧センサ22が設けられ、空気流路20における燃料電池10の下流側には、燃料電池10に供給される空気の圧力を調整するための空気調圧弁23が設けられている。因みに、空気圧センサ22を上記の位置に配置することにより、燃料電池10の内部における空気の最高圧力を計測している。
【0030】
空気ポンプ21は回転数を電気的に変更可能なものであり、空気調圧弁23は空気圧力の調整圧を電気的に変更可能なものである。なお、空気圧センサ22は本発明の第1圧力計測手段に相当し、空気調圧弁23は本発明の第1圧力調整手段に相当する。
【0031】
燃料流路30の最上流部には、水素が充填された水素ボンベ31が設けられ、燃料流路30における水素ボンベ31と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整するための水素調圧弁32が設けられている。
【0032】
燃料流路30における燃料電池10の下流側は、水素調圧弁32の下流側に接続されて燃料流路30が閉ループに構成されており、これにより燃料流路30内で水素を循環させて、燃料電池10での未使用水素を燃料電池10に再供給するようにしている。
【0033】
そして、燃料流路30における燃料電池10の下流側には、水素が燃料電池10から流出する部位での水素の圧力を計測するための水素圧センサ33と、燃料流路30内で水素を循環させるための水素ポンプ34とが設けられている。因みに、水素圧センサ33を上記の位置に配置することにより、燃料電池10の内部における水素の最低圧力を計測している。
【0034】
水素ポンプ34は回転数を電気的に変更可能なものであり、水素調圧弁32は水素圧力の調整圧を電気的に変更可能なものである。なお、水素圧センサ33は本発明の第2圧力計測手段に相当し、水素調圧弁32は本発明の第2圧力調整手段に相当する。また、空気調圧弁23と水素調圧弁32とにより、本発明の圧力調整手段を構成している。
【0035】
制御部(ECU)40は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。そして、燃料電池10に発生させる電力の目標値である目標出力が図示しない他のECUにて演算され、制御部40には、他のECUからの目標出力信号、空気圧センサ22からの空気圧信号、水素圧センサ33からの水素圧信号が入力される。また、制御部40は、演算結果に基づいて、空気ポンプ21、空気調圧弁23、水素調圧弁32、水素ポンプ34に制御信号を出力する。
【0036】
次に、上記構成の燃料電池システムの作動を、図1および図2に基づいて説明する。なお、図2は制御部40にて実行される制御処理を示す流れ図である。
【0037】
まず、他のECUで演算された目標出力の指令値をステップS101で入力し、ステップS102では、ステップS101で入力した指令値に基づいて、ROM内に予め記憶されているマップより燃料電池10の運転電流の目標値を決定する。
【0038】
ステップS103では、ステップS102で決定した目標値に基づいて、ROM内に予め記憶されているマップより燃料電池10に供給する空気の量を決定する。ステップS104では、ステップS102で決定した目標値に基づいて、ROM内に予め記憶されているマップより燃料電池10に供給する水素の量を決定する。
【0039】
ステップS105では、ステップS103で決定した空気供給量となるように、空気ポンプ21の回転数を制御する。ステップS106では、ステップS104で決定した水素供給量となるように、水素ポンプ34の回転数を制御する。
【0040】
ステップS107では、水素圧センサ33からの水素圧信号を入力して、燃料電池10の出口部での水素の圧力Phを測定する。ステップS108では、空気圧センサ22からの空気圧信号を入力して、燃料電池10の入口部での空気の圧力Paを測定する。
【0041】
ステップS109では、出口部水素圧力Phと入口部空気圧力Paとの圧力差ΔP(ΔP=Ph−Pa)を、正の値である設定値P1と比較する。そして、圧力差ΔPが設定値P1以下の場合はステップS109がNOとなり、ステップS110に進んで、水素調圧弁32により出口部水素圧力Phを上げる制御を行う。
【0042】
一方、圧力差ΔP(ΔP=Ph−Pa)が設定値P1を超える場合はステップS109がYESとなり、ステップS120に進んで、水素調圧弁32により出口部水素圧力Phを下げる制御を行う。
【0043】
このように、ステップS109の判定結果に基づいて出口部水素圧力Phを調整することにより、出口部水素圧力Phは入口部空気圧力Paよりも常に設定値P1以上高い圧力に制御される。換言すると、燃料電池10の内部における水素の最低圧力は、燃料電池10の内部における空気の最高圧力よりも、常に設定値P1以上高い圧力に制御される。すなわち、燃料電池10の内部全域において水素圧力が空気圧力よりも高くなる。
【0044】
そして、このような圧力制御により、空気極側から電解質膜を介して燃料極側への水の拡散が抑制されるため、燃料極または燃料流路30をパージしなくても、燃料電極部位での水の滞留を防止することができる。
【0045】
なお、本実施形態では、ステップS110およびステップS120において、水素調圧弁32により出口部水素圧力Phを調整したが、空気調圧弁23により入口部空気圧力Paを調整するようにしてもよい。この場合、ステップS110では入口部空気圧力Paを下げる制御を行い、ステップS120では入口部空気圧力Paを上げる制御を行う。
【0046】
また、ステップS110およびステップS120において、出口部水素圧力Phおよび入口部空気圧力Paを共に調整するようにしてもよい。この場合、ステップS110では出口部水素圧力Phを上げると共に入口部空気圧力Paを下げる制御を行い、ステップS120では出口部水素圧力Phを下げると共に入口部空気圧力Paを上げる制御を行う。
【0047】
また、本実施形態では、圧力差ΔPと設定値P1との比較結果に基づいて水素調圧弁32により出口部水素圧力Phを調整するようにしたが、以下述べるように、ROM内に予め記憶させたマップに基づいて空気調圧弁23および水素調圧弁32の作動を制御することもできる。
【0048】
すなわち、運転電流の目標値に基づいて決定した空気供給量および水素供給量と、空気調圧弁23および水素調圧弁32の開度とをパラメータとして、燃料電池10の内部における水素の最低圧力および燃料電池10の内部における空気の最高圧力との関係を予め実験にて調査し、常に燃料電池10の内部における水素の最低圧力が燃料電池10の内部における空気の最高圧力よりも高くなるような、空気調圧弁23および水素調圧弁32の開度を決定する。
【0049】
そして、その決定した空気調圧弁23および水素調圧弁32の開度と、運転電流の目標値とを関連づけたマップを、ROM内に記憶させ、マップに基づいて空気調圧弁23および水素調圧弁32の作動を制御する。これによれば、空気圧センサ22および水素圧センサ33が不要である。
【0050】
(第2実施形態)
次に、本発明の第2実施形態を図3、図4に基づいて説明する。本実施形態は、燃料電池10の運転状態の診断結果に応じて、入口部空気圧力Pa、出口部水素圧力Ph、空気への加湿量を制御するようにしたものである。なお、上記第1実施形態と同一若しくは均等部分には同一の符号を付し、その説明を省略する。
【0051】
図3は本実施形態の燃料電池システムの全体構成を示している。図3に示すように、空気への加湿を行う加湿器24が空気流路20における空気ポンプ21と燃料電池10との間に設けられ、また、燃料電池10には、燃料電池10を構成する各セルの出力電圧を検出するセルモニタ12が設けられ、セルモニタ12で検出したセル電圧信号が制御部40に入力されるようになっている。なお、加湿器24は本発明の水分量調整手段に相当する。
【0052】
そして、制御部40は、各セルの出力電圧に基づいて燃料電池10の燃料極側での水の滞留状態や電解質膜の乾燥状態、すなわち燃料電池10の運転状態を診断するようになっている。従って、制御部40およびセルモニタ12が本発明の水分状態診断手段に相当する。
【0053】
なお、本実施形態では、上記第1実施形態における空気圧センサ22および水素圧センサ33は設けられていない。そのため、空気調圧弁23の開度と入口部空気圧力Paとを関連づけたマップ、および水素調圧弁32の開度と出口部水素圧力Phとを関連づけたマップを、ROM内に記憶させ、そのマップに基づいて入口部空気圧力Paおよび出口部水素圧力Phを求めるようにしている。
【0054】
次に、上記構成の燃料電池システムの作動を、図3および図4に基づいて説明する。なお、図4は制御部40にて実行される制御処理を示す流れ図である。
【0055】
まず、目標出力の指令値をステップS101で入力し、ステップS102では、ステップS101で入力した指令値に基づいてマップより燃料電池10の運転電流の目標値を決定する。
【0056】
ステップS103では、ステップS102で決定した目標値に基づいて、マップより燃料電池10に供給する空気の量を決定すると共に、ステップS103aでは、ステップS102で決定した目標値に基づいて、マップより供給空気の基本圧力を決定する。
【0057】
ステップS104では、ステップS102で決定した目標値に基づいて、マップより燃料電池10に供給する水素の量を決定すると共に、ステップS104aでは、ステップS102で決定した目標値に基づいて、マップより供給水素の基本圧力を決定する。
【0058】
ステップS105aでは、ステップS103aで決定した空気圧力が実現される空気調圧弁23の基本開度を決定する。ステップS105では、ステップS103で決定した空気供給量となるように、空気ポンプ21の回転数を制御する。
【0059】
ステップS106では、ステップS104で決定した水素供給量となるように、水素ポンプ34の回転数を制御する。ステップS106aでは、ステップS104aで決定した水素圧力が実現される水素調圧弁32の基本開度を決定する。
【0060】
ステップS130では、ステップS102で決定された運転電流目標値に基づいて、空気の基本加湿量を決定する。
【0061】
次に、ステップS140では、燃料電池10の燃料極側での水の滞留状態や電解質膜の乾燥状態、すなわち燃料電池10の運転状態を診断する。具体的には、まず、各セルの出力電圧から、平均セル電圧、各セルの電圧の偏差、およびセル電圧の標準偏差を演算する。
【0062】
そして、特定のセルの燃料極側に水が滞留する状況では、水素または空気への加湿が充分に行われていると推定されるため、その特定のセルを除いては正常に作動していて平均セル電圧はさほど低下せず、特定のセルのみ発生電圧が大きく低下する。従って、平均セル電圧が正常な範囲にあり、且つ偏差が異常に大きいセルが存在する場合は、燃料極側に水が滞留したセルがあると推定する。
【0063】
また、電解質膜が乾燥する状況では、乾燥した空気が空気極に供給されていると推定されるため、全てのセルにおいて電解質膜が乾燥傾向になって平均セル電圧が大きく低下し、一方、乾燥した空気が供給されていれば凝縮水が発生しずらく、よって燃料極側に水が滞留しずらく、発生電圧が大きく低下するセルは存在しない。従って、平均セル電圧の低下が大きく、且ついずれのセルも偏差が小さい場合は、電解質膜が乾燥していると推定する。
【0064】
次に、ステップS150では、燃料電池10の内部の水分が過剰であるか否か、より詳細には燃料極側に水が滞留したセルがあるか否かを、ステップS140の診断結果に基づいて判定する。そして、燃料極側に水が滞留したセルがあると推定されている場合にはステップS150がYESとなり、ステップS151に進む。
【0065】
ステップS151では、出口部水素圧力Phと入口部空気圧力Paとの圧力差ΔP(ΔP=Ph−Pa)が、正の値である第1設定値P1を超えるように、水素調圧弁32により出口部水素圧力Phを上げる制御を行う。このように、出口部水素圧力Phを入口部空気圧力Paよりも高くすることにより、燃料極側の水を電解質膜を介して空気極側へ排出する作用が促進される。
【0066】
次にステップS152に進み、ステップS152では、加湿器24による空気への加湿量を低減する。このように、空気への加湿量を低減することにより、空気極側から電解質膜を介して燃料極側へ水が拡散するのを抑制することができる。そして、ステップS151およびステップS152の制御の実行により、燃料極側の水を迅速に排出することができる。
【0067】
一方、ステップS150がNOの場合はステップS160に進む。このステップS160では、燃料電池10の内部の水分が不足しているか否か、より詳細には電解質膜が乾燥しているか否かをステップS140の診断結果に基づいて判定する。そして、電解質膜が乾燥していると推定されている場合にはステップS160がYESとなり、ステップS161に進む。
【0068】
ステップS161では、出口部水素圧力Phと入口部空気圧力Paとの圧力差が、負の値である第2設定値P2未満になるように、水素調圧弁32により出口部水素圧力Phを下げる制御を行う。このように、出口部水素圧力Phを入口部空気圧力Paよりも低くすることにより、空気極側から電解質膜を介して燃料極側へ水が移動するのを促進して、電解質膜への含水を迅速に行うことができる。
【0069】
次にステップS162に進み、ステップS162では、加湿器24による空気への加湿量を増加する。このように、空気への加湿量を増加することにより、空気極側から電解質膜への含水を迅速に行うことができる。
【0070】
なお、燃料電池10の内部の水分が適正である場合、より詳細には燃料極側に水が滞留しておらず、また電解質膜が乾燥していない場合には、ステップS150およびステップS160が共にNOとなり、ステップS170に進む。
【0071】
ステップS170では、出口部水素圧力Phと入口部空気圧力Paとの圧力差が小さくなるように、より詳細には、出口部水素圧力Phと入口部空気圧力Paとの圧力差の絶対値が、正の値である第3設定値P3未満になるように、水素調圧弁32により出口部水素圧力Phを制御する。因みに、第3設定値P3の値は、第1設定値P1よりも小さく、また、第2設定値P2の絶対値よりも小さく設定されている。次にステップS171に進み、ステップS171では、加湿器24による空気への加湿量を、ステップS130で決定された基本加湿量に制御する。ステップS170およびステップS171の制御の実行により、燃料電池10の内部の水分が適正である状態を維持することができる。
【0072】
なお、本実施形態では、空気および水素のうち空気への加湿のみを行うようにしたが、水素への加湿を行うようにしてもよい。そして、水素への加湿を行う場合、ステップS152では水素への加湿量を低減し、ステップS162では水素への加湿量を増加する。
【0073】
また、本実施形態では、燃料極側に水が滞留したセルがあると推定された場合に、水素調圧弁32により出口部水素圧力Phを上げる制御を行ったが、空気調圧弁23により入口部空気圧力Paを下げる制御を行うことにより、出口部水素圧力Phを入口部空気圧力Paに比べて相対的に上昇させるようにしてもよい。
【0074】
さらに、本実施形態では、電解質膜が乾燥していると推定された場合に、水素調圧弁32により出口部水素圧力Phを下げる制御を行ったが、空気調圧弁23により入口部空気圧力Paを上げる制御を行うことにより、出口部水素圧力Phを入口部空気圧力Paに比べて相対的に低下させるようにしてもよい。
【0075】
さらに、本実施形態では、ステップS150およびステップS160の判定結果に応じて、出口部水素圧力Phと入口部空気圧力Paとの圧力差の制御、および加湿量の制御を行うようにしたが、ステップS152、162、171の加湿量の制御を中止し、圧力差の制御のみを行うようにしてもよい。
【0076】
(第3実施形態)
次に、本発明の第3実施形態を図5に基づいて説明する。本実施形態は、燃料電池10の運転状態の診断結果に応じて、一定時間のみ出口部水素圧力Phと入口部空気圧力Paとの圧力差を制御するようにしたものである。なお、本実施形態の燃料電池システムの全体構成は第2実施形態と同一である。図5は制御部40にて実行される制御処理を示す流れ図であり、図5においては、第2実施形態におけるステップS102〜ステップS130(図4参照)の図示を省略している。
【0077】
図5において、ステップS180では、燃料電池10の内部の水分が過剰であるか否か、より詳細には燃料極側に水が滞留したセルがあるか否かを、ステップS140の診断結果に基づいて判定する。そして、燃料極側に水が滞留したセルがあると推定されている場合には、後述するステップS183の圧力差制御が一定時間のみ実行される。
【0078】
すなわち、ステップS181で、時間カウンタをリセットして時間tcを0にし、ステップS182で、時間tcが第1設定時間t1を超えたか否かを判定し、時間tcが第1設定時間t1を超えていなければステップS183の制御を実行し、ステップS184で、時間tcは一定時間Δtを加算した値に更新される。そして、更新後の時間tcが第1設定時間t1を超えるとステップS182がYESとなり、ステップS183の圧力差制御が終了する。
【0079】
因みに、ステップS183では、出口部水素圧力Phと入口部空気圧力Paとの圧力差ΔP(ΔP=Ph−Pa)が、正の値である第1設定値P1を超えるように、水素調圧弁32により出口部水素圧力Phを上げる制御を行う。このように、出口部水素圧力Phを入口部空気圧力Paよりも高くすることにより、燃料極側の水を電解質膜を介して空気極側へ排出する作用が促進される。
【0080】
一方、ステップS180がNOの場合はステップS190に進む。このステップS190では、燃料電池10の内部の水分が不足しているか否か、より詳細には電解質膜が乾燥しているか否かをステップS140の診断結果に基づいて判定する。そして、電解質膜が乾燥していると推定されている場合には、後述するステップS193の圧力差制御が一定時間のみ実行される。
【0081】
すなわち、ステップS191で、時間カウンタをリセットして時間tcを0にし、ステップS192で、時間tcが第2設定時間t2を超えたか否かを判定し、時間tcが第2設定時間t2を超えていなければステップS193の制御を実行し、ステップS194で、時間tcは一定時間Δtを加算した値に更新される。そして、更新後の時間tcが第2設定時間t2を超えるとステップS192がYESとなり、ステップS193の圧力差制御が終了する。
【0082】
因みに、ステップS193では、出口部水素圧力Phと入口部空気圧力Paとの圧力差が、負の値である第2設定値P2未満になるように、水素調圧弁32により出口部水素圧力Phを下げる制御を行う。このように、出口部水素圧力Phを入口部空気圧力Paよりも低くすることにより、空気極側から電解質膜を介して燃料極側へ水が移動するのを促進して、電解質膜への含水を迅速に行うことができる。
【0083】
なお、燃料電池10の内部の水分が適正である場合、より詳細には燃料極側に水が滞留しておらず、また電解質膜が乾燥していない場合には、ステップS180およびステップS190が共にNOとなり、ステップS200に進む。
【0084】
ステップS200では、出口部水素圧力Phと入口部空気圧力Paとの圧力差が小さくなるように、より詳細には、出口部水素圧力Phと入口部空気圧力Paとの圧力差の絶対値が、正の値である第3設定値P3未満になるように、水素調圧弁32により出口部水素圧力Phを制御する。因みに、第3設定値P3の値は、第1設定値P1よりも小さく、また、第2設定値P2の絶対値よりも小さく設定されている。
【0085】
(第4実施形態)
次に、本発明の第4実施形態を図6に基づいて説明する。本実施形態は、燃料電池10の発電電流の積算値に基づいて、燃料電池10の水分状態を診断するようにしたものである。なお、本実施形態の燃料電池システムの全体構成は第2実施形態と同一である。
【0086】
図6は制御部40にて実行される制御処理を示す流れ図である。まず、ステップS210では、燃料電池10の発電電流Iを測定し、読み込む。ステップS211では、発電電流Iの積算値Isumを更新する。具体的には、直前の発電電流積算値Isumに発電電流Iと一定時間Δtとの積を加算した値を、発電電流積算値Isumとする。
【0087】
ところで、発電に伴って発生する水の量は発電電流積算値Isumに略比例する。そこで、ステップS212では、発電電流積算値Isumが設定積算値Imaxを超えたか否かを判定し、発電電流積算値Isumが設定積算値Imaxを超えた場合には(ステップS212がYES)、燃料電池10の内部の水分が過剰状態であると推定し、後述するステップS216の圧力差制御を一定時間のみ実行して、燃料極側の水を電解質膜を介して空気極側へ排出する。
【0088】
すなわち、ステップS213で、発電電流積算値Isumを0にし、ステップS214で、時間カウンタをリセットして時間tcを0にし、ステップS215で、時間tcが第1設定時間t1を超えたか否かを判定し、時間tcが第1設定時間t1を超えていなければステップS216の制御を実行し、ステップS217で、時間tcは一定時間Δtを加算した値に更新され、ステップS218で、発電電流積算値Isumは、直前の発電電流積算値Isumに発電電流Iと一定時間Δtとの積を加算した値に更新される。そして、更新後の時間tcが第1設定時間t1を超えるとステップS215がYESとなり、ステップS216の圧力差制御が終了する。
【0089】
因みに、ステップS216では、出口部水素圧力Phと入口部空気圧力Paとの圧力差ΔP(ΔP=Ph−Pa)が、正の値である第1設定値P1を超えるように、水素調圧弁32により出口部水素圧力Phを上げる制御を行う。このように、出口部水素圧力Phを入口部空気圧力Paよりも高くすることにより、燃料極側の水を電解質膜を介して空気極側へ排出する作用が促進される。
【0090】
一方、発電電流積算値Isumが設定積算値Imax以下の場合には(ステップS212がNO)、燃料電池10の内部の水分が適正であると推定し、ステップS219に進む。
【0091】
ステップS219では、出口部水素圧力Phと入口部空気圧力Paとの圧力差が小さくなるように、より詳細には、出口部水素圧力Phと入口部空気圧力Paとの圧力差の絶対値が、正の値である第3設定値P3未満になるように、水素調圧弁32により出口部水素圧力Phを制御する。因みに、第3設定値P3の値は、第1設定値P1よりも小さく設定されている。
【0092】
(第5実施形態)
次に、本発明の第5実施形態を図7に基づいて説明する。第2実施形態では、各セルの出力電圧から燃料電池10の水分状態を診断したのに対し、本実施形態は、ガス中の水分量を測定して燃料電池10の水分状態を診断するようにしたものである。図7は本実施形態の燃料電池システムの全体構成を示すものであり、第2実施形態と同一若しくは均等部分には同一の符号を付し、その説明を省略する。
【0093】
図7において、空気流路20における燃料電池10の下流側、すなわち空気出口側には、燃料電池10を通過した空気中の水分量を測定する第1水分量センサ51が配置されている。また、燃料流路30における燃料電池10の下流側、すなわち水素出口側には、燃料電池10を通過した水素中の水分量を測定する第2水分量センサ52が配置されている。なお、第1水分量センサ51および第2水分量センサ52は、本発明の水分量測定手段に相当する。
【0094】
第1水分量センサ51および第2水分量センサ52の信号は制御部40に入力され、制御部40は第1水分量センサ51および第2水分量センサ52の信号に基づいて、燃料電池10の水分状態、より詳細には水の滞留状態や電解質膜の乾燥状態を診断する。そして、診断結果に応じて、出口部水素圧力Phと入口部空気圧力Paとの圧力差の制御、および加湿量の制御を行うようになっている。
【0095】
なお、本実施形態では、第1水分量センサ51と第2水分量センサ52とを用いたが、いずれか一方のみを用いて実施することもできる。また、第1水分量センサ51は、空気流路20における燃料電池10の上流側、すなわち空気入口側に配置してもよい。さらに、第2水分量センサ52は、燃料流路30における燃料電池10の上流側、すなわち水素入口側に配置してもよい。
【0096】
(第6実施形態)
次に、本発明の第6実施形態を図8に基づいて説明する。第2実施形態では、各セルの出力電圧から燃料電池10の水分状態を診断したのに対し、本実施形態は、燃料電池10の電解質膜の抵抗を測定して、燃料電池10の水分状態を診断するようにしたものである。図8は本実施形態の燃料電池システムの全体構成を示すものであり、第2実施形態と同一若しくは均等部分には同一の符号を付し、その説明を省略する。
【0097】
図8に示すように、燃料電池10の電解質膜の抵抗を測定する抵抗測定器60を備えている。この抵抗測定器60は、本発明の抵抗測定手段に相当する。抵抗測定器60の信号は制御部40に入力され、制御部40は抵抗測定器60の信号に基づいて、燃料電池10の水分状態、より詳細には水の滞留状態や電解質膜の乾燥状態を診断する。そして、診断結果に応じて、出口部水素圧力Phと入口部空気圧力Paとの圧力差の制御、および加湿量の制御を行うようになっている。
【0098】
(第7実施形態)
次に、本発明の第7実施形態を図9、図10に基づいて説明する。図9は本実施形態の燃料電池システムの全体構成を示すものであり、第2実施形態と同一若しくは均等部分には同一の符号を付し、その説明を省略する。図10は制御部40にて実行される制御処理を示す流れ図である。
【0099】
図9において、空気流路20における燃料電池10の空気入口部近傍には、燃料電池10の内部における空気入口側の空気圧力(以下、入口部空気圧力という)Painを測定する第1空気圧センサ71が配置され、空気流路20における燃料電池10の空気出口部近傍には、燃料電池10の内部における空気出口側の空気圧力(以下、出口部空気圧力という)Paoutを測定する第2空気圧センサ72が配置されている。因みに、通気抵抗により、Pain>Paoutとなる。
【0100】
また、燃料流路30における燃料電池10の水素入口部近傍には、燃料電池10の内部における水素入口側の水素圧力(以下、入口部水素圧力という)Phinを測定する第1水素圧センサ81が配置され、燃料流路30における燃料電池10の水素出口部近傍には、燃料電池10の内部における水素出口側の水素圧力(以下、出口部水素圧力という)Phoutを測定する第2水素圧センサ82が配置されている。因みに、通気抵抗により、Phin>Phoutとなる。
【0101】
なお、第1空気圧センサ71は本発明の酸化ガス入口圧力測定手段に相当し、第2空気圧センサ72は本発明の酸化ガス出口圧力測定手段に相当し、第1水素圧センサ81は本発明の燃料ガス入口圧力測定手段に相当し、第2水素圧センサ82は本発明の燃料ガス出口圧力測定手段に相当する。
【0102】
次に、上記構成の燃料電池システムにおける、燃料電池10の運転状態の診断結果に応じて水素圧力と空気圧力との圧力差を制御する際の作動を、図10に基づいて説明する。
【0103】
まず、ステップS220では、燃料電池10の内部の水分が過剰であるか否か、より詳細には燃料極側に水が滞留したセルがあるか否かを、燃料電池10の運転状態診断結果(図4のステップS140参照)に基づいて判定する。
【0104】
そして、燃料極側に水が滞留したセルがあると推定されている場合には、ステップS221で出口部水素圧力Phoutを読み込み、ステップS222で入口部空気圧力Painを読み込み、ステップS223に進む。ステップS223では、出口部水素圧力Phoutと入口部空気圧力Painとの圧力差ΔP(ΔP=Phout−Pain)が、正の値である第1設定値P1を超えるように、水素調圧弁32により出口部水素圧力Phoutを上げる制御を行う。
【0105】
このように、燃料電池10内部の水素経路中で最も低圧になる出口部水素圧力Phoutが、燃料電池10内部の空気経路中で最も高圧になる入口部空気圧力Painよりも、相対的に高くなるように制御することにより、燃料電池10の内部全域において水素の圧力が空気の圧力よりも高くなるため、燃料極側の水を電解質膜を介して空気極側へ排出する作用を確実に行わせることができる。
【0106】
一方、ステップS220がNOの場合はステップS230に進む。ステップS230で入口部水素圧力Phinを読み込み、ステップS231で出口部空気圧力Paoutを読み込み、ステップS232に進む。
【0107】
このステップS232では、燃料電池10の内部の水分が不足しているか否か、より詳細には電解質膜が乾燥しているか否かを、燃料電池10の運転状態診断結果(図4のステップS140参照)に基づいて判定する。そして、電解質膜が乾燥していると推定されている場合にはステップS233に進む。
【0108】
ステップS233では、入口部水素圧力Phinと出口部空気圧力Paoutとの圧力差が、負の値である第2設定値P2未満になるように、水素調圧弁32により入口部水素圧力Phinを下げる制御を行う。
【0109】
このように、燃料電池10内部の水素経路中で最も高圧になる入口部水素圧力Phinが、燃料電池10内部の空気経路中で最も低圧になる出口部空気圧力Paoutよりも、相対的に低くなるように制御することにより、燃料電池10の内部全域において水素の圧力が空気の圧力よりも低くなるため、空気極側から電解質膜を介して燃料極側へ水が移動する作用を確実に行わせることができる。
【0110】
なお、燃料電池10の内部の水分が適正である場合、より詳細には燃料極側に水が滞留しておらず、また電解質膜が乾燥していない場合には、ステップS220およびステップS232が共にNOとなり、ステップS240に進む。
【0111】
ステップS240では、入口部水素圧力Phinと出口部空気圧力Paoutとの圧力差が小さくなるように、より詳細には、入口部水素圧力Phinと出口部空気圧力Paoutとの圧力差の絶対値が、正の値である第3設定値P3未満になるように、水素調圧弁32により入口部水素圧力Phinを制御する。この制御の実行により、燃料電池10の内部の水分が適正である状態を維持することができる。因みに、第3設定値P3の値は、第1設定値P1よりも小さく、また、第2設定値P2の絶対値よりも小さく設定されている。
【0112】
(他の実施形態)
上記各実施形態では、空気流路20および燃料流路30にそれぞれ調圧弁23、32を設けたが、例えばどちらか一方の流路にのみ調圧弁を設けて、他方の流路は管径は固定として、その一方の流路にのみ設けられた調圧弁の開度を調整することで、酸化ガスの圧力と燃料ガスの圧力との圧力差を制御するようにしてもよい。
【図面の簡単な説明】
【図1】第1実施形態の燃料電池システムの全体構成を示す概略図である。
【図2】図1の制御部40にて実行される制御処理を示す流れ図である。
【図3】第2実施形態の燃料電池システムの全体構成を示す概略図である。
【図4】図3の制御部40にて実行される制御処理を示す流れ図である。
【図5】第3実施形態の燃料電池システムにて実行される制御処理を示す流れ図である。
【図6】第4実施形態の燃料電池システムにて実行される制御処理を示す流れ図である。
【図7】第5実施形態の燃料電池システムの全体構成を示す概略図である。
【図8】第6実施形態の燃料電池システムの全体構成を示す概略図である。
【図9】第7実施形態の燃料電池システムの全体構成を示す概略図である。
【図10】図9の制御部40にて実行される制御処理を示す流れ図である。
【符号の説明】
10…燃料電池、23…空気調圧弁(第1圧力調整手段)、32…水素調圧弁(第2圧力調整手段)、40…制御部40(水分状態診断手段)。

Claims (10)

  1. 酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとの電気化学反応により電気エネルギを発生する固体高分子電解質型燃料電池(10)と、
    前記燃料電池(10)に前記酸化ガスを供給する空気流路(20)と、
    前記燃料電池(10)に前記燃料ガスを供給する燃料流路(30)と、
    前記空気流路(20)における前記酸化ガスの圧力を調整する第1圧力調整手段(23)および前記燃料流路(30)における前記燃料ガスの圧力を調整する第2圧力調整手段(32)のうち少なくとも一方と、
    前記燃料電池(10)の水分状態を診断する水分状態診断手段(40)とを備え、
    前記燃料流路(30)の下流側は、前記燃料ガスの放出を防止するように構成
    され、
    前記水分状態診断手段(40)は、
    前記燃料電池(10)の内部の水分が過剰であると診断されたときには、燃料極側の水が電解質膜を介して空気極側へ排出されるように、前記燃料ガスの圧力が前記酸化ガスの圧力に対して高くなるように前記酸化ガスの圧力と前記燃料ガスの圧力との圧力差を制御し、
    前記燃料電池(10)の内部の水分が不足であると診断されたときには、空気極側の水が電解質膜を介して燃料極側へ移動するように、前記燃料ガスの圧力が前記酸化ガスの圧力に対して低くなるように前記酸化ガスの圧力と前記燃料ガスの圧力との圧力差を制御し、
    前記燃料電池(10)の内部の水分が適正であると診断されたときには、前記
    燃料ガスの圧力と前記酸化ガスの圧力との圧力差を低減させることを特徴とする燃料電池システム。
  2. 前記酸化ガスおよび前記燃料ガスの少なくとも一方の含水量を制御する水分量調整手段(24)を有し、
    前記燃料ガスへの水透過が過剰であると診断されたときには、前記酸化ガスおよび前記燃料ガスの少なくとも一方の含水量を低減させることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記酸化ガスおよび前記燃料ガスの少なくとも一方の含水量を制御する水分量調整手段(24)を有し、
    前記燃料電池(10)の内部が乾燥状態であると診断されたときには、前記酸化ガスおよび前記燃料ガスの少なくとも一方の含水量を増加させることを特徴とする請求項に記載の燃料電池システム。
  4. 診断結果に応じて一定時間のみ前記酸化ガスの圧力と前記燃料ガスの圧力との圧力差を制御することを特徴とする請求項1ないし3のいずれか1つに記載の燃料電池システム。
  5. 前記水分状態診断手段(40)は、前記燃料電池(10)の発電電流の積算値が所定値を上回った場合に、前記燃料電池(10)の水が過剰であると診断することを特徴とする請求項1ないし3のいずれか1つに記載の燃料電池システム。
  6. 前記燃料電池(10)は、多数のセルを有し、
    前記水分状態診断手段(40)は、前記セル間の発生電圧のばらつき状態に基づいて前記燃料電池(10)の水分状態を診断することを特徴とする請求項1ないしのいずれか1つに記載の燃料電池システム。
  7. 前記水分状態診断手段(40)は、前記燃料電池(10)における前記酸化ガスの出入口および前記燃料ガスの出入口の少なくとも一ヶ所に、前記ガス中の水分量を測定する水分量測定手段(51、52)を有することを特徴とする請求項1ないしのいずれか1つに記載の燃料電池システム。
  8. 前記水分状態診断手段(40)は、前記燃料電池(10)の電解質膜の抵抗を測定する抵抗測定手段(60)を有することを特徴とする請求項1ないしのいずれか1つに記載の燃料電池システム。
  9. 前記燃料電池(10)の内部における前記酸化ガスの入口圧力を測定する酸化ガス入口圧力測定手段(71)と、前記燃料電池(10)の内部における前記燃料ガスの出口圧力を測定する燃料ガス出口圧力測定手段(82)とを有し、
    前記酸化ガス入口圧力測定手段および前記燃料ガス出口圧力測定手段の測定結果に基づいて、前記酸化ガスの圧力と前記燃料ガスの圧力を制御することを特徴とする請求項1ないしのいずれか1つに記載の燃料電池システム。
  10. 前記燃料電池(10)の内部における前記酸化ガスの入口圧力を測定する酸化ガス入口圧力測定手段(71)と、前記燃料電池(10)の内部における前記酸化ガスの出口圧力を測定する酸化ガス出口圧力測定手段(72)と、前記燃料電池(10)の内部における前記燃料ガスの入口圧力を測定する燃料ガス入口圧力測定手段(81)と、前記燃料電池(10)の内部における前記燃料ガスの出口圧力を測定する燃料ガス出口圧力測定手段(82)とを有し、
    前記酸化ガスおよび前記燃料ガスのうち相対的に圧力を高く制御するガスの出口圧力と、前記酸化ガスおよび前記燃料ガスのうち相対的に圧力を低く制御するガスの入口圧力とに基づいて、前記酸化ガスの圧力と前記燃料ガスの圧力を制御することを特徴とする請求項1ないしのいずれか1つに記載の燃料電池システム。
JP2003165380A 2002-07-29 2003-06-10 燃料電池システム Expired - Fee Related JP4745603B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003165380A JP4745603B2 (ja) 2002-07-29 2003-06-10 燃料電池システム
DE10334405.5A DE10334405B4 (de) 2002-07-29 2003-07-28 Brennstoffzellensystem
US10/628,533 US7122263B2 (en) 2002-07-29 2003-07-29 Fuel cell system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002219846 2002-07-29
JP2002219846 2002-07-29
JP2003165380A JP4745603B2 (ja) 2002-07-29 2003-06-10 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2004127914A JP2004127914A (ja) 2004-04-22
JP4745603B2 true JP4745603B2 (ja) 2011-08-10

Family

ID=31497598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165380A Expired - Fee Related JP4745603B2 (ja) 2002-07-29 2003-06-10 燃料電池システム

Country Status (3)

Country Link
US (1) US7122263B2 (ja)
JP (1) JP4745603B2 (ja)
DE (1) DE10334405B4 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202100B2 (ja) * 2002-11-29 2008-12-24 本田技研工業株式会社 燃料電池システムの機能維持方法
JP4222019B2 (ja) * 2002-12-17 2009-02-12 トヨタ自動車株式会社 燃料電池の診断方法
US8039154B2 (en) * 2003-08-25 2011-10-18 Panasonic Corporation Fuel cell system, method of starting fuel cell system
KR101128552B1 (ko) * 2004-01-21 2012-03-23 파나소닉 주식회사 연료전지 시스템
DE502004003612D1 (de) * 2004-07-01 2007-06-06 Siemens Ag Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage
JP4715117B2 (ja) * 2004-07-09 2011-07-06 トヨタ自動車株式会社 燃料電池システム
CN1333483C (zh) * 2004-12-10 2007-08-22 清华大学 氢/氧质子交换膜燃料电池堆的水淹诊断方法
US8658322B2 (en) * 2005-03-09 2014-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US7855025B2 (en) * 2005-11-21 2010-12-21 Ford Global Technologies Anode loop pressure control in PEM fuel cell system
JP2007257956A (ja) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd 燃料電池システム
JP5040138B2 (ja) * 2006-03-29 2012-10-03 トヨタ自動車株式会社 燃料電池システムおよび燃料電池セルの運転方法
JP5217147B2 (ja) * 2006-10-18 2013-06-19 トヨタ自動車株式会社 燃料電池システムおよびその膜含水量調節方法
JP5157122B2 (ja) * 2006-10-25 2013-03-06 株式会社日立製作所 固体高分子形燃料電池
JP5061594B2 (ja) * 2006-11-24 2012-10-31 トヨタ自動車株式会社 燃料電池運転システム
JP4831417B2 (ja) * 2006-12-12 2011-12-07 トヨタ自動車株式会社 燃料電池システム
JP5070830B2 (ja) * 2006-12-15 2012-11-14 トヨタ自動車株式会社 燃料電池システム
US7931991B2 (en) * 2006-12-26 2011-04-26 Canon Kabushiki Kaisha Fuel cell
JP5186794B2 (ja) * 2007-04-19 2013-04-24 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムにおけるガス圧力調節方法
JP2009016155A (ja) 2007-07-04 2009-01-22 Toyota Motor Corp 燃料電池の制御装置および燃料電池システム
JP4548453B2 (ja) * 2007-07-04 2010-09-22 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御装置
CA2732060A1 (en) 2007-07-25 2009-01-29 Trulite, Inc. Apparatus, system, and method to manage the generation and use of hybrid electric power
GB2453127A (en) 2007-09-26 2009-04-01 Intelligent Energy Ltd Fuel Cell System
DE102008010711B4 (de) * 2008-02-21 2018-04-26 Audi Ag Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem mit einer Regleranordnung
JP5217591B2 (ja) * 2008-04-17 2013-06-19 トヨタ自動車株式会社 燃料電池システム
JP5354461B2 (ja) * 2009-04-15 2013-11-27 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
US9034167B2 (en) * 2010-03-15 2015-05-19 Evergreen First Start Incorporated Hydrogen/oxygen generator with D.C. servo integrated control
JP5561340B2 (ja) * 2012-10-18 2014-07-30 日産自動車株式会社 燃料電池システム、燃料電池自動車、および、電解質膜の抵抗検出方法
KR101588799B1 (ko) * 2014-05-19 2016-01-26 현대자동차 주식회사 연료 전지 시스템의 산소 분압 조절 방법 및 장치
KR101592736B1 (ko) 2014-07-15 2016-02-15 현대자동차주식회사 연료 전지 시스템의 운전 제어 방법
JP2016126932A (ja) * 2015-01-05 2016-07-11 トヨタ自動車株式会社 燃料電池システム
JP6504466B2 (ja) * 2016-04-07 2019-04-24 トヨタ自動車株式会社 水素欠乏判断方法及び水素欠乏判断装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059494A (en) * 1990-05-10 1991-10-22 International Fuel Cells Fuel cell power plant
JPH08306374A (ja) 1995-05-09 1996-11-22 Toshiba Corp 燃料電池装置
JPH09320620A (ja) 1996-05-24 1997-12-12 Toshiba Corp 燃料電池発電プラント
JPH11191423A (ja) 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 固体高分子型燃料電池の運転方法
JP4734683B2 (ja) 1999-05-31 2011-07-27 トヨタ自動車株式会社 固体高分子型燃料電池
JP4379987B2 (ja) * 1999-11-30 2009-12-09 トヨタ自動車株式会社 燃料電池の制御装置
JP2001256988A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法
JP4864224B2 (ja) * 2001-04-03 2012-02-01 本田技研工業株式会社 燃料電池の残留水排出装置
JP3900952B2 (ja) * 2001-04-11 2007-04-04 株式会社デンソー 燃料電池システム
US6777120B2 (en) * 2001-05-23 2004-08-17 General Motors Corporation Relative humidity sensor with compensation for changes in pressure and gas composition

Also Published As

Publication number Publication date
JP2004127914A (ja) 2004-04-22
DE10334405A1 (de) 2004-03-04
US7122263B2 (en) 2006-10-17
US20040038098A1 (en) 2004-02-26
DE10334405B4 (de) 2017-11-23

Similar Documents

Publication Publication Date Title
JP4745603B2 (ja) 燃料電池システム
JP4380231B2 (ja) 燃料電池システム
JP4810927B2 (ja) 燃料電池システム
JP4352688B2 (ja) 燃料電池の診断装置および診断方法
JP4868251B2 (ja) 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法
US20120171590A1 (en) Control device and control method for fuel cell system
JP2008192468A (ja) 燃料電池システム
WO2008017943A2 (en) Fuel cell system
WO2009005158A1 (ja) 燃料電池システムおよび燃料電池システムの制御装置
JP2004164909A (ja) 燃料電池システム
CN108390088B (zh) 燃料电池系统
JP3928526B2 (ja) 燃料電池システム
WO2006021866A1 (en) Fuel cell system
US20140154603A1 (en) Fuel cell apparatus and fuel cell system
JP4523981B2 (ja) 燃料電池システム
JP4085805B2 (ja) 燃料電池システム
JP2008146971A (ja) 燃料電池システムおよび燃料電池システムを搭載する移動体
CN107452974B (zh) 缺氢判断方法及缺氢判断装置
JP2009054427A (ja) 燃料電池システム
CN104737345B (zh) 燃料电池的制造方法、燃料电池以及燃料电池系统
CA2942629C (en) Fuel cell system with wetness control
JP5103877B2 (ja) 燃料電池システム
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
JP2010146750A (ja) 燃料電池システム
JP6395113B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090721

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees