JP4706209B2 - 積層型圧電体素子及びその製造方法並びに導電性接着剤 - Google Patents

積層型圧電体素子及びその製造方法並びに導電性接着剤 Download PDF

Info

Publication number
JP4706209B2
JP4706209B2 JP2004250926A JP2004250926A JP4706209B2 JP 4706209 B2 JP4706209 B2 JP 4706209B2 JP 2004250926 A JP2004250926 A JP 2004250926A JP 2004250926 A JP2004250926 A JP 2004250926A JP 4706209 B2 JP4706209 B2 JP 4706209B2
Authority
JP
Japan
Prior art keywords
base resin
conductive adhesive
piezoelectric element
microparticles
microparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004250926A
Other languages
English (en)
Other versions
JP2006066837A (ja
Inventor
成 門谷
昭夫 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004250926A priority Critical patent/JP4706209B2/ja
Priority to DE200510040900 priority patent/DE102005040900B4/de
Priority to US11/212,563 priority patent/US7205706B2/en
Publication of JP2006066837A publication Critical patent/JP2006066837A/ja
Application granted granted Critical
Publication of JP4706209B2 publication Critical patent/JP4706209B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Conductive Materials (AREA)

Description

本発明は、例えば、圧電アクチュエータ等に適用される積層型圧電体素子及びその製造方法並びに導電性接着剤に関する。
積層型圧電体素子は、一般的に圧電材料よりなる圧電層と導電性を有する内部電極層とを交互に積層してなるセラミック積層体を有している。このセラミック積層体の側面にそれぞれ電気的に接続された一対の側面電極を設け、各側面電極に樹脂を含有した導電性接着剤等を用いて一対の取り出し電極が接合されている。そして、各側面電極とそれぞれ電気的に接続された一対の取り出し電極間に印加される駆動電圧により圧電変位を生じるように構成されている。
このような積層型圧電体素子には、駆動時に生じる圧電層の変位に対応するため、柔軟性のある導電性接着剤が用いられているが、高温で長期間使用されるため、圧電層の変位や樹脂の熱硬化等により、導電性接着剤にクラックや剥離等の不具合が発生し、導電不良が生じるといった問題がある。それ故、優れた信頼性・耐久性を有し、厳しい環境下で長期間使用することができる積層型圧電体素子が望まれている。
上記に示される問題を解決すべく、例えば特許文献1では、セラミック積層体の側面に応力緩和層を形成し、その応力緩和層の側面に樹脂を含有した導電性接着剤を用いて取り出し電極を接合する方法が提案されている。しかし、応力緩和層の強度が低いため、応力緩和層内にクラックが生じやすい。また、応力緩和層と取り出し電極との接合部分は接着が不充分であり、剥離が生じやすい。
また、特許文献2では、内部電極層の端部に絶縁溝を加工した後、絶縁樹脂を充填し、セラミック積層体の側面に熱硬化性の樹脂を含有した導電性接着剤を用いて取り出し電極を接合する方法が提案されている。しかし、これも上記と同様に樹脂の熱硬化等によりクラックや剥離等の不具合が発生しやすい。
特開2000−77733号公報 特開2001−284668号公報
本発明は、従来の問題点に鑑みてなされたもので、信頼性・耐久性に優れた積層型圧電体素子及びその製造方法並びに導電性接着剤を提供しようとするものである。
第1の発明は、圧電材料からなる圧電層と導電性を有する内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の側面において同極の上記内部電極層の導通を図るよう配設された導電性接着剤層を有する積層型圧電体素子において、
上記導電性接着剤層は、ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有しており、
該マイクロ粒子と上記ベース樹脂との境界部は、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態にあることを特徴とする積層型圧電体素子にある(請求項1)。
本発明の積層型圧電体素子は、上記導電性接着剤層に上記ベース樹脂と該ベース樹脂中に分散してなる上記導電性フィラー及び上記マイクロ粒子とを含有している。
また、上記マイクロ粒子と上記ベース樹脂との境界部は、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態にある。
即ち、上記積層型圧電体素子の駆動時において、上記導電性接着剤層は、上記マイクロ粒子と上記ベース樹脂との間に間隙を形成している、あるいは形成する。この間隙により、上記導電性接着剤層の弾力性が向上し、容易に弾性変形することができる。そのため、上記圧電層の変位によって生じる応力を充分に緩和し、クラックや剥離等の発生を抑制することができる。
このように、本発明によれば、上記の優れた導電性接着剤層を備えることにより、優れた信頼性・耐久性を有し、初期の性能を長期間の使用に渡って維持することのできる積層型圧電体素子を提供することができる。
第2の発明は、圧電材料よりなる圧電層と導電性を有する内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の側面において同極の上記内部電極層の導通を図るよう配設された導電性接着剤層を有する積層型圧電体素子を製造する方法において、
上記圧電層と上記内部電極層とを交互に積層してなる上記セラミック積層体を形成する積層体形成工程と、
上記セラミック積層体の側面に、導電性接着剤を塗布する接着剤塗布工程と、
上記導電性接着剤を加熱して硬化させることにより上記導電性接着剤層を形成する硬化工程とを有してなり、
上記導電性接着剤としては、ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有してなるものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を得ることを特徴とする積層型圧電体素子の製造方法にある(請求項12)。
本発明の積層型圧電体素子の製造方法は、少なくとも上記積層体形成工程と上記接着剤塗布工程と上記硬化工程とを実施する。
また、上記導電性接着剤としては、上記ベース樹脂と該ベース樹脂中に分散してなる上記導電性フィラー及び上記マイクロ粒子とを含有してなるものを用いる。
そして、上記硬化工程を施すことによって、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を得る。
これにより、得られた上記積層型圧電体素子は、その駆動時において、上記導電性接着剤層中の上記マイクロ粒子と上記ベース樹脂との間に間隙を形成している、あるいは形成する。この間隙により、上記導電性接着剤層の弾力性が向上し、容易に弾性変形することができる。そのため、上記圧電層の変位によって生じる応力を充分に緩和し、クラックや剥離等の発生を抑制することができる。
このように、本発明の製造方法によれば、優れた信頼性・耐久性を有し、初期の性能を長期間の使用に渡って維持することができる積層型圧電体素子を提供することができる。
第3の発明は、ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有してなり、
上記ベース樹脂が硬化した後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を実現可能に構成されていることを特徴とする導電性接着剤にある(請求項21)。
本発明の導電性接着剤は、ベース樹脂と該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有している。
また、上記ベース樹脂が硬化した後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を得られるように構成されている。
そのため、上記導電性接着剤を、例えば積層型圧電体素子のような駆動時に変位する装置に接着硬化させて用いる場合は、その駆動時において、上記マイクロ粒子と上記ベース樹脂との間に間隙を形成している、あるいは形成する。この間隙により、硬化後の上記導電性接着剤の弾力性が向上し、容易に弾性変形することができる。そのため、上記圧電層の変位によって生じる応力を充分に緩和し、クラックや剥離等の発生を抑制することができる。
このように、本発明の導電性接着剤は、これを導電材料として採用した装置の信頼性・耐久性を向上させ、初期の性能を長期間の使用に渡って維持することができる。
なお、本発明の導電性接着剤は、上述した積層型圧電体素子に限らず、上記導電性接着剤を構成要素として含む種々の装置に適用可能である。
第1の発明において、上記圧電層は、Pb(Zr、Ti)O3系のペロブスカイト構造の酸化物であるジルコン酸チタン酸鉛よりなることが好ましい。ジルコン酸チタン酸鉛(PZT)は、優れた圧電特性を有しており、上記積層型圧電体素子の特性を非常に優れたものとすることができる。なお、鉛を含まない鉛フリーの圧電セラミックスを適用することも環境上好ましい。
また、上記内部電極層としては、例えば、導電性に優れたAg(銀)、Cu(銅)等、あるいはPd(パラジウム)等を合金成分として含むAg/Pd合金等を用いることができる。
また、上記セラミック積層体において、部分電極構造、全面電極構造等の種々の構造を採用することができる。また、その断面形状として、樽形、円形、四角形、六角形、八角形等の様々な形状を採用することができる。
また、上記マイクロ粒子と上記ベース樹脂との境界部は、両者の間の少なくとも一部に間隙を形成した状態にあることが好ましい(請求項2)。この場合には、予め上記マイクロ粒子と上記ベース樹脂との間に間隙を形成させておくことによって、上記導電性接着剤層の弾力性を確実に向上させる。そのため、上記圧電層の変位によって生じる応力を充分に緩和させ、クラックや剥離等の発生を抑制することができる。
また、上記マイクロ粒子と上記ベース樹脂との境界部は、両者の間が剥離可能な状態にあることが好ましい(請求項3)。この場合には、上記ベース樹脂が伸長した際に、両者の間に間隙を形成させることができる。そのため、上記導電性接着剤層の弾力性が向上し、上記圧電層の変位によって生じる応力を充分に緩和させ、クラックや剥離等の発生を抑制することができる。
また、上記マイクロ粒子は、その平均粒径が2〜30μmであることが好ましい(請求項4)。この場合には、上記マイクロ粒子は上記ベース樹脂中に均一に分散させることができる。そのため、上記導電性接着剤層の弾力性はさらに向上し、上記圧電層の変位によって生じる応力を充分に緩和させ、クラックや剥離等の発生をさらに抑制することができる。
また、上記マイクロ粒子としては、種々の成分を採用することができ、また種々の構成をとることができる。
例えば、上記マイクロ粒子としては、穀物粉を用いることができる(請求項5)。穀物粉は一般的に水分を多く含んでいるため、上記導電性接着剤を加熱して硬化させる際に水分が蒸発し、穀物粉自身は収縮する。そのため、上記マイクロ粒子と上記ベース樹脂との間に間隙を形成させることができる。
また、上記穀物粉は、含まれる水分量によって加熱時の収縮の度合いが変化するため、上記マイクロ粒子と上記ベース樹脂との間の間隙の大きさを調整することができる。これにより、上記導電性接着剤層の弾力性を制御することができる。また、低コストを実現することができ、自然の材料を用いることは環境上好ましい。
上記穀物粉としては、例えば、片栗粉、きな粉、小麦粉等がある。また、これらを単独で用いてもよいし、複数のものを混合して用いてもよい。
また、上記マイクロ粒子としては、少なくともその表面が上記ベース樹脂と接着しない非接着表面となっている構成とすることができる(請求項6)。この場合には、非接着表面となっている上記マイクロ粒子と上記ベース樹脂との間が剥離可能な状態となる。そのため、上記ベース樹脂が伸長した際に、両者の間に間隙を形成させることができる。
さらに、上述の非接着表面となっている上記マイクロ粒子としては、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有している構成とすることができる(請求項7)。この場合には、上記外面非接着コート層と上記ベース樹脂との間が剥離可能な状態となる。そのため、上記ベース層が伸長した際に、上記外面非接着コート層を有する上記マイクロ粒子と上記ベース樹脂との間に間隙を形成させることができる。
さらに、上記粒子本体は、弾性体であることが好ましい(請求項8)。この場合には、上記ベース樹脂が伸長した際に、その伸長方向に上記粒子本体が変位可能となるため、上記導電性接着剤層の弾力性をさらに向上させることができる。
また、上記マイクロ粒子としては、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えており、該内面非接着コート層が上記ベース樹脂と接合されて一体化している構成とすることができる(請求項9)。この場合には、上記マイクロ粒子と上記内面非接着コート層との間が剥離可能な状態となる。そのため、上記ベース樹脂が伸長した際に、上記マイクロ粒子と上記ベース樹脂に接合されて一体化している上記内面非接着コート層との間に間隙を形成させることができる。
さらに、上記マイクロ粒子は、弾性体であることが好ましい(請求項10)。この場合には、上記ベース樹脂が伸長した際に、その伸長方向に上記マイクロ粒子が変位可能となるため、上記導電性接着剤層の弾力性をさらに向上させることができる。
また、上記積層型圧電体素子は、インジェクタの駆動源として用いられるインジェクタ用圧電アクチュエータであることが好ましい(請求項11)。
上記インジェクタは、高温雰囲気下という過酷な状態で使用される。そのため、上記の優れた積層型圧電体素子をアクチュエータとして用いることにより、信頼性・耐久性を向上させることができ、インジェクタ全体の性能向上を図ることができる。
第2の発明において、上記導電性接着剤としては、上記マイクロ粒子として、上記硬化工程時における加熱によって収縮する粒子を含有したものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態を得ることが好ましい(請求項13)。この場合には、上記マイクロ粒子が加熱によって収縮するため、確実に上記両者の間に間隙を形成させることができる。
また、上記マイクロ粒子の加熱による収縮の度合いによって間隙の大きさを調整することができるため、上記導電性接着剤層の弾力性を制御することができる。
また、上記導電性接着剤としては、上記マイクロ粒子として、少なくともその表面が上記ベース樹脂と接着しない非接着表面を有する粒子を含有したものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者が互いに剥離可能な状態を得ることが好ましい(請求項14)。この場合には、上記マイクロ粒子の表面が上記ベース樹脂と接着しない上記非接着表面を有するため、上記両者が互いに剥離可能となる。これにより、上記ベース樹脂が伸長した際に、確実に上記両者の間に間隙を形成させることができる。
また、上記マイクロ粒子としては、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有しているものを用いることができる(請求項15)。
さらに、上記粒子本体として、弾性体を用いることが好ましい(請求項16)。
また、上記導電性接着剤としては、上記マイクロ粒子として、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えているものを用い、上記硬化工程を施すことにより、上記内面非接着コート層を上記ベース樹脂に接合させて一体化し、上記マイクロ粒子と上記内面非接着コート層との間が互いに剥離可能な状態を得ることが好ましい(請求項17)。
さらに、上記マイクロ粒子として、弾性体を用いることが好ましい(請求項18)。
また、上記導電性接着剤としては、上記マイクロ粒子として、粒子本体とその表面に被覆され上記硬化工程時における加熱によって蒸発する蒸発コート層とを有しているものを用い、上記硬化工程を施すことにより、上記蒸発コート層を蒸発させ、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態を得ることが好ましい(請求項19)。この場合には、上記蒸発コート層が加熱によって蒸発するため、確実に上記両者の間に間隙を形成させることができる。
また、上記蒸発コート層の厚みによって間隙の大きさを調整することができるため、上記導電性接着剤層の弾力性を制御することができる。
さらに、上記粒子本体として、弾性体を用いることが好ましい(請求項20)。
第3の発明において、上記ベース樹脂として、例えば、エポキシ、シリコーン、ポリイミド、フェノール、ウレタン等の樹脂を用いることができる。また、上記導電性フィラーとして、例えば、導電性に優れたAg(銀)、Pd(パラジウム)、Cu(銅)、Au(金)、Pt(白金)、Ni(ニッケル)等を用いることができる。また、これらを単独で用いてもよいし、複数のものを混合して用いてもよい。
また、本発明においても、上記マイクロ粒子は、その平均粒径が2〜30μmであることが好ましい(請求項22)。
また、上記マイクロ粒子としては、穀物粉を用いることができる(請求項23)。
また、上記マイクロ粒子としては、少なくともその表面が上記ベース樹脂と接着しない非接着表面となっている構成とすることもできる(請求項24)。
さらに、上記マイクロ粒子は、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有している構成とすることができる(請求項25)。
さらに、上記粒子本体は、弾性体であることが好ましい(請求項26)。
また、上記マイクロ粒子としては、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えており、該内面非接着コート層が上記ベース樹脂と接合されて一体化している構成とすることができる(請求項27)。
さらに、上記マイクロ粒子は、弾性体であることが好ましい(請求項28)。
また、上記マイクロ粒子としては、粒子本体とその表面に被覆され加熱により蒸発する蒸発コート層とを有している構成とすることができる(請求項29)。
さらに、上記粒子本体は、弾性体であることが好ましい(請求項30)。
(実施例1)
本発明の実施例にかかる積層型圧電体素子について、図1〜図3を用いて説明する。
本発明の積層型圧電体素子1は、図1に示すごとく、圧電材料からなる圧電層11と導電性を有する内部電極層21、22とを交互に積層してなるセラミック積層体10と、セラミック積層体10の側面において同極の内部電極層21、22の導通を図るよう配設された導電性接着剤層4を有する。
また、導電性接着剤層4は、図2(b)に示すごとく、ベース樹脂41と、ベース樹脂41中に分散してなる導電性フィラー(図示略)及びマイクロ粒子42とを含有している。
そして、マイクロ粒子42とベース樹脂41との境界部は、両者の間の少なくとも一部に間隙49を形成した状態となっている。
以下、これを詳説する。
本例の積層型圧電体素子1は、図1に示すごとく、圧電材料からなる圧電層11と導電性を有する内部電極層21、22とを交互に積層してなるセラミック積層体10を有する。
そして、セラミック積層体10の側面101において、第1内部電極層21の端部は露出され、第2内部電極層22の端部は露出せずに内方に控えた状態となっている。一方、側面102において、第2内部電極層22の端部は露出され、第1内部電極層21の端部は露出せずに内方に控えた状態となっている。すなわち、本例のセラミック積層体10は、構造上は部分電極構造を呈している。
また、セラミック積層体10は、図3に示すごとく、隣り合う内部電極層21、22の積層方向の中間部にスリット層12を有している。このスリット層12は、セラミック積層体10の外周部全周に渡ってスリット状の間隙を形成している。本例では、厚さ80μmの圧電層11に対して、厚さ約6μmのスリット層12が形成されている。
なお、このスリット層12の形成により、本例のセラミック積層体10は、構造上は上記のごとく部分電極構造であるが、実質的には全面電極構造と同様の作動が実現可能である。
また、図1に示すごとく、セラミック積層体10の側面101、102上には、それぞれ金属層31、32が設けられている。そして、金属層31は第1内部電極層21と、金属層32は第2内部電極層22と導通した状態となっている。
さらに、金属層31、32上には、それぞれ導電性接着剤40によって形成された導電性接着剤層4が設けられており、この導電性接着剤層4を介して取り出し電極33が接合されている。なお、金属層31、32を設けずに、セラミック積層体10の側面101、102に導電性接着剤層4を介して取り出し電極33を直接接合した構造をとることも可能である。
ここで、導電性接着剤層4は、図2(b)に示すごとく、ベース樹脂41と、ベース樹脂41中に分散してなる導電性フィラー及びマイクロ粒子42とを含有している。そして、マイクロ粒子42とベース樹脂41との境界部は、両者の間の少なくとも一部に間隙49を形成した状態にある。
そして、図1に示すごとく、セラミック積層体10の側面全周は、絶縁樹脂のシリコーン樹脂よりなるモールド材34でモールドされている。このモールド材34は、スリット層12の内部に侵入するおそれのない粘性のものを使用した。これによって、スリット層12は、スリット状の間隙を形成した状態を維持している。
また、本例において、内部電極層21、22及び金属層31、32は、導電性を有するAg(銀)/Pd(パラジウム)合金よりなる。
また、取り出し電極33として、金属板を加工したメッシュ状のエキスパンダメタルを用いた。これ以外に、パンチングメタル等を用いることもできる。また、取り出し電極33の接合位置は、セラミック積層体10の側面の上部のみとしてもよい。
次に、積層型圧電体素子1の製造に用いた導電性接着剤40について、図2を用いて説明する。
本例の導電性接着剤40は、図2(a)に示すごとく、ベース樹脂41と、ベース樹脂41中に分散してなる導電性フィラー及びマイクロ粒子42とを含有してなる。
そして、ベース樹脂41が硬化した後において、図2(b)に示すごとく、マイクロ粒子42とベース樹脂41の境界部に、両者の間の少なくとも一部に間隙49を形成した状態を実現可能に構成されている。
本例では、導電性接着剤40を構成するベース樹脂41としてエポキシ樹脂、導電性フィラーとしてAg(銀)を用いた。
また、マイクロ粒子42として、ベース樹脂41の硬化時における加熱によって収縮する粒子である穀物粉を用いた。本例の穀物粉は、片栗粉を加熱し、水分量を調整して微細加工したものであり、平均粒径は約15μmである。
穀物粉は水分を多く含んでいるため、ベース樹脂41の硬化時における加熱によって水分が蒸発し、穀物粉自身は収縮する。したがって、本例の導電性接着剤40は、ベース樹脂41が硬化した後において、マイクロ粒子(穀物粉)42とベース樹脂41との間に間隙49が形成した状態を得られるように構成されている。
なお、本例では、穀物粉として片栗粉を用いたが、きな粉、小麦粉等を単独で、あるいは複数のものを混合して用いることもできる。また、マイクロ粒子42として、穀物粉以外に、加熱によって収縮する活性炭、吸着性樹脂に蒸発物質を吸着させた粒子等を用いることもできる。
次に、積層型圧電体素子1の製造方法について、図4〜図6を用いて説明する。
本例の積層型圧電体素子1の製造するに当たって、少なくとも、圧電層11と内部電極層21、22とを交互に積層してなるセラミック積層体10を形成する積層体形成工程と、セラミック積層体10の側面に、導電性接着剤40を塗布する接着剤塗布工程と、導電性接着剤40を加熱して硬化させることにより導電性接着剤層4を形成する硬化工程とを行う。
また、導電性接着剤40としては、上述したベース樹脂41と、ベース樹脂41中に分散してなる導電性フィラー及びマイクロ粒子42とを含有してなるものを用いる。
そして、上記硬化工程後において、マイクロ粒子42とベース樹脂41との境界部に、両者の間の少なくとも一部に間隙49を形成した状態を得る。
以下、これを詳説する。
まず、上記積層体形成工程として、圧電材料となるジルコン酸チタン酸鉛(PZT)粉末を準備し、850℃で仮焼した。次に、仮焼粉に純水、分散剤を加えてスラリーとし、パールミルにより湿式粉砕した。この粉砕物を乾燥、粉脱脂した後、溶剤、バインダー、可塑剤、分散剤等を加えてボールミルにより混合した。その後、上記スラリーを真空装置内で撹拌機により撹拌しながら真空脱泡、粘度調整をした。
そして、図4に示すごとく、ドクターブレード法によって上記スラリーをキャリアフィルム5上に塗布し、厚さ約100μmのグリーンシート110を成形した。なお、上記スラリーからグリーンシート110を成形する方法として、押出成形法やその他の種々の方法を用いることもできる。
次に、図4に示すごとく、3種類のシート片13、14、15を作製するため、グリーンシート110の打ち抜き部分である樽形状の打ち抜き層111上に、種々の材料を印刷した。本例では、後述する打ち抜き積層装置により、効率よく打ち抜きながら積層できるように、同図に示すごとく、積層するシート片の順に、つまり、シート片13、14、13、15の組み合わせを1単位として、これを繰り返して印刷を施した。
まず、シート片13には、同図に示すごとく、打ち抜き層111上の外周部の全周に渡って、焼成により消失し、スリット層12を形成する消失材料120をスクリーン印刷した。そして、消失材料120を印刷した外周部との印刷高さとを略一致させ、積層する際の接着効果を高めるために、打ち抜き層111上の内周部には、上記スラリーよりなる接着層113をスクリーン印刷した。
次に、シート片14には、同図に示すごとく、打ち抜き層111上の内周部と直線状の側面108がなす外周部とに、焼成により内部電極層21、22を形成する電極材料200をスクリーン印刷した。そして、電極材料200を印刷しなかった部分には、印刷した部分との印刷高さを略一致させるために、上記スラリーよりなるスペーサ層112をスクリーン印刷した。さらに、その上全体に、上記スラリーよりなる接着層113をスクリーン印刷した。
次に、シート片15には、同図に示すごとく、打ち抜き層111上の内周部と直線状の側面109がなす外周部とに電極材料200をスクリーン印刷した。そして、シート片14と同様に、スペーサ層112、接着層113をそれぞれスクリーン印刷した。
なお、本例では、消失材料120として、熱変形が少なく、スリット層12の形状精度を高く維持し得るカーボン粒子を用いた。これ以外にも、樹脂粒子、穀物粒子等を用いることができる。
また、電極材料200として、Ag/Pd合金ペーストを用いた。
次に、上述の印刷を施した打ち抜き層111の打ち抜きと積層とを同時進行できるように構成した打ち抜き積層装置を用いて、打ち抜きと積層とを並行して実施した。
まず、キャリアフィルム5とグリーンシート110とを一体の状態で上記打ち抜き積層装置にセットした。そして、積層するシート片の順に印刷を施した打ち抜き層111を打ち抜きながら、図5に示すごとく、シート片13、14、13、15の組み合わせを1単位として、これを繰り返し積層して、積層体100を作製した。また、作製した積層体100の積層方向の上下端には、打ち抜き層111のみをダミー層として配置した。
次に、積層体100にその積層方向から約500g/cm2の荷重を加えた状態で1時間以上保持した。そして、積層体100の側面上に、焼成により金属層31、32を形成するAg/Pd合金ペーストを塗布し、1050℃で焼成した。これにより、図6(a)に示すごとく、側面101、102にそれぞれ金属層31、32を設けたセラミック積層体10を得た。
また、セラミック積層体10には、消失材料120が焼成により消失し、隣り合う内部電極層21、22の積層方向の中間部にスリット層12が設けられ、セラミック積層体10の外周部全周に渡ってスリット状の間隙が形成された。
次に、上記接着剤塗布工程として、図6(b)に示すごとく、セラミック積層体10の側面101、102に設けた金属層31、32上に、導電性接着剤40をスクリーン印刷により塗布した。
次に、上記硬化工程として、図6(c)に示すごとく、導電性接着剤40上に取り出し電極33を配置し、150℃で30分間加熱して硬化させた。そして、導電性接着剤層4を形成し、取り出し電極33を接合した。
最後に、セラミック積層体10の側面全周を、モールド材34によりモールドして積層型圧電体素子1を完成させた。
次に、本例の積層型圧電体素子1の作用効果について説明する。
本例の積層型圧電体素子1は、上記のごとく、圧電材料からなる圧電層11と導電性を有する内部電極層21、22とを交互に積層してなるセラミック積層体10と、セラミック積層体10の側面において同極の内部電極層21、22の導通を図るよう配設された導電性接着剤層4を有する。
また、導電性接着剤層4は、ベース樹脂41と、ベース樹脂41中に分散してなる導電性フィラー及びマイクロ粒子42とを含有している。
そして、マイクロ粒子42とベース樹脂41との境界部は、両者の間の少なくとも一部に間隙49を形成した状態にある。
導電性接着剤層4は、ベース樹脂41とベース樹脂41中に分散してなる導電性フィラー及びマイクロ粒子42とを含有してなる導電性接着剤40を加熱して硬化させることにより形成される。また、本例では、マイクロ粒子42として、加熱によって収縮する粒子である穀物粉を用いた。
そのため、硬化工程前の導電性接着剤40では、図2(a)に示すごとく、マイクロ粒子42がベース樹脂41中に間隙を形成することなく分散された状態であるが、硬化工程後の導電性接着剤層4では、図2(b)に示すごとく、マイクロ粒子42は加熱によって収縮しており、ベース樹脂41との間に間隙49を形成した状態にある。
これにより、積層型圧電体素子1に配設された導電性接着剤層4は、マイクロ粒子42とベース樹脂41との間の間隙49によって弾力性が向上し、容易に弾性変形することができる。そのため、圧電層11の変位によって生じる応力を充分に緩和し、クラックや剥離等の発生を抑制することができる。
このように、本例によれば、優れた信頼性・耐久性を有し、初期の性能を長期間の使用に渡って維持することができる積層型圧電体素子1を得ることができる。
また、本例では、マイクロ粒子42として穀物粉を用いた。穀物粉は、含まれる水分量によって加熱時の収縮の度合いが変化するため、マイクロ粒子42とベース樹脂41との間の間隙49の大きさを調整することができる。これにより、導電性接着剤層4の弾力性を制御することができる。
また、セラミック積層体10は、隣り合う内部電極層21、22の積層方向の中間部にスリット層12を設けている。このスリット層12により、圧電層11の変位によって生じる応力をさらに緩和することができる。なお、スリット層12は、1層又は複数層おきの内部電極層21、22の積層方向の中間部に設けることもできる。また、スリット層12を設けない構造とすることもできる。
また、本例では、セラミック積層体10を作製するに当たって、グリーンシート状態で積層してから一体焼成する方法を採用したが、これに代えて、圧電ユニットを焼成した後に接着剤により接着して積層体を形成する方法等の他の方法を採用することもできる。
また、セラミック積層体10において、上記のようなスリットを有する特殊な部分電極構造を採用したが、従来よりあるスリット層のない通常の部分電極構造、あるいは従来よりある通常の全面電極構造とすることもできる。
また、セラミック積層体10として、断面樽形状のものを採用したが、円形、四角形、六角形、八角形等の様々な断面形状を採用することができる。
(実施例2)
本例は、図7に示すごとく、実施例1の積層型圧電体素子1において、導電性接着剤40としては、マイクロ粒子42として、少なくともその表面がベース樹脂41と接着しない非接着表面429を有する粒子を含有したものを用いた例である。
本例のマイクロ粒子42として、シリコーンを用いた。これ以外にも、テフロン(登録商標)等を用いることができる。
その他は、実施例1と同様である。
本例では、マイクロ粒子42として、少なくともその表面がベース樹脂41と接着しない非接着表面429を有する粒子を含有したものを用いた。
そのため、硬化工程後の導電性接着剤層4において、図7(a)に示すごとく、マイクロ粒子42の表面がベース樹脂41と接着しない非接着表面429を有するため、マイクロ粒子42とベース樹脂41とは接着せず、両者が互いに剥離可能な状態にある。
これにより、積層型圧電体素子1の駆動時、即ち、ベース樹脂41が伸長した際の導電性接着剤層4において、図7(b)に示すごとく、マイクロ粒子42とベース樹脂41とが剥離し、両者の間に間隙49が形成される。
その他は、実施例1と同様の作用効果を有する。
(実施例3)
本例は、図8に示すごとく、実施例1の積層型圧電体素子1において、導電性接着剤40としては、マイクロ粒子42として、粒子本体421とその表面に被覆され非接着表面429を構成する外面非接着コート層422とを有しているものを用いた例である。
本例のマイクロ粒子42の粒子本体421として、樹脂粒子を用いた。これ以外にも、セラミック粒子、ガラス粒子等を用いることができる。
また、外面非接着コート層422として、シリコーンを用いた。これ以外にも、テフロン(登録商標)等を用いることができる。
その他は、実施例1と同様である。
本例では、マイクロ粒子42として、粒子本体421とその表面に被覆され非接着表面429を構成する外面非接着コート層422とを有しているものを用いた。
そのため、硬化工程後の導電性接着剤層4において、図8(a)に示すごとく、粒子本体421の表面に被覆され、非接着表面429を構成する外面非接着コート層422とベース樹脂41とは接着せず、両者が互いに剥離可能な状態にある。
これにより、積層型圧電体素子1の駆動時、即ち、ベース樹脂41が伸長した際の導電性接着剤層4において、図8(b)に示すごとく、外面非接着コート層422とベース樹脂41とが剥離し、両者の間に間隙49が形成される。
その他は、実施例1と同様の作用効果を有する。
(実施例4)
本例は、図9に示すごとく、実施例1の積層型圧電体素子1において、導電性接着剤4としては、マイクロ粒子42として、その表面に接着することなくマイクロ粒子42を覆う内面非接着コート層423を備えているものを用いた例である。
本例のマイクロ粒子42として、シリコーンを用いた。これ以外にも、テフロン(登録商標)等を用いることができる。
また、内面非接着コート層423として、エポキシを用いた。これ以外にも、ポリイミド等を用いることができる。
その他は、実施例1と同様である。
本例では、マイクロ粒子42として、その表面に接着することなくマイクロ粒子42を覆う内面非接着コート層423を備えているものを用いた。
そのため、硬化工程後の導電性接着剤層4において、図9(a)に示すごとく、内面非接着コート層423はマイクロ粒子42の表面に接着せず、ベース樹脂41と接合されて一体化している。即ち、マイクロ粒子42と内面非接着コート層423とが互いに剥離可能な状態にある。
これにより、積層型圧電体素子1の駆動時、即ち、ベース樹脂41が伸長した際の導電性接着剤層4において、図9(b)に示すごとく、マイクロ粒子42と内面非接着コート層423とが剥離し、両者の間に間隙49が形成される。
その他は、実施例1と同様の作用効果を有する。
(実施例5)
本例は、図10に示すごとく、実施例1の積層型圧電体素子1において、導電性接着剤40としては、マイクロ粒子42として、粒子本体421とその表面に被覆され硬化工程時における加熱により蒸発する蒸発コート層424とを有しているものを用いた例である。
本例の粒子本体421として、少し炭化させた穀物粒子を用いた。これ以外にも、活性炭粒子等を用いることができる。
また、蒸発コート層424として、粒子表面にテレピネオールをコートしたものを用いた。これ以外にも、導電性接着剤に溶解しない油脂等を用いることができる。
その他は、実施例1と同様である。
本例では、マイクロ粒子42として、粒子本体421とその表面に被覆され硬化工程時における加熱により蒸発する蒸発コート層424とを有しているものを用いた。
そのため、硬化工程前の導電性接着剤40では、図10(a)に示すごとく、粒子本体421の表面に蒸発コート層424が被覆されているが、硬化工程後の導電性接着剤層4では、図10(b)に示すごとく、蒸発コート層424は加熱によって蒸発しており、粒子本体421とベース樹脂41との間に間隙49を形成した状態にある。
その他は、実施例1と同様の作用効果を有する。
(実施例6)
本例は、実施例1の積層型圧電体素子1をインジェクタ6の圧電アクチュエータとして用いた例である。
本例のインジェクタ6は、図11に示すごとく、ディーゼルエンジンのコモンレール噴射システムに適用したものである。
このインジェクタ6は、同図に示すごとく、駆動部として上記積層型圧電体素子1が収容される上部ハウジング62と、その下端に固定され、内部に噴射ノズル部64が形成される下部ハウジング63を有している。
上部ハウジング62は略円柱状で、中心軸に対し偏心する縦穴621内に、ユニット式積層型圧電体素子1が挿通固定されている。
縦穴621の側方には、高圧燃料通路622が平行に設けられ、その上端部は、上部ハウジング62上側部に突出する燃料導入管623内を経て外部のコモンレール(図示略)に連通している。
上部ハウジング62上側部には、また、ドレーン通路624に連通する燃料導出管625が突設し、燃料導出管625から流出する燃料は、燃料タンク(図示略)へ戻される。
ドレーン通路624は、縦穴621と駆動部(圧電体素子)1との間の隙間60を経由し、さらに、この隙間60から上下ハウジング62、63内を下方に延びる図示しない通路によって後述する3方弁651に連通してしる。
噴射ノズル部64は、ピストンボデー631内を上下方向に摺動するノズルニードル641と、ノズルニードル641によって開閉されて燃料溜まり642から供給される高圧燃料をエンジンの各気筒に噴射する噴孔643を備えている。燃料溜まり642は、ノズルニードル641の中間部周りに設けられ、上記高圧燃料通路622の下端部がここに開口している。ノズルニードル641は、燃料溜まり642から開弁方向の燃料圧を受けるとともに、上端面に面して設けた背圧室644から閉弁方向の燃料圧を受けており、背圧室644の圧力が降下すると、ノズルニードル641がリフトして、噴孔643が開放され、燃料噴射がなされる。
背圧室644の圧力は3方弁651によって増減される。3方弁651は、背圧室644と高圧燃料通路622、またはドレーン通路624と選択的に連通させる構成である。ここでは、高圧燃料通路622またはドレーン通路624へ連通するポートを開閉するボール状の弁体を有している。この弁体は、上記駆動部1により、その下方に配設される大径ピストン652、油圧室653、小径ピストン654を介して、駆動される。
そして、本例においては、上記構成のインジェクタ6における駆動源として、実施例1で示した積層型圧電体素子1を用いている。この積層型圧電体素子1は、上記のごとく、初期の性能を長期間の使用に渡って維持し得ることができる優れた信頼性・耐久性を有する。そのため、インジェクタ6全体の性能、信頼性及び耐久性の向上を図ることができる。
実施例1における、積層型圧電体素子の構造を示す説明図。 実施例1における、(a)硬化工程前の導電性接着剤の構造を示す説明図、(b)硬化工程後の導電性接着剤層の構造を示す説明図。 実施例1における、セラミック積層体の構造を示す説明図。 実施例1における、グリーンシートに印刷を施す工程を示す説明図。 実施例1における、シート片を積層する工程を示す説明図。 実施例1における、セラミック積層体に金属層、導電性接着剤層及び取り出し電極を配設する工程を示す説明図。 実施例2における、(a)硬化工程後の導電性接着剤層の構造を示す説明図、(b)ベース樹脂伸長時の導電性接着剤層の構造を示す説明図。 実施例3における、(a)硬化工程後の導電性接着剤層の構造を示す説明図、(b)ベース樹脂伸長時の導電性接着剤層の構造を示す説明図。 実施例4における、(a)硬化工程後の導電性接着剤層の構造を示す説明図、(b)ベース樹脂伸長時の導電性接着剤層の構造を示す説明図。 実施例5における、(a)硬化工程前の導電性接着剤の構造を示す説明図、(b)硬化工程後の導電性接着剤層の構造を示す説明図。 実施例6における、インジェクタの構造を示す説明図。
符号の説明
1 積層型圧電体素子
10 セラミック積層体
11 圧電層
21 第1内部電極層(内部電極層)
22 第2内部電極層(内部電極層)
4 導電性接着剤層
40 導電性接着剤
41 ベース樹脂
42 マイクロ粒子
421 粒子本体
422 外面非接着コート層
423 内面非接着コート層
424 蒸発コート層
429 非接着表面
49 間隙
6 インジェクタ

Claims (30)

  1. 圧電材料からなる圧電層と導電性を有する内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の側面において同極の上記内部電極層の導通を図るよう配設された導電性接着剤層を有する積層型圧電体素子において、
    上記導電性接着剤層は、ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有しており、
    該マイクロ粒子と上記ベース樹脂との境界部は、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態にあることを特徴とする積層型圧電体素子。
  2. 請求項1において、上記マイクロ粒子と上記ベース樹脂との境界部は、両者の間の少なくとも一部に間隙を形成した状態にあることを特徴とする積層型圧電体素子。
  3. 請求項1又は2において、上記マイクロ粒子と上記ベース樹脂との境界部は、両者の間が剥離可能な状態にあることを特徴とする積層型圧電体素子。
  4. 請求項1〜3のいずれか1項において、上記マイクロ粒子は、その平均粒径が2〜30μmであることを特徴とする積層型圧電体素子。
  5. 請求項1〜4のいずれか1項において、上記マイクロ粒子は、穀物粉であることを特徴とする積層型圧電体素子。
  6. 請求項1〜4のいずれか1項において、上記マイクロ粒子は、少なくともその表面が上記ベース樹脂と接着しない非接着表面となっていることを特徴とする積層型圧電体素子。
  7. 請求項6において、上記マイクロ粒子は、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有していることを特徴とする積層型圧電体素子。
  8. 請求項7において、上記粒子本体は、弾性体であることを特徴とする積層型圧電体素子。
  9. 請求項1〜4のいずれか1項において、上記マイクロ粒子は、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えており、該内面非接着コート層が上記ベース樹脂と接合されて一体化していることを特徴とする積層型圧電体素子。
  10. 請求項9において、上記マイクロ粒子は、弾性体であることを特徴とする積層型圧電体素子。
  11. 請求項1〜10のいずれか1項において、上記積層型圧電体素子は、インジェクタの駆動源として用いられるインジェクタ用圧電アクチュエータであることを特徴とする積層型圧電体素子。
  12. 圧電材料よりなる圧電層と導電性を有する内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の側面において同極の上記内部電極層の導通を図るよう配設された導電性接着剤層を有する積層型圧電体素子を製造する方法において、
    上記圧電層と上記内部電極層とを交互に積層してなる上記セラミック積層体を形成する積層体形成工程と、
    上記セラミック積層体の側面に、導電性接着剤を塗布する接着剤塗布工程と、
    上記導電性接着剤を加熱して硬化させることにより上記導電性接着剤層を形成する硬化工程とを有してなり、
    上記導電性接着剤としては、ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有してなるものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を得ることを特徴とする積層型圧電体素子の製造方法。
  13. 請求項12において、上記導電性接着剤としては、上記マイクロ粒子として、上記硬化工程時における加熱によって収縮する粒子を含有したものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態を得ることを特徴とする積層型圧電体素子の製造方法。
  14. 請求項12において、上記導電性接着剤としては、上記マイクロ粒子として、少なくともその表面が上記ベース樹脂と接着しない非接着表面を有する粒子を含有したものを用い、上記硬化工程後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者が互いに剥離可能な状態を得ることを特徴とする積層型圧電体素子の製造方法。
  15. 請求項14において、上記マイクロ粒子として、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有しているものを用いることを特徴とする積層型圧電体素子の製造方法。
  16. 請求項15において、上記粒子本体として、弾性体を用いることを特徴とする積層型圧電体素子の製造方法。
  17. 請求項12において、上記導電性接着剤としては、上記マイクロ粒子として、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えているものを用い、上記硬化工程を施すことにより、上記内面非接着コート層を上記ベース樹脂に接合させて一体化し、上記マイクロ粒子と上記ベース樹脂との境界部に、両者が互いに剥離可能な状態を得ることを特徴とする積層型圧電体素子の製造方法。
  18. 請求項17において、上記マイクロ粒子として、弾性体を用いることを特徴とする積層型圧電体素子の製造方法。
  19. 請求項12において、上記導電性接着剤としては、上記マイクロ粒子として、粒子本体とその表面に被覆され上記硬化工程時における加熱によって蒸発する蒸発コート層とを有しているものを用い、上記硬化工程を施すことにより、上記蒸発コート層を蒸発させ、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態を得ることを特徴とする積層型圧電体素子の製造方法。
  20. 請求項19において、上記粒子本体として、弾性体を用いることを特徴とする積層型圧電体素子の製造方法。
  21. ベース樹脂と、該ベース樹脂中に分散してなる導電性フィラー及びマイクロ粒子とを含有してなり、
    上記ベース樹脂が硬化した後において、上記マイクロ粒子と上記ベース樹脂との境界部に、両者の間の少なくとも一部に間隙を形成した状態、あるいは上記ベース樹脂が伸長した際に両者の間に間隙を形成可能な状態を実現可能に構成されていることを特徴とする導電性接着剤。
  22. 請求項21において、上記マイクロ粒子は、その平均粒径が2〜30μmであることを特徴とする導電性接着剤。
  23. 請求項21又は22において、上記マイクロ粒子は、穀物粉であることを特徴とする導電性接着剤。
  24. 請求項21又は22において、上記マイクロ粒子は、少なくともその表面が上記ベース樹脂と接着しない非接着表面となっていることを特徴とする導電性接着剤。
  25. 請求項24において、上記マイクロ粒子は、粒子本体とその表面に被覆され上記非接着表面を構成する外面非接着コート層とを有していることを特徴とする導電性接着剤。
  26. 請求項25において、上記粒子本体は、弾性体であることを特徴とする導電性接着剤。
  27. 請求項21又は22において、上記マイクロ粒子は、その表面に接着することなく該マイクロ粒子を覆う内面非接着コート層を備えており、該内面非接着コート層が上記ベース樹脂と接合されて一体化していることを特徴とする導電性接着剤。
  28. 請求項27において、上記マイクロ粒子は、弾性体であることを特徴とする導電性接着剤。
  29. 請求項21又は22において、上記マイクロ粒子は、粒子本体とその表面に被覆され加熱によって蒸発する蒸発コート層とを有していることを特徴とする導電性接着剤。
  30. 請求項29において、上記粒子本体は、弾性体であることを特徴とする導電性接着剤。
JP2004250926A 2004-08-30 2004-08-30 積層型圧電体素子及びその製造方法並びに導電性接着剤 Expired - Lifetime JP4706209B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004250926A JP4706209B2 (ja) 2004-08-30 2004-08-30 積層型圧電体素子及びその製造方法並びに導電性接着剤
DE200510040900 DE102005040900B4 (de) 2004-08-30 2005-08-29 Gestapeltes piezoelektrisches Element, dessen Herstellungsverfahren und elektrisch leitendes Haftmittel
US11/212,563 US7205706B2 (en) 2004-08-30 2005-08-29 Stacked piezoelectric element, production method thereof and electrically conducting adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250926A JP4706209B2 (ja) 2004-08-30 2004-08-30 積層型圧電体素子及びその製造方法並びに導電性接着剤

Publications (2)

Publication Number Publication Date
JP2006066837A JP2006066837A (ja) 2006-03-09
JP4706209B2 true JP4706209B2 (ja) 2011-06-22

Family

ID=35942096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250926A Expired - Lifetime JP4706209B2 (ja) 2004-08-30 2004-08-30 積層型圧電体素子及びその製造方法並びに導電性接着剤

Country Status (3)

Country Link
US (1) US7205706B2 (ja)
JP (1) JP4706209B2 (ja)
DE (1) DE102005040900B4 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466321B2 (ja) * 2004-10-28 2010-05-26 Tdk株式会社 積層型圧電素子
US20100180865A1 (en) * 2006-02-14 2010-07-22 Joachim Vendulet Barrier Coatings for a Piezoelectric Device
US7456548B2 (en) * 2006-05-09 2008-11-25 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and ink jet recording head
WO2008017655A1 (en) * 2006-08-09 2008-02-14 Continental Automotive Gmbh Piezoceramic multilayer actuator with high reliability
DE102006062076A1 (de) * 2006-12-29 2008-07-10 Siemens Ag Piezokeramischer Vielschichtaktor und Verfahren zu seiner Herstellung
ATE535946T1 (de) * 2007-02-19 2011-12-15 Siemens Ag Piezokeramischer mehrschichtaktor und verfahren zur herstellung eines piezokeramischen mehrschichtaktors
ATE528802T1 (de) * 2007-02-19 2011-10-15 Siemens Ag Piezokeramischer vielschichtaktor und herstellungsverfahren dafür
EP1978567B1 (en) * 2007-02-19 2014-06-25 Continental Automotive GmbH Piezoceramic multilayer actuator and method of manufacturing a piezoceramic multilayer actuator
DE102007015457B4 (de) * 2007-03-30 2009-07-09 Siemens Ag Piezoelektrisches Bauteil mit Sicherheitsschicht, Verfahren zu dessen Herstellung und Verwendung
DE102007060167A1 (de) * 2007-12-13 2009-06-25 Robert Bosch Gmbh Piezoaktor mit einem Multilagenaufbau von Piezoelementen und ein Verfahren zu dessen Herstellung
JP5656352B2 (ja) * 2008-10-14 2015-01-21 太陽誘電株式会社 積層圧電アクチュエータ
DE102010047302B3 (de) * 2010-10-01 2012-03-29 Epcos Ag Piezoelektrisches Vielschichtbauelement und Verfahren zu dessen Herstellung
EP2680335B1 (en) 2011-02-24 2015-10-28 Kyocera Corporation Laminated piezoelectric element, injection apparatus provided with same, and fuel injection system provided with same
DE102012109250B4 (de) * 2012-09-28 2020-07-16 Tdk Electronics Ag Elektrisches Bauelement und Verfahren zur Herstellung einer Kontaktierung eines Elektrischen Bauelements
US9373773B2 (en) * 2012-10-29 2016-06-21 Kyocera Corporation Multi-layer piezoelectric element, and piezoelectric actuator, injection device, and fuel injection system provided with the multi-layer piezoelectric element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298457A (ja) * 1997-04-25 1998-11-10 Fukuda Metal Foil & Powder Co Ltd 焼付型導電塗料
JP2002052333A (ja) * 2000-08-09 2002-02-19 Sekisui Chem Co Ltd 微粒子の被覆方法、被覆微粒子、異方性導電接着剤、異方性導電接合膜及び導電接続構造体
JP2002111088A (ja) * 2000-09-28 2002-04-12 Kyocera Corp 積層型圧電アクチュエータ
JP2005101207A (ja) * 2003-09-24 2005-04-14 Kyocera Corp 積層型圧電素子及びその製法並びに噴射装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406164A (en) * 1993-06-10 1995-04-11 Brother Kogyo Kabushiki Kaisha Multilayer piezoelectric element
JP3477367B2 (ja) * 1998-05-12 2003-12-10 ソニーケミカル株式会社 異方導電性接着フィルム
JP2000077733A (ja) 1998-08-27 2000-03-14 Hitachi Ltd 積層型圧電素子
WO2000013190A1 (fr) * 1998-08-28 2000-03-09 Matsushita Electric Industrial Co., Ltd. Colle electroconductrice, structure electroconductrice utilisant cette colle, piece electrique, module et carte a circuit, connexion electrique, fabrication de carte a circuit et de piece electronique ceramique
EP1143534B1 (en) * 2000-03-29 2004-05-26 Nec Tokin Ceramics Corporation Multilayer piezoelectric actuator with electrodes reinforced in conductivity
JP4683689B2 (ja) 2000-03-29 2011-05-18 京セラ株式会社 積層型圧電素子及び圧電アクチュエータ並びに噴射装置
JP2002203999A (ja) * 2000-11-06 2002-07-19 Denso Corp 積層型圧電体素子とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298457A (ja) * 1997-04-25 1998-11-10 Fukuda Metal Foil & Powder Co Ltd 焼付型導電塗料
JP2002052333A (ja) * 2000-08-09 2002-02-19 Sekisui Chem Co Ltd 微粒子の被覆方法、被覆微粒子、異方性導電接着剤、異方性導電接合膜及び導電接続構造体
JP2002111088A (ja) * 2000-09-28 2002-04-12 Kyocera Corp 積層型圧電アクチュエータ
JP2005101207A (ja) * 2003-09-24 2005-04-14 Kyocera Corp 積層型圧電素子及びその製法並びに噴射装置

Also Published As

Publication number Publication date
DE102005040900A1 (de) 2006-03-30
DE102005040900A8 (de) 2006-10-05
US7205706B2 (en) 2007-04-17
DE102005040900B4 (de) 2015-03-12
US20060043841A1 (en) 2006-03-02
JP2006066837A (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
US7205706B2 (en) Stacked piezoelectric element, production method thereof and electrically conducting adhesive
JP4876467B2 (ja) 積層型圧電素子
JP4933554B2 (ja) 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム、並びに積層型圧電素子の製造方法
US7554250B2 (en) Laminate-type piezoelectric element and method of producing the same
JP2006303044A (ja) 積層型圧電体素子
US20070124903A1 (en) Method of producing laminate-type piezoelectric element
JP2002202024A (ja) インジェクタ用圧電体素子
JP2002203999A (ja) 積層型圧電体素子とその製造方法
JP2008053467A (ja) 積層型圧電素子及びその製造方法
JP5421390B2 (ja) 積層型圧電素子およびこれを用いた噴射装置ならびに燃料噴射システム
WO2010101056A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2006013437A (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP5027448B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2006165193A (ja) 中空積層型圧電素子及びその製造方法
JP2006041279A (ja) 積層型圧電体素子及びその製造方法
JP2012216875A (ja) 積層型圧電素子、噴射装置、燃料噴射システム、及び積層型圧電素子の製造方法
JP4956054B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2007019420A (ja) 積層型圧電素子
JP2006210423A (ja) 積層型圧電素子及びその製造方法
JP2005340387A (ja) 積層型圧電素子及び燃料噴射装置
JP2005268393A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005129871A (ja) 積層型圧電素子及びこれを用いた噴射装置
JP2006156690A (ja) 積層型圧電素子およびこれを用いた噴射装置
WO2012011302A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP2007243066A (ja) 積層型圧電素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250