JP4699590B2 - ラケットフレーム - Google Patents

ラケットフレーム Download PDF

Info

Publication number
JP4699590B2
JP4699590B2 JP2000231342A JP2000231342A JP4699590B2 JP 4699590 B2 JP4699590 B2 JP 4699590B2 JP 2000231342 A JP2000231342 A JP 2000231342A JP 2000231342 A JP2000231342 A JP 2000231342A JP 4699590 B2 JP4699590 B2 JP 4699590B2
Authority
JP
Japan
Prior art keywords
racket frame
magnesium alloy
weight
racket
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000231342A
Other languages
English (en)
Other versions
JP2002035172A (ja
Inventor
十美男 熊本
邦夫 丹羽
宏幸 竹内
武史 芦野
Original Assignee
Sriスポーツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sriスポーツ株式会社 filed Critical Sriスポーツ株式会社
Priority to JP2000231342A priority Critical patent/JP4699590B2/ja
Publication of JP2002035172A publication Critical patent/JP2002035172A/ja
Application granted granted Critical
Publication of JP4699590B2 publication Critical patent/JP4699590B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、テニスラケット等のスポーツ用のラケットフレームに関し、特に、繊維強化樹脂からなる軽量ラケットにおいて、その軽量性と高強度性を両立し、かつ振動減衰性にも優れたラケットフレームに関するものである。
【0002】
【従来の技術】
近年、ラケットフレームは繊維強化樹脂製が、その軽量性、高剛性、高強度、耐久性等の特徴を生かして主流となっている。それは、近年のカーボン繊維の高強度、高弾性率化の発展により、カーボン繊維を主体とした強化繊維が、軽量ラケット実現に大きく貢献しているためである。具体的には、ラケットフレームは、カーボン繊維で強化された熱硬化性樹脂(例えばエポキシ樹脂)から一体的に成形されている。また、このカーボン繊維強化樹脂はそのカーボン繊維の方向(配向)が自由に調整することが可能であり、それゆえ各部位の各方向の剛性設計において非常に自由度が高い。
【0003】
しかし、ラケットフレームの重量が軽減されればされる程、その繊維強化樹脂におけるカーボン繊維の割合を増加させる一方、樹脂の割合を減少して、成形されるラケットフレームの肉厚を低減しなければならず、強度・耐久性の低下が大きな問題となる。カーボン繊維の割合が増加すると、カーボン繊維強化樹脂は強度が大きく、弾性率も高いが、破断するまでの伸びが小さいため、所定の応力、あるいは歪が発生すると突然に破損する現象が生じやすい。とりわけ、圧縮方向の歪が発生する箇所で、破損が起きやすくなる。
【0004】
例えば、打球面を囲むフェイス部であれば、面内方向の力(ボールの衝撃によるストリングを引張る力)により、応力が集中するトップや3時(9時)付近の位置(ラケットフレームのフェイス部を時計面とみてトップ側頂点を12時とする)で破損しやすい。より具体的には、トップの外側や3時(9時)の内側に応力が集中する。また、面内方向以外にも応力集中する部分があり、ボールの衝撃による面外方向の力により、4時(8時)〜スロート(シャフト)にかけて、捻れの力がかかるために、破損が発生しやすい。そのため、繊維強化樹脂からなるラケットフレームでは、破損を抑制する設計が必要となってきており、下記のような金属素材を用いたラケットフレームが提案されている。
【0005】
例えば、特開平4-327861号では、金属基材としてMg、Ti系材を用いることで、十分な強度を有し、軽金属でありながら、振動や騒音を抑制したラケットフレームが提案されている。
また、特開平7-204294号では、軽金属製のアルミニウム合金、マグネシウム合金等をチューブとし、その外部に熱可塑性樹脂またはガラス繊維やカーボン繊維の短繊維、チョップド繊維を混入した繊維強化熱可塑性樹脂を備えたラケットが提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前者のラケットフレームでは、マグネシウムの比弾性率は25300N/mmであり、アルミニウムの比弾性率とほぼ同等レベルであるため、充分な強度を有しているとはいえない。ここでいう、比弾性率とは、弾性率(N/mm)/比重の値と定義する。
また、マグネシウムの比重に対する弾性率は25300N/mmと、アルミニウムと同等レベルであるが、繊維強化樹脂成形品には及ばない(繊維強化樹脂成形品の比重は、1.4〜1.6であり、0°補強からなるカーボン繊維強化樹脂の比弾性率は、90300N/mmとなる)。このように、繊維強化樹脂成形品に比べ、比弾性率が小さいため、上記ラケットフレームでは、ラケットの性能に関与するラケットフレームの剛性値を上げることができない、または、剛性値を上げようとすると、ラケットフレーム重量が重くなるという問題がある。
【0007】
また、後者のラケットフレームでは、上述したように、ガラス繊維やカーボン繊維の短繊維、チョップド繊維を混入した繊維強化熱可塑性樹脂を使用しているが、連続繊維のカーボン繊維で補強されていないので、補強の自由度がなく、ラケットフレームの剛性値を上げることには限界がある。また、特定の振動モードの振動減衰性を高めることが困難であるという問題がある。
【0008】
上記のような金属を主体とするラケットフレーム構造が提案されているものの、一般的に金属は、その比重が大きいため、繊維強化樹脂製よりもラケットフレームが重くなるという傾向がある。また、一般の繊維強化樹脂にみられる連続繊維で強化された樹脂構造がないため、剛性が低く、その剛性設計の自由度も大きく低下するという問題がある。さらに、振動減衰性についても、面外1次、面外2次等の特定の振動モードに対し、選択的に振動減衰性を向上させることができないため、打球感が悪く、テニスエルボーが発生しやすいという問題がある。
【0009】
本発明は上記問題に鑑みてなされたもので、金属素材を用いて高強度化をはかる場合において、上記したような問題が無く、軽量、高強度、高振動減衰性を兼ね備えたラケットフレームを提供することを課題としている。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、繊維強化樹脂からなるラケットフレームにおいて、比重が2.0以下であるマグネシウム合金をシート状として、ラケットフレームのフェイス部、ヨーク、スロート部の少なくとも一部に配置し、
上記マグネシウム合金の最大厚みを0.01mm〜2.85mmとし、かつラケットフレーム成形品重量は167〜185g、上記マグネシウム合金の重量は1.1〜16.4gで、ラケットフレーム成形品重量に対するマグネシウム合金重量の割合を0.7wt%〜8.9wt%の範囲とし、
上記ラケットフレームの打球面剛性を167〜196kgf/cm、スロート剛性を295〜509kgf/cm、面外1次振動減衰率を0.50〜1.10、面内2次振動減衰率を0.40〜0.62としていることを特徴とするラケットフレームを提供している。
【0011】
上記したように、マグネシウム合金は、ラケットフレームのフェイス部、ヨ−ク、スロート部の少なくとも一部に使用する。ねじれ振動モードを考慮すると、フェイス部の1〜2時(10時〜11時)に配置することが振動モードの変形を抑制することができるものの、好ましくは、主要振動モードを抑制する位置に配置することが好ましい。具体的には、ラケットフレームのフェイス部を時計面とみてトップ側頂点を12時とすると、12時付近、3時または9時付近、4時または8時からスロート部に至る部分、スロート部のうち少なくともいずれか1ヶ所に配置することが好ましい。ラケットフレームのスロート部、フェイス部のサイドの3時(9時)位置に配置することにより、面外2次の振動モードの振動減衰率を向上させることができ、ラケットフレームのフェイス部のトップ、ヨーク接合部に配置することにより面外1次の振動モードの振動減衰率を向上させることができる。このように、マグネシウム合金の配置位置の調整により、ラケットフレームの各種振動モードに対して発生する変形に応じた設定が可能となり、各振動モードに対し、選択的に振動減衰性を高めることができる。
【0012】
さらに、繊維強化樹脂製のラケットフレームにおいて、圧縮方向の歪みが発生し、ラケットフレームの破損が生じやすい12時や3時(9時)付近の位置、4時(8時)からスロートに至る部分に、マグネシウム合金が配置されることとなるため、その延伸性の利点により、ラケットフレームの破断の発生を防止し、高強度化を図ることができる。
【0013】
また、上記マグネシウム合金の比重は、2.0以下としている。これは、マグネシウム合金の比重が2.0より大きい場合、ラケットフレーム全体に及ぼす重量分布が、合金配置位置により大きく影響され、ラケットスイングの慣性モーメントが変化してしまい、目標値のスペック設計に悪影響を及ぼしてしまうと共に、ラケットフレームの軽量化が困難となってしまうことによる。
【0014】
ラケットフレームを構成する繊維強化樹脂中の強化繊維は連続繊維とすることが好ましい。これにより、強化繊維による補強の自由度が大きくなり、繊維角度の調整が容易となり、ラケット断面の肉厚を大きくすることなく、ラケットフレームの剛性を高めることができる。
【0015】
上記マグネシウム合金とは、マグネシウムを含む合金であるが、好ましくは、マグネシウムの重量%が80%以上、さらには、90%以上が良い。上記範囲とすることで、マグネシウム合金の低比重化が図れると共に、ラケットフレームの振動減衰性を高めることができる。
【0016】
上記マグネシウム合金の種類としては、AZ31、AZ91D、AS41B、AM60B、AE42等が好適に用いられる。
これらの合金の表面処理としては、クロム酸処理をし、薄い防錆膜をつくり、表面を安定化させてから使用することが好ましい。これにより、水分との接触による腐食を防止することができる。
【0017】
上記マグネシウム合金の最大厚みは、0.01mm〜2.85mmとし、さらに好ましくは、0.01mm〜0.5mmとしている。マグネシウム合金の厚みが0.01mm未満では、十分な繊維強化樹脂層への補強効果が得られず、振動減衰性も得られない。マグネシウム合金の破断伸度は、3.0〜8.0%であり、連続繊維よりなる繊維強化樹脂成形品(0°方向の繊維からなる)の破断伸度は0.5〜2.0%であるため、マグネシウムを配置することで、破断(とりわけ圧縮方向)が発生するための局部的な起点を抑制することができる。
繊維強化樹脂層間に2.85mmよりも厚いマグネシウム合金を配置した場合、繊維強化樹脂において、カーボン繊維が乱れ、また、厚みの差に起因する剛性差のための応力集中が起こり、破損しやすくなる。また、伸び率の差により変形が大きい場合、繊維強化樹脂層とマグネシウムの界面で剥離が生じやすくなる。
上記理由により、マグネシウム合金の最大厚みは0.01mm〜2.85mmとし、フレームの形状に沿いやすい厚さとしている。
【0018】
マグネシウム合金重量のラケットフレーム成形品重量に対する割合は、0.wt%〜8.9wt%の範囲としている。上記割合が、0.wt%未満の場合、十分な振動減衰性を得ることができず、また、8.9wt%より大きい場合は、十分な打球面剛性値が得られないという問題がある。
【0019】
マグネシウム合金は、ラケットフレーム成形体を構成している繊維強化樹脂層のペイント層を除く最外層もしくは、層間に配置することが好ましい。また、層間に配置する際は、ラケット肉厚の半分より外層側が良い。これは、ラケットフレームの周方向の断面において、打球時に、外層側の方が変形が大きいため、マグネシウム合金が外層側にある方が、圧縮破壊に対して強くなり、かつ、振動減衰性も高くなることによる。また、繊維強化樹脂層の層間に配置することで、より防錆効果が増し、長期間の使用も可能となる。
【0020】
また、ラケットフレームの最外層にマグネシウム合金を配置する場合は、ガラススクリムクロスでラッピングすることが好ましい。これにより、クラック発生を防止することができると共に、マグネシウム合金の特性である、耐くぼみ性を利用し、繊維強化樹脂層の破断の起点発生を抑制することができる。
【0021】
上記マグネシウム合金は、略細帯状のシートとし、この細帯の幅方向の両側に凹凸部を設け、上記シートの長さ方向を、ラケットフレームの長さ方向に合わせて取り付け、幅方向の両側の凹凸部をラケットフレームの周方向に屈曲させて取り付けている。
このように、細帯状シートの幅方向の両側に凹凸部を設けることにより、ラケットフレームの形状(円形)に沿って配置する際に、幅方向の両側の凹凸部をラケットフレームの周方向に屈曲させることができるため、ラケットフレームの丸みに沿うように配置することができる。これに対し、単純な短冊状(凹凸部なし)のシートでは、配置する際に、ラケットフレームの丸みに沿わず、シートがしわになってしまうことがある。
【0022】
上記凹凸部の形状としてはとしては、左右互いに対向した凹凸形状、角度を持った凹凸部、ゆるやかなカーブを有する蛇行形状等ラケットフレームの丸みに沿うような形状が挙げられる。
【0023】
ラケットフレームに配置するマグネシウム合金の形状は、シート状として振動減衰性に最も優れたものとしている。
【0024】
【発明の実施の形態】
以下、本発明に係わるテニス用のラケットフレームについて詳述する。
図1に示すラケットフレーム1は、カーボン繊維を強化繊維とし、エポキシ樹脂をマトリクス樹脂とする繊維強化プリプレグを積層して形成した繊維強化樹脂製の連続したパイプ状のフレームから形成しており、打球面Sを囲むフェイス部2、スロート部3、シャフト部4およびグリップ部5からなり、打球面Sのボトム位置にはヨーク6を取り付けている。上記ラケットフレーム1には、図1に示すように、マグネシウム合金10からなるシートをスロート部3に配置している。
【0025】
本実施形態では、図2に示すように、マグネシウム合金10を、略細帯状のシートとし、この細帯の幅方向の両側に凹凸部10aを設け、凹凸部10aが左右互いに対向した形状としている。このマグネシウム合金10のシートは、図3に示すように、シートの長さ方向を、ラケットフレーム1の長さ方向に合わせて、幅方向の両側の凹凸部10aをラケットフレーム1の周方向に屈曲させて、繊維強化樹脂層11の層間に配置している。
【0026】
上記ラケットフレーム1は、全長が28インチであり、打球面Sの面積は115平方インチ、フレームの最大厚みは29mm、ラケットフレーム重量は215gとしている。
【0027】
上記マグネシウム合金としては、その比重が2.0以下、最大厚みが、0.01mm〜2.85mmのものを用いており、その重量のラケットフレーム成形品に対する割合は、0.wt%〜8.9wt%としている。
【0028】
なお、上記実施形態では、スロート部3にマグネシウム合金10からなるシートを配置しているが、スロート部3以外に、ラケットフレームのフェイス部を時計面とみてトップ側頂点を12時とすると、12時付近、3時または9時付近、4時または8時からスロート部に至る部分等に配置してもよい。また、繊維強化プリプレグの層間、最外層または、最内層に、1ヶ所もしくは複数ヶ所、配置しても良い。
【0029】
マグネシウム合金からなる略細帯状のシートの幅方向の両側凹凸部の形状としては、上記実施形態以外に、図4(A)に示すように、マグネシウム合金10’のシートの幅方向の両側に、角度を持った凹凸部10a’を設けたものや、図4(B)に示すように、マグネシウム合金10”のシートの幅方向の両側に、ゆるやかなカーブを有する形状とした凹凸部10a”を蛇行させているもの等、配置時にラケットフレームの丸みに沿うような形状が好適に用いられる。
【0030】
また、ラケットフレームを構成する繊維強化樹脂の最外層にマグネシウム合金を配置する場合は、図5(A)に示すように、マグネシウム合金20を金属線とし、ガラススクリムクロス21で挟持した構成のものを用いている。金属線の断面形状は、円形としている。なお、図5(B)に示すように、マグネシウム合金20’の金属線の断面形状を、扁平形状とし、ガラススクリムクロス21’で挟持してもよい。これにより、クラック発生を防止することができると共に、マグネシウム合金の特性である、耐くぼみ性を利用し、繊維強化樹脂層の破断の起点発生を抑制することができる。
【0032】
[実験1]
以下、本発明のラケットフレームの実施例1〜7及び比較例1について詳述する。なお、実施例、比較例とも、ラケット形状、長さ、フェイス面積は同一とした。
【0033】
(実施例1)
66ナイロンチューブにカーボン繊維強化プリプレグ(東レT800、P2053−12、レジンコンテント30%、M40J、9052−7、レジンコンテント33%、M40J、9055−8、レジンコンテント24%)を積層し、鉛直状の積層体を成形した。プリプレグ角度は0、22、30、90゜として、積層した。ヨーク部分も、ナイロンチューブで被覆したポリスチレン発泡体を芯材とし、上記と同様のカーボン繊維強化プリプレグを積層した。
上記カーボン繊維強化プリプレグを積層する際、スロート部の繊維強化樹脂層間に、マグネシウム合金を配置した。マグネシウム合金は、略細帯状のシートとし、この細帯の幅方向の両側に凹凸部を設け、凹凸部が左右互いに対向した形状(上記図2の形状)とした。マグネシウム合金は、大阪富士工業社製のマグネシウム合金AZ31(比重1.78)を使用し、厚さ0.20mmで、ラケットフレーム成形品重量に対する割合(マグネシウム合金重量比)は1.6wt%とした。
マグネシウム合金の表面処理として、カーボン繊維層との接着性、防蝕のために、重クロム酸ソーダ100g/lと硝酸(67.5%)200g/lの組成からなる浴槽を作り、その浴槽温度を室温にし、マグネシウム合金を0.5〜1.0minつけ込んで処理を行った。
【0034】
成形したラケットフレームは、全長を28インチ、フェイス面積を115平方インチ、フレーム最大厚みを29mm、トップ部の厚みを26mmとした。バンパー・グロメット、グリップレザー、エンドキャップをラケットフレームに付設し、ストリングなしで、重量は215g、バランス(グリップエンドから重心位置までの距離)は375mmであった(マグネシウムをなしとした場合の重量/バランス)。
【0035】
(実施例2)
実施例1のマグネシウム合金をフェイス部の3時(9時)位置で、繊維強化樹脂層間に入れて使用した。マグネシウム合金のラケットフレーム成形品重量に対する割合(マグネシウム合金重量比)を1.4wt%とし、表1に示す寸法とした。
その他は実施例1と同様にした。
【0036】
(実施例3)
実施例1のマグネシウム合金をフェイス部のトップ位置で、繊維強化樹脂層間に入れて使用した。マグネシウム合金のラケットフレーム成形品重量に対する割合(マグネシウム合金重量比)を0.7wt%とし、表1に示す寸法とした。
その他は実施例1と同様にした。
【0037】
(実施例4)
実施例1のマグネシウム合金をフェイス部とヨークの接合部で、繊維強化樹脂層間に入れて使用した。マグネシウム合金のラケットフレーム成形品重量に対する割合(マグネシウム合金重量比)を1.7wt%とし、表1に示す寸法とした。
その他は実施例1と同様にした。
【0038】
(実施例5)
実施例1のマグネシウム合金重量のラケットフレーム成形品重量に対する割合を、8.9wt%とし、スロート部で、最外層に使用した。マグネシウム合金の最大厚みは、2.80mmとし、表1に示す寸法とした。
その他は実施例1と同様にした。
【0039】
参考実施例6)
実施例1のマグネシウム合金重量のラケットフレーム成形品重量に対する割合を、0.5wt%と、表1に示す寸法とした。スロート部で、繊維強化樹脂層間に入れて使用した。その他は実施例1と同様にした。
【0040】
参考実施例7)
実施例1のマグネシウム合金重量のラケットフレーム成形品重量に対する割合を、9.6wt%とし、スロート部で、繊維強化樹脂層間に入れて使用した。マグネシウム合金の最大厚みは、3.00mmとし、表1に示す寸法とした。その他は実施例1と同様にした。
【0041】
(比較例1)
マグネシウム合金を全く使用しなかった。
その他は実施例1と同様にした。
【0042】
上記実施例1乃至実施例5、参考実施例6、7及び、比較例1からなるラケットフレームに対して、それぞれ、面外1次振動減衰率、面外2次振動減衰率、面内2次振動減衰率、打球面剛性、スロート剛性、打球面破壊強度、スロート破壊強度を測定し、かつ、ラケットフレームの打球フィーリング評価を行った。その結果を下記の表1に示す。
【0043】
【表1】
Figure 0004699590
【0044】
(面外1次振動減衰率の測定)
各実施例及び比較例のラケットフレームを図6(A)に示すようにフェイス部2の上端を紐51で吊り下げ、フェイス部2とスロート部3との一方の連続点に加速度ピックアップ計53をフレーム面に垂直に固定した。この状態で、図6(B)に示すように、フェイス部2とスロート部3の他方の連続点をインパクトハンマー55で加振した。インパクトハンマー55に取り付けられたフォースピックアップ計で計測した入力振動(F)と加速度ピックアップ計53で計測した応答振動(α)をアンプ56A、56Bを介して周波数解析装置57(ヒューレットパッカード社製、ダイナミックシングルアナライザーHP3562A)に入力して解析した。解析で得た周波数領域での伝達関数を求め、ラケットフレームの振動数を得た。振動減衰比(ζ)は下式より求め、面外1次振動減衰率とした。各実施例及び比較例の8個のラケットフレームについて測定された平均値を上記表1に示す。
【0045】
ζ=(1/2)×(Δω/ωn)
To=Tn/√2
【0046】
(面外2次振動減衰率の測定)
ラケットフレームを図6(C)に示すようにフェイス部2上端を紐51で吊り下げ、スロート部3とシャフト部4との連続点に加速度ピックアップ計53をフレーム面に垂直に固定した。この状態で、加速度ピックアップ計53の裏側のフレームをインパクトハンマー55で加振した。そして、面外1次振動減衰率と同等の方法で減衰率を算出し、面外2次振動減衰率とした。各実施例及び比較例の8個のラケットフレームについて測定された平均値を上記表1に示す。
【0047】
(面内2次振動減衰率の測定)
ラケットフレームを図6(D)に示すようにラケットを下向きとし、シャフト部4とスロート部3との合流点を紐51で吊り下げ、フェイス部2の最大幅位置の一側に加速度ピックアップ計53をフレーム面(フェイス面)に平行となるように固定した。この状態で、スロート部3をインパクトハンマー55で加振した。そして、面外1次振動減衰率と同等の方法で減衰率を算出し、面内2次振動減衰率とした。各実施例及び比較例の8個のラケットフレームについて測定された平均値を上記の表1に示す。
【0048】
(打球面剛性の測定)
フェイス面の面外方向の剛性、即ち、打球面剛性の測定は、図7(A)(B)に示すようにラケットフレーム1を水平に配置し、フェイス部2のトップ2aを受け治具61で支持するとともに、トップ2aから340mm離れた位置で、スロート部3の両側からヨーク6にかけた位置を受け治具62で支持した。この状態で、受け治具62より受け治具61の方向へ170mm離れた位置に対して、加圧具63により上方より80kgfの力を加えて変位量(たわみ量)を測定し、加えた荷重値である80kgfを変位量(cm)で割って、その値をフェイス面の面外方向の剛性値とした。
また、上記治具を用いて、破壊するまで荷重をかけ、破壊した時の荷重値を記録し、打球面破壊強度を測定した。
【0049】
(スロート剛性の測定)
スロート剛性の測定は、図8(A)(B)に示すように、ラケットフレーム1を水平に配置し、ヨーク6の下端に当たる位置から両側のスロート部3を受け治具70で支持するとともに、該受け治具70よりグリップ側に340mm離れた位置で受け治具71によりグリップ部5を支持した。この状態で、受け治具71よりスロート部3側に220mm離れた位置に対して、加圧具72により上方より80kgfの力を加えて変位量(たわみ量)を測定し、加えた荷重値である80kgfを変位量で割って、その値をスロート部3の剛性値とした。
また、上記治具を用いて、破壊するまで荷重をかけ、破壊した時の荷重値を記録し、スロート破壊強度を測定した。
【0050】
(実打による打球フィーリング評価試験方法)
さらに、実打試験については打球時のフィーリングを、一般プレーヤー50人により評価した。評価点を4段階評価で実施し、◎大変良い、○普通、△やや悪い、×悪い、で採点した。評価は50人中、最も評価が多いものを、その評価とした。
【0051】
実験1において、比較例1は、打球フィーリングテストの結果が悪い結果となった。一方、実施例1〜のラケットフレームは、打球フィーリングが優れていることが確認できた。また、実施例1〜のラケットフレームは、打球面破壊強度、スロート破壊強度ともに、比較例のラケットフレームと同等以上の強度を示し、十分な強度を有することが確認できた。
【0052】
[実験2]
下記の4種類の金属からなる金属板について、各金属の固有振動数と振動減衰率を以下の方法により測定した。
【0053】
(実施例8)
金属板として、マグネシウム合金(AZ31)を用いた。
(比較例2)
金属板として、チタン(Ti)合金(6AL−4V−Ti)を用いた。
(比較例3)
金属板として、SUS(SUS630)を用いた。
(比較例4)
金属板として、鉄(Fe)(SS41)を用いた。
【0054】
(板振動測定方法)
上記各金属からなる幅30mm、長さ150mmのサンプル板80を用意し、図9に示すように、サンプル板80の端10mm部分に反射テープ81を貼り付けた。その後、サンプル板80の中央部と加振機82の加振先端を接着剤により固定した。固定したサンプル板80の反射テープ81に、レーザーの焦点が合うように、レーザー出力装置83、レーザー本体84を配置し、反射テープ81にレーザーを照射した。この時、加振機側の各周波数時の加速度計測による入力データとレーザードップラー速度計での速度計測による出力データをFFTアナライザー85で解析し、固有振動数及び振動減衰率を算出した。算出結果を下記の表2に示す。
【0055】
【表2】
Figure 0004699590
【0056】
実験2において、実施例8のマグネシウム合金からなる金属板は、比較例2〜4の他の金属に比べて振動減衰率が高い結果となり、他の金属と比べて、マグネシウム合金を使用した場合が、最も振動減衰性が高いことが確認できた。
【0057】
【発明の効果】
以上の説明より明らかなように、本発明では、ラケットフレームのフェイス部あるいは/及びスロート部の応力が集中しやすい箇所にマグネシウム合金を配置し、このマグネシウム合金の比重を2.0以下としているため、金属の配置によるラケットフレームの重量化を抑制しながら、破断防止、高強度化、高振動減衰性の向上を図ることができる。
【0058】
特に、マグネシウム合金の配置位置の調整により、ラケットフレームの各種振動モードに対して発生する変形に応じた設定が可能となり、各振動モードに対し、選択的に振動減衰性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態のラケットフレームを示す概略図である。
【図2】 本発明の実施形態のマグネシウム合金シートの形状を示す図である。
【図3】 図1のA−A線断面図である。
【図4】 (A)(B)はマグネシウム合金シートの形状の変形例を示す図である。
【図5】 (A)(B)はマグネシウム合金の配置形態の変形例を示す図である。
【図6】 (A)〜(D)はラケットフレームの振動減衰率の測定方法を示す図である。
【図7】 (A)(B)はラケットフレームの打球面剛性の測定方法を示す図である。
【図8】 (A)(B)はラケットフレームのスロート剛性の測定方法を示す図である。
【図9】 板振動測定方法を示す図である。
【符号の説明】
1 ラケットフレーム
2 フェイス部
3 スロート部
4 シャフト部
5 グリップ部
6 ヨーク
10 マグネシウム合金
10a 凹凸部
11 繊維強化樹脂層

Claims (2)

  1. 繊維強化樹脂からなるラケットフレームにおいて、比重が2.0以下であるマグネシウム合金をシート状として、ラケットフレームのフェイス部、ヨーク、スロート部の少なくとも一部に配置し、
    上記マグネシウム合金の最大厚みを0.01mm〜2.85mmとし、かつラケットフレーム成形品重量は167〜185g、上記マグネシウム合金の重量は1.1〜16.4gで、ラケットフレーム成形品重量に対するマグネシウム合金重量の割合を0.7wt%〜8.9wt%の範囲とし、
    上記ラケットフレームの打球面剛性を167〜196kgf/cm、スロート剛性を295〜509kgf/cm、面外1次振動減衰率を0.50〜1.10、面内2次振動減衰率を0.40〜0.62としていることを特徴とするラケットフレーム。
  2. 上記マグネシウム合金は繊維強化樹脂の最外層に配置し、該マグネシウム合金の少なくとも外面にペイント層またはガラススクリムクロスを配置している請求項1に記載のラケットフレーム。
JP2000231342A 2000-07-31 2000-07-31 ラケットフレーム Expired - Fee Related JP4699590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231342A JP4699590B2 (ja) 2000-07-31 2000-07-31 ラケットフレーム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231342A JP4699590B2 (ja) 2000-07-31 2000-07-31 ラケットフレーム

Publications (2)

Publication Number Publication Date
JP2002035172A JP2002035172A (ja) 2002-02-05
JP4699590B2 true JP4699590B2 (ja) 2011-06-15

Family

ID=18724193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231342A Expired - Fee Related JP4699590B2 (ja) 2000-07-31 2000-07-31 ラケットフレーム

Country Status (1)

Country Link
JP (1) JP4699590B2 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015359U (ja) * 1983-07-12 1985-02-01 美津濃株式会社 Frp製ラケツトフレ−ム
JPS6272667U (ja) * 1985-10-25 1987-05-09
JPH0165058U (ja) * 1987-10-21 1989-04-26
JPH03159665A (ja) * 1989-11-18 1991-07-09 Sumitomo Rubber Ind Ltd ラケットフレーム
JPH04327861A (ja) * 1991-04-30 1992-11-17 I N R Kenkyusho:Kk 運動用具
JPH0529562U (ja) * 1991-10-03 1993-04-20 美津濃株式会社 ラケツトフレーム
JPH05111552A (ja) * 1991-10-21 1993-05-07 Tonen Corp ラケツトフレーム
JPH07204294A (ja) * 1994-01-14 1995-08-08 Asics Corp ラケットフレーム
JPH07265469A (ja) * 1994-03-29 1995-10-17 Daiwa Golf Kk ゴルフクラブヘッドとその製造方法
JPH08252343A (ja) * 1995-03-17 1996-10-01 Mitsui Mining & Smelting Co Ltd ゴルフクラブヘッド
JPH1189973A (ja) * 1997-09-22 1999-04-06 Bridgestone Sports Co Ltd ラケットフレーム
JP2000061005A (ja) * 1998-08-20 2000-02-29 Bridgestone Sports Co Ltd ラケットフレーム
JP2001061999A (ja) * 1999-08-27 2001-03-13 Sumitomo Rubber Ind Ltd ラケットフレーム
JP2001231900A (ja) * 2000-02-23 2001-08-28 Mamiya Op Co Ltd 管状体及びこの管状体を備えたスポーツ用品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015359A (ja) * 1983-07-08 1985-01-26 Gunze Ltd ワ−ク折畳み方法並びに装置
JPH0613472B2 (ja) * 1985-09-27 1994-02-23 東ソー株式会社 2−メトキシ−6−メチルアミノピリジンの製造法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015359U (ja) * 1983-07-12 1985-02-01 美津濃株式会社 Frp製ラケツトフレ−ム
JPS6272667U (ja) * 1985-10-25 1987-05-09
JPH0165058U (ja) * 1987-10-21 1989-04-26
JPH03159665A (ja) * 1989-11-18 1991-07-09 Sumitomo Rubber Ind Ltd ラケットフレーム
JPH04327861A (ja) * 1991-04-30 1992-11-17 I N R Kenkyusho:Kk 運動用具
JPH0529562U (ja) * 1991-10-03 1993-04-20 美津濃株式会社 ラケツトフレーム
JPH05111552A (ja) * 1991-10-21 1993-05-07 Tonen Corp ラケツトフレーム
JPH07204294A (ja) * 1994-01-14 1995-08-08 Asics Corp ラケットフレーム
JPH07265469A (ja) * 1994-03-29 1995-10-17 Daiwa Golf Kk ゴルフクラブヘッドとその製造方法
JPH08252343A (ja) * 1995-03-17 1996-10-01 Mitsui Mining & Smelting Co Ltd ゴルフクラブヘッド
JPH1189973A (ja) * 1997-09-22 1999-04-06 Bridgestone Sports Co Ltd ラケットフレーム
JP2000061005A (ja) * 1998-08-20 2000-02-29 Bridgestone Sports Co Ltd ラケットフレーム
JP2001061999A (ja) * 1999-08-27 2001-03-13 Sumitomo Rubber Ind Ltd ラケットフレーム
JP2001231900A (ja) * 2000-02-23 2001-08-28 Mamiya Op Co Ltd 管状体及びこの管状体を備えたスポーツ用品

Also Published As

Publication number Publication date
JP2002035172A (ja) 2002-02-05

Similar Documents

Publication Publication Date Title
JP5183156B2 (ja) ウッド型ゴルフクラブヘッド
JP2004329544A (ja) ゴルフクラブヘッド
JP3442672B2 (ja) テニスラケット
JP4143725B2 (ja) テニスラケット
JP4335064B2 (ja) ゴルフクラブヘッド
JP4699590B2 (ja) ラケットフレーム
JPH11290484A (ja) ラケット
JP4252339B2 (ja) ゴルフクラブシャフト
WO2005028037A1 (ja) ゴルフクラブヘッドおよびゴルフクラブ
JP2007125255A (ja) ゴルフクラブシャフト
JP2001137390A (ja) バドミントンラケット
JP2002035185A (ja) ゴルフクラブシャフト
JP3519350B2 (ja) ラケットフレーム
JP3820215B2 (ja) テニスラケット
JP4173325B2 (ja) ラケットフレーム
JP4444429B2 (ja) 軟式テニス用ラケットフレーム
JPH09215780A (ja) 高反発性能を有するラケットフレーム
JP2002126144A (ja) 野球用又はソフトボール用バット
JP2006334305A (ja) ゴルフクラブシャフト
JP2001061996A (ja) テニスラケットフレーム
JP2001061994A (ja) ラケットフレーム
JP2667788B2 (ja) テニスラケット
JP2905791B2 (ja) 野球バット
JP2005296204A (ja) ゴルフクラブ用アイアンヘッド
JP2005095246A (ja) ゴルフクラブヘッドおよびゴルフクラブ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees