JP4667565B2 - Awgモジュールおよびその光学特性の調整方法 - Google Patents

Awgモジュールおよびその光学特性の調整方法 Download PDF

Info

Publication number
JP4667565B2
JP4667565B2 JP2000234607A JP2000234607A JP4667565B2 JP 4667565 B2 JP4667565 B2 JP 4667565B2 JP 2000234607 A JP2000234607 A JP 2000234607A JP 2000234607 A JP2000234607 A JP 2000234607A JP 4667565 B2 JP4667565 B2 JP 4667565B2
Authority
JP
Japan
Prior art keywords
temperature
awg
axis
awg chip
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000234607A
Other languages
English (en)
Other versions
JP2002048931A (ja
Inventor
克敏 甲本
宏治 大浦
健一郎 浅野
英行 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000234607A priority Critical patent/JP4667565B2/ja
Publication of JP2002048931A publication Critical patent/JP2002048931A/ja
Application granted granted Critical
Publication of JP4667565B2 publication Critical patent/JP4667565B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高密度多重光通信システムなどにおいて、多重された波長を分波する光分波器、または波長を合波して多重する光合波器として用いられるAWG(アレイド・ウェーブガイド・グレーティング)モジュールに関する。
【0002】
【従来の技術】
図1はAWGモジュールの一例を示したものであり、図中符号1は長方形板状のAWGチップである。AWGチップ1は、一般に基板の上に形成されたガラスなどの透明材料からなるクラッド層と、このクラッド層内に設けられた導波路1aを備えている。導波路1aは、中心に設けられた略U字状の複数の導波路12a、12a…が並列されてなるアレイ導波路12と、その両端部に設けられたスラブ導波路13、14と、これらスラブ導波路13、14のそれぞれから外側に伸びる入出射側導波路15、16とから構成されている
【0003】
このAWGチップ1の下にはAWGチップ1よりも小さい長方形板状のペルチェ素子(加熱および/または冷却手段)2が設けられている。また、AWGチップ1とペルチェ素子2との間には、上下面の面積がAWGチップ1の上下面の面積と等しい均熱板3が設けられている。均熱板3は例えばアルミニウムなどの金属からなる。ペルチェ素子2は、そのAWGチップ1との対向面が発熱または吸熱することによってAWGチップ1を加熱または冷却するが、均熱板3を介することにより、AWGチップ1のペルチェ素子2との対向面全体を均等に加熱、冷却することができ、温度むらを抑制することができる。
また、AWGチップ1の上面にはサーミスタ温度計(温度測定手段)4が接着剤などで固定されている。
これらAWGチップ1、ペルチェ素子2、均熱板3、およびサーミスタ温度計4とからなる積層体はケース10に収められている。
また、ペルチェ素子2とサーミスタ温度計4は、ケース10の外部に設けられた温度制御回路5に接続されている。
【0004】
さらに、AWGチップ1の一組の対向側面の一方には、導波路1aに光を入射または導波路1aから光を出射する複数のポート1b、1b…が設けられ、他方にも同様に複数のポート1c、1c…が設けられている。
一方のポート1b、1b…は、それぞれ光ファイバ20、20…に接続されており、これらの光ファイバ20、20…は、ポート1b、1b…に近接して設けられたファイバ配列部品21に支持されている。
他方のポート1c、1c…も同様であって、それぞれが光ファイバ22、22…に接続され、これら光ファイバ22、22…が、ポート1c、1c…に近接して設けられたファイバ配列部品23に支持されている。
【0005】
AWGモジュールにおいては、例えば一方のポート1b、1b…のひとつから入射した波長多重された光が入出射用導波路16のひとつに入射し、さらにスラブ導波路14、アレイ導波路12、スラブ導波路13を介して分波され、入出射用導波路15、15…を経て他方の複数のポート1c、1c…から波長ごとに出射する。すなわち、光分波器として動作する。
これとは逆に、他方の複数のポート1c、1c…のそれぞれに入射した波長の異なる光は、逆のルートをたどることによって合波され、他方のポート1b…のひとつからこの合波光が出射する。すなわち、光合波器として動作する。
【0006】
ところで、AWGモジュールにおいては、例えば50GHzチャンネルでは±5pm以下、25GHzチャンネルでは±2pm以下の波長安定性が要求される。波長安定性はAWGモジュール、特にアレイ導波路12の温度変動に大きく依存している。したがって、AWGモジュールにおいては、一般にAWGモジュールが用いられる0〜70℃の環境温度条件下において、温度変動を例えば50GHzチャンネルでは±0.05℃以下、25GHzチャンネルでは±0.2℃以下になるように温度制御を行う必要がある。
【0007】
AWGモジュールにおいては、最も一般的に使用される条件の環境温度を制御温度とし、この制御温度が一定に維持されるようにすると、温度制御機構の消費電力を小さくすることができる場合が多い。そのため、一般的なAWGモジュールの制御温度は50℃前後に設定されている。
【0008】
すなわち、サーミスタ温度計4によってAWGチップ1の上面の温度を測定し、これを温度制御回路5にフィードバックし、制御温度と異なる測定値である場合はペルチェ素子2を作動させることにより、AWGチップ1を加熱または冷却して温度制御を行う。
【0009】
【発明が解決しようとする課題】
しかしながら、従来はこのように温度を制御しても十分な波長安定性が得られない場合があった。また、光学特性が安定せず、製品歩留まりが低下する場合があった。
本発明は前記事情に鑑みてなされたもので、光学特性、すなわち波長安定性が良好なAWGモジュールを提供することを課題とする。
特に環境温度変化に対して、波長安定性が良好なAWGモジュールを提供することを課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するために、本発明においては、複数の導波路が並列されてなるアレイ導波路が設けられたAWGチップと、該AWGチップの加熱および/または冷却手段とが積層され、前記加熱および/または冷却手段の反対側から前記AWGチップの表面の温度を測定する温度測定手段と、その測定温度を所定の制御温度に制御する温度制御手段が設けられたAWGモジュールにおいて、AWGチップより面積が小さい加熱および/または冷却手段が、アレイ導波路を構成する各導波路の中心を結んだX軸によって対称に分割されるように配置され、温度測定手段のセンサ部が該X軸上に配置され、該X軸上の加熱および/または冷却手段の中心X が前記AWGチップの中心にあり、かつ、該X と前記センサ部との距離Xtと、前記X軸に沿って並列する前記複数の導波路の中心の内、前記X軸並列方向一側端の中心と前記X軸並列方向他側端の中心との間の中心点と前記Xとの距離Xaとが、以下の式(1)および式(2)を満足していることを特徴とする。
Xt=(Xa−α/a’)1/2 …(1)
Xa >(α/a’)1/2 …(2)
(式中、αはAWGチップから温度測定手段への熱の伝わり易さを示す以下の式(13)により表される正の係数であり、a’はAWGモジュールの制御温度と環境温度との温度差と以下の式(4)によりXの2次式として表されるAWGチップの表面のX軸上の温度分布の係数aとの関係から以下の式(4−2)により求められる正の係数である。)
T(X)=a・X+b …(4)
a’=a/(Ta−Tc) …(4−2)
α=−(T(Xt)−Tc)/(Ta−Tc) …(13)
(式中、Taは環境温度、Tcはセンサ部の温度、T(Xt)はセンサ部のAWGチップ上の位置における温度である。)
本発明のAWGモジュールにおいて、板状のAWGチップの対向面に均熱板を介し板状の加熱および/または冷却手段が積層されてなることを特徴とする先に記載のAWGモジュールとすることができる。
前記課題を解決するために、本発明のAWGモジュールの光学特性の調整方法は、複数の導波路が並列されてなるアレイ導波路が設けられたAWGチップと、該AWGチップの加熱および/または冷却手段とが積層され、前記加熱および/または冷却手段の反対側から前記AWGチップの表面の温度を測定する温度測定手段と、その測定温度を所定の制御温度に制御する温度制御手段が設けられたAWGモジュールの光学特性の調整方法であって、AWGチップより面積が小さい加熱および/または冷却手段を、アレイ導波路を構成する各導波路の中心を結んだX軸によって対称に分割されるように配置し、温度測定手段のセンサ部を該X軸上に配置するにおいて、該X軸上の加熱および/または冷却手段の中心X が前記AWGチップの中心にあり、かつ、該X と前記センサ部との距離Xtと、前記X軸に沿って並列する前記複数の導波路の中心の内、前記X軸並列方向一側端の中心と前記X軸並列方向他側端の中心との間の中心点と前記Xとの距離Xaとが、以下の式(1)および式(2)を満足するように配置することを特徴とする。
Xt=(Xa−α/a’)1/2 …(1)
Xa >(α/a’)1/2 …(2)
(式中、αはAWGチップから温度測定手段への熱の伝わり易さを示す以下の式(13)により表される正の係数であり、a’はAWGモジュールの制御温度と環境温度との温度差と以下の式(4)によりXの2次式として表されるAWGチップの表面のX軸上の温度分布の係数aとの関係から以下の式(4−2)により求められる正の係数である。)
T(X)=a・X+b …(4)
a’=a/(Ta−Tc) …(4−2)
α=−(T(Xt)−Tc)/(Ta−Tc) …(13)
(式中、Taは環境温度、Tcはセンサ部の温度、T(Xt)はセンサ部のAWGチップ上の位置における温度である。)
本発明のAWGモジュールの光学特性の調整方法においては、板状のAWGチップの対向面に均熱板を介し板状の加熱および/または冷却手段を積層した構造のAWGモジュールとすることができる。
更に、本発明のAWGモジュールの光学特性の調整方法においては、前記アレイ導波路の両端側にスラブ導波路と入出射側導波路を具備するAWGチップを用い、このAWGチップを恒温槽に設置し分光器として動作させ、前記アレイ導波路のひとつのポートから出射する光の中心波長を測定することにより、前記アレイ導波路の温度と中心波長の関係を測定し、この測定結果からT(Xa)(℃)と中心波長λ(nm)の関係式を求めるとともに、XtXaに一致させるとともに、Tc及びTaの値を仮の設定値として測定用のAWGモジュールを製造し、このAWGモジュールの中心波長λの測定値を前記T(Xa)(℃)と中心波長λ(nm)の関係式に代入してT(Xa)(℃)を求め、この値に基づくT(Xt)を前記式(13)に代入してαを求めるとともに、
前記測定用AWGモジュールのAWGチップの表面のX軸上の温度分布を測定し、得られた温度分布から前記式(4)の係数aを求め、この係数aと前記仮の設定値Tc、Taから、前記式(4−2)によりa’を求め、これらで求めたα、a’の値を前記式(2)に代入してXaの条件を求め、この条件範囲内のXaの値を前記式(1)に代入してXtを求め、これらで求めた距離Xaと距離Xtを採用して前記式(1)および式(2)を満足するようにすることができる。
【0011】
【発明の実施の形態】
本発明者らが検討した結果、環境温度変化による波長特性の変動は、アレイ導波路12、ペルチェ素子2、およびサーミスタ温度計4の3つの構成の位置関係に依存していることがわかった。そこで、これらアレイ導波路12、ペルチェ素子2、およびサーミスタ温度計4を、波長特性が安定する位置に配置する方法について検討を行った結果、前記式(1)、(2)を満足するようにこれらの構成を配置することにより、前記課題を解決できることを見出し、本発明を完成させるに至った。
【0012】
なお、本発明において、加熱および/または冷却手段としては、比較的精密に温度制御を行うことができるため、ペルチェ素子2が好適であるが、同様の作用が得られれば、これに限定するものではない。また、ペルチェ素子2は通常、加熱と冷却の両方を行うことができるが、用途などによってはどちらか一方を行うものを設けることもできる。
また、温度測定手段としては、温度変化に対して非常に敏感であるため、サーミスタ温度計4が好適である。しかし、精密な温度制御を行うことができれば、これに限定することはない。
【0013】
すなわち、本発明においては、予め後述する方法によって前記式(1)中のa’、およびαを求めておき、この式(1)および前記式(2)を満足するXaおよびXtを定める。そして、この数値に従って、機械的にアレイ導波路12、ペルチェ素子2、およびサーミスタ温度計4を配置することにより、環境温度の変動に対して波長特性が安定なAWGモジュールを提供することができる。
したがって、製造途中に光学特性をモニターしながらこれらの構成の配置位置を変更するなどの操作を省略、または簡略化することができる。また、所望の特性が得られる配置位置が予め求められているため、製造操作が簡単で、製品の光学特性のばらつきを低減することができる。
また、製造したAWGモジュールが所望の光学特性を備えていないことが判明した場合においても、前記式(1)、(2)を満足するように各構成の配置を調整することにより、光学特性を調整し、波長安定性を向上させることができる。
【0014】
以下、式(1)、(2)について説明する。
1.座標系
前記式(1)および式(2)を求めるにあたって用いる座標系について、図1を参照しつつ説明する。
まず、図2(a)に示したように、アレイ導波路12を構成する各導波路12a、12a…の中心を結ぶ線をX軸とする。すなわち、図中に示したように、アレイ導波路12の幅WがX軸によって2分割されるようにX軸を設ける。
そして、アレイ導波路12において、X軸上の導波路12a、12a…の並列方向の中心点をXaとし、アレイ導波路12の位置を示す座標とする。なお、Xaの数値は、後述するようにX0とXaとの距離とする。また、このXaの温度をT(Xa)とする。
【0015】
ペルチェ素子2は、図2(b)、図3(a)に示したように、ペルチェ素子2がX軸によって対称に分割された状態に配置する。すなわち、導波方向Pと平行に配置する辺2a、2aがX軸と直交し、かつその幅W1がX軸によって2分割されるように均熱板3を介してAWGチップ1の下に積層する。
このとき、辺2a、2aに直交する長さL1の辺2b、2bを2分割し、かつX軸に直交する軸と、X軸とが交わる点をX0とし、ペルチェ素子2の位置(X軸の中心)を示す座標とする。なお、このX0をX軸上の位置を示す基準(零)とし、アレイ導波路12側を正の値とする。そして、X軸上の位置はこのX0との距離によって表す。
【0016】
サーミスタ温度計4は、図3(b)に示したように、棒状の本体の先端に設けられた金属などからなるセンサ部4aがX軸上に位置するようにAWGチップ1上に配置する。このセンサ部4aのAWGチップ1上の位置をXtとし、X0との距離によって表す。また、この点の温度をT(Xt)とする。
さらに、サーミスタ温度計4は、図4(a)、図4(b)に示したように、接着剤層4bを介してAWGチップ1上に固定されている。なお、図4(a)は図1に示したA−Aにおける断面図であり、図4(b)は図4(a)の要部を示したものである。
【0017】
したがって、温度を感知するセンサ部4aの位置は、AWGチップ1の上面上のXtと一致していない。そこで、このセンサ部4aの温度をTcとする。
なお、このAWGモジュールにおいては、Tcが制御温度付近に維持されるように、温度制御回路5によってペルチェ素子2が制御されている。
よって、AWGチップ1の周囲の環境温度TaがTcよりも高ければ、ペルチェ素子2はAWGチップ1との対向面において吸熱し、冷却作用を行っている。したがって、ペルチェ素子2に近いT(Xt)の温度はTcの温度よりも低くなる。逆にTaがTcよりも低ければ、ペルチェ素子2の発熱による加熱作用により、T(Xt)の温度はTcの温度よりも高くなる。
【0018】
なお、後述する式(7)が成立するためには、ペルチェ素子2の発熱または吸熱が、アレイ導波路12を介してサーミスタ温度計4のセンサ部4aに作用する必要がある。すなわち、アレイ導波路12がペルチェ素子2によって加熱、または冷却された後、センサ部4aが加熱、冷却されるようになっている必要がある。
ペルチェ素子2の発熱、吸熱がセンサ部4aに直接伝わると、ペルチェ素子2とサーミスタ温度計4との熱のやりとりのみで温度制御が行われるため、アレイ導波路12の温度T(Xa)を正確に制御することができない。
【0019】
そのためには、図4(b)に示したように、サーミスタ温度計4がAWGチップ1の表面に実質的に接触しており、かつAWGチップ1の周囲の空気と接触していることが必要とされる。なお、実質的に接触しているとは空気を介在させないこととし、図4(b)に示したように接着剤層4bなどを介して接触していてもよい。
また、本実施例において、サーミスタ温度計4はAWGチップ1の上面に接着されているが、AWGチップ1の裏面に配置することもできる。この場合は均熱板3とAWGチップ1との間にサーミスタ温度計4を配置することになるため、例えばAWGチップ1の裏面にAWGチップ1周囲の空気が流通する溝などを形成し、この溝にサーミスタ温度計4を配置し、その上に均熱板3を被せることにより、AWGチップ1との接触と、その周囲の空気との接触を確保するなどの工夫が必要となる。
【0020】
2.式(1)の求め方
式(1)は、前記1.で設定した座標系を用い、以下のようにして求めることができる。
AWGモジュールの光学特性にアレイ導波路12の温度が大きく影響することは上述の通りである。したがって、温度制御を行うにおいて、理想的には、アレイ導波路12の温度とサーミスタ温度計4にて制御される温度が一致していることである。すなわち、以下の式(3)を満足する必要がある。
T(Xa)=Tc …(3)
【0021】
ここで、AWGチップ1の上面上のX軸上の位置Xにおける温度は以下の式(4)で近似的に表すことができる。
T(X)=a・X2 +b …(4)
式中、aはAWGチップ1の上面のX軸上の温度分布の状態を示す係数であり、aの値が大きい程、AWGチップ1の中心部と周辺部との温度差が大きいことを意味する。aはTaとTcとの差に近似的に比例し、正の比例係数a’を用いて以下の式(4−1)で表される。
a=a’(Ta−Tc)…(4−1)
また、bはX0の温度である。
a’の測定方法については後述する。
【0022】
したがって、前記式(4)より、T(Xa)は以下の式(5)で表される。
T(Xa)=a・Xa2 +b …(5)
この式(5)を前記式(3)に代入して変形すると、以下の式(6)のようになる。
a・Xa2 +b−Tc=0 …(6)
【0023】
ここで、T(Xt)とTcとの温度差は、TaとTcとの温度差に近似的に比例し、正の比例係数αを用いて以下の式(7)のように表される。
T(Xt)−Tc=−α(Ta−Tc)…(7)
αはAWGチップ1からサーミスタ温度計4のセンサ部4aへの熱の伝わり易さを示す係数である。αの測定方法については後述する。
【0024】
また、T(Xt)は、前記式(4)より、
T(Xt)=a・Xt2 +b …(8)
で表される。
したがって、この式(8)を前記式(7)に代入すると、以下の式(9)のようになる。
a・Xt2 +b−Tc=−α(Ta−Tc)…(9)
【0025】
ついで、前記式(6)から前記式(9)を差し引くと、以下の式(10)のようになる。
a(Xa2 −Xt2)=α(Ta−Tc)…(10)
ここで、この式(10)に式(4−1)を代入すると、以下の式(11)のようになる。
a’(Ta−Tc)(Xa2 −Xt2)=α(Ta−Tc)…(11)
【0026】
温度制御が必要な場合はTa≠Tcであるため、この式(11)から、以下の式(12)を経て式(1)を求めることができる。
(Xa2 −Xt2)=α/a’…(12)
Xt=(Xa2−α/a’)1/2…(1)
ここで、サーミスタ温度計4のセンサ部4aは、X0よりもアレイ導波路12側に配置する必要がある。すなわち、Xtは正の値である。したがって、前記式(1)より、以下の式(2−1)が導かれる。
(Xa2−α/a’)1/2>0…(2−1)
そして、この式(2−1)より、式(2)が導かれる。
Xa >(α/a’)1/2 …(2)
【0027】
したがって、上述のようにこれらの式(1)、(2)を満足するようにアレイ導波路12、ペルチェ素子2、およびサーミスタ温度計4を配置することにより、環境温度変化に対して波長安定性が良好なAWGモジュールを得ることができる。
【0028】
3. 式(1)中の係数α、a’の求め方
3.1 αの求め方
前記式(7)を変形すると、αは以下の式(13)のように表すことができる。
α=−(T(Xt)−Tc)/(Ta−Tc)…(13)
この式の中で、Taは環境温度、Tcは制御温度の設定値を代入する。
T(Xt)は一般に測定することはできないが、以下の方法によって求めることができる。
すなわち、図4(a)からわかるように、サーミスタ温度計4をアレイ導波路12の真上に設置するとXtとXaは一致する。したがって、この条件において、T(Xa)とT(Xt)は等しい。このT(Xa)はAWGモジュールの温度依存性を利用して測定することができる。そこで、この条件下でT(Xa)を測定することにより、T(Xt)を求め、αの値を導くことができる。
【0029】
アレイ導波路12の温度は、例えばポート1bのひとつから合波光を入射し、他方のポート1c、1c…から波長毎の光を出射する光分波器として動作する際に、各ポート1c、1cから出射する光の波長帯域の中心波長を測定することによって求めることができる。中心波長は温度依存性を有するためである。
アレイ導波路12の温度T(Xa)とひとつのポート1cから出射する光の中心波長λとの関係は、温度T0のときの中心波長をλ0とすると、比例係数cを用いて以下の式(14)のように表される。
λ−λ0=c・(T(Xa)−T0)…(14)
なお、以下、中心波長というときは、ひとつの一定のポート1cから出射する光の中心波長をいうものとする。
【0030】
この式(14)を変形すると以下の式(15)
T(Xa)=(λ−λ0)/c+T0…(15)
が求められ、予め温度T0、λ0、およびcを求めておくことにより、中心波長λを測定すれば、アレイ導波路12の温度T(Xa)を測定することができる。
cは、所定の温度に設定した恒温槽内にAWGチップ1のみを設置し、AWGチップ1全体が恒温槽内の温度と等しく、均一になった後、中心波長を測定する操作を温度を変更して繰り返し、温度と中心波長との関係をグラフにプロットした直線から求めることができる。AWGチップ1のみを用いるのは、温度制御を行わない状態での中心波長の変動を測定するためである。
なお、石英系のAWGモジュールの場合、cは一般に0.011nm/℃とされている。
【0031】
3.2 a’の求め方
前記式(4−1)を変形すると、以下の式(4−2)が求められる。
a’=a/(Ta−Tc)…式(4−2)
aは所定のTc、Taの設定条件下で、AWGチップ1の表面の温度分布を測定し、前記式(4)から求めることができる。このaの値と、上述のようにTa、Tcの設定値を代入することにより、a’を求めることができる。
【0032】
【実施例】
以下、実施例を示して本発明のAWGモジュールについて詳細に説明する。
(実施例)
以下のような手順にしたがって、本発明に係るAWGモジュールを製造した。
▲1▼アレイ導波路の温度と中心波長の関係の測定
AWGチップ1のみを恒温槽に設置して光分波器として動作させたときのひとつのポートから出射する光の中心波長を測定することにより、アレイ導波路の温度と中心波長の関係を求めた。
その結果を図5にグラフとして示した。グラフ中には得られた直線を表す式が示されている。この式を変形し、T(Xa)(℃)と中心波長λ(nm)の関係を求めると、以下の式(16)のような結果となった。
T(Xa)=90.909×λ+141031.8 …(16)
【0033】
▲2▼α、a’の測定
以下のような条件でα、a’測定用のAWGモジュールを製造した。
AWGチップ:サイズ40mm×50mm×1mm(厚み)
ペルチェ素子:サイズ20mm×20mm×4mm(厚み)
均熱板:サイズ40mm×50mm×1mm(厚み)のアルミ板
ケース:サイズ100mm×60mm×12mmのアルミケース
Xt、Xa:共に5mm
Tc:43.0℃
Ta:23.0℃
【0034】
このAWGモジュールの中心波長λの測定値は1551.825nmであった。
この値を前記式(16)に代入した結果、T(Xa)は43.2℃であり、この条件においては、T(Xt)とT(Xa)は等しいため、T(Xt)も43.2℃であった。
この値と、Tc、Taの設定値を前記式(13)に代入したところ、αは0.01であった。
【0035】
このAWGモジュールのAWGチップ1の表面のX軸上の温度分布を測定し、結果を図6にグラフで示した。得られた曲線について、前記式(4)を求めた結果、aは−0.007(℃/mm2)であった。
この値とTaとTcの設定値を前記式(4−2)に代入した結果、a’は0.00035(1/mm2)であった。
【0036】
▲3▼Xa、Xtの算出およびAWGモジュールの作製
前記▲2▼で求めたα、およびa’の値を前記式(2)に代入すると、
Xa≧5.3mm
という条件が設定された。
そこで、Xaを5.3mmに設定し、前記式(1)に代入すると、Xtは0であった。
そこで、Xa:5.3mm、Xt:0に設定した以外は、前記▲2▼で製造したAWGモジュールと同様の条件でAWGモジュールを製造した。
このAWGモジュールについて、環境温度を0〜70℃に変化させながら中心波長を測定し、温度特性を評価した結果を図7にグラフで示した。環境温度変化に伴う中心波長の変動は1pm程度であり、良好は波長安定性を示した。
【0037】
(比較例)
Xaを8mmとした以外は実施例と同様にしてAWGモジュールを作製し、温度特性を測定し、結果を図8に示した。中心波長の変動は10pm程度と大きかった。
したがって前記式(1)、(2)を満足するように構成することにより、環境温度変化に対する波長安定性を備えたAWGモジュールを製造できることが明らかとなった。
【0038】
【発明の効果】
以上説明した様に、本発明においては、前記式(1)、(2)を満足するように、アレイ導波路、加熱および/または冷却手段、および温度測定手段のセンサ部を配置して光学特性を調整することにより、環境温度の変動に対して波長特性が安定なAWGモジュールを提供することができる。したがって、AWGモジュールの製造途中に光学特性をモニターしながらこれらの構成の配置位置を変更するなどの操作を省略、または簡略化することができる。
また、アレイ導波路、加熱および/または冷却手段、および温度測定手段のセンサ部について所望の特性が得られる配置位置が予め求められているため、製造操作が簡単で、製品の光学特性のばらつきを低減することができる。また、製造したAWGモジュールが所望の光学特性を備えていないことが判明した場合においても、前記式(1)、(2)を満足するように各構成の配置を調整することにより、光学特性を調整し、波長安定性を向上させることができる。
【図面の簡単な説明】
【図1】 AWGモジュールの一例を示した平面図である。
【図2】 図2(a)はX軸とアレイ導波路に係る座標を示した平面図、図2(b)はペルチェ素子の座標を示した平面図である。
【図3】 図3(a)はアレイ導波路とペルチェ素子を積層した状態での座標を示した平面図、図3(b)はサーミスタ温度計の座標を示した平面図である。
【図4】 図4(a)はサーミスタ温度計の座標を示した断面図、図4(b)は図4(a)の要部を示した拡大図である。
【図5】 実施例のアレイ導波路の温度と中心波長の関係の測定結果を示したグラフである。
【図6】 実施例において、α、a’を求めるために、AWGモジュールのAWGチップ1の表面のX軸上の温度分布を測定した結果を示したグラフである。
【図7】 実施例のAWGモジュールについて、環境温度変化を中心波長との関係を示したグラフである。
【図8】 比較例のAWGモジュールについて、環境温度変化を中心波長との関係を示したグラフである。
【符号の説明】
1…AWGチップ、2…ペルチェ素子(加熱および/または冷却手段)、
4…サーミスタ温度計(温度測定手段)、
5…温度制御回路(温度制御手段)。

Claims (5)

  1. 複数の導波路が並列されてなるアレイ導波路が設けられたAWGチップと、該AWGチップの加熱および/または冷却手段とが積層され、前記加熱および/または冷却手段の反対側から前記AWGチップの表面の温度を測定する温度測定手段と、その測定温度を所定の制御温度に制御する温度制御手段が設けられたAWGモジュールにおいて、
    AWGチップより面積が小さい加熱および/または冷却手段が、アレイ導波路を構成する各導波路の中心を結んだX軸によって対称に分割されるように配置され、温度測定手段のセンサ部が該X軸上に配置され、
    該X軸上の加熱および/または冷却手段の中心X が前記AWGチップの中心にあり、かつ、該X と前記センサ部との距離Xtと、前記X軸に沿って並列する前記複数の導波路の中心の内、前記X軸並列方向一側端の中心と前記X軸並列方向他側端の中心との間の中心点と前記Xとの距離Xaとが、以下の式(1)および式(2)を満足していることを特徴とするAWGモジュール。
    Xt=(Xa−α/a’)1/2 …(1)
    Xa >(α/a’)1/2 …(2)
    (式中、αはAWGチップから温度測定手段への熱の伝わり易さを示す以下の式(13)により表される正の係数であり、a’はAWGモジュールの制御温度と環境温度との温度差と以下の式(4)によりXの2次式として表されるAWGチップの表面のX軸上の温度分布の係数aとの関係から以下の式(4−2)により求められる正の係数である。)
    T(X)=a・X+b …(4)
    a’=a/(Ta−Tc) …(4−2)
    α=−(T(Xt)−Tc)/(Ta−Tc) …(13)
    (式中、Taは環境温度、Tcはセンサ部の温度、T(Xt)はセンサ部のAWGチップ上の位置における温度である。)
  2. 板状のAWGチップの対向面に均熱板を介し板状の加熱および/または冷却手段が積層されてなることを特徴とする請求項1に記載のAWGモジュール。
  3. 複数の導波路が並列されてなるアレイ導波路が設けられたAWGチップと、該AWGチップの加熱および/または冷却手段とが積層され、前記加熱および/または冷却手段の反対側から前記AWGチップの表面の温度を測定する温度測定手段と、その測定温度を所定の制御温度に制御する温度制御手段が設けられたAWGモジュールの光学特性の調整方法であって、
    AWGチップより面積が小さい加熱および/または冷却手段を、アレイ導波路を構成する各導波路の中心を結んだX軸によって対称に分割されるように配置し、温度測定手段のセンサ部を該X軸上に配置するにおいて、
    該X軸上の加熱および/または冷却手段の中心X が前記AWGチップの中心にあり、かつ、該X と前記センサ部との距離Xtと、前記X軸に沿って並列する前記複数の導波路の中心の内、前記X軸並列方向一側端の中心と前記X軸並列方向他側端の中心との間の中心点と前記Xとの距離Xaとが、以下の式(1)および式(2)を満足するように配置することを特徴とするAWGモジュールの光学特性の調整方法。
    Xt=(Xa−α/a’)1/2 …(1)
    Xa >(α/a’)1/2 …(2)
    (式中、αはAWGチップから温度測定手段への熱の伝わり易さを示す以下の式(13)により表される正の係数であり、a’はAWGモジュールの制御温度と環境温度との温度差と以下の式(4)によりXの2次式として表されるAWGチップの表面のX軸上の温度分布の係数aとの関係から以下の式(4−2)により求められる正の係数である。)
    T(X)=a・X+b …(4)
    a’=a/(Ta−Tc) …(4−2)
    α=−(T(Xt)−Tc)/(Ta−Tc) …(13)
    (式中、Taは環境温度、Tcはセンサ部の温度、T(Xt)はセンサ部のAWGチップ上の位置における温度である。)
  4. 板状のAWGチップの対向面に均熱板を介し板状の加熱および/または冷却手段を積層した構造のAWGモジュールとすることを特徴とする請求項3に記載のAWGモジュールの光学特性の調整方法。
  5. 前記アレイ導波路の両端側にスラブ導波路と入出射側導波路を具備するAWGチップを用い、このAWGチップを恒温槽に設置し分光器として動作させ、前記アレイ導波路のひとつのポートから出射する光の中心波長を測定することにより、前記アレイ導波路の温度と中心波長の関係を測定し、この測定結果からT(Xa)(℃)と中心波長λ(nm)の関係式を求めるとともに、XtXaに一致させるとともに、Tc及びTaの値を仮の設定値として測定用のAWGモジュールを製造し、このAWGモジュールの中心波長λの測定値を前記T(Xa)(℃)と中心波長λ(nm)の関係式に代入してT(Xa)(℃)を求め、この値に基づくT(Xt)を前記式(13)に代入してαを求めるとともに、
    前記測定用AWGモジュールのAWGチップの表面のX軸上の温度分布を測定し、得られた温度分布から前記式(4)の係数aを求め、この係数aと前記仮の設定値Tc、Taから、前記式(4−2)によりa’を求め、これらで求めたα、a’の値を前記式(2)に代入してXaの条件を求め、この条件範囲内のXaの値を前記式(1)に代入してXtを求め、これらで求めた距離Xaと距離Xtを採用して前記式(1)および式(2)を満足するようにすることを特徴とする請求項3または4に記載のAWGモジュールの光学特性の調整方法。
JP2000234607A 2000-08-02 2000-08-02 Awgモジュールおよびその光学特性の調整方法 Expired - Fee Related JP4667565B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000234607A JP4667565B2 (ja) 2000-08-02 2000-08-02 Awgモジュールおよびその光学特性の調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000234607A JP4667565B2 (ja) 2000-08-02 2000-08-02 Awgモジュールおよびその光学特性の調整方法

Publications (2)

Publication Number Publication Date
JP2002048931A JP2002048931A (ja) 2002-02-15
JP4667565B2 true JP4667565B2 (ja) 2011-04-13

Family

ID=18726952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000234607A Expired - Fee Related JP4667565B2 (ja) 2000-08-02 2000-08-02 Awgモジュールおよびその光学特性の調整方法

Country Status (1)

Country Link
JP (1) JP4667565B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281826A (ja) * 1998-03-31 1999-10-15 Furukawa Electric Co Ltd:The 光モジュール
JP2000075152A (ja) * 1998-08-31 2000-03-14 Furukawa Electric Co Ltd:The 光モジュール
JP2000131539A (ja) * 1998-10-22 2000-05-12 Hitachi Cable Ltd 導波路型光モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281826A (ja) * 1998-03-31 1999-10-15 Furukawa Electric Co Ltd:The 光モジュール
JP2000075152A (ja) * 1998-08-31 2000-03-14 Furukawa Electric Co Ltd:The 光モジュール
JP2000131539A (ja) * 1998-10-22 2000-05-12 Hitachi Cable Ltd 導波路型光モジュール

Also Published As

Publication number Publication date
JP2002048931A (ja) 2002-02-15

Similar Documents

Publication Publication Date Title
KR100890882B1 (ko) 가변 광 제어 디바이스 및 가변 광 제어 방법
US6522809B1 (en) Waveguide grating device and method of controlling Bragg wavelength of waveguide grating
US7585117B2 (en) Optical module
JP4143257B2 (ja) アレイ導波路格子およびアレイ導波路格子モジュール
JP2000206348A (ja) 光導波路回路の光透過波長の補償方法
JP6099614B2 (ja) メタル温度センサ内蔵型の波長可変フィルタおよび外部共振器型の波長可変レーザモジュール
JP4667927B2 (ja) アレイ導波路回折格子型光合分波器
US7088887B2 (en) Isothermal thin film heater
JP4667565B2 (ja) Awgモジュールおよびその光学特性の調整方法
CN214174673U (zh) 一种能实现工温补偿的无热阵列波导光栅
JP2000249853A (ja) 光モジュール
US20030123800A1 (en) Variable dispersion compensator and substrate for the same
JP4454817B2 (ja) 導波路型光モジュール
JP3857930B2 (ja) 光導波路モジュール
JP3869284B2 (ja) 光導波路モジュール
JP4100923B2 (ja) 光モジュール
JP4467773B2 (ja) 光導波回路
JP3331180B2 (ja) 温度無依存平面型光デバイス
JP2006003651A (ja) 光モジュール及び光モジュールの製造方法
JP4084050B2 (ja) 光モジュール
JPH01152420A (ja) 導波路型光合分波器
JP2003050326A (ja) 光導波路部品
Johnson et al. Chu et a
JP3860052B2 (ja) 光フィルタ
JP4219672B2 (ja) 光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees