KR100890882B1 - 가변 광 제어 디바이스 및 가변 광 제어 방법 - Google Patents

가변 광 제어 디바이스 및 가변 광 제어 방법 Download PDF

Info

Publication number
KR100890882B1
KR100890882B1 KR1020070027526A KR20070027526A KR100890882B1 KR 100890882 B1 KR100890882 B1 KR 100890882B1 KR 1020070027526 A KR1020070027526 A KR 1020070027526A KR 20070027526 A KR20070027526 A KR 20070027526A KR 100890882 B1 KR100890882 B1 KR 100890882B1
Authority
KR
South Korea
Prior art keywords
heater
substrate
wavelength
dummy
heating
Prior art date
Application number
KR1020070027526A
Other languages
English (en)
Other versions
KR20070098535A (ko
Inventor
히로유키 야마자키
Original Assignee
닛본 덴끼 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JPJP-P-2006-00094206 priority Critical
Priority to JP2006094206A priority patent/JP2007271704A/ja
Application filed by 닛본 덴끼 가부시끼가이샤 filed Critical 닛본 덴끼 가부시끼가이샤
Publication of KR20070098535A publication Critical patent/KR20070098535A/ko
Application granted granted Critical
Publication of KR100890882B1 publication Critical patent/KR100890882B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator

Abstract

기판, 기판 위에 배치되는 광 도파로, 광 도파로의 온도를 변화시키기 위한 제 1 히터 및 제 2 히터를 구비하는 가변 광 제어 디바이스가 제작된다. 그리고 제 1 및 제 2 히터에 공급된 전력의 총 양 또는 제 1 및 제 2 히터 모두로부터 발산된 열의 총 양은 실질적으로 일정하게 유지된다. 이후, 기판은 온도 변화로부터 보호되고, 그 때문에, 안정되고 빠른 파장 동조 동작이 실현된다.
광 도파로, 파장 동조가능 필터, 단열 그루브, 가변 광 제어 디바이스

Description

가변 광 제어 디바이스 및 가변 광 제어 방법{VARIABLE LIGHT CONTROLLING DEVICE AND VARIABLE LIGHT CONTROLLING METHOD}
도 1 은 본 발명의 제 1 실시예에 따른 파장 동조가능 필터의 평면도.
도 2 는 본 발명의 예시적인 실시형태와 부합하는 링 공진기의 확장도.
도 3 은 도 1 에서 도시된 A 부분의 확장도.
도 4 는 도 3 에서 도시된 B-B 라인을 따라 택해진 A 부분의 단면도.
도 5 는 코어가 어떻게 본 발명의 예시적인 실시형태와 부합하여 형성되는지를 도시하는 평면도.
도 6 은 히터가 어떻게 본 발명의 예시적인 실시형태와 부합하여 형성되는지를 도시하는 평면도.
도 7 은 단열 그루브가 어떻게 본 발명의 예시적인 실시형태와 부합하여 형성되는지를 도시하는 평면도.
도 8 은 히터가 어떻게 본 발명의 예시적인 실시형태와 부합하여 형성되는지를 도시하는 확장도.
도 9 는 본 발명의 예시적인 실시형태와 부합하여, 3 개 타입의 프리 스펙트럼 영역 (FSRs) 을 가지는 공진 스펙트럼에 의해 야기되는 공진 동작을 설명하는 그래프.
도 10 은 본 발명의 예시적인 실시형태와 부합하여, 복수의 링 공진기에 의한 파장 동조의 원리를 설명하는 그래프. 도 10 에 도시된 바와 같이, (1) 은 작은 직경 링 공진기의 스펙트럼을 나타내고, (2) 는 큰 직경 링 공진기의 스펙트럼을 나타내며, (3) 은 (1) 에서 도시된 작은 직경 공진기와 (2) 에서 도시된 큰 직경 링 공진기의 스펙트럼들의 합성 스펙트럼을 나타낸다.
도 11 은 본 발명의 제 1 실시예의 변형된 파장 동조 필터의 평면도.
도 12 는 본 발명의 제 2 실시예에 따른 파장 가변 광원의 평면도.
도 13 은 본 발명의 제 2 실시예에 따른 파장 가변 광원의 투시도.
도 14 는 본 발명의 제 3 실시예에 따른 파장 가변 광원의 평면도.
도 15 는 본 발명의 제 3 실시예에 따른 파장 가변 광원의 투시도.
도 16 은 본 발명의 제 4 실시예에 따른 파장 가변 광원의 평면도.
도 17 은 본 발명의 제 5 실시예에 따른 파장 가변 광원의 평면도.
도 18 은 본 발명의 제 6 실시예에 따른 제어 회로의 블록도.
도 19 는 본 발명의 제 7 실시예에 따른 가변 분산 보상기의 평면도.
* 도면의 주요 부분에 대한 부호의 설명
10; 파장 동조가능 필터 11, 34, 41, 51, 61; 기판
12-1, 12-2, 12-3; 링 공진기
13-1, 13-2, 13-3, 82-1, 82-2, 82-3; 링 도파로
14-1, 14-2, 14-3, 14-4; 입력/출력 도파로
15-1, 15-2, 55-1, 55-2, 83-1, 83-2, 83-3; 히터
16-1, 16-2. 56, 66, 84-1, 84-2, 84-3; 모조 히터
17-1, 17-2; 히터 패드 18-1, 18-2; 모조 히터 패드
19, 85-1, 85-2, 85-3; 단열 그루브
22; 클래드 23; 모조 클래드
25-1, 25-2; 방향 커플러 30; 광원
31, 42; 반도체 광 증폭기 32, 43; 고반사 코팅
33, 44; 저반사 코팅 35, 45; 펠티에 소자
36, 46; 서미스터 40, 50, 60; 파장 동조가능 광원
70; 제어회로 71-1, 71-2; 구동 회로
72-1, 72-2; 디지털/아날로그 컨버터
73-1, 73-2; 아날로그/디지털 컨버터
74; 디지털 신호 프로세서 80-1, 80-2, 80-3; 공진기
81; 선형 도파로
1. 발명의 분야
본 발명에 부합하는 장치 및 방법은 광 섬유 통신 디바이스에 관한 것으로, 더 상세하게는, 열광학 효과를 기초로 하여 다양하게 광 특성을 제어하기 위한 가변 광 제어 방법 및 가변 광 제어 디바이스에 관한 것이다.
2. 관련 기술의 설명
파장 분할 멀티플렉스 (WDM) 광 통신에서는, 분기/결합 멀티플렉스 (ADM) 및 다른 기능이 점점 더 향상됨에 따라, 광 신호의 파장을 동조하기 위한 기술에 대한 수요가 중요해지고 있다. 현재, 이 기술을 실현하기 위해, 파장 가변 디바이스가 채택된다. 그러한 디바이스 중 일 예로서, 특정 파장을 가진 광 신호를 송신하거나 차단하기 위한 파장 동조가능 필터가 제공된다. 관련 기술에서, 일본 특허 공개 출원 번호 제 1988-281104 호 및 일본 특허 공개 출원 번호 제 1987-100706 호에서 보여진 바와 같이, 열광학 효과 타입 필터가 제안된다. 이러한 열광학 효과 타입 필터는 실리카 도파로 처리 기술을 이용함으로써, 기판 위에 형성되는 공진기를 포함한다. 그리고, PCT 출원 WO 2005/096462 에서 나타난 바와 같이, 특정 파장을 가진 광 신호를 출력하기 위한 파장 동조가능 레이저인 다른 관련 기술 디바이스가 있다. PCT 출원 WO 2005/096462 은, 외부 공진기가 열광학 효과 필터 타입 공진기 및 반도체 광 증폭기 (SOA) 에 의해 구성되는 디바이스를 보여준다.
관련 기술 파장 가변 디바이스의 경우에, 상기한 바와 같이, 공진기 뿐만 아니라 복수의 소자는 실리카 도파로 프로세스에서 함께 제조될 수 있다. 따라서, 그러한 관련 기술 디바이스의 특성은 마스크 및 채택된 프로세싱의 정확도에 의해 결정된다. 정확한 마스크 및 정확한 프로세싱을 채택한 광 도파로 프로세스에 의해 제조되는 디바이스의 특성은 안정화되고, 원하는 특성이 용이하게 획득된다. 그러한 디바이스는 뛰어난 특성을 가지고 있기 때문에, 그러한 디바이스 는 미래에 점점 더 개발될 것으로 예상된다.
상기 관련 기술 디바이스 중 임의의 것에서, 파장 동조는 도파로의 온도를 변화시키기 위해, 열광학 효과를 갖는 도파로를 히터로 가열함으로써 실현된다. 그러나, 도파로를 가열할 때, 이하의 문제가 발생한다. 예를 들어, 히터가 도파로를 가열하기 위해 켜질 때, 기판의 온도 또한 동시에 변한다. 일반적으로, 기판의 온도는 다른 소자의 온도를 안정화시키기 위한 서미스터 (Thermistor) 및 펠티에 (Peltier) 소자를 이용함으로써 일정하게 제어된다. 따라서, 기판의 온도가, 도파로의 온도를 변화시키기 위해 이용되는 히터 때문에 변할 때, 서미스터는 온도 변화를 탐지하고 펠티에 소자는 기판의 온도를 안정화시키도록 구동된다. 서미스터 및 펠티에 소자에 의한 이러한 일련의 동작은 일반적으로 약 10 초가 걸린다. 그리고, 기판의 온도가 안정화될 때까지 파장은 안정화되지 않는다. 따라서, 전술한 디바이스는 파장을 변화시키고 안정화시키는데 추가적인 시간을 요구한다. 따라서, 상기 검토된 관련 기술 디바이스 모두는 ADM 기능 등을 위해 필요한, 0.1 초에서 1 초까지의 시간 프레임 내의 빠른 파장 동조 동작 (파장 동조에 대한 빠른 응답) 을 수행할 수 없다는 문제가 있다.
본 발명의 실시형태는 상기한 불이익 및 설명되지 않은 다른 불이익을 극복한다. 또한, 본 발명은 상기 설명된 불이익을 극복하도록 요구되지 않고, 본 발명의 실시형태는 상기 설명된 어떤 문제도 극복할 수 없을 수도 있다.
본 발명의 양태는 빠른 파장 동조 동작을 실현하기 위한, 가변 광 제어 디바 이스 및 가변 광 제어 방법 제공을 지표로 한다. 본 발명의 양태는 파장이 열광학 효과를 기초로 하여 변할 때, 광 특성이 안정화되는 동안의 시간을 단축함으로써 실현된다.
본 발명과 부합하는 가변 광 제어 디바이스는 기판, 기판 위에 배치되는 광 도파로, 광 도파로에 근접하여 배치되는 제 1 히터, 및 제 1 히터로부터 이격하여 배치되는 제 2 히터를 포함한다. 그리고, 제 1 및 제 2 히터에 공급된 전력의 총 양은 실질적으로 일정하게 유지된다.
본 발명의 다른 양태에 따라서, 가변 광 제어 디바이스는 기판, 기판 위에 배치되는 광 도파로, 광 도파로에 근접하여 배치되는 제 1 히터, 및 제 1 히터로부터 이격하여 배치되는 제 2 히터를 포함한다. 그리고, 제 1 및 제 2 히터로부터 발산된 열의 총 양은 실질적으로 일정하게 유지된다.
기판 및 기판 위에 배치되는 광 도파로 제공되는 가변 광 제어 디바이스를 위해 이용되는, 본 발명의 가변 광 제어 방법은 광 도파로를 가열하기 위한 제 1 가열 단계 및 기판을 가열하기 위한 제 2 가열 단계를 포함한다. 그리고, 제 1 및 제 2 가열 단계에 공급되는 전력의 총 양은 실질적으로 일정하게 유지된다. 본 발명의 가변 광 제어 디바이스 및 가변 광 제어 방법 각각은 열광학 효과를 가지는 광 도파로를 가열하기 위한 제 1 히터로부터 이격하여 기판을 가열하기 위한 제 2 히터를 포함한다. 그리고, 제 1 히터에서 전력 또는 열의 증가/감소는 제 2 히터에 의해 보상되고, 제 1 및 제 2 히터에/로부터 공급되는/발산되는 전력/열의 총 양은 실질적으로 일정하게 유지된다. 결과적으로, 제 1 히터에 공급되는 전력이 동조 동작시에 현저히 변할 때조차도, 전체 기판의 온도는 현저히 변하지 않는다. 따라서, 본 발명의 양태는 파장이 열광학 효과를 기초로 하여 변할 때 광 특성이 안정화되는 동안의 시간을 단축하고 빠른 파장 동조 동작을 실현하는 데 효율적이다.
본 발명의 양태는 첨부된 도면을 참조하여, 예시적인 실시형태를 상세하게 설명함으로써 더 명백해질 것이다.
본 발명의 예시적인 실시형태에 따르면, 가변 광 제어 디바이스는 기판, 기판 위에 배치되는 열광학 효과를 가진 광 도파로, 광 도파로에 근접하여 배치되는 제 1 히터, 및 제 1 히터로부터 이격하여 배치되는 제 2 히터를 포함한다. 본 예시적인 실시형태에 따르면, 제 1 및 제 2 히터에 공급되는 전력의 총 양은 실질적으로 일정하게 유지된다.
본 발명의 다른 예시적인 실시형태에 따르면, 가변 광 제어 디바이스는 기판, 기판 위에 배치되는 열광학 효과를 가진 광 도파로, 광 도파로에 근접하여 배치되는 제 1 히터, 및 제 1 히터로부터 이격하여 배치되는 제 2 히터를 포함한다. 본 예시적인 실시형태에 따르면, 제 1 및 제 2 히터로부터 발산되는 열의 총 양은 실질적으로 일정하게 유지된다. 결과적으로, 제 1 히터에 공급되는 전력이 동조 동작시에 현저히 변하는 때조차도, 전체 기판의 온도는 현저히 변하지 않는다.
따라서, 본 발명의 예시적인 실시형태는 파장이 열광학 효과를 기초로 하여 변할 때 광 특성이 안정화되는 동안의 시간을 단축하고 빠른 파장 동조 동작을 실현하는 데 효과적이다.
본 발명의 다양한 예시적인 실시형태는 이하 상세하게 첨부된 도면을 참조하여 설명된다. 예시적인 실시형태가 이하 언급된다 할지라도, 본 발명의 범위는 이러한 예시적인 실시형태에 한정되는 것이 아니라 오직 부가된 청구의 범위에 의해서만 정의된다.
(제 1 실시예 )
본 발명의 제 1 실시예에 따른 파장 동조가능 필터의 구조는 다음과 같이 설명된다. 도 1 은 본 발명의 제 1 실시예에 따른 파장 동조가능 필터의 평면도이다. 이 파장 동조가능 필터 (10) 는 기판 (11) 위에 링 공진기 (12-1, 12-2 및 12-3) 를 포함한다. 링 공진기 (12-1, 12-2 및 12-3) 는 링 도파로 (13-1, 13-2 및 13-3) 를 각각 포함한다. 또한, 파장 동조가능 필터 (10) 는 각각의 링 도파로를 사이에 배치하도록 배치되는 입력/출력 도파로 (14-1, 14-2 및 14-3) 를 또한 포함한다. 광 커플러는 링 도파로 중 하나 및 입력/출력 도파로 중 하나가 서로 가장 근접한 각각의 부분에 형성되고, 이러한 광 커플러는 광적으로 서로 연결된다. 도 2 는 도 1 에서 도시된 링 공진기 (12-1) 의 확장도를 도시한다. 이 실시예에 부합하여, 각각의 광 커플러는 방향 커플러 (25-1 및 25-2) 로 구성된다. 그러한 방향 커플러 대신에, 각각의 광 커플러는 멀티-모드 간섭계 (MMI), 마하-젠더 (Mach-Zehnder) 간섭계 등으로 구성될 수도 있다.
링 도파로 (13-1, 13-2 및 13-3) 는 상이한 프리 스펙트럼 영역 (FSR) 에 설 정되고 각각 상이한 링 길이 (즉, 외주 길이) 를 가진다. 링 도파로 사이에서 FSR 과 링 길이 사이의 관계는 다음 식으로 표현된다.
FSR = c/(n x L)...(1)
여기에서, c 는 광 속도이고, n 은 등가 굴절률이며, L 은 링 길이 (외주 길이) 이다.
이 실시예에 부합하여, 링 도파로 (13-1) 는 원하는 격자 파장, 예를 들어, 대상 파장 멀티플렉스 광 송신 시스템에서 ITU-T 격자 파장에 따라서 설계된다. 파장 동조 동작의 대략적 조정을 위해 링 도파로 (13-2) 가 제공된다. 그리고, 파장 동조 동작의 미세 조정을 위해 링 도파로 (13-3) 가 제공된다. 예를 들어, 링 도파로 (13-1) 의 링 길이 L1 은 4,000 ㎛ (마이크로미터) 이고, 링 도파로 (13-2) 의 링 길이 L2 는 4,400 ㎛ 이며, 링 도파로 (13-3) 의 링 길이 L3 는 4,040 ㎛ 이다. 그런 식으로 대상 링 길이를 변경함으로써, 각각 상이한 FSR 을 가진 링 공진기가 제공된다. 링 공진기의 배열은 원하는 순서로 바뀔 수 있다. 도 1 에서는 3 개의 공진기가 제공된다 할지라도, 조정 정확도를 개선하기 위해 4 이상의 공진기가 제공될 수도 있다. 또한, 파장 동조가능 필터는 조정을 위한 공진기의 수를 줄임으로써 오직 2 개의 공진기에 의해 실현될 수 있다. 또한, 다른 예에서, 파장 동조가능 필터는 오직 하나의 공진기에 의해 실현될 수도 있다. 다시 말하면, 파장 동조가능 필터는 임의의 수의 공진기에 의해 본 발명에 부합하도록 실현될 수 있다.
링 도파로 (13-2 및 13-3) 의 상부에는 박막의 히터 (15-1 및 15-2) 가 각 각, 제공된다. 그리고 박막의 모조 히터 (16-1 및 16-2) 가 박막의 히터 (15-1 및 15-2) 주위에 각각 제공된다. 링 도파로 (13-3) 의 예를 이하 설명한다. 링 도파로 (13-2) 는 링 도파로 (13-3) 와 구조가 동일하다. 도 3 은 도 1 에서 도시된 링 도파로 (13-3) 의 A 부분의 확장도이다. 링 도파로 (13-3) 의 히터 (15-2) 및 모조 히터 (16-2) 는 사이에 공간을 두고 배치되고 단열 그루브 (19) 가 그 공간에 형성된다. 히터 (15-2) 에는 히터 패드 (17-1 및 17-2) 가 제공되고, 모조 히터 (16-2) 에는 모조 히터 패드 (18-1 및 18-2) 가 제공된다. 히터 및 모조 히터 패드는 히터 및 모조 히터 각각에 전력을 공급하는 데 이용된다. 히터 (15-2) 및 모조 히터 (16-2) 에 공급되는 전력의 총 양은 실질적으로 일정하게 유지된다. 동일한 방식으로, 도 1 에서 링 도파로 (13-2) 에는 또한 히터 (15-1) 및 모조 히터 (16-1) 가 제공된다. 그리고, 단열 그루브 (19) 는 히터 (15-1) 및 모조 히터 (16-1) 사이에 형성된다.
다음으로, 각각의 히터와 각각의 모조 히터 사이의 위치 관계를 첨부된 도면을 참조하여 상세하게 설명한다. 도 4 는 도 3 에 도시된 라인 B-B 에 따른 단면도를 도시한다. 기판 (11) 위에는, 클래드 (22) 및 모조 클래드 (23) 가 형성된다. 그리고, 단열 그루브 (19) 가 클래드 (22) 와 모조 클래드 (23) 사이에 형성된다. 클래드 (22) 안에는, 링 도파로 (13-3) 및 입력/출력 도파로 (14-3 및 14-4) 의 코어가 형성된다. 그리고, 클래드 (22) 의 상부에는, 히터 (15-2) 가 형성된다. 도 4 에 도시된 바와 같이, 클래드 (22) 는 기판 (11) 에 대하여 소위 메사-타입 클래드로 칭하는, 스트라이프 같이 형성된다. 반면에, 모조 클래드 (23) 의 상부에, 모조 히터 (16-2) 가 형성되고, 모조 클래드 (23) 의 내부에 어떠한 도파로 코어도 형성되지 않는다. 상기 설명한 바와 같이, 히터 (15-2) 는 도파로 코어를 효율적으로 가열하도록 배치된다. 모조 히터 (16-2) 는 도파로 코어를 가열하지 않도록 도파로 코어에 이격하여 배치된다. 단열 그루브 (19) 의 폭은 예를 들어, 약 100 ㎛ (마이크로미터) 이다. 단열 그루브 (19) 의 폭이 수 ㎛ 이상일 때에도, 단열 그루브 (19) 는 효율적이다. 단열 그루브 (19) 의 깊이는 기판 (11) 의 상부면에 도달할 수도 있다. 예를 들어, 클래드 및 모조 클래드의 높이는 약 10 ㎛ 이고 클래드 및 모조 클래드의 폭은 약 10 ㎛ 이다. 히터 및 모조 히터의 폭은 대충 수 ㎛ 이다. 다른 히터 및 모조 히터는 유사한 방식으로 구조된다.
도 3 에서 도시된 바와 같이, 모조 히터 (16-2) 는 히터 (15-2) 외부에 배치된다. 이 구조는 히터 (15-2) 로 하여금 링 도파로 (13-3) 의 긴 외주의 커버링을 가능하게 한다. 따라서, 히터 (15-2) 의 전력 소모가 감소된다. 그러나, 모조 히터는 또한 히터 (15-2) 내부에 배치될 수도 있다. 도 3 에 도시된 바와 같이, 모조 히터 (16-2) 는 히터 (15-2) 에 근접하고 평행하게 배치된다. 그러나, 본 발명에 부합하는 모조 히터 (16-2) 는 그런 식으로 히터 (15-2) 에 근접하게 배치될 필요가 없다. 모조 히터 (16-2) 및 모조 히터 (15-2) 의 형태는 서로 유사하다. 그러나, 모조 히터 (16-2) 및 모조 히터 (15-2) 의 형태는 서로 상이할 수도 있다. 모조 히터 (16-2) 및 모조 히터 (15-2) 가 도 3 에서 도시된 바와 같이, 서로 근접하게 배치된다면, 그러한 배치는 히터 (16-2 및 15-2) 로부터 기판 (11) 에 적용되는 열의 차이를 제거하는 데 효율적이다. 결과적으로, 히터 (15-2 및 16-2) 로부터 기판 (11) 에 적용되는 열의 분배는 히터 (15-2) 및 모조 히터 (16-2) 에 각각 얼마나 많은 전력이 공급되는지에 거의 무관할 정도로 이루어질 수 있다. 따라서, 기판 (11) 의 온도 분배는 실질적으로 일정하게 유지된다. 그리고, 그에 따라 열적 설계는 더 용이하게 이루어질 수 있다. 모조 히터 (16-2) 및 히터 (15-2) 가 기판 (11) 에 대칭적으로 배치된다면, 기판 (11) 에 적용되는 열의 대칭성은 유지될 수 있다. 이것은 기판이 (11) 이 열적 차이 동작의 영향으로부터 효율적으로 보호될 수 있게 한다. 또한, 모조 히터 (16-2) 및 히터 (15-2) 의 형태가 서로 유사하다면, 기판 (11) 상에 발생할 수도 있는 열 차이는 감소할 수 있다. 따라서, 히터 (15-2) 로부터의 열의 변화는 더 쉽게 보상될 수 있고, 도파로 가열 프로세스는 더 안정되게 동작할 수 있다. 도 1 에서 도시된, 다른 히터와 모조 히터 사이의 관계는 히터 (15-2) 와 모조 히터 (16-2) 각각 사이의 관계와 동일하다.
기판 (11) 의 물질로서, 폴리이미드 등과 같은 다양한 타입의 중합체 수지 뿐만 아니라, 실리카 글래스, 붕규산염 글래스 등과 같은 다양한 타입의 글래스, 실리콘이 이용될 수 있다. 바람직한 물질은, 온도 기울기에 용이하게 영향을 미치지 않고, 히터 및 모조 히터로부터의 열을 기판 (11) 상에 효율적으로 분산시킬 수 있고, 높은 열전도율 가지는 그러한 물질이나, 그러한 물질이 반드시 요구되는 것은 아니다. 실리콘은 그러한 바람직한 물질의 하나의 설명적이나 비제한적인 예이다. 상기 설명된 바와 같이, 링 도파로 (13-1, 13-2 및 13-3) 및 입 력/출력 도파로 (14-1, 14-2, 14-3 및 14-4) 는 실리카-기반 광 도파로 프로세스에서 기판 (11) 위에 형성된다. 링 도파로 및 입력/출력 도파로의 코어는, 클래드보다 더 높은 굴절율을 만들기 위해 실리카 글래스에 게르마늄 (Ge) 같은 첨가물을 부가함으로써 제조된다. 히터 및 모조 히터는 백금, 크롬, 금 등으로 된 금속 박막 또는 탄탈 질화물 (TaN) 과 같은 질화물, 산화물 등으로 구성된 합성 박막으로 증발 프로세스에서 형성된다.
다음으로, 파장 동조가능 필터 (10) 의 제조 프로세스가 이하 도 5, 도 6 및 도 7 을 참조하여 간략하게 설명된다. 먼저, 실리카 글래스 막은 화학 증착법 (CVD) 방법 등으로 기판 (11) 위에 배치되고 이후에 하위 클래드 부분에 형성된다. 이후에, Ge 등이 첨가되는 실리카 글래스 막은 예를 들어, CVD 방법으로 하위 클래드 부분 위에 배치되고 광을 전달하는 코어 (13-1, 13-2, 13-3, 14-1, 14-2, 14-3 및 14-4) 는 도 5 에서 도시된 바와 같이 형성된다. 이후, 도 6 에서 도시된 바와 같이, 히터 (15-1, 15-2) 및 모조 히터 (16-1, 16-2) 는 코어 위에 예를 들어, 증발 프로세스로 형성된다. 마지막으로, 클래딩 레이어는 도 7 에서 도시된 바와 같이 단열 그루브 (19) 를 형성하기 위해 에칭 프로세스에서 마스크를 이용하여 제거된다. 이후, 도 8 (링 공진기 (12-2) 의 평면도) 에 도시된 바와 같이, 히터 (15-1) 는 링 도파로 (13-2) 의 외주 거의 전체를 커버링하도록 배치된다. 히터 (15-2) 는 또한 동일한 방식으로 배치된다. 본 발명에 부합하여, 상기 설명된 에칭 프로세스는 예를 들어, 반응 이온 에칭 (RIE) 법에 의한 건식 에칭일 수도 있다.
다음으로, 본 발명의 제 1 실시예에 따른 파장 동조가능 필터의 동작은 이하 도 1 및 도 5 를 참조하여 설명된다. 먼저, 도 1 및 도 5 를 참조하면, 특정 파장을 가진 광 신호는 기판 (11) 의 하부 좌측부로부터 입력/출력 도파로 (14-1) 에 입력 (INPUT) 되고, 즉, 광 신호는 도 1 및 도 5 에 도시된 바와 같이 우측 방향으로 입력된다. 입력된 광 신호는 연속적으로 입력/출력 도파로 (14-1) 에 송신되고, 이후 링 도파로 (13-1) 에, 이후 입력/출력 도파로 (14-2) 에, 이후 링 도파로 (13-2) 에, 이후 입력/출력 도파로 (14-3) 에, 이후 광 커플러를 통하여 링 도파로 (13-3) 에 송신된다. 이후, 광 신호는 링 도파로 (13-3) 로부터 입력/출력 도파로 (14-4) 로 출력되고 즉, 광 신호는 도 1 및 도 5 에 도시된 바와 같이, 좌측 방향으로 출력된다. 출력 광 신호는 입력/출력 도파로 (14-4) 의 곡선 부분을 통하여 기판 (11) 의 상부 우측부에 송신된다. 마지막으로, 광 신호는 기판 (11) 의 우측부로부터 출력된다 (OUTPUT). 링 도파로 (13-1, 13-2 및 13-3) 의 링 길이 (즉, 외주 길이) 는 상기한 바와 같이, 각각 상이하다. 따라서, 링 공진기 (12-1, 12-2 및 12-3) 의 공진 스펙트럼은 FSR (즉, 공진 최대 파장 간격) 에 있어서 서로 상이하다. 도 9 는 3 개 타입의 FSR 을 가진 공진 스펙트럼에 의한 공진 동작을 도시한다. 각각, 상이한 FSR 을 가진 복수의 공진기를 이용함으로써, 공진 최대 파장이 서로 정합하는 파장 (λ1) 이 획득된다. 그리고, 그러한 파장 (λ1) 을 가진 광 신호는 공진기에 의해 서로 강화된다. 따라서, 파장 (λ1) 을 가진 광 신호는 서로 선택적으로 강화되고 이후 그러한 강화된 신호는 출력된다. 따라서, 이 디바이스는 파장 필터로서 기능한다.
다음으로, 파장 동조 동작이 이하 설명된다. 도 1 에서 도시된 바와 같이, 링 도파로 (13-2 또는 13-3) 위에 제공되는 히터 (15-1 및 15-2) 가 켜질 때, 각각의 도파로의 온도가 변한다. 열광학 효과를 가진 실리카 기반 광 도파로에서, 도파로의 온도가 변할 때, 도파로의 굴절율 또한 변한다. 결과적으로, 링 도파로의 광 통과 길이가 변한다. 따라서, 링 공진기의 공진 최대 파장이 변한다. 따라서, 링 도파로의 온도가 상승하면, 도파로의 등가 굴절율 또한 상승하고 공진 스펙트럼은 더 긴 파장 방향으로 시프트된다. 결과적으로, 공진 최대 파장은 또한 더 긴 파장 방향으로 시프트된다. 반면에, 링 도파로의 온도가 떨어지면, 도파로의 등가 굴절율 또한 떨어지고 공진 스펙트럼은 더 짧은 파장 방향으로 시프트된다. 결과적으로, 공진 최대 파장은 더 짧은 파장 방향으로 시프트된다. 이 열광학 효과는, 링 공진기 (12-1) 의 공진 최대 파장에 따라서 다른 링 공진기 (12-2 및 12-3) 각각의 공진 최대 파장을 더 긴 파장 방향으로 또는 더 짧은 파장 방향으로 시프트하는 데 이용될 수 있다. 결과적으로, 각각의 정합하는 공진 최대 파장은 변한다.
도 10 은 복수의 링 공진기에 의한 파장 동조 동작의 원리를 도시한다. 이하에서, 설명을 간단히 하기 위해 오직 2 개의 예시적인 링 공진기의 파장 동조 동작이 설명된다. 도 10 에 도시된 바와 같이, (1) 은 작은 직경 링 공진기의 스렉트럼을 나타낸다. 그리고, 도 10 에 도시된 바와 같이, (2) 는 큰 직경 링 공진기의 스펙트럼을 나타낸다. (2) 에서 도시된 바와 같이, 실선은 파장이 변하기 전의 시간을 나타내고, 점선은 파장이 변한 이후의 시간을 나타낸다. 또 한, 도 10 에 도시된 바와 같이, (3) 은 (1), (2) 에서 도시된 이미 언급된 작은 직경 링 공진기 및 이미 언급된 큰 직경 링 공진기 각각의 스펙트럼의 합성 스펙트럼을 나타낸다. (1), (2) 에 도시된 바와 같이, 주기적으로 나타나는 많은 공진 최대 파장의 간격은 서로 약간 상이하다. 일정한 상태에서, (3) 에서 실선으로 도시된 바와 같이, 파장 λ1 은 공진한다. 큰 직경 링 공진기에 배치되는 히터에 공급되는 전력이 온도를 낮추기 위해 감소된다면, 도파로의 파장의 등가 굴절율은 감소된다. 결과적으로, (2) 에서 링 공진기의 스펙트럼은 점선으로 도시된 바와 같이 더 짧은 파장 방향으로 전체적으로 시프트된다. 결과적으로, (1) 과 (2) 사이에 정합하는 최대 파장은 (3) 에 도시된 바와 같이, λ1 에서 λ2 로 변한다. 따라서, (3) 에서 점선으로 도시된 파장 λ2 는 공진을 시작한다. 그러한 방식으로, 공진 파장은 λ1 에서 λ2 로 변할 수 있다. 파장 동조 동작은 파장 간격이 각각의 링 공진기 사이에서 어긋나기 때문에 실현된다. 그러한 파장 동조 동작은 슬라이드 클리퍼 및 버니어 효과의 원리와 동일한 원리를 상기시킨다. 따라서, 파장 동조는 오직 1 개의 링 공진기가 이용될 때보다는 더 넓은 동적 영역에서 이루어질 수 있다. 또한, 이 실시예와 부합하여, 대략적 조정을 위해 이용되는 링 공진기 (12-2) 에 더하여, 미세 조정을 위해 이용되는 링 공진기 (12-3) 가 제공되어, 높은 정확도로 파장 동조를 가능하게 한다.
도 3 에 도시된 바와 같이, 예시적인 제 1 실시예에 따른 파장 동조 필터 (10) 에는 히터 (15-1) 뿐만 아니라, 모조 히터 (16-1) 가 제공된다. 결과적으로, 히터 (15-1) 에 공급되는 전력이 파장 동조 동작 때문에 증가한다면 (즉, 히터 (15-1) 로부터의 열의 양이 증가할 때), 모조 히터 (16-1) 에 전력 공급이 감소된다 (즉, 열의 양이 감소된다). 반면에, 히터 (15-1) 에 공급되는 전력이 감소한다면 (즉, 히터 (15-1) 로부터의 열의 양이 감소한다면), 모조 히터 (16-1) 에 전력 공급은 증가된다 (즉, 열의 양이 증가된다). 그러한 방식으로, 히터 (15-1) 및 모조 히터 (16-1) 는 아래 식 (2) 에 따라서 차등적으로 동작한다.
Ph + Pd = Constant (2)
여기에서, Ph 는 히터에 공급되는 전력이고, Pd 는 모조 히터에 공급되는 전력이다.
히터 (15-1) 에 공급되는 전력이 현저히 변할 때조차, 기판 (11) 에 공급되는 전력의 총 양 또는 열의 총 양은 실질적으로 일정하게 유지된다. 결과적으로, 기판 (11) 의 온도는 실질적으로 일정하게 유지된다.
다음으로, 히터 (15-2) 및 모조 히터 (16-2) 로부터의 열이 전달되는 프로세스는 도 4 를 참조하여 설명된다. 히터 (15-2) 는 코어 (13-3, 14-3 및 14-4) 가 내부에 형성되는 클래드 (22) 위에 배치된다. 결과적으로, 히터 (15-2) 로부터의 열은 코어 (13-3, 14-3 및 14-4) 에 효율적으로 전달된다. 반면에, 모조 히터 (16-2) 는 내부에 코어가 형성되지 않은 클래드 (23) 위에 배치된다. 추가로, 단열 그루브 (19) 는 클래드 (22) 와 모조 클래드 (23) 사이에 형성된다. 따라서, 단열 그루브 (19) 는 클래드 (22) 와 모조 클래드 (23) 사이에 고 열 고립을 생성하는 공기 층을 형성한다. 결과적으로, 모조 히터 (16-2) 로부터의 열은 코어에 용이하게 전달되지 않는다. 그렇게, 클래드 (22) 및 코어 (13-3, 14-3 및 14-4) 를 가열한 후에, 히터 (15-2) 로부터의 열은 기판 (11) 에 전달된다. 기판 (11) 은 높은 열전도 물질로 형성된다. 따라서, 열은 빠르게 기판 (11) 에 분산된다. 또한, 클래드 (23) 을 가열한 후에, 모조 히터 (16-1) 로부터의 열은 동일한 방식으로 기판 (11) 에 전달된다. 그러나, 기판 (11) 이 높은 열전도 물질로 형성되기 때문에, 열은 기판에 (11) 에 빠르게 분산되고 인접 클래드 (22) 에 거의 전달되지 않는다. 기판 (11) 이 실리콘으로 형성되고 클래드가 실리카 글래스로 형성된다면, 클래드의 열 전도율은 1 x 10-2 만큼 차이가 난다. 즉, 실리콘 기판의 열 전도율은 약 150 W/(mㆍK) 이고 실리카 글래스 기판의 열 전도율 약 1.5 W/(mㆍK) 이다. 이것이 기판 (11) 에 전달되는 열이 클래드에 그렇게 용이하게 전달되지 않는 이유이다. 기판 (11) 은 열 싱크처럼 기능하기 때문에, 모조 히터 (16-1) 로부터의 열은 코어에 용이하게 전달되지 않는다.
상기 설명된 바와 같이 구조된 파장 동조가능 필터에서, 링 도파로 (13-1) 의 파장은 기준 파장에 조정되고, 링 도파로 (13-1) 에는 임의의 히터가 제공되지 않는 반면에, 링 도파로 (13-2) 및 (13-3) 에는 히터 및 모조 히터 각각이 제공된다. 그러나, 본 발명에 따르면, 링 도파로 (13-1) 를 포함하는 모든 링 도파로에는 히터 및 모조 히터 각각이 제공될 수도 있다. 그러한 경우에, 링 도파로 (13-1) 의 파장이 기준 파장으로부터 편이된다면, 그러한 편이는 링 도파로 (13-1) 의 온도를 조정함으로써 보상될 수 있다.
다음으로, 본 발명의 예시적인 제 1 실시예의 변형을 이하 설명한다. 도 11 은 본 발명의 예시적인 제 1 실시예의 변형에의 평면도를 도시한다. 이 실시예에서는, 도 1 에서 도시된 실시예와는 달리, 단열 그루브 (19) 는 오직 히터 (15-1) 와 모조 히터 (16-1) 사이 및 히터 (15-2) 와 모조 히터 (16-2) 사이에서만 형성된다. 따라서, 파장 동조가능 필터 (26) 는 다른 평탄부가 클래드에 의해 커버링되도록 구조된다. 따라서, 단열 그루브 (19) 는 그러한 방식으로 필요한 부분에만 형성될 수도 있다. 한편, 단열 그루브는 히터와 모조 히터 각각 사이에서 뿐만 아니라, 히터와 모조 히터의 외주 위치에 형성될 수도 있다. 결과적으로, 외주 그루브가 디바이스의 불필요한 부분에까지 열이 확산되는 것을 막기 때문에, 각각의 히터의 전력 소모는 감소될 수 있다.
다음으로, 본 발명의 제 1 실시예에 따른 파장 동조가능 필터의 효과가 설명된다. 상기 설명된 바와 같이, 제 1 실시예에 따른 파장 동조가능 필터에서, 히터에 공급되거나 히터로부터 발산된 전력 또는 열이 변할 때, 그러한 변화는 그 대응하는 모조 히터에 의해 보상되고, 따라서 기판은 변화에 전혀 영향을 받지 않는다. 결과적으로, 기판은 온도 변화로부터 보호받고, 안정된 파장 동조 동작이 실현된다.
그리고, 단열 그루브 (공기 층) 가 각각의 히터와 각각의 모조 히터 사이에 제공되기 때문에, 모조 히터로부터의 열은 코어에 용이하게 전달되지 않는다.
또한, 코어가 내부에 형성된 클래드가 스트라이프처럼 형성되다면, 즉, 소위 메사-타입 클래드라면, 모조 히터로부터의 열은 코어에 용이하게 전달되지 않는다.
그리고, 기판이 고 열전도 물질로 형성된다면, 모조 히터로부터 발산되는 열은 기판에 빠르게 퍼지고, 따라서, 그러한 열은 코어가 내부에 형성된 클래드에 용이하게 전달되지 않는다. 따라서, 기판은 모조 히터 싱크처럼 기능하여, 모조 히터로부터의 열은 코어에 용이하게 전달되지 않는다.
그리고, 히터가 링 도파로의 외주를 전체적으로 커버링한다면, 히터의 전력 소모는, 히터로부터의 열이 링 도파로에 효율적으로 도달하기 때문에 효율적으로 감소된다.
또한, 모조 히터가 대응하는 히터에 근접하여 배치된다면, 기판에서 그 히터로부터 열 공급 전 후 사이에 열 분배 차이는 점점 작아진다. 따라서, 열 설계는 더 용이하게 될 수 있다.
또한, 히터 및 모조 히터가 기판에 대해 대칭적으로 배치된다면, 즉, 기판의 뒷면에 모조히터가 배치된다면, 기판에 공급되는 열의 대칭성은 유지된다. 그리고, 그에 따라 기판은 열 차이에 그다지 영향을 받지 않는다. 또한, 모조 히터 및 히터가 형태가 유사하게 형성된다면, 기판에 공급되는 열의 차이는 더욱 감소된다. 모조 히터가 상기 설명한 바와 같이 구조된다면, 히터의 열 변화는 더 용이하게 보상되고 기판 동작은 더 안정해진다.
그리고, 파장 동조가능 필터에, 파장 동조 동작에 대한 대략적 조정을 위한 제 1 링 도파로 및 미세 조정을 위한 제 2 링 도파로가 제공된다면, 파장 조정은 더 정확하게 이루어질 수 있다.
추가로, 모든 링 도파로에 히터 및 모조 히터가 제공된다면, 열 변화는 디바 이스 자체의 파장이 기준 파장으로부터 편이될 때조차 보상될 것이다.
(제 2 실시예 )
이하, 본 발명의 제 2 실시예와 부합하는 파장 가변 광원의 구성이 설명된다. 도 12 는 본 발명의 제 2 실시예에 따른 파장 동조가능 광원 (30) 의 평면도를 도시한다. 도 12 에서, 장황을 피하기 위해 동일한 참조 부호는 제 1 실시예에서와 동일한 콤포넌트를 가리킨다. 이 제 2 실시예에 따른 파장 동조가능 광원 (30) 에는 제 1 실시예에서 채택된 파장 동조가능 필터 (10) 가 제공되고 기판 (34) 위에 배치된다. 또한, 반도체 광 증폭기 (31) 가 기판 (34) 의 하부 좌측부에 배치된다. 반도체 광 증폭기 (31) 의 좌측부에 저반사 코팅 (33) 이 형성된다. 기판 (11) 의 우측부에 고반사 코팅 (32) 이 형성된다. 반도체 광 증폭기 (31) 및 기판 (11) 의 입력/출력 도파로 (14-1) 는 직접 서로 연결된다 (즉, Butt-연결). 필요에 따라, 결합된 부분에는 비반사 코팅이 도포된다. 기판 (34) 은 기판 (11) 의 공통의 플랫폼 및 반도체 광 증폭기 (31) 로서 기능한다. 고반사 코팅 (32) 및 저반사 코팅 (33) 의 배치 위치는 변할 수도 있다. 예를 들어, 저반사 코팅은 기판 (11) 의 우측부에 형성될 수도 있고 고반사 코팅은 반도체 광 증폭기 (31) 의 좌측부에 형성될 수도 있다. 도 12 에 도시된 바와 같이, 광은 기판 (11) 의 상부 우측부에 형성되는 입력/출력 도파로 (14-4) 의 말단으로부터 출력된다. 예를 들어, 저반사 코팅의 반사율은 수 % 정도로 설정되고 고반사 코팅의 반사율은 90 % 이상으로 설정된다.
도 13 은 본 발명의 제 2 실시예에 따른 파장 가변 광원 (30) 의 투시도를 도시한다. 기판 (34) 의 후면에, 온도를 조정하기 위해 이용되는 펠티에 소자 (35) 가 제공된다. 기판 (11) 의 정면 위에, 서미스터 (36) 가 제공된다. 기판 (34) 의 온도는 서미스터 (36) 및 펠티에 (35) 에 의해 실온과 비슷하도록 조정된다.
제 2 실시예에 따른 파장 가변 광원 (30) 의 물질 및 구조는 제 1 실시예에서와 동일하다. 따라서, 제 1 실시예에서 사용되는 동일한 참조 부호에 대한 콤포넌트의 설명은 여기에서 생략될 것이다. 기판 (34) 은 예를 들어, 실리콘으로 구성된다. 반도체 광 증폭기 (31) 는 예를 들어, 반도체 레이저 다이오드 (LD) 등이다. 고반사 코팅 (32) 는 예를 들어, 금 증발 프로세스 등에 의해 형성된다. 저반사 코팅 (33) 은 예를 들어, 유전체 멀티-레이저 막이다.
다음으로, 본 발명의 제 2 실시예에 따른 파장 가변 광원 (30) 의 동작이 설명된다. 이 실시예에 부합하여, 파장 동조가능 필터가 반도체 광 증폭기 (31) 에 대하여 외부 공진기를 구성하는 데 이용된다. 반도체 광 증폭기 (31) 로부터의 발광은 다양한 파장을 가진다. 반도체 광 증폭기 (31) 로부터의 광은 입력/출력 도파로 (14-1) 로부터 도파로 안으로 입력되고, 이후 광은 상기 설명한 제 1 실시예와 같이 링 공진기 (12-1, 12-2 및 12-3) 의 각각을 통과한다. 광이 링 공진기를 통과할 때마다, 공진 파장이 선택되고 광은 입력/출력 도파로 (14-4) 를 통하여 기판 (11) 의 상부 우측부에 도달한다. 제 2 실시예에 따라서, 광은 고반사 코팅 (32) 에 의해 반사되고 입력/출력 도파로 (14-1) 로부터 반도체 광 증폭기 (31) 안으로 동일한 루트를 통하여 되돌아온다. 광은 반도체 광 증폭기 (31) 의 저반사 코팅 (33) 에 의해 부분적으로 반사되고 그러한 반사된 광은 다시 도파로 안으로 되돌아온다. 외부 공진기가 그러한 방식으로 제공되기 때문에, 광은 공진으로 강화되고, 이후 반도체 광 증폭기 (31) 의 좌측 말단면으로부터 출력된다. 그러한 공진은 제 1 실시예에 대하여 설명된 것과 동일하기 때문에, 그 설명은 여기에서 생략된다. 파장 동조가능 광원 (30) 에서, 광이 반사되고 복수의 링 공진기를 통과할 때, 공진 효과는 점점 더 커진다. 제 2 실시예에 따라서, 링 공진기 (12-2) 에는 상이하게 기능하는 히터 (15-1) 및 모조 히터 (16-1) 가 제공되고 링 공진기 (12-3) 에는 상이하게 기능하는 히터 (15-2) 및 모조 히터 (16-2) 가 제공된다. 히터 (15-1 및 15-2) 및 모조 히터 (16-1 및 16-3) 의 가열 동작은 제 1 실시예에서와 동일하고, 그 설명은 여기에서 생략한다.
펠티에 (35) 및 서미스터 (36) 는 기판 (34) 의 온도를 일정하게 유지하기 위해 함께 기능하고, 반도체 광 증폭기 (31) 및 기판 (11) 의 온도는 실질적으로 일정하다. 이 실시예에 따라서, 제 1 실시예에 대하여 설명된 바와 같이, 기판 (11) 의 온도가 각각의 히터에 전력 공급이 파장 동조 동작 때문에 변하는 때조차도 실질적으로 일정하게 유지되도록, 대응하는 히터와 차등적으로 작동하는 모조 히터 (16-1 및 16-2) 가 각각 제공된다. 결과적으로, 기판 (11) 의 온도를 일정하게 유지하기 위해 제공되는 펠티에 (35) 의 구동 조건은 변하지 않는다. 따라서, 파장 동조 속도는 감소될 수 있고 예를 들어, 빠른 파장 동조를 허용하는 0.1 초 정도로 (길어야, 1 초 내) 감소된다.
단열 그루브 (19) 는 히터 (15-1) 와 모조 히터 (16-1) 사이에 형성될 수도 있고 히터 (15-2) 와 모조 히터 (16-2) 사이에 형성될 수도 있다. 그러나, 단열 그루브 (19) 는 또한 히터 (15-1 및 15-2) 주위 및 모조 히터 (16-1 및 16-2) 주위 각각에 형성될 수도 있다. 또한, 단열 그루브 (19) 는 도파로, 히터, 및 모조히터가 형성된 곳을 제외하고 기판 위 어느 곳에도 형성될 수도 있다.
다음으로, 본 발명의 제 2 실시예에 따른 파장 가변 광원 (30) 의 효과가 설명된다. 상기 설명한 바와 같이, 제 2 실시예에 따른 파장 동조가능 광원 (30) 에서, 펠티에 소자 (35) 의 구동 조건은 파장 동조 중인 때조차도 변하지 않는다. 결과적으로, 이 제 2 실시예에 따른 파장 가변 광원 (30) 는 상기 설명한 제 1 실시예의 효과를 가질 뿐만 아니라, 펠티에가 안정화될 때까지 요구되는 시간을 단축하고 빠른 파장 동조를 가능하게 하는 다른 효과도 가진다.
(제 3 실시예 )
이하, 본 발명의 제 3 실시예에 따른 파장 동조가능 광의 구조가 설명된다. 도 14 는 이 제 3 실시예에 따른 파장 동조가능 광 (40) 의 평면도를 도시한다. 도 14 에서, 장황을 피하기 위해, 동일한 참조부호는 제 2 실시예에서와 동일한 콤포넌트를 위해 사용된다. 이 제 3 실시예에 따른 파장 동조가능 광원 (40) 에 기판 (41) 이 제공되고, 다른 기판은 제공되지 않는다. 반도체 광 증폭기 (42) 는 기판 (41) 위에 탑재되고 이것은 제 2 실시예에 따른 구조와 상이하다. 반도체 광 증폭기 (42) 의 좌측 말단면에, 저반사 코팅 (44) 이 제 2 실시예와 마찬가지로, 형성된다. 반도체 광 증폭기 (42) 및 입력/출력 도파로 (14-1) 는 직접 서로에 연결된다 (즉, Butt-연결). 고반사 코팅 (43) 및 저반사 코팅 (44) 은 상기 설명한 제 2 실시예와 마찬가지로 배치되지만, 그 위치는 바뀔 수도 있다.
도 15 는 본 발명의 제 3 실시예에 따른 파장 동조가능 광원 (40) 의 투시도를 도시한다. 기판 (41) 의 후면에 펠티에 (45) 가 제공된다. 기판 (41) 의 온도는 서미스터 (46) 및 펠티에 (45) 에 의해 실온과 비슷하게 조정된다.
파장 동조가능 광원 (40) 의 물질, 공진 동작, 및 파장 동조 동작은 제 2 실시예에 대한 상기 설명과 동일하고, 따라서 그 설명은 여기서 생략한다. 제 2 실시예와 달리, 반도체 광 증폭기 (42) 는 이 제 3 실시예에 따라서 기판 (41) 의 표면 위에 탑재된다. 결과적으로, 기판 (41) 및 반도체 광 증폭기 (42) 의 표면은 각각, 미리 표시될 수도 있고, 반도체 광 증폭기 (42) 는 수동 정렬 프로세스로 기판 (41) 위에 탑재될 수도 있다. 기판 (41) 이 고 열전도 물질 예를 들어, 실리콘으로 이루어진다면, 기판 (41) 은 또한 반도체 광 증폭기 (42) 의 열 싱크로서 기능할 수 있다.
다음으로, 본 발명의 제 3 실시예에 따른 파장 동조가능 소스 (40) 의 효과가 설명된다. 이 제 3 실시예에 따른 파장 동조가능 광원에서, 반도체 광 증폭기 (42) 는 기판 (41) 위에 탑재된다. 따라서, 부품의 수는 감소되고 공간이 절약된다. 반도체 광 증폭기 (42) 는 또한 수동 정렬 프로세스로 기판 (41) 위에 탑재될 수도 있다. 기판이 고 열전도 물질로 이루어진다면, 기판 (41) 은 또한 열 싱크로 기능할 수 있다. 따라서, 이 제 3 실시예에 따라서, 파장 동조가능 광원 (40) 은 제 2 실시예에 관하여 상기 검토한 효과를 가질 수 있을 뿐만 아니라, 또한 압축된 모듈, 생산성의 개선 및 저 비용을 실현하는 다른 효과를 가질 수 있다.
(제 4 실시예 )
이하, 본 발명의 제 4 실시예에 따른 파장 동조가능 광원의 구조가 설명된다. 도 16 은 본 발명의 제 4 실시예에 따른 파장 가변 광원 (50) 의 평면도를 도시한다. 도 16 에서, 동일한 참조 부호는 장황을 피하기 위해, 제 3 실시예에서와 동일한 콤포넌트에 대해 사용된다. 이 제 4 실시예에 따른 파장 동조가능 광원 (50) 에서, 각각의 모조 히터는 히터 (55-1 및 55-2) 각각에 대해 제공되지 않는다. 오히려, 모조 히터 (56) 는 히터 (55-1 및 55-2) 의 그룹에 대해 제공된다. 이 실시예에 따라서, 모조 히터 (56) 는 각각의 링 공진기를 에워싸도록 형성된다.
따라서, 일 더미 히터는, 각각의 링 히터가 독립적으로 조정되는 식 (3) 및 (4) 에서 설명되는 제어 방법 대신에 식 (5) 에서 설명된 바와 같이 차등적으로 동작하도록 제어된다.
(Ph1 + Pd1) = Constant (3)
(Ph2 + Pd2) = Constant (4)
Ph1 + Ph2 + Pd = Constant (5)
여기에서, 도 16 에서 도시된 바와 같이, Ph1 은 히터 1 에 적용되는 전력이고, Ph2 는 히터 2 에 적용되는 전력이고, Pd1 은 모조 히터 1 에 적용되는 전력이고, Pd2 는 모조 히터 2 에 적용되는 전력이고, Pd 는 모조 히터에 적용되는 전력 이며, 히터 1 및 히터 2 를 에워싸도록 형성된다.
제 4 실시예에 따른 파장 동조가능 광원 (50) 에서, 모조 히터는 제어를 간략히 하기 위해 일 모조 히터로 그룹핑된다. 그러한 간략화된 제어는, 히터가 모든 링 공진기에 대해 제공된다면 또는 많은 링 공진기가 특히 제공된다면 더 효율적일 것이다. 이 실시예에 따라서, 모조 히터는 링 히터를 에워싸기 위해 형성되고, 기판 (51) 에서 온도의 기울기는 더 일정하게 될 수 있다.
(제 5 실시예 )
이하, 본 발명의 제 5 실시예에 따른 파장 동조가능 광원의 구조가 설명된다. 도 17 은 본 발명의 제 5 실시예에 따른 파장 동조가능 광원의 평면도를 도시한다. 도 17 에서, 동일한 참조 부호는, 장황을 피하기 위해 제 3 실시예에서와 동일한 콤포넌트에 대해 사용된다. 이 제 5 실시예에 따른 파장 동조가능 광원 (60) 은, 모조 히터 (66) 가 기판 (61) 의 자유 공간에 제공된다는 점에서, 제 4 실시예에서와 상이하다.
또한, 이 제 5 실시예에 따른 파장 동조가능 광원 (60) 에서, 모조 히터는 제어를 간략히 하기 위해 하나로 그룹핑된다. 그러한 간략화된 제어는, 히터가 모든 링 공진기에 대해 제공된다면 또는 많은 링 공진기가 특히 제공된다면, 더 효율적이다. 기판 (61) 의 온도 기울기가 중요하지 않다면, 모조 히터는 공간을 잘 활용하기 위해 기판의 자유 공간에 제공될 수도 있다.
(제 6 실시예 )
다음으로, 본 발명의 제 6 실시예의 가변 광 제어 디바이스의 제어 회로가 설명된다. 도 18 은 본 발명의 실시예에 따른 조정가능 광 제어 디바이스의 제어 회로의 블록도을 도시한다. 이 실시예에서, 제 3 실시예에 따른 파장 가변 광원가 예로서 도시된다. 그러나, 여기에서 설명되는 임의의 다른 실시예 (예를 들어, 제 1, 2, 3, 4, 5 및 6 실시예) 에서 임의의 다른 광원는 여기에서 제어되는 대상으로서 선택될 수도 있다. 제어 회로 (70) 는 각각의 공진기에 대해 독립적으로 제공되고, 제어 회로 (70) 에는 구동 회로 (71-1 및 71-2), 디지털/아날로그 (DA) 컨버터 (72-1 및 72-2), 아날로그/디지털 (AD) 컨버터 (73-1 및 73-2), 및 디지털 신호 프로세서 (DSP ; 74) 가 제공된다.
제어 회로 (70) 는 DSP (74) 에 의해 제어된다. DA 컨버터 (72-1 및 72-2) 컨버터의 각각은 DSP (74) 로부터 수신된 디지털 신호를 아날로그 신호로 변조하고 이후 컨버팅된 아날로그 신호를 구동 회로 (71-1 및 71-2) 의 각각에 송신한다. AD 컨버터 (73-1 및 73-2) 의 각각은 구동 회로 (71-1 및 71-2) 로부터 수신된 아날로그 신호를 디지털 신호로 변조하고 그 변조된 신호를 DSP (74) 에 송신한다. 구동 회로 (71-1) 는 히터를 구동하고 구동 회로 (71-2) 는 모조 히터를 구동한다.
도 18 에서 도시된 바와 같이, 제어 회로는 각각의 공진기에 대해 제공된다. 그러나, 오직 하나의 DSP 만이 또한 본 발명에 부합하는 복수의 공진기를 제어할 수도 있다. 상기 검토된, 제 4 또는 제 5 실시예와 달리, 공통의 모조 히터가 제공될 수 있고, 공토의 모조 히터는 하나의 제어 회로에 의해 제어될 수 있다 (예를 들어, 모조 히터는 각각의 공진기에 대해 제공되지 않는다).
(제 7 실시예 )
이하, 본 발명의 다른 실시예가 설명된다. 도 19 는 본 발명에 부합하는 가변 분산 보상기의 평면도를 도시한다. 이 가변 분산 보상기는 공진기 (80-1, 80-2 및 80-3) 가 공통의 선형 도파로 (81) 를 따라 직렬로 연결되도록 구성된다. 선형 도파로 (81) 가 링 도파로 (82-1, 82-2 및 82-3) 중의 하나에 근접한 각각의 장소에 광 커플러가 형성된다. 도 19 에서 도시된 바와 같이, 광 커플러의 각각은 방향 커플러로서 기능한다. 방향 커플러를 제외하고, 광 커플러는 예를 들어, 멀티 모드 간섭계, 마하-젠더 타입 간섭계 등 일 수도 있다. 각각의 공진기로부터의 지연 시간 스펙트럼은 합성된 스펙트럼이 형성되도록 직렬 커플링을 통하여 합성된다. 분산 보상량은 이 합성된 스펙트럼의 기울기에 따라서 결정된다. 각각의 공진기에서, 지연 시간 스펙트럼의 중앙 파장은 히터 (83-1, 83-2 및 83-3) 가 켜질 때 시프트된다. 결과적으로, 합성된 스펙트럼의 기울기 각도가 변한다. 따라서, 분산 보상량은 대상 히터에 적용되는 전력을 제어함으로써 제어될 수 있다. 모조 히터 (84-1, 84-2 및 84-3) 의 각각은 대응하는 히터 (83-1, 83-2 및 83-3) 에 공급되는 전력의 변화를 보상하기 위해 전력의 차이를 수용한다. 그와 같이, 기판은 온도 변화로부터 전체적으로 보호된다. 그 히터 및 모조 히터를 이 실시예에 따라서 어떻게 제어하는지 뿐만 아니라, 히터 및 모조 히터의 배치 및 구조는 상기 설명된 실시예에 대하여 상기 검토된 것과 동일하다. 각각의 히터는 링 도파로 위에 배치되고 각각의 모조 히터는 대응하는 히터로부터 이격하여 배치된다. 또한, 단열 그루브 (임의의 85-1, 85-2 및 85- 3) 는 각각의 히터와 그 대응하는 모조 히터 사이에 제공된다. 따라서, 본 발명은 열광학 효과를 사용하는 임의의 다른 광 디바이스에 적용될 수 있다.
본 발명의 예시적인 실시형태가 상기 설명되었지만, 본 발명의 예시적인 실시형태에 대한 수많은 변형은, 이하 청구의 범위에 한정되는 본 발명의 실시형태의 사상과 범위를 벗어나지 않고 당업자에게 명백할 것이다.
본 발명의 가변 광 제어 디바이스 및 가변 광 제어 방법 각각은 열광학 효과를 가지는 광 도파로를 가열하기 위한 제 1 히터로부터 기판을 이격하여 가열하기 위한 제 2 히터를 포함한다. 그리고, 제 1 히터에서 전력 또는 열의 증가/감소는 제 2 히터에 의해 보상되고, 제 1 및 제 2 히터에/로부터 공급되는/발산되는 전력/열의 총 양은 실질적으로 일정하게 유지된다. 결과적으로, 제 1 히터에 공급되는 전력이 동조 동작시에 현저히 변할 때조차도, 전체 기판의 온도는 현저히 변하지 않는다. 따라서, 본 발명의 양태는 파장이 열광학 효과를 기초로 하여 변할 때 광 특성이 안정화되는 동안의 시간을 단축하고 빠른 파장 동조 동작을 실현하는 데 효율적이다.

Claims (26)

  1. 기판;
    상기 기판 위에 배치되는 광 도파로;
    상기 광 도파로 근처에 배치되는 제 1 히터;
    상기 제 1 히터로부터 이격되어 배치되는 제 2 히터; 및
    상기 제 1 히터 및 상기 제 2 히터를 열적으로 단열하도록 구성되는 단열기를 구비하고,
    상기 제 1 및 상기 제 2 히터 모두에 공급되는 전력의 총 양은 일정하게 유지되는, 가변 광 제어 디바이스.
  2. 제 1 항에 있어서,
    상기 제 1 히터는 코어가 내부에 형성된 제 1 클래드 위에 배치되고, 또한
    상기 제 2 히터는 코어가 내부에 형성되지 않은 제 2 클래드 위에 배치되는, 가변 광 제어 디바이스.
  3. 삭제
  4. 제 1 항에 있어서,
    상기 단열기는 상기 제 1 히터와 상기 제 2 히터 사이에 그루브를 포함하는, 가변 광 제어 디바이스.
  5. 제 1 항에 있어서,
    상기 기판은 실리콘을 포함하는, 가변 광 제어 디바이스.
  6. 제 1 항에 있어서,
    상기 제 2 히터는 상기 제 1 히터와 형태가 동일한, 가변 광 제어 디바이스.
  7. 제 1 항에 있어서,
    상기 기판의 온도를 제어하도록 구성되는 온도 제어 소자를 더 구비하는, 가변 광 제어 디바이스.
  8. 제 7 항에 있어서,
    상기 기판의 온도를 탐지하도록 구성되는 온도 탐지 소자를 더 구비하는, 가변 광 제어 디바이스.
  9. 제 1 항에 있어서,
    상기 광 도파로는 하나 이상의 공진기를 형성하도록 구성되는, 가변 광 제어 디바이스.
  10. 제 9 항에 있어서,
    상기 하나 이상의 공진기는 링 공진기를 포함하는, 가변 광 제어 디바이스.
  11. 제 10 항에 있어서,
    상기 제 1 히터는 상기 링 공진기의 외주를 커버링하도록 배치되는, 가변 광 제어 디바이스.
  12. 제 9 항에 있어서,
    발광 수단을 더 구비하고,
    상기 발광 수단 및 상기 공진기는 함께 외부 공진기를 형성하는, 가변 광 제어 디바이스.
  13. 기판;
    상기 기판 위에 배치되는 광 도파로;
    상기 광 도파로 근처에 배치되는 제 1 히터;
    상기 제 1 히터로부터 이격되어 배치되는 제 2 히터; 및
    상기 제 1 히터 및 상기 제 2 히터를 열적으로 단열하도록 구성되는 단열기를 구비하고,
    상기 제 1 및 제 2 히터 모두로부터 발산되는 열의 총 양은 일정하게 유지되는, 가변 광 제어 디바이스.
  14. 제 13 항에 있어서,
    상기 제 1 히터는 코어가 내부에 형성된 제 1 클래드 위에 배치되고, 또한
    상기 제 2 히터는 코어가 내부에 형성되지 않은 제 2 클래드 위에 배치되는, 가변 광 제어 디바이스.
  15. 삭제
  16. 제 13 항에 있어서,
    상기 단열기는 상기 제 1 히터와 상기 제 2 히터 사이에 그루브를 포함하는, 가변 광 제어 디바이스.
  17. 제 13 항에 있어서,
    상기 기판은 실리콘을 포함하는, 가변 광 제어 디바이스.
  18. 제 13 항에 있어서,
    상기 제 2 히터는 상기 제 1 히터와 형태가 동일한, 가변 광 제어 디바이스.
  19. 제 13 항에 있어서,
    상기 기판의 온도를 제어하도록 구성되는 온도 제어 소자를 더 구비하는, 가 변 광 제어 디바이스.
  20. 제 19 항에 있어서,
    상기 기판의 온도를 탐지하도록 구성되는 온도 탐지 소자를 더 구비하는, 가변 광 제어 디바이스.
  21. 제 13 항에 있어서,
    상기 광 도파로는 하나 이상의 공진기를 형성하도록 구성되는, 가변 광 제어 디바이스.
  22. 제 21 항에 있어서,
    상기 하나 이상의 공진기는 링 공진기를 포함하는, 가변 광 제어 디바이스.
  23. 제 22 항에 있어서,
    상기 제 1 히터는 상기 링 공진기의 외주를 커버링하도록 배치되는, 가변 광 제어 디바이스.
  24. 제 21 항에 있어서,
    발광 수단을 더 구비하고,
    상기 발광 수단 및 상기 공진기는 함께, 외부 공진기를 형성하는, 가변 광 제어 디바이스.
  25. 기판 위에 배치되는 광 도파로를 가열하는 단계를 포함하는 제 1 가열 단계; 및
    상기 기판을 가열하는 단계를 포함하는 제 2 가열 단계를 포함하고,
    상기 제 1 및 제 2 가열 단계 모두 동안에 공급되는 전력의 총 양은 일정하게 유지되고,
    상기 제 1 가열 단계 및 상기 제 2 가열 단계는 상호 열적으로 단열되어 수행되는, 가변 광 제어 방법.
  26. 기판 위에 배치되는 광 도파로를 가열하는 단계를 포함하는 제 1 가열 단계; 및
    상기 기판을 가열하는 단계를 포함하는 제 2 가열 단계를 포함하고,
    상기 제 1 및 제 2 가열 단계 모두 동안에 발산되는 열의 총 양은 일정하게 유지되고,
    상기 제 1 가열 단계 및 상기 제 2 가열 단계는 상호 열적으로 단열되어 수행되는, 가변 광 제어 방법.
KR1020070027526A 2006-03-30 2007-03-21 가변 광 제어 디바이스 및 가변 광 제어 방법 KR100890882B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00094206 2006-03-30
JP2006094206A JP2007271704A (ja) 2006-03-30 2006-03-30 可変光制御デバイス及び可変光制御方法

Publications (2)

Publication Number Publication Date
KR20070098535A KR20070098535A (ko) 2007-10-05
KR100890882B1 true KR100890882B1 (ko) 2009-03-31

Family

ID=38236516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027526A KR100890882B1 (ko) 2006-03-30 2007-03-21 가변 광 제어 디바이스 및 가변 광 제어 방법

Country Status (9)

Country Link
US (1) US7440643B2 (ko)
EP (1) EP1840631A1 (ko)
JP (1) JP2007271704A (ko)
KR (1) KR100890882B1 (ko)
CN (1) CN101046529B (ko)
AU (1) AU2007200931A1 (ko)
CA (1) CA2579274A1 (ko)
RU (1) RU2363968C2 (ko)
TW (1) TW200801621A (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231113B2 (en) * 2005-08-19 2007-06-12 Infinera Corporation Coupled optical waveguide resonators with heaters for thermo-optic control of wavelength and compound filter shape
JP2008270583A (ja) * 2007-04-23 2008-11-06 Nec Corp 波長可変光源装置とその制御方法,制御用プログラム
US7627203B2 (en) * 2007-07-18 2009-12-01 Wei Chen Thermo-optic devices providing thermal recirculation
US20090046748A1 (en) * 2007-08-14 2009-02-19 Sumitomo Electric Industries, Ltd. Light-emitting device with precisely tuned and narrowed spectral width of optical output and an optical signal source providing the same
JP4406023B2 (ja) * 2007-08-24 2010-01-27 富士通株式会社 光集積素子
WO2009078855A1 (en) * 2007-12-14 2009-06-25 Hewlett-Packard Development Company, L.P. Ring resonator with inductance coupled heat tuning
US8019185B2 (en) * 2008-02-14 2011-09-13 Hrl Laboratories, Llc Unit-cell array optical signal processor
US8045834B2 (en) * 2008-05-19 2011-10-25 California Institute Of Technology Silica-on-silicon waveguides and related fabrication methods
JP5086207B2 (ja) * 2008-08-26 2012-11-28 日本電信電話株式会社 光信号モニタ
JP5086208B2 (ja) * 2008-08-26 2012-11-28 日本電信電話株式会社 波長可変フィルタおよびそれを用いた光信号モニタ
US8634679B2 (en) * 2008-09-15 2014-01-21 Infinera Corporation Tunable optical filter
US8111724B2 (en) * 2009-07-07 2012-02-07 International Business Machines Corporation Temperature control device for optoelectronic devices
TWI410684B (zh) * 2009-09-15 2013-10-01 Nat Univ Tsing Hua 波長交錯器
US8897606B2 (en) * 2009-12-15 2014-11-25 Kotura, Inc. Ring resonator with wavelength selectivity
JP5093527B2 (ja) * 2010-02-10 2012-12-12 日本電気株式会社 複合光導波路、波長可変フィルタ、波長可変レーザ、および光集積回路
US8334797B1 (en) 2010-04-20 2012-12-18 Hrl Laboratories, Llc Wideband high resolution time-stretched photonic analog-to-digital converter
US9293887B2 (en) 2011-06-17 2016-03-22 California Institute Of Technology Chip-based laser resonator device for highly coherent laser generation
US8917444B2 (en) 2011-06-17 2014-12-23 California Institute Of Technology Chip-based frequency comb generator with microwave repetition rate
JP5817315B2 (ja) * 2011-08-10 2015-11-18 富士通株式会社 光半導体素子
US9692207B2 (en) 2011-09-30 2017-06-27 Aurrion, Inc. Tunable laser with integrated wavelength reference
EP2597736A1 (en) * 2011-11-22 2013-05-29 Alcatel Lucent Hybrid Laser
JP5896017B2 (ja) * 2012-03-29 2016-03-30 富士通株式会社 光半導体素子及び光半導体素子の制御方法
KR20150128718A (ko) * 2013-03-13 2015-11-18 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 결합 링 공진기 시스템
EP3097614B1 (en) 2014-01-24 2020-03-11 California Institute of Technology Dual-frequency optical source
US9595918B2 (en) 2014-03-06 2017-03-14 California Institute Of Technology Stable microwave-frequency source based on cascaded brillouin lasers
US9438263B1 (en) 2014-05-02 2016-09-06 Hrl Laboratories, Llc Controllable opto-electronic time stretcher, an electro-optical analog to digital converter having non-uniform sampling using the same, and related methods of operation
US9905999B2 (en) 2015-02-26 2018-02-27 California Institute Of Technology Optical frequency divider based on an electro-optical-modulator frequency comb
DE102015206847A1 (de) * 2015-04-16 2016-10-20 Technische Universität Berlin Optoelektronisches Bauelement mit Resonator
US9608406B1 (en) * 2016-01-22 2017-03-28 Oracle International Corporation Wavelength control of a dual-ring laser
WO2018119077A1 (en) * 2016-12-21 2018-06-28 Acucela Inc. Miniaturized mobile, low cost optical coherence tomography system for home based ophthalmic applications
JP6831709B2 (ja) 2017-01-25 2021-02-17 オリンパス株式会社 縞投影装置および縞投影装置の制御方法
US10367333B2 (en) 2017-04-13 2019-07-30 Nokia Of America Corporation Increasing fabry-perot cavity free spectral range in hybrid lasers
CN108845390B (zh) * 2018-07-02 2019-11-08 南京航空航天大学 反射型微环谐振器、多波长光延时器、光子波束成形芯片
US10959613B1 (en) 2020-08-04 2021-03-30 Acucela Inc. Scan pattern and signal processing for optical coherence tomography

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816665B2 (en) * 2002-05-09 2004-11-09 Lynx Photonic Networks Inc. Constant power operation thermo-optic switch
JP2005250320A (ja) * 2004-03-08 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 熱光学光機能部品及びその制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720160A (en) * 1981-12-16 1988-01-19 Polaroid Corporation Optical resonant cavity filters
JPH0782131B2 (ja) 1985-10-28 1995-09-06 日本電信電話株式会社 光リングフィルタ
JPS63281104A (en) 1987-05-14 1988-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical ring filter
JPH1114846A (ja) * 1997-06-23 1999-01-22 Hitachi Cable Ltd 単一モード光導波路及びその製造方法並びにそれを用いた光モジュール
JP2001109023A (ja) * 1999-10-12 2001-04-20 Toshiba Corp 光スイッチとこれを用いた光スイッチアレイ及び光スイッチ制御装置
US6243517B1 (en) * 1999-11-04 2001-06-05 Sparkolor Corporation Channel-switched cross-connect
WO2001038905A2 (en) * 1999-11-23 2001-05-31 Nanovation Technologies, Inc. Localized thermal tuning of ring resonators
US6327397B1 (en) * 2000-02-22 2001-12-04 Agilent Technologies, Inc. System and method for providing temperature control for a thermally activated optical switch using constant total power
JP2002072260A (ja) * 2000-08-31 2002-03-12 Oki Electric Ind Co Ltd 光スイッチ素子及び波長ルータ
JP2003057466A (ja) * 2001-08-09 2003-02-26 Matsushita Electric Ind Co Ltd 光導波路とそれを用いた部品、および光導波路の製造方法
JP2003215515A (ja) * 2002-01-18 2003-07-30 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変フィルタ
JP2004045453A (ja) * 2002-07-08 2004-02-12 Sumitomo Electric Ind Ltd 導波路型光部品およびその製造方法
CA2506387C (en) * 2003-07-04 2012-01-31 Nippon Telegraph And Telephone Corporation Interferometer optical switch and variable optical attenuator
JP2005049856A (ja) * 2003-07-14 2005-02-24 Nec Corp 可変分散補償器および可変分散補償方法
JP4492232B2 (ja) * 2003-07-18 2010-06-30 日本電気株式会社 可変分散補償器および可変分散補償方法
JP2005156855A (ja) * 2003-11-25 2005-06-16 Nec Corp 多チャンネルマッハツェンダ干渉計型光回路
TWI251393B (en) * 2004-03-31 2006-03-11 Nec Corp Tunable laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816665B2 (en) * 2002-05-09 2004-11-09 Lynx Photonic Networks Inc. Constant power operation thermo-optic switch
JP2005250320A (ja) * 2004-03-08 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 熱光学光機能部品及びその制御方法

Also Published As

Publication number Publication date
EP1840631A1 (en) 2007-10-03
US7440643B2 (en) 2008-10-21
RU2363968C2 (ru) 2009-08-10
TW200801621A (en) 2008-01-01
JP2007271704A (ja) 2007-10-18
CA2579274A1 (en) 2007-09-30
RU2007111678A (ru) 2008-10-10
CN101046529A (zh) 2007-10-03
KR20070098535A (ko) 2007-10-05
CN101046529B (zh) 2010-09-22
US20070230856A1 (en) 2007-10-04
AU2007200931A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
KR100890882B1 (ko) 가변 광 제어 디바이스 및 가변 광 제어 방법
US7903910B2 (en) Coupled optical waveguide resonators with heaters for thermo-optic control of wavelength and compound filter shape
US6101210A (en) External cavity laser
US8615025B2 (en) Method and system for hybrid integration of a tunable laser
US7843986B2 (en) Planar lightwave circuit and tunable laser device having the same
JP2008251673A (ja) 光デバイスとその製造方法
US8050525B2 (en) Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US20120027041A1 (en) Wavelength variable laser and a manufacturing method thereof
CN107490822A (zh) 光器件、可调光源和光发送器
JP4410584B2 (ja) 熱光学光機能部品及びその制御方法
US7212697B2 (en) Planar optical circuit
KR100518935B1 (ko) 평면도파로형 배열도파로격자 소자
JP6636903B2 (ja) 光部品
JP2009186688A (ja) 波長合分波器
JP5553248B2 (ja) 光デバイスとその製造方法
Okamoto et al. A compact widely wavelength-tunable laser diode monolithically integrated with a ring/MZI loop-filter
WO2014031081A1 (en) Waveguide structure and optical structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120302

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee