JP4660036B2 - プラズマディスプレイ装置およびその駆動方法 - Google Patents

プラズマディスプレイ装置およびその駆動方法 Download PDF

Info

Publication number
JP4660036B2
JP4660036B2 JP2001263125A JP2001263125A JP4660036B2 JP 4660036 B2 JP4660036 B2 JP 4660036B2 JP 2001263125 A JP2001263125 A JP 2001263125A JP 2001263125 A JP2001263125 A JP 2001263125A JP 4660036 B2 JP4660036 B2 JP 4660036B2
Authority
JP
Japan
Prior art keywords
image signal
subfield
temperature
driving
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001263125A
Other languages
English (en)
Other versions
JP2002149109A (ja
Inventor
光弘 笠原
光広 森
友子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001263125A priority Critical patent/JP4660036B2/ja
Publication of JP2002149109A publication Critical patent/JP2002149109A/ja
Application granted granted Critical
Publication of JP4660036B2 publication Critical patent/JP4660036B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入力される画像信号に応じて画像を表示するプラズマディスプレイ装置およびその駆動方法に関するものである。
【0002】
【従来の技術】
PDP(プラズマディスプレイパネル)を用いたプラズマディスプレイ装置は、薄型化および大画面化が可能であるという利点を有する。このプラズマディスプレイ装置では、画素を構成する放電セルの放電の際の発光を利用することにより画像を表示している。この放電セルを発光させるため、放電セルを構成する各電極に高電圧の駆動パルスを印加する駆動回路が用いられる。
【0003】
このため、従来のプラズマディスプレイ装置では、駆動回路の消費電力が大きくなっている。特に、アドレス電極を駆動するデータ駆動回路の消費電力が最も大きい。このデータ駆動回路の消費電力は表示される画像により変化し、特に、R、G、Bの各画素ごとに市松模様となる画像を表示する場合、駆動パルスの電圧の変化回数が増大し、パネルへの充放電電圧電力が増加することにより、消費電力が増大し、データ駆動回路を構成するデータドライバLSI(大規模集積回路)の許容損失を大幅に上回り、データドライバLSIが破壊する場合がある。
【0004】
このデータ駆動回路の破壊を防止するため、特開平11−38930号公報には、アドレスドライバ回路(データ駆動回路)内に温度センサーを設け、この温度センサーによりアドレスドライバ回路の温度上昇を検出し、検出した温度に基づき温度上昇を抑制する表示装置が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のR、G、Bの各画素ごとに市松模様となる画像のようにデータ駆動回路の温度を上昇させやすい画像は、通常の自然画像の中にはほとんど存在することはなく、このような特殊な画像のために、温度検出手段である温度センサーをデータドライバLSIに設けたり、または、許容損失の大きなデータドライバLSIを用いたのでは、データドライバLSIのコストが上昇し、ひいては表示装置のコストが高くなる。
【0006】
本発明の目的は、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができるプラズマディスプレイ装置およびその駆動方法を提供することである。
【0007】
【課題を解決するための手段】
(1)第1の発明
第1の発明に係るプラズマディスプレイ装置は、マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部に入力される画像信号に応じて画像を表示するプラズマディスプレイ装置であって、入力される画像信号の1フィールドを複数のサブフィールドに分割し、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するサブフィールド変換手段と、表示部内の選択されたアドレス電極を駆動する駆動手段と、サブフィールド画像信号から駆動手段の温度に対応する温度推定値をブロックごとに推定する温度推定手段と、温度推定値に応じてサブフィールド変換手段に入力される画像信号を駆動手段の温度上昇を抑制する画像信号に変換する画像信号変換手段とを備え、駆動手段は、サブフィールド変換手段により変換されたサブフィールド画像信号に応じて表示部内の選択されたアドレス電極を駆動するものである。
【0008】
本発明に係るプラズマディスプレイ装置においては、入力される画像信号の1フィールドが複数のサブフィールドにサブフィールド変換手段により分割され、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号がサブフィールドごとのサブフィールド画像信号に変換される。サブフィールド画像信号から駆動手段の温度に対応する温度推定値がブロックごとに推定され、推定された温度推定値に応じて入力される画像信号が駆動手段の温度上昇を抑制する画像信号に変換される。サブフィールド画像信号に応じて表示部内の選択されたアドレス電極が駆動される。
【0009】
このように、サブフィールド画像信号から駆動手段の温度に対応する温度推定値を推定しているので、温度検出手段を設けることなく、駆動手段の温度を求めることができる。また、温度推定値に応じて駆動手段の温度上昇を抑制するように入力される画像信号が変換されるので、許容損失の大きい高コストの駆動手段を用いることなく、温度上昇による駆動手段の破壊を防止することができる。この結果、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができる。
また、サブフィールドごとのサブフィールド画像信号から駆動手段の温度を推定しているので、階調表示を行う場合に、実際に駆動される状態に応じて駆動手段の温度を高精度に推定することができる。
【0010】
さらに、アドレス電極を駆動する駆動手段の温度上昇を抑制することができるので、プラズマディスプレイ装置の中で特に消費電力の大きいアドレス電極を駆動する駆動手段を温度上昇による破壊から保護することができ、プラズマディスプレイ装置の信頼性を向上することができる。
また、表示部が複数のブロックに分割され、ブロックごとに温度推定値を求めているので、温度上昇による駆動手段の破壊を確実に防止することができる。
【0011】
(2)第2の発明
第2の発明に係るプラズマディスプレイ装置は、マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部に入力される画像信号に応じて画像を表示するプラズマディスプレイ装置であって、入力される画像信号の1フィールドを複数のサブフィールドに分割し、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するサブフィールド変換手段と、表示部内の選択されたアドレス電極を駆動する駆動手段と、サブフィールド画像信号から駆動手段の温度に対応する温度推定値をブロックごとに推定する温度推定手段と、温度推定値に応じてサブフィールド変換手段により変換されたサブフィールド画像信号を駆動手段の温度上昇を抑制するサブフィールド画像信号に変換する画像信号変換手段とを備え、駆動手段は、画像信号変換手段により変換されたサブフィールド画像信号に応じて表示部内の選択されたアドレス電極を駆動するものである。
【0012】
本発明に係るプラズマディスプレイ装置においては、入力される画像信号の1フィールドが複数のサブフィールドにサブフィールド変換手段により分割され、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号がサブフィールドごとのサブフィールド画像信号に変換される。サブフィールド画像信号から駆動手段の温度に対応する温度推定値がブロックごとに推定され、推定された温度推定値に応じて変換されたサブフィールド画像信号が駆動手段の温度上昇を抑制するサブフィールド画像信号に変換される。温度上昇を抑制するサブフィールド画像信号に応じて表示部内の選択されたアドレス電極が駆動される。
【0013】
このように、サブフィールド画像信号から駆動手段の温度に対応する温度推定値を推定しているので、温度検出手段を設けることなく、駆動手段の温度を求めることができる。また、温度推定値に応じて駆動手段の温度上昇を抑制するようにサブフィールド画像信号が変換されるので、許容損失の大きい高コストの駆動手段を用いることなく、温度上昇による駆動手段の破壊を防止することができる。この結果、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができる。
また、サブフィールドごとのサブフィールド画像信号から駆動手段の温度を推定しているので、階調表示を行う場合に、実際に駆動される状態に応じて駆動手段の温度を高精度に推定することができる。
さらに、アドレス電極を駆動する駆動手段の温度上昇を抑制することができるので、プラズマディスプレイ装置の中で特に消費電力の大きいアドレス電極を駆動する駆動手段を温度上昇による破壊から保護することができ、プラズマディスプレイ装置の信頼性を向上することができる。
また、表示部が複数のブロックに分割され、ブロックごとに温度推定値を求めているので、温度上昇による駆動手段の破壊を確実に防止することができる。
【0014】
)第の発明
の発明に係るプラズマディスプレイ装置は、第1または第2の発明に係るプラズマディスプレイ装置の構成において、温度推定手段は、表示部の画素間でサブフィールド画像信号の各データを論理演算し、演算結果の総和を基に温度推定値を求めるものである。
【0015】
この場合、表示部の画素間でサブフィールド画像信号の各データを論理演算し、演算結果の総和を基に温度推定値を求めているので、R、G、Bの各画素ごとに市松模様となる画像のような消費電力が大きくなる画像に基づいて温度推定値を求めることができ、駆動手段の温度を画像信号から高精度に求めることができる。
【0016】
)第の発明
の発明に係るプラズマディスプレイ装置は、第の発明に係るプラズマディスプレイ装置の構成において、温度推定手段は、演算結果の総和をフィールドごとに積分するとともに、積分した値から駆動手段の放熱量を減算して温度推定値を求めるものである。
【0017】
この場合、演算結果の総和をフィールドごとに積分するとともに、積分した値から駆動手段の放熱量を減算して温度推定値を求めているので、放熱量も含めて蓄熱による温度上昇を求めることができ、より正確に温度推定値を求めることができる。
【0018】
(5)第5の発明
第5の発明に係る表示装置の駆動方法は、マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部と、表示部内の選択されたアドレス電極を駆動する駆動手段とを備え、入力される画像信号に応じて画像を表示するプラズマディスプレイ装置の駆動方法であって、入力される画像信号の1フィールドを複数のサブフィールドに分割し、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するステップと、サブフィールド画像信号から駆動手段の温度に対応する温度推定値をブロックごとに推定するステップと、温度推定値に応じて入力される画像信号を駆動手段の温度上昇を抑制する画像信号に変換するステップと、変換されたサブフィールド画像信号に応じて駆動手段により表示部内の選択されたアドレス電極を駆動するステップとを含むものである。
【0019】
本発明に係る表示装置の駆動方法においては、入力される画像信号の1フィールドが複数のサブフィールドにサブフィールド変換手段により分割され、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号がサブフィールドごとのサブフィールド画像信号に変換される。サブフィールド画像信号から駆動手段の温度に対応する温度推定値がブロックごとに推定され、推定された温度推定値に応じて入力される画像信号が駆動手段の温度上昇を抑制する画像信号に変換される。サブフィールド画像信号に応じて表示部内の選択されたアドレス電極が駆動される。
【0020】
このように、サブフィールド画像信号から駆動手段の温度に対応する温度推定値を推定しているので、温度検出手段を設けることなく、駆動手段の温度を求めることができる。また、温度推定値に応じて駆動手段の温度上昇を抑制するように入力される画像信号が変換されるので、許容損失の大きい高コストの駆動手段を用いることなく、温度上昇による駆動手段の破壊を防止することができる。この結果、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができる。
【0021】
また、サブフィールドごとのサブフィールド画像信号から駆動手段の温度を推定しているので、階調表示を行う場合に、実際に駆動される状態に応じて駆動手段の温度を高精度に推定することができる。
【0022】
さらに、アドレス電極を駆動する駆動手段の温度上昇を抑制することができるので、プラズマディスプレイ装置の中で特に消費電力の大きいアドレス電極を駆動する駆動手段を温度上昇による破壊から保護することができ、プラズマディスプレイ装置の信頼性を向上することができる。
【0023】
また、表示部が複数のブロックに分割され、ブロックごとに温度推定値を求めているので、温度上昇による駆動手段の破壊を確実に防止することができる。
【0024】
(6)第6の発明
第6の発明に係る表示装置の駆動方法は、マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部と、表示部内の選択されたアドレス電極を駆動する駆動手段とを備え、入力される画像信号に応じて画像を表示するプラズマディスプレイ装置の駆動方法であって、入力される画像信号の1フィールドを複数のサブフィールドに分割し、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するステップと、サブフィールド画像信号から駆動手段の温度に対応する温度推定値をブロックごとに推定するステップと、温度推定値に応じてサブフィールド画像信号を駆動手段の温度上昇を抑制するサブフィールド画像信号に変換するステップと、温度上昇を抑制するサブフィールド画像信号に応じて駆動手段により表示部内の選択されたアドレス電極を駆動するステップとを含むものである。
【0025】
本発明に係るプラズマディスプレイ装置においては、入力される画像信号の1フィールドが複数のサブフィールドにサブフィールド変換手段により分割され、サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号がサブフィールドごとのサブフィールド画像信号に変換される。サブフィールド画像信号から駆動手段の温度に対応する温度推定値がブロックごとに推定され、推定された温度推定値に応じて変換されたサブフィールド画像信号が駆動手段の温度上昇を抑制するサブフィールド画像信号に変換される。温度上昇を抑制するサブフィールド画像信号に応じて表示部内の選択されたアドレス電極が駆動される。
【0026】
このように、サブフィールド画像信号から駆動手段の温度に対応する温度推定値を推定しているので、温度検出手段を設けることなく、駆動手段の温度を求めることができる。また、温度推定値に応じて駆動手段の温度上昇を抑制するようにサブフィールド画像信号が変換されるので、許容損失の大きい高コストの駆動手段を用いることなく、温度上昇による駆動手段の破壊を防止することができる。この結果、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができる。
【0027】
また、サブフィールドごとのサブフィールド画像信号から駆動手段の温度を推定しているので、階調表示を行う場合に、実際に駆動される状態に応じて駆動手段の温度を高精度に推定することができる。
【0028】
さらに、アドレス電極を駆動する駆動手段の温度上昇を抑制することができるので、プラズマディスプレイ装置の中で特に消費電力の大きいアドレス電極を駆動する駆動手段を温度上昇による破壊から保護することができ、プラズマディスプレイ装置の信頼性を向上することができる。
【0029】
また、表示部が複数のブロックに分割され、ブロックごとに温度推定値を求めているので、温度上昇による駆動手段の破壊を確実に防止することができる
【0041】
【発明の実施の形態】
以下、本発明に係るプラズマディスプレイ装置の一例としてAC型プラズマディスプレイ装置について説明する。
【0042】
まず、本発明の参考形態によるプラズマディスプレイ装置について説明する。図1は、本発明の参考形態によるプラズマディスプレイ装置の構成を示すブロック図である。
【0043】
図1に示すプラズマディスプレイ装置は、画像信号制御器1、画像−サブフィールド対応付け器2、サブフィールド処理器3、温度推定器4、走査・維持駆動回路5、データ駆動回路6およびプラズマディスプレイパネル7を備える。
【0044】
画像信号制御器1には、垂直同期信号および水平同期信号を含む画像信号VDが入力される。画像信号制御器1は、入力された画像信号VDを温度推定器4から出力される温度推定値TEに応じてフィルタリングした画像信号VFを画像−サブフィールド対応付け器2へ出力する。
【0045】
画像−サブフィールド対応付け器2は、1フィールドを複数のサブフィールドに分割して表示するため、1フィールドの画像信号VFからサブフィールドごとの画像データであるサブフィールド画像データSBを作成し、サブフィールド処理器3および温度推定器4へ出力する。
【0046】
サブフィールド処理器3は、サブフィールド画像データSB等からデータドライバ駆動制御信号、スキャンドライバ駆動制御信号およびサステインドライバ駆動制御信号を作成し、データドライバ駆動制御信号をデータ駆動回路6へ出力するとともに、スキャンドライバ駆動制御信号およびサステインドライバ駆動制御信号を走査・維持駆動回路5へ出力する。
【0047】
温度推定器4は、サブフィールド画像データSBを用いてデータ駆動回路6の温度に対応する温度推定値TEを演算し、温度推定値TEを画像信号制御器1へ出力する。
【0048】
プラズマディスプレイパネル7は、複数のアドレス電極(データ電極)、複数のスキャン電極(走査電極)および複数のサステイン電極(維持電極)を含む。
複数のアドレス電極は、画面の垂直方向に配列され、複数のスキャン電極および複数のサステイン電極は、画面の水平方向に配列されている。また、複数のサステイン電極は共通に接続されている。アドレス電極、スキャン電極およびサステイン電極の各交点には、放電セルが形成され、各放電セルが画面上の画素を構成する。
【0049】
データ駆動回路6は、プラズマディスプレイパネル7の複数のアドレス電極に接続されている。走査・維持駆動回路5は、プラズマディスプレイパネル7の複数のスキャン電極およびサステイン電極に接続されている。
【0050】
データ駆動回路6は、データドライバ駆動制御信号に従い、初期化期間において、壁電荷を調整するための初期化パルスをアドレス電極に印加する。走査・維持駆動回路5は、スキャンドライバ駆動制御信号およびサステインドライバ駆動制御信号に従い、初期化期間において、壁電荷を調整するための初期化パルスをスキャン電極およびサステイン電極に印加する。これにより、各電極の壁電荷が、以降のアドレス放電および維持放電に適した壁電荷に調整される。
【0051】
データ駆動回路6は、データドライバ駆動制御信号に従い、書き込み期間において、画像データに応じてプラズマディスプレイパネル7の該当するアドレス電極に書き込みパルスを印加する。走査・維持駆動回路5は、スキャンドライバ駆動制御信号に従い、書き込み期間において、シフトパルスを垂直走査方向にシフトしつつ複数のスキャン電極に書き込みパルスを順に印加する。これにより、該当する放電セルにおいてアドレス放電が行われる。
【0052】
走査・維持駆動回路5は、スキャンドライバ駆動制御信号に従い、維持期間において、周期的な維持パルスをプラズマディスプレイパネル7の複数のスキャン電極に印加するとともに、サステインドライバ駆動制御信号に従い、複数のサステイン電極にスキャン電極の維持パルスに対して180度位相のずれた維持パルスを同時に印加する。これにより、該当する放電セルにおいて維持放電が行われ、各画素がサブフィールドごとに発光または非発光される。
【0053】
上記のようにして、図1に示すプラズマディスプレイ装置では、階調表示駆動方式として、ADS(Address Display-Period Separation :アドレス・表示期間分離)方式が用いられる。ADS方式では、1フィールドを複数のサブフィールドに時間的に分割し、各サブフィールドは、初期化期間、書き込み期間、維持期間等に分離され、初期化期間において各サブフィールドのセットアップ処理が行われ、書き込み期間において点灯される放電セルを選択するためのアドレス放電が行われ、維持期間において表示のための維持放電が行われる。
【0054】
図2は、図1に示す温度推定器4の構成を示すブロック図である。図2に示す温度推定器4は、周辺画素間演算回路41、加算回路42および温度推定回路43を含む。
【0055】
周辺画素間演算回路41は、各サブフィールドにおいて、隣接する画素間でサブフィールド画像データSBの排他的論理和を演算し、サブフィールドごとの演算結果を加算回路42へ出力する。加算回路42は、入力される各サブフィールドの演算結果を順次加算し、1フィールド分の演算結果の総和を加算値SDとして温度推定回路43へ出力する。温度推定回路43は、加算値SDを積分するとともに放熱分を減算して温度推定値TEを出力する。
【0056】
図3は、図2に示す周辺画素間演算回路41および加算回路42による演算処理を説明するための模式図である。図3に示す例では、説明を容易にするためにプラズマディスプレイパネル7を簡略化し、アドレス電極として6本のアドレス電極R1,G1,B1,R2,G2,B2が配列されるとともに、スキャン電極およびサステイン電極として4本のライン1〜4が配列され、各交点に放電セルSEが形成されている例を示している。また、各放電セルSE中の「○」は、当該放電セルのサブフィールド画像データSBの値が1であることを示すとともに、当該放電セルが点灯していることを示し、「×」は、当該放電セルのサブフィールド画像データSBの値が0であることを示すとともに、当該放電セルが非点灯であることを示している。
【0057】
図3に示すように各放電セルの点灯/非点灯の状態がサブフィールド画像データSBにより決定されている場合、周辺画素間演算回路41は、まず、左右画素間のデータの排他的論理和を順次演算する。例えば、ライン1とアドレス電極R1とにより形成される放電セルのデータとライン1とアドレス電極G1により形成される右隣の放電セルのデータとの排他的論理和は1となり、以降同様に左右画素間のデータの排他的論理和が順次演算され、ライン1では、1,1,1,1,1が演算され、左右画素間の演算結果の合計は5となる。また、同様にライン2〜4の左右画素間の演算結果の合計は、2,3,2となる。
【0058】
また、周辺画素間演算回路41は、上下画素間のデータの排他的論理和を上記と同様に演算し、例えば、ライン1とアドレス電極R1とにより形成される放電セルのデータとライン2とアドレス電極R1とにより形成される放電セルのデータとの排他的論理和は0となり、以降同様に上下画素間のデータの排他的論理和が順次演算され、ライン1とライン2との上下画素間では、0,1,1,0,0,1が演算され、上下画素間の演算結果の合計は3となる。また、同様に、ライン2とライン3との上下画素間の演算結果の合計は4となり、ライン3の各画素とライン4の各画素との上下画素間の演算結果の合計は3となる。
【0059】
上記のようにして、周辺画素間演算回路41では、サブフィールド画像データSBから左右および上下の画素間のデータの排他的論理和が演算され、図3に示す例では、周辺画素との排他的論理和の合計は22となる。
【0060】
図4は、ADS方式における各サブフィールドの書き込み期間での演算結果の一例を示す図である。図4に示す例では、1フィールドが4つのサブフィールドSF1〜SF4に分割され、サブフィールドSF1の表示画像が図3に示す表示パターンを有する画像の場合、サブフィールドSF1の書き込み期間の書き込みパルスに対する演算結果の合計は22となり、以降同様に各サブフィールドSF2〜SF4の書き込み期間の書き込みパルスに対する演算結果は、例えば、15,10,5となる。これらの演算結果が加算回路42により順次加算され、図4に示す例では、1フィールド期間中の演算結果の合計値が52となり、この値が加算値SDとして温度推定回路43へ出力される。
【0061】
上記のように、周辺画素間演算回路41が書き込み期間にデータ駆動回路6により印加される書き込みパルスの隣接画素間のデータの排他的論理和を順次演算し、加算回路42が1フィールド分の演算結果を加算することにより、データ駆動回路6の温度上昇に対応した温度推定値を演算するためのデータを得ることができる。
【0062】
なお、周辺画素間演算回路41による周辺画素間での排他的論理和演算は、上記のように左右および上下の画素間での演算に特に限定されず、左右の画素間での排他的論理演算和を演算せずに、上下の画素間での排他的論理和のみを演算するようにしてもよい。
【0063】
すなわち、温度推定器4により推定される温度推定値は、データ駆動回路6の温度に対応する値であり、データ駆動回路6はプラズマディスプレイパネル7の垂直方向に配列されるアドレス電極を駆動するための駆動回路であるため、各アドレス電極ごとに駆動電圧の変化を検出することができれば、ほぼデータ駆動回路の温度上昇を推定することができる。
【0064】
したがって、演算処理を簡略化するため、図5に示すように上下画素間での排他的論理和のみを行い、当該データを上記と同様に処理することにより温度推定値を求めてもよい。図5に示す例では、ライン1とライン2との間の演算結果の合計は3となり、ライン2とライン3との演算結果の合計は4となり、ライン3とライン4との演算結果の合計は3となり、これらの合計値は10となる。
【0065】
この場合、各サブフィールドでの演算結果は、例えば、図6に示すように、サブフィールドSF1の演算結果が10となり、サブフィールドSF2〜SF4の演算結果が7,5,3となり、1フィールド期間中の演算結果の合計が25となる。
【0066】
図7は、図2に示す温度推定回路43の構成を示すブロック図である。図7に示す温度推定回路43は、加算器44、メモリ45および放熱分算出回路46を含む。
【0067】
加算器44は、加算回路42により加算された1フィールド分の加算値SDと放熱分算出回路46の出力とを加算し、メモリ45へ出力する。メモリ45は、加算器44の出力を1フィールドごとに記憶し、記憶している値を温度推定値TEとして出力するとともに、放熱分算出回路46へ出力する。放熱分算出回路46は、メモリ45から出力される温度推定値TEに(1−α)を乗算して温度推定値TEから放熱分を減算した値を加算器44へ出力する。ここで、αは、放熱分に相当し、0<α<1を満たす所定の係数である。
【0068】
上記の処理により、1フィールドごとに温度推定値TEから放熱分を減算した値が、加算回路42から出力される1フィールド中の温度上昇に対応した加算値SDに加算され、加算結果が温度推定値TEとして出力される。
【0069】
図8は、図1に示す画像信号制御器1の構成を示すブロック図である。図8に示す画像信号制御器1は、遅延器11〜13、減算器14、乗算器15〜17、加算器18、セレクタ19、比較器20,21および判定回路22を含む。
【0070】
遅延器11〜13は、1画素遅延器であり、1画素分ずつ画像信号VDを遅延し、1画素分遅延された出力が減算器14および乗算器15に出力され、2画素分遅延された出力が減算器14、乗算器16およびセレクタ19に出力され、3画素分遅延された出力が乗算器17へ出力される。
【0071】
乗算器15は、遅延器11の出力に(1−a)/2を乗算し、乗算結果を加算器18へ出力する。乗算器16は、遅延器12の出力にaを乗算し、乗算結果を加算器18へ出力する。乗算器17は、遅延器13の出力に(1−a)/2を乗算し、乗算結果を加算器18へ出力する。
【0072】
また、乗算器15〜17には、温度推定値TEが入力されており、乗算器15〜17は、温度推定値TEが大きくなるほど係数a(1/2≦a≦1)を小さい値に設定する。加算器18は、乗算器15〜17の各出力を加算し、加算結果をセレクタ19へ出力する。
【0073】
上記の遅延器11〜13、乗算器15〜17および加算器18により表示画面の水平方向におけるローパスフィルタが構成され、温度推定値TEが大きくなるほど、ローパスフィルタの帯域が狭くなり、隣接する画素間のデータが平均化されて隣接する画素間で変化の少ない画像信号がセレクタ19へ出力される。
【0074】
比較器20は、温度推定値TEと予め設定された第1基準値Vset1とを比較し、温度推定値TEが第1基準値Vset1以上の場合にハイレベルの比較結果信号を判定回路22へ出力し、その他の場合にローレベルの比較結果信号を判定回路22へ出力する。
【0075】
減算器14は、遅延器11の出力と遅延器12の出力との差を演算し、減算結果を比較器21へ出力する。
【0076】
比較器21は、減算器14の出力と予め設定された第2基準値Vset2とを比較し、減算器14の出力が第2基準値Vset2以上の場合にハイレベルの比較結果信号を判定回路22へ出力し、その他の場合にローレベルの比較結果信号を判定回路22へ出力する。したがって、減算器14の出力が第2基準値Vset1以上の場合すなわち隣接する画素間で画像信号の変化が大きい場合に、比較器21は、比較結果信号としてハイレベルの比較結果信号を判定回路22へ出力する。
【0077】
判定回路22は、比較器20,21の比較結果信号がともにハイレベルの場合に、セレクタ19に加算器18の出力を選択し、その他の場合に遅延器12の出力を選択するように指示する。セレクタ19は、画像の変化が大きくかつ温度推定値TEが高い場合にのみ、加算器18の出力すなわちローパスフィルタにより平均化された画像信号を画像信号VFとして出力し、その他の場合にフィルタリングされていない画像信号VDを画像信号VFとしてそのまま出力する。
【0078】
このように、画像信号制御器1では、画像の変化が大きくかつ温度推定値TEが高い場合、ローパスフィルタにより画素間の信号レベルの変化を少なくした画像信号に変換しているので、データ駆動回路6の消費電力を低減することができるとともに、通常の画像の場合、当該画像をそのまま出力しているので、画質の劣化を防止することができる。
【0079】
なお、上記の例では、遅延器11〜13として1画素遅延器を用いたが、1H(1水平走査期間)遅延器を用いて表示画面の垂直方向におけるローパスフィルタを構成し、垂直方向の画素間の信号レベルの変化を少なくするようにしてもよく、また、1画素遅延器と1H遅延器との両方を組み合わせて用いて、水平方向および垂直方向におけるローパスフィルタを用いて画素間の信号変化を少なくするようにしてもよい。
【0080】
また、比較器20,21の両比較結果信号がハイレベルの場合すなわち画像の変化が大きくかつ温度推定値TEが大きい場合に加算器18の出力を選択するようにしたが、比較器20または比較器21のいずれかの比較結果信号がハイレベルの場合すなわち画像の変化が大きい場合または温度推定値TEが大きい場合に加算器18の出力を選択するようにしてもよい。
【0081】
参考形態において、プラズマディスプレイパネル7が表示部に相当し、データ駆動回路6が駆動手段に相当し、温度推定器4が温度推定手段に相当し、画像信号制御器1が画像信号変換手段に相当する。また、画像−サブフィールド対応付け器2がサブフィールド変換手段に相当し、データ駆動回路6がアドレス電極駆動手段に相当する。
【0082】
次に、上記のようにして画像信号VDをフィルタリングして画像信号VFに変換した場合の効果について説明する。図9は、プラズマディスプレイパネルに表示される画像の一例を示す図である。
【0083】
図9では、各放電セルSE内に示す数値が輝度を示している。図9に示す例では、R,G,Bの各画素を一組とした画素ごとに輝度が15または0となる市松模様のパターンを示しており、この画面の平均輝度は7.5である。
【0084】
この場合、例えば、図4に示すように、4つのサブフィールドから1フィールドが構成され、各サブフィールドの重み付けが1,2,4,8の場合、各サブフィールドでの書き込みパターンは、図10に示す書き込みパターンとなる。すなわち、全てのサブフィールドでの書き込みパターンが市松模様となり、各アドレス電極R1,G1,B1,R2,G2,B2の書き込みパターンが0と1と交互に繰り返し、隣接する画素間でのサブフィールド画像データの変化が最も大きくなる。したがって、図10に示す書き込みパターンをそのまま用いた場合、パネルへの充放電電力が増大するため、消費電力が大きくなり、データ駆動回路6の温度が上昇する。
【0085】
一方、本参考形態では、図9に示す画像を表示する画像信号VDが画像信号制御器1へ入力された場合、図11に示す画像を表示する画像信号VFに変換される。すなわち、画像信号制御器1により隣接する画素間で輝度が平均化され、例えば、全ての画素の輝度が7となり、画面の平均輝度は7となる。
【0086】
この場合、サブフィールドSF1〜SF3の書き込みパターンは図12に示すパターンとなり、サブフィールドSF4の書き込みパターンは図13に示す書き込みパターンとなる。すなわち、サブフィールドSF1〜SF3では、全ての放電セルが点灯されて書き込みパルスの電圧変化の回数が少なくなり、サブフィールドSF4では、全ての放電セルが非点灯されて書き込みパルスの電圧変化の回数が少なくなる。したがって、全てのサブフィールドで書き込みパルスの電圧変化の回数が少なくなるので、パネルへの充放電電力が減少し、データ駆動回路6の消費電力が小さくなり、データ駆動回路6の温度上昇を抑制することができる。
【0087】
このように、本参考形態では、画像信号からデータ駆動回路6の温度に対応する温度推定値TEを推定しているので、温度センサーを設けることなく、データ駆動回路6の温度を求めることができるとともに、温度推定値TEおよび隣接画素間での画像信号の変化に応じて画像信号をフィルタリングして画像信号の輝度を平均化しているので、許容損失の大きい高コストのデータドライバLSIを用いることなく、温度上昇によるデータ駆動回路6の破壊を防止することができる。
【0088】
次に、本発明の第の実施の形態によるプラズマディスプレイ装置について説明する。図14は、本発明の第の実施の形態によるプラズマディスプレイ装置の構成を示すブロック図である。
【0089】
図14に示すプラズマディスプレイ装置と図1に示すプラズマディスプレイ装置とで異なる点は、画像信号制御器1および温度推定器4が画像信号制御器1aおよび温度推定器4aに変更された点であり、その他の点は図1に示すプラズマディスプレイ装置と同様であるので、同一部分には同一符号を付し、以下異なる点についてのみ詳細に説明する。
【0090】
温度推定器4aは、データ駆動回路6を構成するデータドライバLSIごとにプラズマディスプレイパネル7を複数のブロックに分割し、ブロックごとすなわちデータドライバLSIごとに演算した温度推定値TEnを画像信号制御器1aへ出力する。
【0091】
画像信号制御器1aは、各ブロックごとに温度推定値TEnに応じて画像信号VDにフィルタリング処理を行い、ブロックごとにデータドライバLSIの温度上昇を抑制する画像信号VFを画像−サブフィールド対応付け器2へ出力する。
【0092】
本実施の形態において、温度推定器4aが温度推定手段に相当し、画像信号制御器1aが画像信号変換手段に相当し、その他の点は第1の実施の形態と同様である。
【0093】
図15は、図14に示す温度推定器4aの構成を示すブロック図である。図15に示す温度推定器4aは、ブロック分割回路40、4つの周辺画素間演算回路41a〜41d、4つの加算回路42a〜42dおよび4つの温度推定回路43a〜43dを含む。
【0094】
本実施の形態では、データ駆動回路6を構成するデータドライバLSIが4つあり、各データドライバLSIが駆動するアドレス電極を含む領域を一つのブロックとしてプラズマディスプレイパネル7が4つに分割され、温度推定器4aは、以下のようにして、4つのブロックのデータドライバLSIの温度に対応する4つの温度推定値TE1〜TE4を算出する。なお、上記の例では、分割数はこの例に特に限定されず、種々の分割数を用いることができる。
【0095】
ブロック分割回路40は、入力されるサブフィールド画像データSBをブロックごとに分割し、対応するブロックに対して設けられた周辺画素間演算回路41a〜41dへ出力する。
【0096】
周辺画素間演算回路41a、加算回路42aおよび温度推定回路43aは、4分割されたブロックのうち第1ブロックに対して設けられた回路であり、図2に示す周辺画素間演算回路41、加算回路42および温度推定回路43と同様に動作し、第1ブロックの温度推定値TE1を演算し、画像信号制御器1aへ出力される。
【0097】
以降同様に、周辺画素間演算回路41b、加算回路42bおよび温度推定回路43bにより第2ブロックの温度推定値TE2が演算され、周辺画素間演算回路41c、加算回路42cおよび温度推定回路43cにより第3ブロックの温度推定値TE3が演算され、周辺画素間演算回路41d、加算回路42dおよび温度推定回路43dにより第4ブロックの温度推定値TE4が演算され、それぞれ画像信号制御器1aへ出力される。
【0098】
画像信号制御器1aは、各ブロックごとに図8に示す画像信号制御器1と同様に温度推定値TE1〜TE4に応じてフィルタリング処理を行い、温度推定値が高くかつ画像の変化の大きい場合に各ブロックごとに画像信号VDを隣接する画素間のデータが平均化された画像信号VFに変換して出力する。
【0099】
このようにして、本実施の形態では、データ駆動回路6を構成するデータドライバLSIごとに温度推定値に応じて画像信号が変換され、各データドライバLSIの温度上昇を抑制し、データドライバLSIを個別に温度上昇による破壊から保護することができる。
【0100】
なお、プラズマディスプレイパネル7をデータ駆動回路6を構成するデータドライバLSIごとに分割し、各データドライバLSIの温度に対応する温度推定値を算出した場合のデータ駆動回路6の温度上昇を抑制する方法は、上記の例に特に限定されず、種々の変更が可能である。例えば、以下に説明するように各ブロックの温度推定値を求め、求めた温度推定値の中から最大値を検出し、検出された最大値に基づき画像信号を変換するようにしてもよい。
【0101】
図16は、温度推定器の他の例の構成を示すブロック図である。図16に示す温度推定器4bと図15に示す温度推定器4aとで異なる点は、最大値検出回路47が付加された点であり、その他の点は図15に示す温度推定器4aと同様であるので同一部分には同一符号を付し、以下異なる部分についてのみ詳細に説明する。
【0102】
図16に示すように、最大値検出回路47は、温度推定回路43a〜43dから出力される各ブロックの温度推定値を受け、4つの温度推定値から最大値を検出し、検出した最大値を温度推定値TEとして出力する。
【0103】
したがって、図16に示す温度推定器4bを図1に示すプラズマディスプレイ装置に用いることにより、最も温度が上昇したデータドライバLSIを基準に各データドライバLSIの温度上昇を抑制することができ、複数のデータドライバLSIがある場合でも、全てのデータドライバLSIを温度上昇による破壊から確実に保護することができる。
【0104】
次に、本発明の第の実施の形態によるプラズマディスプレイ装置について説明する。図17は、本発明の第の実施の形態によるプラズマディスプレイ装置の構成を示すブロック図である。
【0105】
図17に示すプラズマディスプレイ装置と図1に示すプラズマディスプレイ装置とで異なる点は、画像信号制御器1が画像信号制御器1bに変更された点と、画像−サブフィールド対応付け器2、画像信号制御器1bおよび温度推定器4の接続が変更された点であり、その他の点は図1に示したプラズマディスプレイ装置と同様であるので、同一部分には同一符号を付し、以下異なる点についてのみ詳細に説明する。
【0106】
画像−サブフィールド対応付け器2には、垂直同期信号および水平同期信号を含む画像信号VDが入力される。画像−サブフィールド対応付け器2は、1フィールドの画像信号VDからサブフィールドごとの画像データであるサブフィールド画像データSBを作成し、画像信号制御器1bおよび温度推定器4へ出力する。
【0107】
画像信号制御器1bは入力されたサブフィールド画像データSBを温度推定器4から出力される温度推定値TEに応じてサブフィールド画像信号の複数ビットの一部分を周辺の画素と同一化させたサブフィールド画像データSBCをサブフィールド処理器3へ出力する。
【0108】
温度推定器4は、サブフィールド画像データSBを用いてデータ駆動回路6の温度に対応する温度推定値TEを演算し、温度推定値TEを画像信号制御器1bへ出力する。
【0109】
本実施の形態において、画像信号制御器1bが画像信号変換手段に相当し、その他の点は第1の実施の形態と同様である。
【0110】
図18は、図17に示す画像信号制御器1bの構成を示すブロック図である。
図18に示す画像信号制御器1bは、加算器11b、遅延器12b,13b、比較器14b,16b、下位ビット置換器15b、およびセレクタ17bを含む。
【0111】
加算器11bは、サブフィールド画像データSB、および下位ビット置換器15bから出力される下位ビットが置換された値と元の値との差のデータERを加算し、加算結果を遅延器12bへ出力する。遅延器12b,13bは1H(1水平走査期間)遅延器であり、1H分づつ画像データを遅延し、1H分遅延された出力が比較器14bおよび下位ビット置換器15bに出力される。
【0112】
比較器14bは、遅延器12bの出力と遅延器13bの出力とを比較し、比較結果を下位ビット置換器15bへ出力する。下位ビット置換器15bは、比較器14bの比較結果および温度推定値TEの値に応じて、1H遅延器12bおよび1H遅延器13bの出力のうち値の大きい方の下位のサブフィールドデータを値の小さい方の下位のサブフィールドデータで置換し、置換されたサブフィールド画像データをセレクタ17bへ出力する。
【0113】
下位ビット置換器15bは、温度推定値TEの値が大きいほど置換するサブフィールドデータのビット数を大きくして、隣接する画像データの同一化させるビット数を多くして、画素間で変化の少ないサブフィールド画像データをセレクタ17bへ出力する。
【0114】
比較器16bは、温度推定値TEと予め設定された第3の基準値Vset3とを比較し、温度推定値TEが第3の基準値Vset以上の場合に、セレクタ17bに下位ビット置換器15bの出力を選択し、その他の場合に遅延器13bの出力を選択するように指示する。
【0115】
セレクタ17bは、比較器16bの指示にしたがって、遅延器13bの出力と下位ビット置換器15bの出力とを切り換えて、サブフィールド画像データSBCを出力する。
【0116】
このように、画像信号制御器1bでは、温度推定値TEが高い場合にサブフィールド画像信号の複数ビットの一部分を周辺の画素と同一化させたサブフィールド画像データに変換しているので、データ駆動回路6の消費電力を低減するとともに、通常の画像の場合、当該画像をそのまま出力しているので、画質の劣化を防止することができる。
【0117】
なお、上記の例では、遅延器12b,13bとして、1H遅延器を用て垂直方向の周辺画素同士でサブフィールド画像信号の複数ビットの一部分を同一化したが、1画素遅延器を用いて水平方向の周辺画素同士でサブフィールド画像信号の複数ビットの一部分を同一化するようにしてもよく、また、1H遅延器と1画素遅延器との両方を組み合わせて用いて、水平方向および垂直方向の周辺画素同士で画像の一部のビットを同一化して画素間の信号変化を少なくするようにしてもよい。
【0118】
次に、上記のようにして、周辺画素同士でサブフィールド画像信号の複数ビットの一部分を同一化した場合の効果について説明する。図19は、プラズマディスプレイパネルに表示される画像の一例を示す図である。
【0119】
図19では、各放電セルSE内に示す数値が輝度を示している。図19に示す例は、R,G,Bの各画素を一組とした画素ごとの輝度が3または12となる市松模様のパターンを示しており、この画面の平均輝度は7.5である。
【0120】
この場合、たとえば図4と同様に4つのサブフィールドから1フィールドが構成され、各サブフィールドの重み付けが1,2,4,8の場合、サブフィールドSF1,SF2の書き込みパターンは図20に示すパターンになり、サブフィールドSF3,SF4の書き込みパターンは図21に示すパターンになる。すなわち、SF1,SF2とSF3,SF4で書き込みパターンは異なるものの書き込みパターンが市松模様となり、各アドレス電極R1,G1,B1,R2,G2,B2の書き込みパターンが0と1と交互に繰り返し、隣接する画素間でサブフィールド画像データの変化が最も大きくなる。したがって、図20および図21に示す書き込みパターンをそのまま用いた場合、パネルへの充放電電力が増大するため、消費電力が大きくなり、データ駆動回路6の温度が上昇することになる。
【0121】
一方、本実施の形態では、この時、温度推定器4からの出力である温度推定値TEが大きくなり、画像信号制御器1bにおいて、下側に隣接した画素と比較されて、値の大きな画素の場合、サブフィールド画像データの下位2ビットが置換され、置換によって生じた差がさらに下側に加算される。すなわち、図19に示すサブフィールド画像データSBが画像信号制御器1bへ入力された場合、図22に示すサブフィールド画像データに変換される。この画面の平均輝度は、7.9となり、図19に示す元の市松パターンとほぼ同じ明るさを表現できる。
【0122】
これは、画像信号制御器1bの以下のような働きによる。まず、R1,G1,B1の画素においては、ライン1のデータ(値3)はライン2(値12)のデータの値と比較され、ライン1の方が小さいためそのまま3が出力される。次に、ライン2のデータ(値12)はライン3(値3)のデータと比較され、ライン2の方が大きいためライン2の下位2ビットがライン3の下位2ビットに置換され、15が出力される。このとき、ライン2の元の値12との差3を補正するために−3がライン4へ加算される。よって、ライン4(元の値12)の値は12−3で9となる。次に、ライン3(値3)のデータはライン4のデータ(値9)と比較され、ライン3の方が小さいためそのまま3が出力される。次に、ライン4のデータ(値9)はライン5(値3)のデータと比較されライン4の方が大きいためライン4の下位2ビットがライン5の下位2ビットに置換され11が出力される。ライン5下側に比較されるラインがないため、そのまま3が出力される。
【0123】
また、R2,G2,B2の画素においては、ライン1のデータ(値12)はライン2(値3)のデータの値と比較され、ライン1の方が大きいためライン1の下位2ビットがライン2の下位2ビットに置換され、15が出力される。このとき、ライン1の元の値12との差3を補正するために−3がライン3へ加算される。よって、ライン3(元の値12)の値は12−3で9となる。次に、ライン2(値3)のデータはライン3のデータ(値9)と比較され、ライン2の方が小さいためそのまま3が出力される。次に、ライン3のデータ(値9)はライン4(値3)のデータと比較されライン3の方が大きいためライン3の下位2ビットがライン4の下位2ビットに置換され11が出力される。次に、ライン4(値3)のデータはライン5のデータ(値12)と比較され、ライン4の方が小さいためそのまま3が出力される。ライン5下側に比較されるラインがないため、そのまま12が出力される。
【0124】
この例の場合、置換されたことによるもとのデータのとの差を補正する値が加算器11bで下側のラインに加算されている。このため、置換による明るさの誤差を周辺の画素で正確に補正することができる。また、この例では、サブフィールドの重み付けが2のべき乗となっているので、置換された値の誤差をそのまま加算しているが、サブフィールドの重み付けが2のべき乗でなくてもよく、また置換による誤差を補正する値も必ずしも正確でなくてもよい。おおむね近い値で、置換された値ともとの値の差に対応した値を補正するのであれば、置換による明るさの誤差を周辺の画素で補正する効果を十分得ることができる。
【0125】
図22に示すサブフィールド画像データをパネルに表示する場合、サブフィールドSF1、SF2の書き込みパターンは、図23に示すパターンとなり、サブフィールドSF3の書き込みパターンは図24に示すパターンとなり、サブフィールドSF4の書き込みパターンは図25に示すパターンとなる。すなわち、サブフィールドSF1、SF2では、全ての放電セルが点灯されて書き込みパルスの電圧変化の回数がなくなり、サブフィールドSF3においても元の市松模様の書き込みパターンと比較すると書き込みパルスの電圧変化の回数が少なくなっている。したがって、全てのサブフィールドでの電圧変化の回数の合計が少なくなるので、パネルへの充放電電力が減少し、データ駆動回路6の消費電力が小さくなり、データ駆動回路6の温度上昇を抑制することができる。
【0126】
また、温度推定値TEによって、置換するサブフィールド画像データSBのビット数を制御することによって、データ駆動回路6の温度上昇をよりきめ細やかに抑制することができる。たとえば、温度推定値TEが小さい場合は、置換するビット数を0ビットとして、温度推定値TEがある程度大きい場合は、置換するビット数を1ビットとして、さらに温度推定値TEが大きくなった場合は、置換するビット数を2ビットとして、温度推定値TEが極めて大きくなった時に置換するビット数を3ビットとすることにより、データ駆動回路6の温度上昇をよりきめ細やかに抑制することができる。
【0127】
このように、本実施の形態では、画像信号からデータ駆動回路6の温度に対応する温度推定値TEを推定しているので、温度センサーを設けることなく、データ駆動回路6の温度を求めることができるとともに、温度推定値TEに応じて周辺の画素間でサブフィールド画像データの一部分を同一化しているので、許容損失の大きい高コストのデータドライバLSIを用いることなく、温度上昇によるデータ駆動回路6の破壊を防止することができる。
【0128】
また、本実施の形態と実施の形態を組み合わせて、各ブロックごとに温度推定値TEnを求めてもよく、また、各ブロックごとの温度推定値によって、各ブロックごとに置換するビット数を変えてもよい。そのようにすることで、複数のデータドライバLSIの内の各データドライバLSIの温度上昇を抑制し、データドライバLSIを個別に温度上昇による破壊から保護することができる。
【0129】
【発明の効果】
本発明によれば、画像信号から駆動手段の温度に対応する温度推定値を推定しているので、温度検出手段を設けることなく、駆動手段の温度を求めることができるとともに、温度推定値に応じて駆動手段の温度上昇を抑制するように画像信号が変換されるので、許容損失の大きい高コストの駆動手段を用いることなく、温度上昇による駆動手段の破壊を防止することができる。この結果、温度検出手段を設けることなく、低コストで温度上昇による駆動手段の破壊を防止することができる。
【図面の簡単な説明】
【図1】 本発明の参考形態によるプラズマディスプレイ装置の構成を示すブロック図
【図2】 図1に示す温度推定器の構成を示すブロック図
【図3】 図2に示す周辺画素間演算回路および加算回路による演算処理を説明するための模式図
【図4】 ADS方式における各サブフィールドの書き込み期間での演算結果の一例を示す図
【図5】 図2に示す周辺画素間演算回路および加算回路による他の演算処理を説明するための模式図
【図6】 ADS方式における各サブフィールドの書き込み期間での演算結果の他の例を示す図
【図7】 図2に示す温度推定回路の構成を示すブロック図
【図8】 図1に示す画像信号制御器の構成を示すブロック図
【図9】 プラズマディスプレイパネルに表示される画像の一例を示す図
【図10】 図9に示す画像を表示するための各サブフィールドにおける書き込みパターンを示す図
【図11】 図1に示すプラズマディスプレイパネルに表示される画像の一例を示す図
【図12】 図11に示す画像を表示するためのサブフィールドSF1〜SF3における書き込みパターンを示す図
【図13】 図11に示す画像を表示するためのサブフィールドSF4における書き込みパターンを示す図
【図14】 本発明の第の実施の形態によるプラズマディスプレイ装置の構成を示すブロック図
【図15】 図14に示す温度推定器の構成を示すブロック図
【図16】 温度推定器の他の例の構成を示すブロック図
【図17】 本発明の第の実施の形態によるプラズマディスプレイ装置の構成を示すブロック図
【図18】 図17に示す画像信号制御器の構成を示すブロック図
【図19】 プラズマディスプレイパネルに表示される他の画像の一例を示す図
【図20】 図19に示す画像を表示するためのサブフィールドSF1,SF2における書き込みパターンを示す図
【図21】 図19に示す画像を表示するためのサブフィールドSF3,SF4における書き込みパターンを示す図
【図22】 図19に示すプラズマディスプレイパネルに表示される画像の一例を示す図
【図23】 図22に示す画像を表示するためのサブフィールドSF1〜SF2における書き込みパターンを示す図
【図24】 図22に示す画像を表示するためのサブフィールドSF3における書き込みパターンを示す図
【図25】 図22に示す画像を表示するためのサブフィールドSF4における書き込みパターンを示す図

Claims (6)

  1. マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部に入力される画像信号に応じて画像を表示するプラズマディスプレイ装置であって、
    入力される画像信号の1フィールドを複数のサブフィールドに分割し、前記サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するサブフィールド変換手段と、
    前記表示部内の選択されたアドレス電極を駆動する駆動手段と、
    前記サブフィールド画像信号から前記駆動手段の温度に対応する温度推定値を前記ブロックごとに推定する温度推定手段と、
    前記温度推定値に応じて前記サブフィールド変換手段に入力される画像信号を前記駆動手段の温度上昇を抑制する画像信号に変換する画像信号変換手段とを備え、
    前記駆動手段は、前記サブフィールド変換手段により変換されたサブフィールド画像信号に応じて前記表示部内の選択されたアドレス電極を駆動することを特徴とするプラズマディスプレイ装置
  2. マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部に入力される画像信号に応じて画像を表示するプラズマディスプレイ装置であって、
    入力される画像信号の1フィールドを複数のサブフィールドに分割し、前記サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するサブフィールド変換手段と、
    前記表示部内の選択されたアドレス電極を駆動する駆動手段と、
    前記サブフィールド画像信号から前記駆動手段の温度に対応する温度推定値を前記ブロックごとに推定する温度推定手段と、
    前記温度推定値に応じて前記サブフィールド変換手段により変換されたサブフィールド画像信号を前記駆動手段の温度上昇を抑制するサブフィールド画像信号に変換する画像信号変換手段とを備え、
    前記駆動手段は、前記画像信号変換手段により変換されたサブフィールド画像信号に応じて前記表示部内の選択されたアドレス電極を駆動することを特徴とするプラズマディスプレイ装置
  3. 前記温度推定手段は、前記表示部の画素間で前記サブフィールド画像信号の各データを論理演算し、演算結果の総和を基に前記温度推定値を求めることを特徴とする請求項1または2記載のプラズマディスプレイ装置
  4. 前記温度推定手段は、前記演算結果の総和をフィールドごとに積分するとともに、積分した値から前記駆動手段の放熱量を減算して前記温度推定値を求めることを特徴とする請求項記載のプラズマディスプレイ装置
  5. マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部と、前記表示部内の選択されたアドレス電極を駆動する駆動手段とを備え、入力される画像信号に応じて画像を表示するプラズマディスプレイ装置の駆動方法であって、
    入力される画像信号の1フィールドを複数のサブフィールドに分割し、前記サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するステップと、
    前記サブフィールド画像信号から前記駆動手段の温度に対応する温度推定値を前記ブロックごとに推定するステップと、
    前記温度推定値に応じて前記入力される画像信号を前記駆動手段の温度上昇を抑制する画像信号に変換するステップと、
    前記変換されたサブフィールド画像信号に応じて前記駆動手段により前記表示部内の選択されたアドレス電極を駆動するステップとを含むことを特徴とするプラズマディスプレイ装置の駆動方法。
  6. マトリックス状に配列された複数の画素からなるとともに複数のブロックに分割される表示部と、前記表示部内の選択されたアドレス電極を駆動する駆動手段とを備え、入力される画像信号に応じて画像を表示するプラズマディスプレイ装置の駆動方法であって、
    入力される画像信号の1フィールドを複数のサブフィールドに分割し、前記サブフィールドごとに選択された画素を駆動して階調表示を行うために、1フィールドの画像信号をサブフィールドごとのサブフィールド画像信号に変換するステップと、
    前記サブフィールド画像信号から前記駆動手段の温度に対応する温度推定値を前記ブロックごとに推定するステップと、
    前記温度推定値に応じて前記サブフィールド画像信号を前記駆動手段の温度上昇を抑制するサブフィールド画像信号に変換するステップと、
    前記温度上昇を抑制するサブフィールド画像信号に応じて前記駆動手段により前記表示部内の選択されたアドレス電極を駆動するステップとを含むことを特徴とするプラズマディスプレイ装置の駆動方法。
JP2001263125A 2000-09-01 2001-08-31 プラズマディスプレイ装置およびその駆動方法 Expired - Fee Related JP4660036B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263125A JP4660036B2 (ja) 2000-09-01 2001-08-31 プラズマディスプレイ装置およびその駆動方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000265647 2000-09-01
JP2000-265647 2000-09-01
JP2001263125A JP4660036B2 (ja) 2000-09-01 2001-08-31 プラズマディスプレイ装置およびその駆動方法

Publications (2)

Publication Number Publication Date
JP2002149109A JP2002149109A (ja) 2002-05-24
JP4660036B2 true JP4660036B2 (ja) 2011-03-30

Family

ID=26599086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263125A Expired - Fee Related JP4660036B2 (ja) 2000-09-01 2001-08-31 プラズマディスプレイ装置およびその駆動方法

Country Status (1)

Country Link
JP (1) JP4660036B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548308B (zh) * 2007-01-15 2012-11-07 松下电器产业株式会社 等离子显示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509765B1 (ko) * 2003-10-14 2005-08-24 엘지전자 주식회사 플라즈마 디스플레이 패널의 구동방법 및 구동장치
JP4420866B2 (ja) 2004-08-13 2010-02-24 三星エスディアイ株式会社 プラズマ表示装置とその駆動方法
JP5061528B2 (ja) * 2006-08-10 2012-10-31 パナソニック株式会社 プラズマディスプレイ装置
JPWO2008056397A1 (ja) * 2006-11-06 2010-02-25 日立プラズマディスプレイ株式会社 プラズマディスプレイ装置
JP5003191B2 (ja) * 2007-02-14 2012-08-15 パナソニック株式会社 プラズマディスプレイ装置の駆動方法
JP5168986B2 (ja) * 2007-04-02 2013-03-27 パナソニック株式会社 プラズマディスプレイ装置
JP5115551B2 (ja) 2007-11-05 2013-01-09 パナソニック株式会社 プラズマディスプレイ装置
CN101772795B (zh) 2008-01-31 2012-05-02 松下电器产业株式会社 等离子显示装置
JP5277917B2 (ja) 2008-12-09 2013-08-28 パナソニック株式会社 プラズマディスプレイ装置の駆動方法
JP5003664B2 (ja) * 2008-12-09 2012-08-15 パナソニック株式会社 プラズマディスプレイ装置の駆動方法
JP5239811B2 (ja) 2008-12-11 2013-07-17 パナソニック株式会社 プラズマディスプレイ装置の駆動方法
KR101139208B1 (ko) * 2008-12-11 2012-04-26 파나소닉 주식회사 플라즈마 디스플레이 장치의 구동 방법
EP2264691A1 (en) * 2009-06-18 2010-12-22 Thomson Licensing Method and apparatus for reducing driver energy consumption
US20140320518A1 (en) * 2011-11-16 2014-10-30 Sharp Kabushiki Kaisha Display device and display method
KR102501410B1 (ko) * 2015-12-30 2023-02-21 엘지디스플레이 주식회사 액정표시장치와 그 구동 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187093A (ja) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp マトリクス表示装置の駆動回路およびマトリクス表示装置の駆動方法
JPH11194745A (ja) * 1998-01-07 1999-07-21 Mitsubishi Electric Corp ディスプレイ装置
JP2000066638A (ja) * 1998-08-19 2000-03-03 Nec Corp プラズマ表示方法及びプラズマ表示装置
JP2000112432A (ja) * 1998-09-30 2000-04-21 Hitachi Ltd プラズマディスプレイ装置およびその制御方法
JP2000163001A (ja) * 1998-12-01 2000-06-16 Fujitsu Ltd 表示パネルの駆動方法及び駆動装置
JP2000347620A (ja) * 1999-06-09 2000-12-15 Fujitsu Ltd 表示装置
JP2001109420A (ja) * 1999-10-07 2001-04-20 Mitsubishi Electric Corp マトリクス型表示パネルの駆動回路およびこれを備えるマトリクス型表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187093A (ja) * 1996-12-27 1998-07-14 Mitsubishi Electric Corp マトリクス表示装置の駆動回路およびマトリクス表示装置の駆動方法
JPH11194745A (ja) * 1998-01-07 1999-07-21 Mitsubishi Electric Corp ディスプレイ装置
JP2000066638A (ja) * 1998-08-19 2000-03-03 Nec Corp プラズマ表示方法及びプラズマ表示装置
JP2000112432A (ja) * 1998-09-30 2000-04-21 Hitachi Ltd プラズマディスプレイ装置およびその制御方法
JP2000163001A (ja) * 1998-12-01 2000-06-16 Fujitsu Ltd 表示パネルの駆動方法及び駆動装置
JP2000347620A (ja) * 1999-06-09 2000-12-15 Fujitsu Ltd 表示装置
JP2001109420A (ja) * 1999-10-07 2001-04-20 Mitsubishi Electric Corp マトリクス型表示パネルの駆動回路およびこれを備えるマトリクス型表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548308B (zh) * 2007-01-15 2012-11-07 松下电器产业株式会社 等离子显示装置

Also Published As

Publication number Publication date
JP2002149109A (ja) 2002-05-24

Similar Documents

Publication Publication Date Title
JP4660036B2 (ja) プラズマディスプレイ装置およびその駆動方法
JP3544855B2 (ja) 表示ユニットの消費電力制御方法と装置、その装置を含む表示システム、及びその方法を実現するプログラムを格納した記憶媒体
JP3270435B2 (ja) 表示装置およびその輝度制御方法
JP3642689B2 (ja) プラズマディスプレイパネル装置
EP2071548A1 (en) Plasma display device
JP2005024717A (ja) ディスプレイ装置およびディスプレイの駆動方法
JP4023524B2 (ja) 階調表示方法
KR100550984B1 (ko) 플라즈마 디스플레이 패널의 구동 장치, 플라즈마디스플레이 패널의 화상 처리 방법 및 플라즈마디스플레이 패널
JP4134549B2 (ja) 画像表示装置
JP4134550B2 (ja) 画像表示装置
US7342578B2 (en) Method and apparatus for driving display panel
EP1521233A2 (en) Method and apparatus of driving a plasma display panel
JP2008197430A (ja) プラズマディスプレイ装置の駆動方法
JP2008096804A (ja) プラズマディスプレイ装置
JP2002304152A (ja) 表示装置およびその駆動方法
JP4887363B2 (ja) プラズマディスプレイ装置
JP5048894B2 (ja) 表示装置
KR100578917B1 (ko) 플라즈마 디스플레이 패널의 구동 장치, 플라즈마디스플레이 패널의 화상 처리 방법 및 플라즈마디스플레이 패널
JP4626726B2 (ja) プラズマディスプレイ装置の駆動方法
JP5168986B2 (ja) プラズマディスプレイ装置
KR100581877B1 (ko) 플라즈마 디스플레이 패널 구동방법
JP3270458B2 (ja) 表示装置およびその輝度制御方法
JP3249813B1 (ja) 表示装置およびその制御方法
JP2004518997A (ja) プラズマディスプレイパネルにビデオ画像を表示する方法及び対応するプラズマディスプレイパネル
JP2009192780A (ja) プラズマディスプレイ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees