JP4645983B2 - 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 - Google Patents

硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 Download PDF

Info

Publication number
JP4645983B2
JP4645983B2 JP2005114110A JP2005114110A JP4645983B2 JP 4645983 B2 JP4645983 B2 JP 4645983B2 JP 2005114110 A JP2005114110 A JP 2005114110A JP 2005114110 A JP2005114110 A JP 2005114110A JP 4645983 B2 JP4645983 B2 JP 4645983B2
Authority
JP
Japan
Prior art keywords
layer
hard coating
type
constituent
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005114110A
Other languages
English (en)
Other versions
JP2006289557A (ja
Inventor
哲彦 本間
晃 長田
惠磁 中村
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005114110A priority Critical patent/JP4645983B2/ja
Publication of JP2006289557A publication Critical patent/JP2006289557A/ja
Application granted granted Critical
Publication of JP4645983B2 publication Critical patent/JP4645983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の断続切削加工を、高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られるところである。
上記の従来被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCHCNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
また、上記の従来被覆サーメット工具の硬質被覆層を構成するα型Al23層が、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2〜4%、CO:3〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されることも知られている。
さらに、上記の従来被覆サーメット工具の硬質被覆層を構成するα型Al23層が、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されることも知られている。
特開平6−31503号公報 特開平6−8010号公報
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを断続切削加工を高速加工条件で行うのに用いた場合には、硬質被覆層を構成するα型Al23層が機械的および熱的に十分な耐衝撃性を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型Al23層の耐衝撃性向上を図るべく研究を行った結果、
(a)被覆サーメット工具の硬質被覆層を構成する上部層を形成するに際して、まず、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、ZrCl:0.02〜0.13%、CO:1〜5%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で、下部層であるTi化合物層の表面に、
組成式:(Al1−XZr、(ただし、原子比で、X:0.003〜0.05)を満足するAl−Zr複合酸化物[以下、(Al,Zr)23で示す]核を形成し、この場合前記(Al,Zr)23核は20〜200nm(0.02〜0.2μm)の平均層厚を有する(Al,Zr)23核薄膜であるのが望ましく、引き続いて、加熱雰囲気を圧力:3〜13kPaの水素雰囲気に変え、かつ加熱雰囲気温度を1100〜1200℃に昇温した条件で前記(Al,Zr)23核薄膜に加熱処理を施した状態で、硬質被覆層の上部層として、
反応ガス組成:容量%で、AlCl:2.3〜4%、ZrCl:0.02〜0.13%、CO:3〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、同じく組成式:(Al1−XZr、(ただし、原子比で、X:0.003〜0.05)を満足する(Al,Zr)23層を形成すると、この結果の前記加熱処理(Al,Zr)23核薄膜上に蒸着形成された(Al,Zr)23層は、化学蒸着した状態でα型の結晶構造を有し、かつ高温強度が一段と向上し、機械的熱的にすぐれた耐衝撃性を具備するようになること。
(b)上記(a)の加熱処理(Al,Zr)23核薄膜上に蒸着形成された(Al,Zr)23層(以下、「改質α型(Al,Zr)23層」という)は、上記のα型Al層と同じコランダム型六方最密晶の結晶構造、すなわち図1に単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される通り、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されること。
(c)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成するα型Al23層(以下、「従来α型Al23層」という)と上記(a)および(b)の改質α型(Al,Zr)23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り上記従来α型Al23層では格子点にAlおよび酸素、また上記改質α型(Al,Zr)23層ではAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型Al23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型(Al,Zr)23層は、図4に例示される通り、Σ3の分布割合が60〜80%のきわめて高い構成原子共有格子点分布グラフを示すこと。
(d)上記改質α型(Al,Zr)23層の形成に際して、層中のZr含有割合および加熱処理(Al,Zr)23核薄膜の平均層厚を、上記の通りそれぞれ0.3〜5原子%および20〜200nmとすることによって、構成原子共有格子点分布グラフでのΣ3の分布割合が60〜80%のきわめて高いものとなり、この結果層は所望のすぐれた高温強度を具備するようになり、したがって、層中のZr含有割合および加熱処理(Al,Zr)23核薄膜の平均層厚のいずれかでも前記の範囲から外れると、構成原子共有格子点分布グラフでのΣ3の分布割合が60%未満になってしまい、所望の高温強度向上効果が得られなくなること。
なお、上記の改質α型(Al,Zr)23層および従来α型Al23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなること。
(e)上記の改質α型(Al,Zr)23層は、上記従来α型Al23層の有する高温硬さおよび耐熱性と同等のすぐれた高温硬さと耐熱性を有するのに加えて、前記従来α型Al23層に比して一段と高い高温強度を有し、機械的熱的にすぐれた耐衝撃性を具備するので、これを硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具は、同下部層であるTi化合物層が具備するすぐれた高温強度と相俟って、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも、同じく前記従来α型Al23層を上部層として蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮すること。
以上(a)〜(e)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XZr、(ただし、原子比で、X:0.003〜0.05)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示す改質α型(Al,Zr)23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、改質α型(Al,Zr)23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型(Al,Zr)23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
(b)上部層の改質α型(Al,Zr)23
上記の改質α型(Al,Zr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Zr成分には、上記の通り加熱処理(Al,Zr)23核薄膜中のZr成分との共存において、構成原子共有格子点分布グラフでのΣ3の分布割合を高め、これを60〜80%のきわめて高い分布割合にして、層の高温強度を向上させる作用を有するが、この場合Zrの含有割合を示すX値が原子比で0.003未満では前記作用に所望の向上効果を確保することができず、一方同X値が0.05を越えると構成原子共有格子点分布グラフでのΣ3の分布割合が60%未満となってしまい、所望の高温強度の確保が困難になることから、前記X値を0.003〜0.05と定めた。
また、上記の通り加熱処理(Al,Zr)23核薄膜の平均層厚も改質α型(Al,Zr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合に影響を及ぼし、その平均層厚が20nmでは構成原子共有格子点分布グラフでのΣ3の分布割合を60%以上にすることができず、この結果所望のすぐれた高温強度が得られず、一方その平均層厚が200nmを越えてもΣ3の分布割合は60%未満となってしまうことから、その平均層厚を20〜200nmとするのが望ましい。
さらに、上記改質α型(Al,Zr)23層は、上記の通りα型Al23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するが、その平均層厚が1μm未満では前記改質α型(Al,Zr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
この発明被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、強い機械的熱的衝撃を伴なう断続切削加工を高速切削条件で行うのに用いた場合にも、硬質被覆層の上部層を構成する改質α型(Al,Zr)23層が、従来α型Al23層のもつすぐれた高温硬さおよび耐熱性と同等の高温硬さおよび耐熱性を具備するのに加えて、一段とすぐれた高温強度を具備することから、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったZrCN基サーメット製の工具基体a〜fを形成した。
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表4に示される条件で、表5に示される組み合わせおよび目標層厚で加熱処理(Al,Zr)23核薄膜[表4では核薄膜で示す](a)〜(g)および改質α型(Al,Zr)23層[表4では改質層で示す](A)〜(G)を硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
また、比較の目的で、表6に示される通り、硬質被覆層の上部層として、表3に示される条件で、表6に示される目標層厚で従来α型Al23層を形成する以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型(Al,Zr)23層および従来α型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型(Al,Zr)23層および従来α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
この結果得られた各種の改質α型(Al,Zr)23層および従来Al23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表5,6にそれぞれ示した。
上記の各種の構成原子共有格子点分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の改質α型(Al,Zr)23層は、いずれもΣ3の占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来α型Al23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具1の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフ、図5は、従来被覆サーメット工具1の従来α型Al23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM420の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:2.5mm、
送り:0.4mm/rev、
切削時間:5分、
の条件(切削条件Bという)での鋳鉄の乾式高速断続切削試験(通常の切削速度は180m/min)、さらに、
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Cという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Figure 0004645983
Figure 0004645983
Figure 0004645983
Figure 0004645983
Figure 0004645983
Figure 0004645983
Figure 0004645983
表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が、Σ3の分布割合が60〜80%の構成原子共有格子点分布グラフを示す改質α型(Al,Zr)23層で構成され、機械的熱的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記改質α型(Al,Zr)23層が自身の具備するすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工は勿論のこと、特に高い高温強度が要求される高速断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
α型(Al,Zr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。 α型(Al,Zr)23層およびα型Al23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。 本発明被覆サーメット工具1の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフである。 従来被覆サーメット工具1の従来α型Al23層の構成原子共有格子点分布グラフである。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
    (a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
    (b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
    組成式:(Al1−XZr、(ただし、原子比で、X:0.003〜0.05)、
    を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示す改質Al−Zr複合酸化物層、
    以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
JP2005114110A 2005-04-12 2005-04-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 Active JP4645983B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114110A JP4645983B2 (ja) 2005-04-12 2005-04-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114110A JP4645983B2 (ja) 2005-04-12 2005-04-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Publications (2)

Publication Number Publication Date
JP2006289557A JP2006289557A (ja) 2006-10-26
JP4645983B2 true JP4645983B2 (ja) 2011-03-09

Family

ID=37410696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114110A Active JP4645983B2 (ja) 2005-04-12 2005-04-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Country Status (1)

Country Link
JP (1) JP4645983B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181621B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9181620B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822120B2 (ja) * 2006-07-21 2011-11-24 三菱マテリアル株式会社 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP5019255B2 (ja) * 2007-06-27 2012-09-05 三菱マテリアル株式会社 表面被覆切削工具
JP5099490B2 (ja) * 2007-09-18 2012-12-19 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5099500B2 (ja) * 2007-12-26 2012-12-19 三菱マテリアル株式会社 表面被覆切削工具
JP5187570B2 (ja) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
EP2085500B1 (en) 2007-12-28 2013-02-13 Mitsubishi Materials Corporation Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
JP5176659B2 (ja) * 2008-04-03 2013-04-03 三菱マテリアル株式会社 硬質被覆層が高速重切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5286891B2 (ja) * 2008-04-03 2013-09-11 三菱マテリアル株式会社 硬質被覆層が高速重切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5286931B2 (ja) * 2008-05-21 2013-09-11 三菱マテリアル株式会社 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5309698B2 (ja) * 2008-05-30 2013-10-09 三菱マテリアル株式会社 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5176798B2 (ja) * 2008-09-08 2013-04-03 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5176797B2 (ja) * 2008-09-08 2013-04-03 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2010106811A1 (ja) 2009-03-18 2010-09-23 三菱マテリアル株式会社 表面被覆切削工具
JP6198176B2 (ja) 2013-02-26 2017-09-20 三菱マテリアル株式会社 表面被覆切削工具
JP6245432B2 (ja) * 2013-03-29 2017-12-13 三菱マテリアル株式会社 表面被覆切削工具
US10273575B2 (en) * 2016-08-31 2019-04-30 Kennametal Inc. Composite refractory coatings and applications thereof
CN109112500B (zh) * 2017-06-22 2022-01-28 肯纳金属公司 Cvd复合材料耐火涂层及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270775A (ja) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd アルミナ被覆窒化ケイ素部材
JPH11256336A (ja) * 1998-03-10 1999-09-21 Hitachi Metals Ltd 炭窒化チタン被覆工具
JP4518260B2 (ja) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270775A (ja) * 1986-05-16 1987-11-25 Sumitomo Electric Ind Ltd アルミナ被覆窒化ケイ素部材
JPH11256336A (ja) * 1998-03-10 1999-09-21 Hitachi Metals Ltd 炭窒化チタン被覆工具
JP4518260B2 (ja) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181621B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9181620B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9903018B2 (en) 2013-03-21 2018-02-27 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings

Also Published As

Publication number Publication date
JP2006289557A (ja) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4645983B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4518260B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006289556A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4822120B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4512989B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4730522B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4474643B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4720418B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4853121B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4793750B2 (ja) 高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4793749B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2009006427A (ja) 表面被覆切削工具
JP2008080476A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4811787B2 (ja) 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具
JP4530141B2 (ja) 硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具
JP4474644B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2006289546A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5067963B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4857950B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4747338B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5176797B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2005313245A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4894406B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4716253B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4730703B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101128