JP4853121B2 - 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具 - Google Patents

硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具 Download PDF

Info

Publication number
JP4853121B2
JP4853121B2 JP2006161900A JP2006161900A JP4853121B2 JP 4853121 B2 JP4853121 B2 JP 4853121B2 JP 2006161900 A JP2006161900 A JP 2006161900A JP 2006161900 A JP2006161900 A JP 2006161900A JP 4853121 B2 JP4853121 B2 JP 4853121B2
Authority
JP
Japan
Prior art keywords
layer
constituent
hard coating
crystal
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006161900A
Other languages
English (en)
Other versions
JP2007331033A (ja
Inventor
惠滋 中村
晃 長田
新 土屋
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006161900A priority Critical patent/JP4853121B2/ja
Publication of JP2007331033A publication Critical patent/JP2007331033A/ja
Application granted granted Critical
Publication of JP4853121B2 publication Critical patent/JP4853121B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層の上部層を構成する酸化アルミニウム(以下、Al23で示す)層がすぐれた高温強度を有し、さらに同じく硬質被覆層を構成する炭化タングステン(以下、WCで示す)層がすぐれた熱伝導性を発揮し、切削時の硬質被覆層の過熱を抑制して、高温硬さ低下を抑制することから、特に各種の鋼や鋳鉄などの被削材の切削加工を、高い機械的熱的衝撃および熱発生を伴う高速断続切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
従来、一般に、WC基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有するAl23層(以下、α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆サーメット工具の硬質被覆層を構成するα型Al23層が、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にα型Al23の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
特開平6−31503号公報 特開平6−8010号公報
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高い機械的熱的衝撃および熱発生を伴う高速断続切削加工に用いた場合には、硬質被覆層を構成するα型Al23層が十分な高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易く、同時に高熱発生に伴う硬質被覆層の著しい温度上昇も避けられず、これらが原因で比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成するα型Al23層(以下、「従来α型Al23層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2〜4%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl、CO、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成したα型Al23層(以下、「改質α型Al23層」という)は、α型Al23層自身のもつすぐれた高温硬さおよび耐熱性に加えて、上記の従来α型Al23層に比して、一段とすぐれた高温強度を具備し、耐チッピング性が向上するようになること。
(b)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成する従来α型Al23層と上記(a)の改質α型Al23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型Al23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型Al23層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl、CO、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質α型Al23層および従来α型Al23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(c)一般に、被覆サーメット工具の硬質被覆層の構成層としてのWC層は、通常の化学蒸着装置にて、
反応ガス組成:容量%で、WF:0.5〜5%、C:0.5〜10%、H2:10〜35%、Ar:残り、
反応雰囲気温度:500〜900℃、
反応雰囲気圧力:5〜30kPa、
の条件で蒸着形成されるが、WC層を、同じく通常の化学蒸着装置にて、例えば、
反応ガス組成:容量%で、WF:0.04〜0.4%、CHCN:0.06〜0.6%、NH:0.1〜1%、H2:40〜80%、Ar:残り、
反応雰囲気温度:980〜1100℃、
反応雰囲気圧力:5〜15kPa、
の高温条件で蒸着形成すると、この結果形成されたWC層(以下、改質WC層という)は、すぐれた密着性と熱伝導性を有するものとなり、したがって、これを上記硬質被覆層の下部層である2層以上の構成層からなるTi化合物層における層間介在層として存在させると、前記改質WC層は、前記Ti化合物層の構成層のいずれとも強固に密着接合すると共に、高速断続切削加工時に発生した高熱による前記硬質被覆層の温度上昇が前記層間介在層としての改質WC層の具備するすぐれた抜熱効果(熱伝導性)によって著しく抑制され、この結果前記硬質被覆層の過熱が回避され、過熱が原因の急激な耐摩耗性低下が避けられるようになること。
(d)したがって、上記硬質被覆層の下部層である2層以上の構成層からなるTi化合物層における層間介在層として、高い熱伝導性とすぐれた密着性を有し、この結果すぐれた抜熱効果を発揮する上記改質WC層を設け、さらにすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有する前記改質α型Al23層を硬質被覆層の上部層として、下部層の高温強度にすぐれた上記Ti化合物層と共に、前記工具基体の表面に蒸着形成してなる被覆サーメット工具は、特に激しい機械的熱的衝撃と高熱発生を伴なう高速断続切削加工でも、前記硬質被覆層にチッピングが発生することなく、前記改質WC層が硬質被覆層の温度上昇を著しく抑制することと相俟って、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層からなる構成層のうちの2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有するα型Al23層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、被覆サーメット工具において、
(1)上記2層以上の構成層からなるTi化合物層における層間介在層として、0.1〜2μmの平均層厚を有する改質WC層、
を化学蒸着形成すると共に、
(2)上記上部層としてのα型Al23層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質α型Al23層、
で構成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)改質WC層(層間介在層)
改質WC層は、上記の通り、上記Ti化合物層の構成層のいずれとも強固に密着接合すると共に、自身の具備するすぐれた熱伝導性によって著しい高熱発生を伴う高速断続切削加工でも十分な抜熱効果を発揮し、硬質被覆層の温度上昇を抑制して、前記硬質被覆層が本来具備するすぐれた耐摩耗性を満足に発揮するようにする作用を有するが、その平均層厚が0.1μm未満では、前記作用を十分に発揮させることができず、一方前記作用は2μmまでの平均層厚で十分であることから、その平均層厚を0.1〜2μmと定めた。
(b)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体、さらに改質WC層および改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(b)改質α型Al23層(上部層)
上記の改質α型Al23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl、CO、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質α型Al23層は、上記の通りα型Al23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質α型Al23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
この発明被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al23層がα型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに2層以上の構成層からなるTi化合物層に層間介在層として設けた改質WC層がすぐれた熱伝導性を具備することによってすぐれた抜熱効果を発揮し、硬質被覆層の温度上昇を著しく抑制することから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、各種の鋼や鋳鉄などの切削加工を、特に強い機械的熱的衝撃を伴なう断続切削加工を高熱発生が避けられない高速切削条件で行うのに用いた場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮し、使用寿命の一層の延命化を可能とするものである。
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚でTi化合物層および改質WC層を硬質被覆層の下部層および層間介在層として蒸着形成し、
ついで、同じく表3に示される条件で改質α型Al23層(a)〜(f)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
また、比較の目的で、表5に示される通り、硬質被覆層の上部層として、表3に示される条件で従来α型Al23層(a)〜(f)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で蒸着形成し、かつ、層間介在層である改質WC層の形成を行なわない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al23層および従来α型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型Al23層および従来α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
この結果得られた各種の改質α型Al23層および従来α型Al23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。
上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の改質α型Al23層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来α型Al23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具3の改質α型Al23層の構成原子共有格子点分布グラフ、図5は、従来被覆サーメット工具5の従来α型Al23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S48Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.4mm/rev、
切削時間:10分、
の条件(切削条件Aという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Bという)での合金鋼の乾式高速断続切削試験(通常の切削速度は150m/min)、さらに、
被削材:JIS・FCD600の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2mm、
送り:0.4mm/rev、
切削時間:10分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は180m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Figure 0004853121
Figure 0004853121
Figure 0004853121
Figure 0004853121
Figure 0004853121
Figure 0004853121
表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である改質α型Al23層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示し、この結果前記改質α型Al23層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有するようになり、さらに下部層のTi化合物層に層間介在層として設けた改質WC層がすぐれた抜熱効果を発揮し、硬質被覆層の温度上昇を著しく抑制することから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、特に機械的熱的衝撃がきわめて高く、かつ高熱発生を伴う鋼や鋳鉄の高速断続切削でも、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型Al23層で構成され、この結果前記従来α型Al23層は十分満足する高温強度を具備しないものとなり、さらに前記改質WC層の形成がなく、硬質被覆層の過熱が避けられない従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的熱的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、かつ摩耗進行も相対的に速くなることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に硬質被覆層に高い高温強度および抜熱性が要求される高速断続切削でも硬質被覆層がすぐれた耐チッピング性および耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
α型Al23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。 α型Al23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。 本発明被覆サーメット工具3の改質α型Al23層の構成原子共有格子点分布グラフである。 従来被覆サーメット工具5の従来α型Al23層の構成原子共有格子点分布グラフである。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
    (a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層からなる構成層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
    (b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する酸化アルミニウム層、
    以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、表面被覆サーメット製切削工具において、
    (1)上記2層以上の構成層からなるTi化合物層における層間介在層として、0.1〜2μmの平均層厚を有する改質炭化タングステン層、
    を化学蒸着形成すると共に、
    (2)上記上部層としての酸化アルミニウム層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質酸化アルミニウム層、
    で構成したことを特徴とする、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具。
JP2006161900A 2006-06-12 2006-06-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具 Expired - Fee Related JP4853121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161900A JP4853121B2 (ja) 2006-06-12 2006-06-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161900A JP4853121B2 (ja) 2006-06-12 2006-06-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具

Publications (2)

Publication Number Publication Date
JP2007331033A JP2007331033A (ja) 2007-12-27
JP4853121B2 true JP4853121B2 (ja) 2012-01-11

Family

ID=38931005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161900A Expired - Fee Related JP4853121B2 (ja) 2006-06-12 2006-06-12 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具

Country Status (1)

Country Link
JP (1) JP4853121B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077648B2 (ja) * 2006-05-25 2012-11-21 三菱マテリアル株式会社 硬質被覆層が難削材の高速切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5077647B2 (ja) * 2006-05-25 2012-11-21 三菱マテリアル株式会社 硬質被覆層が難削材の高速切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4857950B2 (ja) * 2006-06-27 2012-01-18 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5257178B2 (ja) * 2009-03-18 2013-08-07 三菱マテリアル株式会社 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5459498B2 (ja) * 2010-04-17 2014-04-02 三菱マテリアル株式会社 表面被覆切削工具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173009A (ja) * 1992-12-04 1994-06-21 Sumitomo Electric Ind Ltd 耐摩耗性に優れた被覆超硬合金及びその製造方法
JP4512989B2 (ja) * 2003-12-26 2010-07-28 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4518260B2 (ja) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Also Published As

Publication number Publication date
JP2007331033A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4518260B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4645983B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP6548072B2 (ja) 表面被覆切削工具
JP4822120B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4518259B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4853121B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP2006334750A (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5326845B2 (ja) 高速断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4474643B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4720418B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4853120B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5861982B2 (ja) 硬質被覆層が高速断続切削ですぐれた耐剥離性を発揮する表面被覆切削工具
JP2008178943A (ja) 硬質被覆層が断続高送り切削加工ですぐれた耐摩耗性を発揮する表面被覆切削工具
JP5286930B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2009056561A (ja) 表面被覆切削工具
JP4811787B2 (ja) 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具
JP2008080476A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2006341320A (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4474644B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4730656B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5158560B2 (ja) 重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4857950B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5067963B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4822119B2 (ja) 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP5019258B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees