JP4626611B2 - 磁気記録媒体の製造方法 - Google Patents

磁気記録媒体の製造方法 Download PDF

Info

Publication number
JP4626611B2
JP4626611B2 JP2006348656A JP2006348656A JP4626611B2 JP 4626611 B2 JP4626611 B2 JP 4626611B2 JP 2006348656 A JP2006348656 A JP 2006348656A JP 2006348656 A JP2006348656 A JP 2006348656A JP 4626611 B2 JP4626611 B2 JP 4626611B2
Authority
JP
Japan
Prior art keywords
filler
detected
recording
etching
recording element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348656A
Other languages
English (en)
Other versions
JP2007257816A (ja
Inventor
孝裕 諏訪
一博 服部
秀一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006348656A priority Critical patent/JP4626611B2/ja
Publication of JP2007257816A publication Critical patent/JP2007257816A/ja
Application granted granted Critical
Publication of JP4626611B2 publication Critical patent/JP4626611B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、凹凸パターンの記録層を有する磁気記録媒体の製造方法に関する。
従来、ハードディスク等の磁気記録媒体は、記録層を構成する磁性粒子の微細化、材料の変更、ヘッド加工の微細化等の改良により著しい面記録密度の向上が図られており、今後も一層の面記録密度の向上が期待されているが、磁気ヘッドの加工限界、磁気ヘッドの記録磁界の広がりに起因する記録対象のトラックに隣り合うトラックへの誤った情報の記録、再生時のクロストークなどの問題が顕在化し、従来の改良手法による面記録密度の向上は限界にきている。
これに対し、一層の面記録密度の向上を実現可能である磁気記録媒体の候補として、記録層が凹凸パターンで形成され、記録要素が凹凸パターンの凸部として形成されたディスクリートトラックメディアや、パターンドメディアが提案されている。一方、ハードディスク等の磁気記録媒体ではヘッド浮上高さを安定させて良好な記録/再生特性を得るために表面の平坦性が重視される。従って、記録要素の間の凹部を充填材で充填し、記録要素及び充填材の上面を平坦化することが提案されている(例えば、特許文献1参照)。
記録層を凹凸パターンに加工する手法としては、ドライエッチング等の加工手法を利用しうる。凹部に充填材を充填し、記録要素及び充填材の上面を平坦化する手法としては、スパッタリング法、CVD(Chemical Vapor Deposition)法、IBD(Ion Beam Deposition)法等で凹凸パターンの記録層上に充填材を成膜して記録要素の間の凹部を充填してから、記録要素の上面よりも上側(基板と反対側)に成膜された余剰の充填材をドライエッチングで除去する手法を利用しうる。
記録層の良好な磁気特性を得るためには、記録要素の上面を加工しないように余剰の充填材を完全に除去することが好ましい。即ち、加工終点が記録要素の上面と一致するように平坦化工程のドライエッチングを制御することが好ましい。
ドライエッチングの場合、被加工体から除去されて飛散する記録要素の成分を二次イオン質量分析法(SIMS(Secondary−Ion Mass Spectrometry))や四重極質量分析法(QMS(Quadrupole Mass Spectrometry))により検出でき、記録要素の成分を検出して加工を停止することにより、加工終点のばらつきを記録要素の上面に対して数nmの範囲内に抑制することが可能である。
しかしながら、二次イオン質量分析法や四重極質量分析法で記録要素の成分を検出するためには余剰の充填材だけでなく記録要素もエッチングする必要がある。従って、記録要素の上部近傍の数nm程度の部分が確実にエッチングされることとなり、磁気特性の悪化が懸念される。
これに対し、半導体の分野では、記録要素に相当するエッチングから保護すべき部分の上に被検出材を成膜し、被検出材の成分を検出することでエッチングを停止する技術が知られている(例えば、特許文献2参照)。
磁気記録媒体の分野でもこの技術を利用し、凹凸パターンの記録層の上に被検出材を成膜し、エッチングが被検出材まで及び、除去されて飛散する被検出材の成分が検出され始めた直後、又は一旦検出された被検出材の成分が消失した直後にエッチングを停止することにより、エッチングが記録要素に及ばないように余剰の充填材を除去することが期待される。
特開平9−97419号公報 特開2003−078185号公報
しかしながら、被検出材が飛散し始めた直後は被検出材の成分の飛散量が少ないため、二次イオン質量分析法や四重極質量分析法では被検出材の成分が検出され始めたことを示すデータとノイズとの差異が明確でないことがあり、被検出材にエッチングが及んだ時点を明確に検出することが困難な場合がある。
一方、一旦検出された被検出材が実質的に消失したことを判定することは比較的容易であるが、二次イオン質量分析法や四重極質量分析法は除去されて飛散する被検出材の成分を検出する分析法であるため、実際に被検出材が被加工体から完全に除去される時点と被検出材が消失したと判定される時点との間には数秒のタイムラグがある。
従って、被検出材が消失したと判定した直後にエッチングを停止する場合、実際には被検出材が被加工体から完全に除去され、更にエッチングが進行して記録要素がエッチングされてしまうことがある。
又、記録要素がエッチングされると記録要素の間の凹部を充填する充填材もエッチングされる。記録要素と充填材とは材料が異なりエッチングに対する加工速度も一般的に異なるため、記録要素と共に凹部を充填する充填材が更にエッチングされることで記録要素の上面と充填材の上面との間に数nm程度の段差が生じてしまうことがある。面記録密度が高いディスクリートトラックメディアや、パターンドメディアの場合、5〜15nm程度の微小なヘッドの浮上高さが想定されるため、数nm程度の段差であってもヘッドのクラッシュ等の問題の原因となりうる。尚、このような数nm程度の段差は半導体の製造工程においても同様に生じうるが、半導体の場合はヘッドのクラッシュ等の問題がないため数nm程度の段差は一般的に問題とならない。
本発明は、以上の問題点に鑑みてなされたものであって、凹凸パターンの記録層を有し、表面が充分に平坦で、記録/再生特性が良好な磁気記録媒体を製造できる磁気記録媒体の製造方法を提供することを目的とする。
本発明は、凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して記録要素を被覆すると共に記録要素の間の凹部を少なくとも部分的に充填し、第1の充填材の上に被検出材を成膜し、被検出材の上に第2の充填材を成膜し、被加工体の表面に加工用ガスを照射して第1の充填材、被検出材及び第2の充填材のうち記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化し、この平坦化工程において被加工体から除去されて飛散する被検出材の成分を検出し、該被検出材の成分の検出結果に基いて加工用ガスの照射を停止することにより、上記目的を達成するものである。
第1の充填材が記録要素と被検出材との間に成膜されているので、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行しても、第1の充填材により記録要素をエッチングから保護できる。
又、第1の充填材を凹部の深さ以上の厚さで成膜する場合、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行し、記録要素の上の第1の充填材と共に記録要素の間の凹部を充填する第1の充填材がエッチングされても、記録要素の上でも凹部の上でも第1の充填材がエッチングされるので、記録要素と充填材とがエッチングされる場合のような段差は生じない。
尚、第1の充填材を凹部の深さよりも薄く成膜する場合は凹部の上部は第2の充填材で充填され、記録要素の上の被検出材が完全に除去されてから更にエッチングが進行すると、記録要素の上の第1の充填材と共に凹部を充填する第2の充填材がエッチングされるが、この場合も、第1の充填材、第2の充填材として同じ材料や平坦化工程のドライエッチングに対するエッチングレートが近い材料を選択することで、記録要素と充填材とがエッチングされる場合のような段差が生じにくくなり、表面を充分に平坦化できる。
又、ドライエッチングは凹部よりも凸部を選択的に早く除去するだけでなく、凸部の中でも端部が中央部よりも早く除去されるので、記録要素の上の被検出材は端部から除々に除去される。従って、記録要素の幅が広いと記録要素の中央部の上の被検出材にエッチングが及ぶ時点と記録要素の端部の上の被検出材にエッチングが及ぶ時点との時間差が大きくなり、ノイズと明確に区別できる程度に被検出材の飛散量が増大する時点のばらつきも大きくなる。このため、エッチングを目的の位置で高精度で停止させることが困難な場合がある。
これに対し、凹部の中央部の上の被検出材にエッチングが及ぶ時点と凹部の端部の上の被検出材にエッチングが及ぶ時点との時間差は小さく、ノイズと明確に区別できる程度に被検出材の飛散量が増大する時点のばらつきも小さい。従って、第1の充填材を凹部の深さと同等又はこれよりも厚い厚さで成膜してから被検出材を成膜し、凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて平坦化工程のエッチングを停止すれば、エッチングを目的の位置で高精度で停止させることができる。
即ち、次のような本発明により、上記目的を達成することができる。
(1)基板及び該基板の上に所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して前記記録要素を被覆すると共に該記録要素の間の凹部を少なくとも部分的に充填する第1の充填材成膜工程と、前記第1の充填材の上に被検出材を成膜する被検出材成膜工程と、前記被検出材の上に第2の充填材を成膜する第2の充填材成膜工程と、前記被加工体の表面に加工用ガスを照射して前記第1の充填材、前記被検出材及び前記第2の充填材のうち前記記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化する平坦化工程と、をこの順で実行し、前記平坦化工程において前記被加工体から除去されて飛散する前記被検出材の成分を検出し、該被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。
(2) (1)において、前記第1の充填材成膜工程において前記凹凸パターンの凹部を完全に充填するように前記第1の充填材を前記凹部の深さ以上の厚さで成膜し、前記平坦化工程において前記被検出材のうち前記凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。
(3) (1)又は(2)において、前記被検出材成膜工程において前記第1の充填材の上に非酸化物を成膜して前記被検出材を形成し、前記第1の充填材及び前記第2の充填材の少なくとも一方として酸化物を用いることを特徴とする磁気記録媒体の製造方法。
(4) (3)において、前記被検出材成膜工程において前記被検出材を前記第1の充填材の上に分散させて、且つ、該第1の充填材を完全に被覆しないように薄く成膜することを特徴とする磁気記録媒体の製造方法。
(5) (1)乃至(4)のいずれかにおいて、前記平坦化工程において二次イオン質量分析法及び四重極質量分析法のいずれかにより前記被検出材の成分を検出することを特徴とする磁気記録媒体の製造方法。
尚、本出願において、「所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層」とは、連続記録層が所定のパターンで多数の記録要素に分割された記録層の他、例えばトラックの形状の記録要素同士が端部で連続する記録層や記録要素が螺旋状の渦巻き形状である記録層のように基板上に部分的に形成される記録層、凹部が厚さ方向の途中まで形成され基板側の面が連続した記録層、凹凸パターンの基板や下層の表面に倣って形成された連続した記録層、凹凸パターンの基板や下層の凸部の上面及び凹部の底面に分割されて形成された記録層も含む意義で用いることとする。
又、本出願において「記録要素の上面」という用語は、記録層における基板と反対側の面という意義で用いることとする。
又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気のみを用いるハードディスク、フロッピー(登録商標)ディスク、磁気テープ等に限定されず、磁気と光を併用するMO(Magneto Optical)等の光磁気記録媒体、磁気と熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。
本発明によれば、凹凸パターンの記録層を有し、表面が充分に平坦で、記録/再生特性が良好な磁気記録媒体を製造できる。
以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。
本発明の第1実施形態は、図1に示されるような基板12の上に連続記録層20等を形成してなる被加工体10の出発体に加工を施すことにより、連続記録層20を図2に示されるように多数の記録要素32Aに分割して所定の凹凸パターンの記録層32を形成し、記録層32の上に第1の充填材36等を成膜して記録要素32Aの間の凹部34を充填し、記録要素32Aの上面よりも上側の余剰の第1の充填材36等を除去して表面を平坦化し、磁気記録媒体30を製造する方法に関するものであり、余剰の第1の充填材36等を除去して表面を平坦化する工程に特徴を有している。他の工程については本第1実施形態の理解のために特に重要とは思われないため説明を適宜省略する。
図1に示される被加工体10の出発体は、基板12の上に、下地層14、反強磁性層15、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24、レジスト層26がこの順で形成された構成である。
基板12の材料は、ガラス、Al23等である。下地層14は、厚さが2〜40nmで、材料はTa等である。反強磁性層15は、厚さが5〜50nmで、材料はPtMn合金、RuMn合金等である。軟磁性層16は、厚さが50〜300nmで、材料はFe合金又はCo合金である。配向層18は、厚さが2〜40nmで、材料は非磁性のCoCr合金、Ti、Ru、RuとTaの積層体、MgO等である。
連続記録層20は、厚さが5〜30nmで、材料はCoCr合金である。第1のマスク層22は、厚さが3〜50nmで、材料はC(炭素)である。第2のマスク層24は、厚さが1〜30nmで、材料はNiである。レジスト層26は、厚さが30〜300nmで材料は樹脂である。
磁気記録媒体30は、垂直記録型のディスクリートトラックメディアである。
記録層32の記録要素32Aは、データ領域において同心円弧状のトラックの形状で径方向に微細な間隔で多数形成されている。尚、記録要素32Aはサーボ領域においてコンタクトホールを含む所定のサーボパターンで形成されている。
第1の充填材36としては、SiO2等の非磁性の酸化物を用いることができる。
記録要素32A及び第1の充填材36の上には保護層38、潤滑層40がこの順で形成されている。保護層38の材料は、ダイヤモンドライクカーボンと呼称される硬質炭素膜である。潤滑層40の材料はPFPE(パーフロロポリエーテル)である。
次に、図3に示すフローチャートに沿って磁気記録媒体30の製造方法を説明する。
まず、被加工体作製工程を実行する(S102)。具体的には、図1に示される被加工体10の出発体を加工し、図5に示されるような基板12の上に凹凸パターンで形成されて該凹凸パターンの凸部として記録要素32Aが形成された記録層32を有する被加工体10を作製する。
被加工体10の出発体は基板12の上に、下地層14、反強磁性層15、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24をこの順でスパッタリング法により形成し、更にレジスト層26をスピンコート法で塗布することにより得られる。
この被加工体10の出発体のレジスト層26に転写装置(図示省略)を用いて、図4に示されるように記録層32の凹凸パターンに相当する凹凸パターンをナノ・インプリント法により転写し、O2又はO3ガスを反応ガスとする反応性イオンビームエッチングにより、凹部底部のレジスト層26を除去する。尚、レジスト層26を露光・現像して、レジスト層26を凹凸パターンに加工してもよい。
次に、Arガスを用いたイオンビームエッチングにより、凹部底部の第2のマスク層24を除去する。更に、SF6ガスを用いた反応性イオンエッチングにより、凹部底部の第1のマスク層22を除去する。次に、Arガスを用いたイオンビームエッチングにより、凹部底部の連続記録層20を除去し、連続記録層20を多数の記録要素32Aに分割する。尚、記録要素32Aの上に残存する第1のマスク層は、SF6ガスを用いた反応性イオンエッチングにより除去する。
これにより、図5に示されるような、基板12及び基板12の上に凹凸パターンで形成されて該凹凸パターンの凸部として記録要素32Aが形成された記録層32を有する被加工体10が得られる。
次に、第1の充填材成膜工程を実行する(S104)。具体的には、バイアススパッタリング法により図6に示されるように、記録要素32Aを被覆すると共に凹部34を完全に充填するように記録層32の上に第1の充填材36を凹部34の深さ以上の厚さ(凹部34における厚さ)で成膜する。第1の充填材36の厚さは凹部34の深さに対して0〜10nm厚いことが好ましい。第1の充填材36の粒子は被加工体10の表面に一様に堆積しようとするので、表面が凹凸形状となるが、被加工体10にバイアス電圧を印加することにより、スパッタリングガスは被加工体10の方向に付勢されて堆積済みの第1の充填材36に衝突し、堆積済みの第1の充填材36の一部をエッチングする。このエッチング作用は、堆積済みの第1の充填材36のうち、突出した部分をその端部から他部(周囲の突出していない部分)よりも早く選択的に除去する傾向があるので、記録要素32Aの上の表面の凸部は記録要素32Aよりも幅が減少する。成膜作用がエッチング作用を上回ることで表面の凹凸が抑制されつつ成膜が進行する。これにより、表面の凹凸がある程度抑制された形状で第1の充填材36が記録要素32Aを覆うように成膜される。
次に、被検出材成膜工程を実行する(S106)。具体的には、スパッタリング法により図7に示されるように、第1の充填材36の上に被検出材44を成膜する。被検出材44は、記録層32や第1の充填材36、第2の充填材45を構成する元素と異なる元素を含む例えばNb等の非酸化物を成膜して形成することができる。被検出材44は、第1の充填材36の表面の凹凸に倣って一様に成膜される。尚、本第1実施形態では、第1の充填材36を完全に被覆するように被検出材44を成膜する。被検出材44の厚さは製造効率等を考慮すると5nm以下であることが好ましい。
Nb等の非酸化物は、酸化物である第1の充填材36と接触すると、下面の部分が第1の充填材36中の酸素が拡散することで酸化される。
次に、第2の充填材成膜工程を実行する(S108)。具体的には、第1の充填材成膜工程(S104)と同様にバイアススパッタリング法により、図8に示されるように被検出材44の上に第2の充填材45を成膜する。第2の充填材45としては第1の充填材36と同様にSiO等の非磁性の酸化物を用いることができる。酸化物である第2の充填材45が被検出材44の上面に接触して成膜されることで、被検出材44の上面に第2の充填材45中の酸素が拡散し、被検出材44の上面の部分が酸化される。即ち、被検出材44は、図9に拡大して示されるように、上面44A及び下面44Bの近傍の部分が酸化される。
次に、平坦化工程を実行する(S110)。具体的には、イオンビームエッチングにより、図10中に矢印で示されるように、被加工体10の表面の法線に対して傾斜した方向からArガス等の加工用ガスを照射し、第1の充填材36、被検出材44及び第2の充填材45のうち記録要素32Aの上面よりも上側(基板12と反対側)に成膜された部分を除去する。このように被加工体10の表面の法線に対して傾斜した方向から加工用ガスを照射することで、凸部を凹部よりも速く除去する傾向が高くなる。
この際、二次イオン質量分析法、四重極質量分析法等により被加工体10から除去されて飛散する被検出材44の成分を検出しつつイオンビームエッチングを制御する。
被検出材44が飛散し始めた直後は被検出材44の成分の飛散量が少なく、被検出材44の成分の検出を示すデータとノイズとの差異は明確でないことがある。
又、イオンビームエッチングのようなドライエッチングは凹部よりも凸部を選択的に早く除去するだけでなく、凸部の中でも端部が中央部よりも早く除去され、記録要素32Aの上の被検出材44は端部から除々に除去される。記録要素32Aの幅が広いと記録要素32Aの中央部の上の被検出材44にエッチングが及ぶ時点と記録要素32Aの端部の上の被検出材44にエッチングが及ぶ時点との時間差が大きくなり、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきも大きくなる。従って、記録要素32Aの幅が広い場合には、記録要素32Aの上から除去されて飛散する被検出材44の成分を検出したことに基いて加工用ガスの照射を停止すると、エッチングを目的の位置で高精度で停止させることが困難である。
これに対し、エッチングが更に進行し、図11に示されるように凹部34の上の被検出材44が露出すると、凹部34の上の被検出材44は凹部34の幅に拘わらず大部分が同時にエッチングされ、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが小さいので、凹部34の上から除去されて飛散する被検出材44の成分を検出したことに基いて加工用ガスの照射を停止すれば、エッチングを目的の位置で高精度で停止させることができる。
図12に示されるように、被検出材44の飛散量は、エッチング開始後次第に増加するが記録要素32Aの上の被検出材44が除去されると一旦減少する。エッチングが凹部34の上の被検出材44に及ぶと被検出材44の飛散量は再び増加して凹部34の上の被検出材44が除去されると急速に減少する。従って、後半の被検出材44の飛散量の増減に基いて、凹部34の上の被検出材44にエッチングが及んだことを検知できる。
本第1実施形態では、被検出材44のうち凹部34の上から除去されて飛散する被検出材44の成分の検出結果に基いて加工用ガスの照射を停止し、エッチングを停止する。例えば、凹部34の上の被検出材44にエッチングが及んで被検出材44の成分の検出量が極大値となり、更にエッチングが進行して被検出材44が実質的に消失したと判定された時点で加工用ガスの照射を停止し、エッチングを停止する。
又、被検出材44の成分の検出量の予め定めた基準値に基いて、検出量が該基準値に達した時点で加工用ガスの照射を停止してもよいし、その時点から一定時間後に加工用ガスの照射を停止するようにしてもよい。
尚、二次イオン質量分析法及び四重極質量分析法は、被検出材を構成する単体の元素がエッチングされているときよりもその酸化物がエッチングされている時の方が被検出材を構成する元素の検出量が大きくなる。本第1実施形態では、第2の充填材45が酸化物であり、被検出材44の上面44Aの近傍の部分が酸化されているので、被検出材44が飛散し始める時点を検出しやすくなっている。又、第1の充填材45も酸化物であり、被検出材44の下面44Bの近傍の部分も酸化されているので、被検出材44が消失する時点も検出しやすくなっている。
このように、被検出材44における上面44A及び下面44Bの近傍の部分だけを酸化させるためには、被検出材44は3nm以上であることが好ましい。尚、被検出材44の上面44A及び下面44Bの近傍の部分だけを酸化させる場合、被検出材44の飛散量は、記録要素32Aの上の被検出材44がエッチングされる間又は凹部34の上の被検出材44がエッチングされる間のそれぞれにおいて2回増減し、全体として被検出材44の飛散量が3〜4回増減することもあるが、この場合も、記録要素32Aの上の被検出材44がエッチングされる際の被検出材44の飛散量の増減と凹部34の上の被検出材44がエッチングされる際の被検出材44の飛散量の増減とを識別することは容易であり、凹部34の上の被検出材44にエッチングが及んだことを検知できる。
一方、被検出材44を例えば1nmよりも薄く成膜すれば、被検出材44の成分の検出量は凹部34の上の被検出材44がエッチングされる後半において1回だけ極大(最大)となるので、被検出材44の飛散量が極大値に達する時点の判定が容易である。
尚、二次イオン質量分析法や四重極質量分析法は、除去されて飛散する物質を検出するため、実際にその物質が除去される時点とその物質が検出される時点との間にタイムラグがある。従って、被検出材44の成分の検出結果に基いてエッチングを停止しても、実際には被検出材44が完全に除去された後にエッチングが更に進行することがある。
しかしながら、第1の充填材36は凹部34の深さよりも厚く成膜されており、被検出材44の下面は記録要素32Aの上面よりも0〜10nm上側(基板12と反対側)に位置するので、被検出材44が完全に除去された後にエッチングを停止しても、記録要素32Aはエッチングから保護される。尚、万が一、エッチングが記録要素32Aの上面まで及んだとしても、記録要素32Aの加工量は磁気特性に対する影響を無視しうる程度の微小量に抑制される。
又、被検出材44が完全に除去された後に更にエッチングが進行し、記録要素32の上の第1の充填材36と共に凹部34を充填する第1の充填材36をエッチングしても、凹部34の上でも記録要素32Aの上でも第1の充填材36がエッチングされるので、記録要素と充填材とをエッチングする場合のような段差が生じにくく、表面を充分に平坦化できる。
被検出材44が完全に除去されてからエッチングの進行が止まる時点までの間にエッチングされる被検出材44の下の第1の充填材36の厚さの分だけ、第1の充填材36を凹部34の深さよりも厚く成膜することで、記録要素32Aの上面のエッチングを防止又は磁気特性に対する影響を無視しうる程度に充分に抑制できる。
次に、CVD法により記録要素32A及び第1の充填材36の上面に1〜5nmの厚さで保護層38を成膜し(S112)、更に、ディッピング法により保護層38の上に1〜2nmの厚さで潤滑層40を成膜する(S114)。これにより、前記図2に示される磁気記録媒体30が完成する。
次に、本発明の第2実施形態について説明する。
前記第1実施形態では被検出材成膜工程(S106)において第1の充填材36を完全に被覆するように被検出材44を成膜していたのに対し、本第2実施形態は、被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜することを特徴としている。他の工程については前記第1実施形態と同様であるので第1実施形態と同一符号を用いることとして説明を適宜省略する。
このように被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜すると、図13に示されるように、被検出材44は連続膜とはならず、被検出材44の大部分が第1の充填材36又は第2の充填材45からの酸素の拡散により酸化されるので被検出材44の検出量が大きくなる。
又、このように被検出材44を薄く成膜することで、被検出材44の成分の検出量は凹部34の上の被検出材44がエッチングされる後半において1回だけ極大(最大)となるので、検出量が最大値に達する時点の判定が容易である。更に、検出量が極大(最大)となるのが1回だけのため、この点でも検出量が大きくなる。
即ち、二次イオン質量分析法、四重極質量分析法による被検出材44の検出量が大きくなり、被検出材44を例えば1nmよりも薄く成膜しても、エッチングが被検出材44まで及んだことを明確に検出することができる。被検出材44の検出量を大きくするためには被検出材44を0.3〜1nmの厚さで成膜することが好ましく、0.4〜0.6nmの厚さで成膜することがより好ましい。尚、このように薄く成膜される被検出材44の厚さを実際に測定することは困難であり、上記の被検出材44の厚さは成膜レート及び成膜時間から算出される厚さの目標値を示したものである。
次に、本発明の第3実施形態について説明する。
前記第1実施形態では第1の充填材成膜工程(S104)において凹部34を完全に充填するように記録層32の上に第1の充填材36を凹部34の深さ以上の厚さで成膜し、凹部34の上の被検出材44の成分の検出結果に基いて加工用ガスの照射を停止していたのに対し、本第3実施形態は、図14に示されるように記録層32の上に第1の充填材36を凹部34の深さよりも薄く成膜し、記録要素32Aの上の被検出材44の成分の検出結果に基いて加工用ガスの照射を停止することを特徴としている。尚、凹部34は、第1の充填材36、被検出材44及び第2の充填材45で充填される。他の工程については前記第1実施形態と同様であるので第1実施形態と同一符号を用いることとして説明を適宜省略する。
本第3実施形態では、平坦化工程(S110)において図15に示されるように記録要素32Aの上の被検出材44までエッチングが及んだ時点で、除去されて飛散する被検出材44の成分を検出し、エッチングを停止する。即ち、記録要素32Aの上の被検出材44までエッチングが及んだことを検出してエッチングを停止する。
本第3実施形態でも、第1の充填材36が記録要素32Aと被検出材44との間に成膜されているので、記録要素32Aの上の被検出材44が完全に除去されてから更にエッチングが進行しても、第1の充填材36により記録要素32Aをエッチングから保護できる。
又、本第3実施形態でも、記録要素32Aの上の被検出材44が完全に除去されてから更にエッチングが進行し、記録要素32Aの上の第1の充填材36と凹部34を充填する第2の充填材45とがエッチングされても、記録要素32Aの上でも凹部34の上でもSiO2(第1の充填材36、第2の充填材45)がエッチングされるので、記録要素と充填材とがエッチングされる場合のような段差が生じにくく、表面を充分に平坦化できる。
又、本第3実施形態でも、非酸化物である被検出材44の上面44A及び下面44Bの近傍の部分が第1の充填材36、第2の充填材45からの酸素の拡散により酸化されるので、二次イオン質量分析法、四重極質量分析法による被検出材44の検出量が大きくなり、エッチングが被検出材44に及んだことを検出できる。
本第3実施形態でも、前記第2実施形態のように、第1の充填材成膜工程(S104)において被検出材44を第1の充填材36の上に分散させて、且つ、第1の充填材36を完全に被覆しないように薄く成膜してもよい。
尚、前記第1〜第3実施形態において、被検出材44としてNbが例示されているが、被検出材として例えばAl、Y、Zr、Rh、Ag、Tb、Ta、Au、Bi、Ti、In、W等の他の元素を用いてもよい。又、被検出材44は記録層32を構成する元素と異なる単体の元素からなる材料であってもよいし、これらの元素やNbの中から選択される複数の元素からなる材料であってもよい。又、被検出材として、例えばこれらの元素やNbの酸化物を用いてもよい。このように被検出材として酸化物を用いることで、二次イオン質量分析法及び四重極質量分析法による検出量を大きくする効果が得られる。二次イオン質量分析法及び四重極質量分析法による検出が比較的容易なNb等の原子番号が大きい金属元素は、酸化物よりも酸化されていない状態で成膜する方が成膜が容易であるので、前記第1〜第3実施形態のように第1の充填材及び第2の充填材の少なくとも一方として酸化物を用い、第1の充填材や第2の充填材からの酸素の拡散により被検出材を酸化することが好ましい。尚、被検出材44の一部又は全部が酸化物である場合も単体の元素の質量数に基づいて飛散する被検出材44を検出する。又、Zr、Ag、Ta、Ti、In、Wについては複数の同位体のうち、自然界における存在比率が最も高い同位体の質量数に基づいて飛散する被検出材44を検出することが好ましい。
又、前記第1〜第3実施形態において、第1の充填材36及び第2の充填材45はいずれもSiO2であるが、第1の充填材36及び第2の充填材45として異なる酸化物を用いても良い。又、第1の充填材36及び第2の充填材45の一方として非酸化物を用いてもよい。又、第1の充填材36及び第2の充填材45の両方が非酸化物でもよい。前記第3実施形態のように第2の充填材が凹部34の上部を充填する場合、第1の充填材36及び第2の充填材45は、平坦化工程(S110)のドライエッチングに対するエッチングレートが近い材料であることが好ましい。
尚、前記第3実施形態では、第2の充填材45が凹部34を充填しているのに対し、前記第1及び第2実施形態では、第1の充填材36が凹部34の深さ以上の厚さで成膜され、第2の充填材45は凹部34を充填してないが、このような場合も、本出願では便宜上「第2の充填材」という用語を用いることとする。
又、前記第1〜第3実施形態において、平坦化工程(S110)のドライエッチングとして、Arガスを用いたイオンビームエッチングを例示しているが、Kr、Xe等の他の希ガスを用いたイオンビームエッチングを採用してもよく、更に、例えばSF6、CF4、C26等のハロゲン系の反応ガスを用いた反応性イオンエッチング、反応ガスと希ガスとの混合ガスを用いた反応性イオンビームエッチング等の他のドライエッチングを採用してもよい。
又、前記第1〜第3実施形態において、平坦化工程(S110)において、被加工体10から除去されて飛散する被検出材44の成分を検出する方法として、二次イオン質量分析法や四重極質量分析法が例示されているが、被加工体10から除去されて飛散する被検出材44の成分を高精度で検出できれば他の方法を用いてもよい。
又、前記第1〜第3実施形態において、バイアススパッタリング法により第1の充填材36、第2の充填材45を成膜しているが、例えば、バイアスパワーを印加しないスパッタリング法や、CVD法、IBD法等の他の成膜手法を用いて、第1の充填材36、第2の充填材45を成膜してもよい。
又、前記第1〜第3実施形態において、平坦化工程(S110)だけで被加工体10の表面を平坦化しているが、平坦化工程(S110)の後に例えば他の層を成膜し、更にドライエッチング等による平坦化加工を行ってもよい。
又、前記第1〜第3実施形態において、連続記録層20(記録要素32A)の材料はCoCr合金であるが、例えば、鉄族元素(Co、Fe、Ni)を含む他の合金、これらの積層体等の他の材料を用いてもよい。
又、前記第1〜第3実施形態において、連続記録層20の下に下地層14、反強磁性層15、軟磁性層16、配向層18が形成されているが、連続記録層20の下の層の構成は、磁気記録媒体の種類に応じて適宜変更すればよい。例えば、下地層14、反強磁性層15、軟磁性層16、配向層18のうち一又は二以上の層を省略してもよい。又、基板上に連続記録層を直接形成してもよい。
又、前記第1〜第3実施形態において、磁気記録媒体30は記録層32等が基板12の片面だけに形成されているが、基板の両面に記録層を備える両面記録式の磁気記録媒体の製造にも本発明は適用可能である。
又、前記第1〜第3実施形態において、磁気記録媒体30は記録層32がトラックの径方向に微細な間隔で分割された垂直記録型のディスクリートトラックメディアであるが、記録層がトラックの周方向(セクタの方向)に微細な間隔で分割された磁気ディスク、トラックの径方向及び周方向の両方向に微細な間隔で分割されたパターンドメディア、凹凸パターンの連続した記録層を有するPERM(Pre−Embossed Recording Medium)タイプの磁気ディスク、記録層が螺旋形状をなす磁気ディスクの製造についても本発明は当然適用可能である。又、面内記録型の記録層を有する磁気記録媒体の製造に対しても本発明を適用可能である。又、MO等の光磁気ディスク、磁気と熱を併用する熱アシスト型の磁気ディスク、更に、磁気テープ等のディスク形状以外の凹凸パターンの記録層を有する磁気記録媒体の製造に対しても本発明は適用可能である。
上記第1及び第2実施形態のとおりA〜Jの9種類のサンプルを10枚ずつ作製した。具体的には、まず直径が48mmの基板12及び下記の凹凸パターンの記録層32を有する90枚の被加工体10を用意した。
トラックピッチ :150nm
凸部の幅 : 90nm
凹部の幅 : 60nm
凹凸の段差(凹部34の深さ): 18nm
凹凸パターンを形成した範囲:中心から半径16〜18mmの範囲
次に、バイアススパッタリングにより、これら被加工体10の記録層32の上に第1の充填材36を凹部34の深さよりも厚く成膜して凹部34を完全に充填した。バイアススパッタリングの条件は以下のとおりである。尚、第1の充填材36はSiO2を用いた。
成膜パワー(SiOのターゲットに印加するパワー) :RF500W
被加工体10に印加するバイアスパワー :RF150W
チャンバ内圧力 :0.3Pa
ターゲットと被加工体との距離 :250nm
成膜厚さ(凹部34上の第1の充填材36の厚さ) :20nm
次に、スパッタリングにより、第1の充填材36の上に被検出材44としてNbを成膜した。被検出材44の成膜厚さはA〜J毎に異なる厚さとした。A〜J毎の被検出材44の厚さを表1に示す。尚、これらの被検出材44の成膜厚さは成膜レート及び成膜時間から算出した値である。
次に、バイアススパッタリングにより、これら被加工体10の被検出材44の上に第2の充填材45を成膜した。第2の充填材45としてSiOを用いた。バイアススパッタリングの条件は以下のとおりである。
成膜パワー(SiOのターゲットに印加するパワー):RF500W
被加工体10に印加するバイアスパワー :RF150W
チャンバ内圧力 :0.3Pa
ターゲットと被加工体との距離 :250nm
成膜厚さ(凹部34上の第2の充填材45の厚さ) :40nm
次に、イオンビームエッチングにより記録要素32Aの上面よりも上側の余剰の第1の充填材36、被検出材44及び第2の充填材45を除去し、表面を平坦化した。イオンビームエッチングの条件は以下のとおりである。尚、イオンビームの入射角は被加工体10の表面に対する角度である。
イオンビームの入射角:約2°
ビーム電圧 :700V
ビーム電流 :1100mA
サプレッサー電圧 :400V
Arガス流量 :11sccm
チャンバ内圧力 :0.04Pa
この際、二次イオン質量分析法により、被加工体10から除去されて飛散するNb(被検出材44の成分)を検出し、Nbのカウント数が実質的に消失した時点でイオンビームエッチングを停止した。ここでNbのカウント数とは、Nbの飛散量に対応する値である。尚、Nbのカウント数のバックグラウンド値は、最表面の第2の充填材45だけをエッチングしている間でもノイズにより2000(count/sec)程度の値を示すことがあるため、(凹部34の上の被検出材44がエッチングされる後半において)Nbのカウント数が極大となった後、極大値の半分まで低下した時点を被検出材44が実質的に消失した時点とし、この時点でイオンビームエッチングを停止した。尚、H、Jについては極大値が2つ存在するため、後の極大値の半分まで低下した時点を被検出材44が実質的に消失した時点とした。
A〜Jの平坦化に要した時間及びNbのカウント数が実質的に消失する直前のNbのカウント数の極大値を表1に示す。又、A〜Jのうち、A〜C、F〜Hの平坦化において検出されたNbのカウント数と時間との関係を図16に示す。尚、図16中の符号A〜C、F〜Hは、これらを付した曲線がそれぞれA〜C、F〜Hのデータであることを示す。又、図16において、横軸の0点は、イオンビームエッチングによる平坦化の加工を開始した時点ではなく、凹部の上の被検出材44が検出され始めた時点よりも少し前の時点である。即ち、図16は、記録要素32Aの上の被検出材44が除去された後のグラフである。
平坦化後、AFM(Atomic Force Microscope)により、A〜Jの各サンプルの記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差を測定した。測定結果を表1に示す。尚、表1に示される段差は、A〜Jにおける10枚のサンプルの段差の相加平均値である。又、各サンプルの段差及びA〜J毎の10枚のサンプルの段差の標準偏差を表2に示す。表2に示される各サンプルの段差は各サンプルの複数の部位における記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差の相加平均値である。又、表1、表2において記録要素の上面が第1の充填材36の上面よりも高い場合をプラス、低い場合をマイナスで示す。
Figure 0004626611
Figure 0004626611
上記第3実施形態のとおり1種類(K)の10枚のサンプルを作製した。尚、被加工体10の記録層32の凹凸パターンは上記実施例1のA〜Jと同じである。又、製造条件についても上記実施例1のA〜Jと共通であるものが多いので共通の項目については説明を省略する。
凹凸パターンの記録層32を有する10枚の被加工体10を用意し、これら被加工体10の記録層32の上に第1の充填材36を凹部34の深さよりも薄く成膜した。具体的には、第1の充填材36を2nmの厚さ(凹部34上の第1の充填材36の厚さ)で成膜した。
次に、スパッタリングにより、第1の充填材36の上に被検出材44を0.5nmの厚さで成膜した。
次に、バイアススパッタリングにより、これら被加工体10の被検出材44の上に第2の充填材45を58nmの厚さで成膜して凹部34を完全に充填した。
次に、イオンビームエッチングにより記録要素32Aの上面よりも上側の余剰の第1の充填材36、被検出材44及び第2の充填材45を除去し、表面を平坦化した。
この際、実施例1と同様に二次イオン質量分析法により、被加工体10から除去されて飛散するNb(被検出材44の成分)を検出し、Nbのカウント数が実質的に消失した時点でイオンビームエッチングを停止した。
平坦化後、AFMにより、Kの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。
上記実施例1のEに対し、記録層32の凹凸パターンが異なる1種類(L)の10枚のサンプルを作製した。具体的には、実施例1のEよりも記録要素32Aの幅が広い下記の凹凸パターンの記録層32を有するサンプルを作製した。
トラックピッチ :300nm
凸部の幅 :180nm
凹部の幅 :120nm
凹凸の段差(凹部34の深さ): 18nm
凹凸パターンを形成した範囲 :中心から半径16〜18mmの範囲
尚、他の条件については上記実施例1のEと同じである。
平坦化後、AFMにより、Lの各サンプルの記録要素32Aの上面と凹部34を充填する第1の充填材36の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。
上記実施例2のKに対し、記録層32の凹凸パターンが上記実施例3のLと同じであり、記録要素32Aの幅がKよりも広い1種類(M)の10枚のサンプルを作製した。他の条件については上記実施例2のKと同じである。
平坦化後、AFMにより、Mの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を測定した。測定結果等を実施例1と同様に表1及び表2に示す。
[比較例]
上記実施例2のKに対し、第1の充填材36を成膜しないで、被検出材44を記録層32の上に0.5nmの厚さで直接成膜し、この被検出材44の上に第2の充填材45を60nmの厚さで直接成膜した。他の条件は上記実施例2のKと同様として1種類(X)の10枚のサンプルを作製した。
平坦化後、AFMにより、Xの各サンプルの記録要素32Aの上面と凹部34を充填する第2の充填材45の上面との段差を実施例1と同様に測定した。測定結果等を上記実施例1と同様に表1及び表2に示す。
表1に示されるように、比較例のXは表面の段差が1.9nmで大きかった。これは被検出材44が完全に除去された後もエッチングが更に進行し、記録要素32Aの上面及び凹部34を充填する第2の充填材45の上面がエッチングされたためと考えられる。従って、記録要素32Aがエッチングされたことによる磁気特性の劣化が懸念される。
これに対し、実施例1〜4のサンプルA〜Mはいずれも、表面の段差が±0.3nmの範囲に抑制されていた。これは、記録要素32の上面の位置付近でエッチングが高精度で停止されたためと考えられる。即ち、実施例1〜4によれば記録要素32Aの上面の加工を防止又は磁気特性への影響を無視しうる程度に抑制しつつ記録要素32A及び第1の充填材36(又は第2の充填材45)の上面を充分に平坦化できることが確認された。
又、実施例1のサンプルA〜Jのうち、被検出材44の成膜厚さが0.3〜1nmであるサンプルC〜Gは、Nbのカウント数の極大値(最大値)が大きく、被検出材44の成膜厚さが0.4〜0.6nmであるサンプルD〜Fは、Nbのカウント数の極大値(最大値)が特に大きかった。これは、被検出材44が第1の充填材36の上に分散して、且つ、第1の充填材36を被覆しないように薄く成膜され、第1の充填材36、第2の充填材45からの酸素の拡散により被検出材44の大部分が酸化されたことによると考えられる。
尚、被検出材44の成膜厚さが0.3nmよりも薄いサンプルA、BはNbのカウント数の極大値(最大値)が比較的小さかった。これは、被検出材44が薄すぎて飛散する被検出材44の絶対量が過度に少なかったためと考えられる。これより被検出材44の検出量を大きくするためには、被検出材44の成膜厚さが0.3〜1nmであることが好ましく、0.4〜0.6nmであればより好ましいことがわかる。
又、図16に示されるように、被検出材44の成膜厚さが3nmであるサンプルHは、平坦化において検出されたNbのカウント数が(凹部34の上の被検出材44がエッチングされる後半において)2つの極大値をもっていた。これは、被検出材44が厚く、上面44A及び下面44Bの下面近傍の部分だけが酸化されたためと考えられる。
又、実施例4のMは、実施例1〜3のA〜Lよりも、10枚のサンプルの段差の標準偏差が大きかった。即ち、10枚のサンプルの段差のばらつきが大きかった。これは、実施例4のMは上記第3実施形態のように、凸部の上の被検出材44の検出に基いて平坦化のエッチングを停止して作製され、更に実施例1及び2のA〜Kよりも凸部の幅が広く、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが大きかったためと考えられる。
これに対し、凹凸パターンの凸部の幅が実施例4のMと同じ180nmである実施例3のLは、10枚のサンプルの段差の標準偏差が実施例1及び2のA〜Kと同等であった。これは、実施例3が上記第1及び第2実施形態のとおり、凹部の上の被検出材44の検出に基いて平坦化のエッチングを停止して作製されたため、ノイズと明確に区別できる程度に被検出材44の飛散量が増大する時点のばらつきが小さかったためと考えられる。
即ち、凸部の幅が広い場合であっても、上記第1及び第2実施形態のように凹凸パターンの凹部を完全に充填するように第1の充填材を凹部の深さ以上の厚さで成膜し、平坦化工程において被検出材のうち凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて加工用ガスの照射を停止することで表面の段差のばらつきを小さく抑制できることが確認された。
本発明は、例えば、ディスクリートトラックメディア、パターンドメディア等の凹凸パターンの記録層を有する磁気記録媒体を製造するために利用することができる。
本発明の第1実施形態に係る被加工体の出発体の構造を模式的に示す側断面図 同被加工体を加工して得られる磁気記録媒体の構造を模式的に示す側断面図 同磁気記録媒体の製造工程の概要を示すフローチャート 前記被加工体の出発体のレジスト層に転写された凹凸パターンを模式的に示す側断面図 連続記録層が分割された前記被加工体の形状を模式的に示す側断面図 第1の充填材が成膜された前記被加工体を模式的に示す側断面図 被検出材が成膜された前記被加工体を模式的に示す側断面図 第2の充填材が成膜された前記被加工体を模式的に示す側断面図 前記被検出材の構造を拡大して模式的に示す側断面図 平坦化工程においてエッチングが記録要素の上の被検出材に及んだ前記被加工体を模式的に示す側断面図 平坦化工程においてエッチングが凹部の上の被検出材に及んだ前記被加工体を模式的に示す側断面図 同平坦化工程における被検出材の飛散量と時間との関係を模式的に示すグラフ 本発明の第2実施形態に係る被加工体の被検出材の周辺の構造を模式的に示す側断面図 本発明の第3実施形態に係る第1の充填材、被検出材及び第2の充填材が成膜された被加工体を模式的に示す側断面図 平坦化工程においてエッチングが記録要素の上の被検出材に及んだ同被加工体を模式的に示す側断面図 本発明の実施例の平坦化において検出されたNbのカウント数と時間との関係を示すグラフ
符号の説明
10…被加工体
12…基板
14…下地層
15…反強磁性層
16…軟磁性層
18…配向層
20…連続記録層
22…第1のマスク層
24…第2のマスク層
26…レジスト層
30…磁気記録媒体
32…記録層
32A…記録要素
34…凹部
36…第1の充填材
38…保護層
40…潤滑層
44…検出材
44A…上面
44B…下面
45…第2の充填材
S102…被加工体作製工程
S104…第1の充填材成膜工程
S106…被検出材成膜工程
S108…第2の充填材成膜工程
S110…平坦化工程
S112…保護層成膜工程
S114…潤滑層成膜工程

Claims (2)

  1. 基板及び該基板の上に所定の凹凸パターンで形成されて該凹凸パターンの凸部として記録要素が形成された記録層を有する被加工体の上に第1の充填材を成膜して前記記録要素を被覆すると共に該記録要素の間の凹部を少なくとも部分的に充填する第1の充填材成膜工程と、前記第1の充填材の上に被検出材を成膜する被検出材成膜工程と、前記被検出材の上に第2の充填材を成膜する第2の充填材成膜工程と、前記被加工体の表面に加工用ガスを照射して前記第1の充填材、前記被検出材及び前記第2の充填材のうち前記記録要素の上面よりも上側に成膜された部分の少なくとも一部を除去して表面を平坦化する平坦化工程と、をこの順で実行し、前記被検出材成膜工程において酸化可能である金属を前記第1の充填材の上に分散させて、且つ、該第1の充填材を完全に被覆しないように0.3〜1nmの厚さで成膜して前記被検出材を形成し、前記第1の充填材及び前記第2の充填材の少なくとも一方として酸化物を用い該酸化物からの酸素の拡散により前記被検出材を酸化させ、前記平坦化工程において二次イオン質量分析法により前記被加工体から除去されて飛散する前記被検出材の成分を検出し、該被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。
  2. 請求項1において、
    前記第1の充填材成膜工程において前記凹凸パターンの凹部を完全に充填するように前記第1の充填材を前記凹部の深さ以上の厚さで成膜し、前記平坦化工程において前記被検出材のうち前記凹部の上から除去されて飛散する被検出材の成分の検出結果に基いて前記加工用ガスの照射を停止することを特徴とする磁気記録媒体の製造方法。
JP2006348656A 2006-02-22 2006-12-25 磁気記録媒体の製造方法 Expired - Fee Related JP4626611B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348656A JP4626611B2 (ja) 2006-02-22 2006-12-25 磁気記録媒体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006045282 2006-02-22
JP2006348656A JP4626611B2 (ja) 2006-02-22 2006-12-25 磁気記録媒体の製造方法

Publications (2)

Publication Number Publication Date
JP2007257816A JP2007257816A (ja) 2007-10-04
JP4626611B2 true JP4626611B2 (ja) 2011-02-09

Family

ID=38631869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348656A Expired - Fee Related JP4626611B2 (ja) 2006-02-22 2006-12-25 磁気記録媒体の製造方法

Country Status (1)

Country Link
JP (1) JP4626611B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334426A (ja) * 1989-06-30 1991-02-14 Kawasaki Steel Corp 埋め込み酸化膜の形成方法
JPH03253586A (ja) * 1990-02-28 1991-11-12 Hitachi Ltd 終点検出方法およびその装置
JPH05291195A (ja) * 1992-04-09 1993-11-05 Hitachi Ltd 薄膜加工装置及び方法
JPH065597A (ja) * 1992-06-18 1994-01-14 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPH10209128A (ja) * 1997-01-23 1998-08-07 Sony Corp 平坦化終点検出方法
JP2003504616A (ja) * 1999-07-09 2003-02-04 フェイ カンパニ 二次イオンの収量を高める方法及び装置
JP2005235357A (ja) * 2004-02-23 2005-09-02 Tdk Corp 磁気記録媒体の製造方法
JP2006012216A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 磁気記録媒体、その製造方法及び磁気記録再生装置
JP2007012119A (ja) * 2005-06-28 2007-01-18 Toshiba Corp 磁気記録媒体の製造方法及び製造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334426A (ja) * 1989-06-30 1991-02-14 Kawasaki Steel Corp 埋め込み酸化膜の形成方法
JPH03253586A (ja) * 1990-02-28 1991-11-12 Hitachi Ltd 終点検出方法およびその装置
JPH05291195A (ja) * 1992-04-09 1993-11-05 Hitachi Ltd 薄膜加工装置及び方法
JPH065597A (ja) * 1992-06-18 1994-01-14 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPH10209128A (ja) * 1997-01-23 1998-08-07 Sony Corp 平坦化終点検出方法
JP2003504616A (ja) * 1999-07-09 2003-02-04 フェイ カンパニ 二次イオンの収量を高める方法及び装置
JP2005235357A (ja) * 2004-02-23 2005-09-02 Tdk Corp 磁気記録媒体の製造方法
JP2006012216A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 磁気記録媒体、その製造方法及び磁気記録再生装置
JP2007012119A (ja) * 2005-06-28 2007-01-18 Toshiba Corp 磁気記録媒体の製造方法及び製造装置

Also Published As

Publication number Publication date
JP2007257816A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4071787B2 (ja) 磁気記録媒体の製造方法
US7223439B2 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
US7538041B2 (en) Magnetic recording medium, method of manufacturing the same, and intermediate for magnetic recording medium
JP4626600B2 (ja) 磁気記録媒体の製造方法
JP2006012332A (ja) ドライエッチング方法、磁気記録媒体の製造方法及び磁気記録媒体
JP3881370B2 (ja) 凹凸パターンの凹部充填方法及び磁気記録媒体の製造方法
JP3802539B2 (ja) 磁気記録媒体の製造方法
JP4164110B2 (ja) 磁気記録媒体、磁気記録再生装置及び磁気記録媒体の製造方法
JP2006012285A (ja) 磁気記録媒体及び磁気記録媒体の製造方法
JP4008420B2 (ja) 磁気記録媒体の製造方法
JP4475147B2 (ja) 磁気記録媒体の製造方法
US7740903B2 (en) Method for manufacturing magnetic recording medium
JP2005228363A (ja) 磁気記録媒体の製造方法
US8124255B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JP4626611B2 (ja) 磁気記録媒体の製造方法
JP5062208B2 (ja) 磁気記録媒体及び磁気記録再生装置
JP2005235356A (ja) 磁気記録媒体の製造方法
JP4626612B2 (ja) 磁気記録媒体の製造方法
JP2011028815A (ja) 磁気記録媒体の製造方法
US20090168244A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
US20070196565A1 (en) Method for manufacturing magnetic recording medium
JP2006318648A (ja) 凹凸パターンの凹部充填方法及び磁気記録媒体の製造方法
JP4319104B2 (ja) 磁気記録媒体の製造方法
US20090242508A1 (en) Method for manufacturing magnetic recording medium
TWI386928B (zh) 磁性記錄媒體之評價方法及製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees