JP4621232B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4621232B2
JP4621232B2 JP2007191385A JP2007191385A JP4621232B2 JP 4621232 B2 JP4621232 B2 JP 4621232B2 JP 2007191385 A JP2007191385 A JP 2007191385A JP 2007191385 A JP2007191385 A JP 2007191385A JP 4621232 B2 JP4621232 B2 JP 4621232B2
Authority
JP
Japan
Prior art keywords
light
optical
image
reflecting
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007191385A
Other languages
English (en)
Other versions
JP2008015537A (ja
Inventor
雅夫 山口
貴志 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba TEC Corp filed Critical Toshiba Corp
Priority to JP2007191385A priority Critical patent/JP4621232B2/ja
Publication of JP2008015537A publication Critical patent/JP2008015537A/ja
Application granted granted Critical
Publication of JP4621232B2 publication Critical patent/JP4621232B2/ja
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、高速レーザプリンタ装置、複数ドラム方式カラー複写機あるいはデジタルカラー複写機などの画像形成装置、ならびに、この画像形成装置に利用されるマルチビーム光走査装置に関する。
たとえば、複数ドラム方式カラープリンタあるいは複数ドラム方式カラー複写機などの画像形成装置では、色分解された色成分に対応する複数の画像形成部、及び、この画像形成部に、色成分に対応する画像データすなわち複数のレーザビームを提供する光走査装置 (レーザ露光装置) が利用される。
この種の画像形成装置では、各画像形成部のそれぞれに対応して複数の光走査装置が配置される例と、複数のレーザビームを提供可能に形成されたマルチビーム光走査装置が配置される例とが知られている。
従来のマルチビーム光走査装置は、特開平5−83485号公報に見られるように、マルチビームの数をNとするとき、光源である半導体レーザ素子、シリンダレンズおよびガラスfθレンズ群をNセット、及び、ポリゴンミラーをN/2枚使用する例がある。従って、4レーザビームの場合にはレーザ素子、シリンダレンズおよびガラスfθレンズ群が4セット、及び、ポリゴンミラーが2枚利用される。
特願昭62−232344号公報には、fθレンズの少なくとも一部のレンズ面がトーリック面に形成されたレンズを共通して利用する例が示されている。この特願昭62−232344号には、fθレンズのいくつかをプラスチックで形成することで各レンズ面の設計自由度を向上させ、結像位置における収差特性を改善する提案がある。なお、この公報には、各レンズを共通で利用して、それぞれのレンズに全てのレーザビームを通過させる方法も示されている。
特開平5−34612号公報には、ハーフミラーを利用して複数の光源からのレーザビームを一つのポリゴンミラーに入射させる方法が示されている。
ところで、特開平5−83485号公報に見られるマルチビーム光走査装置が利用される場合、複数の光走査装置が利用される場合に比較して、光走査装置に占有される空間の大きさは低減されるものの、光走査装置単体としては、レンズあるいミラーの数が増大することによる部品代および組み立てコストのアップ、または、光走査装置単体としての大きさおよび重さの増大などがある。また、fθレンズの形状誤差または固体誤差あるいは取り付け誤差などにより、各色成分ごとのレーザビームの主走査線の曲り、あるいは、fθ特性などに代表される結像面における収差特性の偏差が不均一になることが知られている。
一方、第1のfθレンズを各レーザビームに共通に利用する例では、各レーザビームごとに配置された第2のfθレンズが示されているが、第2のfθレンズの形状誤差または固体誤差あるいは取り付け誤差などにより、上記特開平5−83485号公報に見られる例と同様の不都合が生じる。
また、特願昭62−232344号公報に見られる例では、形状が最適化されていないトーリック面が配置されているのみであるから、複数のレーザビームのいずれかのレーザビームに主走査線曲りが発生する問題がある。なお、上記特開昭62−232344号公報に関連して、走査装置に向かうレーザビームの一部を光軸方向へ制御する例が提案されているが、すべての結像領域で十分に収差特性を補正することは困難である。
さらに、上記特願昭62−232344号公報に見られる例では、プラスチックにより形成されたレンズの屈折率の温度の変化による変化量が比較的大きいことから、広範囲に亘る環境条件、特に、温度条件の下では、像面湾曲、主走査線曲りあるいはfθ特性などの特性が大きく変動する問題がある。この例では、しかしながら、特に副走査方向の全域における色消し、像面湾曲、像面歪曲および横倍率などの諸条件を満足しなければならないため、レンズの枚数が増加される問題がある。同時に、各レーザビームの主走査線の平行度を確保するために、ハウジングの精度を非常に高くしなければならずコストアップとなる。
一方、特開平5−34612号公報に示されている例では、最も多くのハーフミラーを通過されるレーザビームの光強度 (光量) が十分に確保されなければならず、光源が大型されることになる。なお、この種の光走査装置では、1つの走査装置により走査されたレーザビームを分離するための走査装置の後段の光学系が大型化されやすい問題がある。
これらの提案を考慮すると、マルチビーム光走査装置の大きさおよびコストを低減するためには、結像レンズすなわちfθレンズは、全てのレーザビームに対してただ1つのみ配置し、さらに、fθレンズを通過されたのち感光体ドラムに向かうレーザビームの光路すなわちレーザビームを、複数の反射ミラーにより折り曲げることが有益であることが認められる。
しかしながら、感光体ドラムに向かうレーザビームを折り曲げることは、同時に、マルチビーム光走査装置とそれぞれの画像形成部との間の空間を、必要以上に低減する場合がある。このことは、各画像形成部に一体的に配置されるトナーカートリッジの大きさに制限を与えることから、トナー補給の回数またはトナーカートリッジの交換の回数を増大させるという問題がある。
また、マルチビーム光走査装置が利用されるカラー画像形成装置では、カラー画像が形成される頻度に比較して、黒 (ブラック) トナーによる単色画像が形成される頻度が多いことから、特に、黒トナーの補給の回数または黒のトナーカートリッジの交換の回数のみが増大される問題がある。
この発明の目的は、色ずれのないカラー画像を提供できる画像形成装置およびその画像形成装置に適した光走査装置を提供するするとともに、光走査装置のコストを低減可能とすることである。
この発明は、上記問題点に基づきなされたもので、少なくとも3つの感光体と、複数の光を前記少なくとも3つの感光体に向けて一群で走査する走査手段と、前記走査手段に案内される光のうちの少なくとも1つの光の光路と残りの光の光路とを合成する光路合成手段と、前記光路合成手段により光路が合成された複数の光のそれぞれに対して所定の光学特性を与える共通の光学手段と、前記光学手段を通過する前記光のうちで前記光学手段の系の光軸を挟んで前記少なくとも3つの感光体のそれぞれの露光位置を含む面から最も離れた位置を通過する第1の光に対応して少なくとも2以上配置され前記第1の光が対応する感光体に到達するまでの間に関与する順に1からiで識別されるi個により形成される第1の反射手段と前記光学手段を通過する前記光のうちで前記第1の光と前記系の光軸との間を通過する光のうちで前記第1の光に最も近接した位置を通過する第2の光に対応して少なくとも2以上配置され、前記第2の光が対応する感光体に到達するまでの間に関与する順に1からjで識別されるj個により形成され、かつj−1からjへ向かう光が前記第1の反射手段のi−1とi−2との間を通過するよう配置され、前記第の光を入射角と反射角とのなす角が鈍角である第2の反射手段と、前記光学手段を通過する前記光のうちで前記露光位置を含む面に最も近い位置を通過する第3の光に対応して配置され、対応する感光体に前記第3の光を案内する第3の反射手段と、を含み、前記走査手段により走査された前記光を前記それぞれの感光体露光位置に結像する結像手段と、前記それぞれの感光体と前記結像手段との間に、前記感光体のそれぞれについて、前記結像手段側に位置する防塵部材と、を具備し、前記防塵部材のうちの前記第3の反射手段に対応する防塵部材は、前記少なくとも3つの感光体のそれぞれの露光位置を含む面との間の距離が、前記第1または第2の反射手段の少なくとも一方に対応する防塵部材と前記少なくとも3つの感光体のそれぞれの露光位置を含む面との間の距離よりも大きい画像形成装置である。
この発明の光走査装置では、光路合成手段により光路が合成されたそれぞれの光は、光偏向装置の各反射面で反射され、第1ないし第3の結像レンズの系の光軸よりも感光体ドラムから遠のく方向の所定の位置を通過された第1および第2のレーザビームおよびは、それぞれ、第2の折り返しミラーで反射されたあとで、相互に交差し、第3の折り返しミラーにより対応する感光体ドラムに案内される。
このことから、色ずれのないカラー画像を提供できる画像形成装置およびその画像形成装置に適した光走査装置において、光走査装置のコストが低減される。
以下、図面を参照して、この発明の実施の形態について詳細に説明する。
図1は、この発明の実施例であるマルチカラー光走査装置が組み込まれる4連ドラム式カラー画像形成装置の正面断面図である。
画像形成装置100は、色分解された色成分すなわちY=イエロー,M=マゼンタ,C=シアンおよびB=ブラックごとに画像を形成する第1ないし第4の画像形成部50Y,50M,50Cおよび50Bを有している。
各画像形成部50 (Y,M,CおよびB) は、光走査装置1の第3の折り返しミラー37Y,37M,37Cおよび第1の折り返しミラー33Bを介して各色成分画像に対応するレーザビームL (Y,M,CおよびB) が出射される位置に対応して、光走査装置1の下方に、50Y,50M,50Cおよび50Bの順で直列に配置されている。
各画像形成部50 (Y,M,CおよびB) の下方には、各画像形成部50 (Y,M,CおよびB) により形成された画像を搬送する搬送ベルト52が配置されている。
搬送ベルト52は、図示しないモータにより矢印の方向に回転されるベルト駆動ローラ56およびテンションローラ54に掛け渡され、ベルト駆動ローラ56が回転される方向に所定の速度で回転される。
各画像形成部50 (Y,M,CおよびB) は、それぞれ、円筒ドラム状で、矢印の方向に回転可能に形成され、画像に対応する静電潜像が形成される感光体ドラム58Y,58M,58Cおよび58Bを有している。
各感光体ドラム58 (Y,M,CおよびB) の周囲には、それぞれの感光体ドラム58 (Y,M,CおよびB) の表面に所定の電位を提供する帯電装置60Y,60M,60Cおよび60B、それぞれの感光体ドラム58 (Y,M,CおよびB) の表面に形成された静電潜像を、対応する色が与えられているトナーで現像する現像装置62Y,62M,62Cおよび62B、搬送ベルト52を感光体ドラム58 (Y,M,CおよびB) との間に介在させた状態で感光体ドラム58 (Y,M,CおよびB) に対向され、搬送ベルト52または搬送ベルト52を介して搬送される記録媒体すなわち記録用紙Pに感光体ドラム58 (Y,M,CおよびB) 上のトナー像を転写する転写装置64Y,64M,64Cおよび64B、転写装置64 (Y,M,CおよびB) を介してトナー像が転写されたあとに感光体ドラム58 (Y,M,CおよびB) 上に残った残存トナーを除去するクリーナ66Y,66M,66Cおよび66B、及び、転写装置64 (Y,M,CおよびB) を介してトナー像が転写されたあとにそれぞれの感光体ドラム58 (Y,M,CおよびB) 上に残った残存電位を除去する除電装置68Y,68M,68Cおよび68Bが、各感光体ドラム58 (Y,M,CおよびB) の回転方向に沿って順に配置されている。
なお、光走査装置1の各ミラー37Y,37M,37Cおよび33Bにより案内されるレーザビームLY,LM,LCおよびLBは、それぞれ、各帯電装置60 (Y,M,CおよびB) と各現像装置62 (Y,M,CおよびB) との間に照射される。
搬送ベルト52の下方には、各画像形成部50 (Y,M,CおよびB) により形成された画像が転写されるための記録媒体すなわち用紙Pを収容する用紙カセット70が配置されている。
用紙カセット70の一端部であって、テンションローラ54に近接する側には、用紙カセット70に収容されている用紙Pを (最上部から) 1枚ずつ取り出す半月ローラ (送り出しローラ) 72が配置されている。送り出しローラ72とテンションローラ54との間には、カセット70から取り出された1枚の用紙Pの先端と各画像形成部50 (Y,M,CおよびB) 、特に、50Bによりそれぞれの感光体ドラム58 (Y,M,CおよびB) 、特に、58Bに形成されたトナー像の先端とを整合させるためのレジストローラ74が配置されている。
レジストローラ74と第1の画像形成部50Yとの間であって、テンションローラ54の近傍、実質的に、搬送ベルト52を挟んでテンションローラ54の外周上には、レジストローラ72を介して所定のタイミングで搬送される1枚の用紙Pに、所定の静電吸着力を提供する吸着ローラ76が配置されている。なお、吸着ローラ76の軸線とテンションローラ54は、平行に配置される。
搬送ベルト52の一端であって、ベルト駆動ローラ56の近傍、実質的に、搬送ベルト52を挟んでベルト駆動ローラ56の外周上には、搬送ベルト52あるいは搬送ベルトにより搬送される用紙P上に形成された画像の位置を検知するためのレジストセンサ78および80が、ベルト駆動ローラ56の軸方向に所定の距離をおいて配置されている (図1は、正面断面図であるから、後方のセンサ80のみが示されている)。
ベルト駆動ローラ56の外周に対応する搬送ベルト52上には、搬送ベルト52上に付着したトナーあるいは用紙Pの紙かすなどを除去する搬送ベルトクリーナ82が配置されている。
搬送ベルト52を介して搬送された用紙Pがテンションローラ56から離脱されてさらに搬送される方向には、用紙Pに転写されたトナー像を用紙Pに定着する定着装置84が配置されている。
図2には、この発明の実施例であるマルチビーム光走査装置の概略平面図および概略断面図が示されている。なお、図1に示したカラーレーザビームプリンタ装置では、通常、イエロー=Y、マゼンタ=M、シアン=Cおよびブラック=Bの各色成分ごとに色分解された4種類の画像データと、Y,M,CおよびBのそれぞれに対応して各色成分ごとに画像を形成するさまざまな装置が4組利用されることから、同様に、各参照符号にY,M,CおよびBを付加することで、色成分ごとの画像データとそれぞれに対応する装置を識別する。
図2によれば、マルチビーム光走査装置1は、色成分ごとの画像データに対応するレーザビームLY,LM,LCおよびLBを発生する光源としての第1ないし第4の半導体レーザ (以下、レーザ素子と示す) 3Y,3M,3Cおよび3B、及び、それぞれのレーザ素子3 (Y,M,CおよびB) から出射されたレーザビームL (Y,M,CおよびB) を、所定の位置に配置された対象物すなわち画像形成装置100の第1ないし第4の画像形成部50Y,50M,50Cおよび50Bのそれぞれの感光体ドラム58Y,58M,58Cおよび58Bに向かって所定の線速度で走査すなわち偏向する走査手段としての光偏向装置5などにより構成される。
それぞれのレーザ素子3Y,3M,3Cおよび3Bは、光偏向装置5に対し、所定の角度で、3Y,3M,3Cおよび3Bの順に配置されている。なお、レーザ素子3BすなわちB (ブラック) 画像に対応されるレーザ素子は、光偏向装置5の反射面に向けて直接入射可能に配置される。
それぞれのレーザ素子3 (Y,M,CおよびB) と光偏向装置5との間には、図3に示すように、レーザ素子3 (Y,M,CおよびB) からのレーザビームL (Y,M,CおよびB) の断面ビームスポット形状を所定の形状に整える光源側光学系すなわち偏向前光学系7Y,7M,7Cおよび7Bが配置されている。
光偏向装置5は、たとえば、8面の平面反射鏡 (面) が正多角形状に配置された多面鏡本体5aと、多面鏡本体5aを、一定の速度で所定の方向に回転させるモータ5mにより構成される。なお、多面鏡本体5aは、たとえば、アルミニウム合金により形成される。
偏向前光学系7 (Y,M,CおよびB) は、それぞれのレーザ素子3 (Y,M,CおよびB) からのレーザビームL (Y,M,CおよびB) に対して、光偏向装置5によってレーザビームL (Y,M,CおよびB) が偏向される方向 (以下、主走査方向と示す) および主走査方向と副走査方向の双方に関して所定の収束性を与える有限焦点レンズ9Y,9M,9Cおよび9B、それぞれの有限焦点レンズ9 (Y,M,CおよびB) を通過されたそれぞれのレーザビームL (Y,M,CおよびB) に、副走査方向に関してのみさらに収束性を与えるハイブリッドシリンダレンズ11Y,11M,11Cおよび11B、及び、それぞれのハイブリッドシリンダレンズ11 (Y,M,CおよびB) を通過された4本のレーザビームL (Y,M,CおよびB) を光偏向装置5の各偏向面 (反射面) に向かって折り曲げる偏向前折り返しミラーブロック13などを有している。なお、レーザ素子3 (Y,M,CおよびB) 、有限焦点レンズ9 (Y,M,CおよびB) 、ハイブリッドシリンダレンズ11 (Y,M,CおよびB) 、及び、ミラーブロック13は、たとえば、アルミニウム合金などによって形成された保持部材15上に、一体的に配置されている。
有限焦点レンズ9 (Y,M,CおよびB) は、それぞれ、非球面ガラスレンズもしくは球面ガラスレンズにUV硬化プラスチックで非球面を貼り合わせたものにより形成される。また、それぞれのレンズは、保持部材15と実質的に熱膨張率の等しい材質によって形成された図示しない鏡筒あるいはレンズ保持リングを介して保持部材15上に固定される。
ハイブリッドシリンダレンズ11 (Y,M,CおよびB) は、それぞれ、プラスチックシリンダレンズ17Y,17M,17Cおよび17Bとガラスシリンダレンズ19Y,19M,19Cおよび19Bとを含んでいる。
それぞれのプラスチックシリンダレンズ17 (Y,M,CおよびB) とガラスシリンダレンズ19 (Y,M,CおよびB) とは、副走査方向に関し、実質的に同一の曲率が与えられている。また、各プラスチックシリンダレンズ17 (Y,M,CおよびB) は、たとえば、PMMA (ポリメチルメタクリル) などの材質により形成される。ガラスシリンダレンズ19 (Y,M,CおよびB) は、たとえば、SFS1などの材質により形成される。また、それぞれのシリンダレンズ17および19は、保持部材15と実質的に熱膨張率の等しい材質によって形成された図示しない鏡筒 (レンズ保持リング) を介して保持部材15上に固定される。なお、有限焦点レンズ9 (Y,M,CおよびB) とハイブリッドシリンダレンズ11 (Y,M,CおよびB) は、同一の鏡筒により保持されてもよい。
図4には、ミラーブロック13が詳細に示されている。
図4に示されるように、ミラーブロック13は、熱膨脹率が小さい材質、たとえば、アルミニウム合金などにより形成されたブロック本体13aと、ブロック本体13aの所定の面に形成され、画像形成可能な色成分の数すなわち色分解された色の数よりも「1」だけ少ない数だけ配置された複数の反射面13Y,13Mおよび13Cにより構成される。
再び、図3を参照すれば、光偏向装置5と感光体ドラム58との間には、光偏向装置5の各反射面により偏向されたレーザビームL (Y,M,CおよびB) を感光体ドラム58の所定の位置に、おおむね直線状に結像させるための像面側光学系すなわち偏向後光学系21、偏向後光学系21を通過されたそれぞれのレーザビームL (Y,M,CおよびB) の一部を検知するための水平同期検出器23、及び、偏向後光学系21と水平同期検出器23との間に配置され、偏向後光学系21を通過された4本のレーザビームL (Y,M,CおよびB) の一部を水平同期検出器23に向かって反射させる水平同期用折り返しミラー25などが配置されている。なお、水平同期検出器23および水平同期用折り返しミラー25は、4本のレーザビームL (Y,M,CおよびB) に対して、ただ1組のみ配置される。また、水平同期用折り返しミラー25は、図5を用いて後述するように、4本のレーザビームのそれぞれを、水平同期検出器23に順に入射可能に形成されている。
偏向後光学系21は、広い偏向幅、すなわち光偏向装置5により感光体ドラムに58に偏向されたレーザビームL (Y,M,CおよびB) の主走査方向の長さ方向の全域で、光偏向装置5の各反射面により偏向された4本のレーザビームL (Y,M,CおよびB) に、所定の収差特性を与えるとともに、それぞれのレーザビームL (Y,M,CおよびB) の結像面の変動を一定の範囲内に抑えるための第1ないし第3の結像レンズ27,29および31を有している。
偏向後光学系21の第3の結像レンズすなわち最も感光体ドラム58に近いレンズ31と感光体ドラム58との間には、レンズ31を通過された4本のレーザビームLY,LM,LCおよびLBを感光体ドラム58に向かって折り曲げる第1の折り返しミラー33Y,33M,33Cおよび33B、第1の折り返しミラー33Y,33Mおよび33Cにより折り曲げられたレーザビームLY,LMおよびLCを、さらに折り返す第2の折り返しミラー35Y,35Mおよび35Cならびに第3の折り返しミラー37Y,37Mおよび37Cが配置されている。なお、図2から明らかなように、B (ブラック) 画像に対応するレーザビームLBは、第1の折り返しミラー33Bにより折り返されたのち、他のミラーを経由せずに感光体ドラム58に案内される。すなわち、第2の折り返しミラー35Y,35Mおよび35Cならびに第3の折り返しミラー37Y,37Mおよび37Cは、それぞれ、4レーザビームに対して3枚配置される。また、光偏向装置5の各反射面で反射され、第1ないし第3の結像レンズ27,29および31の系の光軸よりも感光体ドラム58から遠のく方向を通過された第1および第2のレーザビームLYおよびLMは、第2の折り返しミラー35Yおよび35Mで反射されたあとで、相互に、交差したのち、第3の折り返しミラー37Yおよび37Mにより対応する感光体ドラム58Yおよび58Mに案内される。ここで、第3の折り返しミラー37Yおよび37M、第2の折り返しミラー35Yおよび35M、及び、系の光軸よりも感光体ドラム58から遠のく方向を通過された第1および第2のレーザビームLYおよびLMのそれぞれには、第1の光LYが感光体ドラム58Yに到達されるまでの間に関与される順に1からiで識別されるi個により形成される第1の反射ミラー群33Y,35Yおよび37Yと、第1の光LYと系の光軸との間を通過される光のうちで第1の光LYに最も近接した位置を通過される第2の光LMに対応して少なくとも2以上配置され、感光体ドラム58Mに到達されるまでの間に関与される順に1からjで識別されるj個により形成される第2の反射ミラー群33M,35Mおよび37Mとを含み、光偏向装置5の各反射面を介して走査された第1および第2のレーザビームLYおよびLMに関し、第2の反射ミラー群のj−1からjへ向かうレーザビームが第1の反射ミラー群のi−1とi−2との間を通過可能な関係に配置される。この場合、第1の光LYが第3の反射ミラー37Yに入射される入射角と第3の反射ミラー37Yから出射される出射角とのなす角は、90°より大きな鈍角に規定される。
第1、第2および第3の結像レンズ27,29および31、第1の折り返しミラー33 (Y,M,CおよびB) 、及び、第2の折り返しミラー35 (Y,MおよびC) は、光偏向装置1の中間ベース1aに一体成型などにより形成されている図示しない複数の固定部材に、それぞれ、接着などにより固定される。また、第3の折り返しミラー37 (Y,MおよびC) は、それぞれ、図7を用いて後述するように、中間ベース1aに一体成型により形成されている固定用リブと傾き調整機構により、副走査方向に関連した少なくとも1方向に関して移動可能に配置される。
第3の折り返しミラー37Y,37Mおよび37C、及び、第1の折り返しミラー33Bと感光体ドラム58との間であって、それぞれのミラー33B、37Y,37Mおよび37Cを介して反射された4本のレーザビームL (Y,M,CおよびB) が光偏向装置1から出射される位置には、さらに、光偏向装置1内部を防塵するための防塵ガラス39Y,39M,39Cおよび39Bが配置されている。
再び、図2を参照すれば、各レーザビームLY,LM,LCおよびLBは、第3の折り返しミラー37Y,37Mおよび37C、及び、第1の折り返しミラー33Bによって、おおむね、等間隔で、光偏向装置1の外部へ出射される。すなわち、レーザビームLB (黒) は、第1の折り返しミラー33B (1枚のみ) を含む光路により光偏向装置1から出射される。
また、各レーザビームLY,LMおよびLCは、それぞれ、第3の折り返しミラー37Y,37Mおよび37C (それぞれ3枚) を含む光路により光偏向装置1から出射される。なお、それぞれの光路中のミラーの枚数は、1枚および3枚であるから、奇数に統一されている。このことは、レンズの傾きなどによる像面に到達される各レーザビームL (Y,MおよびC) の主走査線の曲りの方向に、同一の位相 (方向性) を提供できる。
次に、ハイブリッドシリンダレンズ11Yの光学特性を詳細に説明する。
偏向後光学系21すなわち第1ないし第3の結像レンズ27,29および31は、プラスチック、たとえば、PMMAにより形成されることから、 (光偏向装置の) 周辺温度が、たとえば、0°Cから50°Cの間で変化することにより、屈折率nが、1.4876から1.4789まで変化することが知られている。この場合、第1ないし第3の結像レンズ27,29および31を通過されたレーザビームL (Y,M,CおよびB) が実際に集光される結像面すなわち副走査方向結像位置は、±12mm程度変動してしまう。ここで、偏向後光学系21に利用されるレンズの材質と同一の材質のレンズを、曲率を最適化した状態で偏向前光学系7に組み込むことによって、温度変化による屈折率nの変動に伴って発生する結像面の変動を±0.5mm程度に抑えることができる。すなわち、偏向前光学系7がガラスレンズで、偏向後光学系21がPMMAで形成されたレンズにより構成される従来の光学系に比較して、偏向後光学系21のレンズの温度変化による屈折率の変化に起因して発生する副走査方向の色収差が補正できる。
なお、図3から明らかなように、それぞれのレーザビームLY,LM,LCおよびLBは、副走査方向で、光偏向装置1の光軸 (系の光軸) に対して対称に入射されている。すなわち、レーザビームLYおよびLBは、光軸Oを挟んで対称に、多面鏡5aに入射される。また、レーザビームLMおよびLCは、同様に、光軸Oを挟んで対称に、かつ、レーザビームLYおよびLBよりも光軸O側を、多面鏡5aに案内される。このことは、それぞれのレーザビームL (Y,M,CおよびB) に関し、偏向後光学系21を、副走査方向の2箇所で最適化できることを示している。従って、各レーザビームL (Y,M,CおよびB) の像面湾曲および非点収差などの特性をより向上させたり、偏向後光学系21のレンズ枚数を低減できる。
図4によれば、ミラーブロック13は、第1ないし第4のレーザビームLY,LM,LCおよびLBを、1つの束のレーザビームLoとして光偏向装置5の各反射面に案内するために利用される。詳細には、ミラーブロック13は、入射させるためにレーザ素子3Yから出射されたレーザビームLYを折り返して光偏向装置5の各反射面に案内する第1の反射面13Y、レーザ素子3MからのレーザビームLMおよびレーザ素子3CからのレーザビームLCを、それぞれ、光偏向装置5の各反射面に向かって折り返す第2および第3の反射面13Mおよび13C、及び、レーザ素子3BからのレーザビームLBをそのまま光偏向装置5の各反射面に案内する通過領域13Bを有している。
それぞれの反射面13Y,13Mおよび13Cは、ブロック本体13aの各反射面に対応する位置が所定の角度に切り出されたのち、切削面に、たとえば、アルミニウムなどの反射率の高い材質が塗布または蒸着されることにより提供される。なお、ブロック本体13aの各反射面に対応する位置は、切削後、研磨により鏡面加工されてもよい。
図4に示したミラーブロックによれば、各反射面13Y,13Mおよび13Cは、1つのブロック本体13aから切り出されることから、各ミラーごとの相対的な傾き誤差が低減される。また、ブロック本体13aを、たとえば、ダイカストにより製造することで、精度の高いミラーブロックが提供できる。
なお、レーザ素子3BからのレーザビームLBは、すでに説明したように、ミラーブロック13と交わることなく、ブロック本体13a上の通過領域13Bを通過されて、光偏向装置5の各反射面5αないし5εおよび5κないし5μに直接案内される。
ここで、ミラーブロック13により反射されて光偏向装置5に案内される各レーザビームL (Y,MおよびC) ならびに光偏向装置5に直接案内されるレーザビームLBの強度 (光量) について考察する。
従来技術の項ですでに説明したように、特開平5−34612号公報には、2以上のレーザビームを1つの束のレーザビームとして光偏向装置の反射面に入射させる方法として、ハーフミーラにより、レーザビームを、順に、重ねる方法が示されている。しかしながら、複数のハーフミラーが利用されることで、1回の反射および透過 (ハーフミラーを1回通過するごとに) に対し、各レーザから出射されたレーザビームの光量の50%は無駄となってしまうことは公知である。この場合、ハーフミラーの透過率と反射率を、それぞれ、各レーザビームごとに最適化したとしても、すべてのハーフミラーを通過されるいづれか1つのレーザビームの強度 (光量) は、レーザ素子から出力された光量の約25%まで低減されてしまう。また、光路中にハーフミラーが光路に傾いて存在すること、及び、各レーザビームが通過するハーフミラーの枚数が異なること、などに起因して、像面湾曲あるいは非点収差など代表される光学特性に、各レーザビームごとに差が生じることが知られている。各レーザビームごとに像面湾曲および非点収差などの特性が異なることは、全てのレーザビームを、同一の有限焦点レンズおよびシリンダレンズのみによりそれぞれの感光体ドラムに結像させることを困難にする。
これに対して、図4に示されているミラーブロック13によれば、それぞれのレーザビームLY,LMおよびLCは、光偏向装置5の多面鏡5aに入射する前段であって、各レーザビームLY,LMおよびLCが副走査方向に分離している領域 (図6に網かけで示されている) で、通常のミラーによって折り返される。従って、多面鏡5aにより感光体ドラム58に向かって供給 (反射) される各レーザビームL (Y,M,CおよびB) の光量は、出射光量のおおむね90%以上に維持できる。このことは、各レーザの出力を低減できるばかりでなく、感光体ドラム58に到達される光の収差を均一に補正できるため、レーザビームを小さく絞り、高精細化への対応を可能とする。なお、B (ブラック) に対応するレーザ素子3Bは、ミラーブロック13の通過領域13Bを通過されて多面鏡5aに案内されることから、レーザの出力容量が低減できるばかりでなく、反射面で反射されることによる多面鏡5aへの入射角の誤差が除去される。
図5には、水平同期用折り返しミラーが詳細に示されている。
図5によれば、水平同期用折り返しミラー25は、それぞれのレーザビームLY,LM,LCおよびLBを、主走査方向には水平同期検出器23に異なるタイミングで反射させるとともに、副走査方向には水平同期検出器23上で実質的に同一の高さを提供できるよう、主走査方向および副走査方向ともに異なる角度に形成された第1ないし第4の折り返しミラー面25Y,25M,25Cおよび25B、及び、それぞれのミラー25 (Y,M,CおよびB) を一体に保持するミラーブロック25aを有している。
ミラーブロック25aは、たとえば、ガラス入りPC (ポリカーボネイト) などにより成型される。また、各ミラー25 (Y,M,CおよびB) は、所定の角度で成型されたブロック25aの対応する位置に、たとえば、アルミニウムなどの金属が蒸着されて形成される。
このようにして、光偏向装置5で偏向された各レーザビームLY,LM,LCおよびLBを、1つの検出器23に入射させることが可能となるばかりでなく、たとえば、検出器が複数個配置される際に問題となる各検出器の感度あるいは位置ずれに起因する水平同期信号のずれが除去できる。なお、水平同期検出器23には、水平同期用折り返しミラー25により主走査方向1ラインあたりレーザビームLY,LM,LCおよびLBが合計4回入射されることはいうまでもない。また、ミラーブロック25aは、型のミラー面が1つにブロックから切削加工により作成可能に設計され、アンダーカットを必要とせずに、型から抜けるよう工夫されている。
次に、再び、図2を参照して、光偏向装置5の多面鏡5aで反射されたレーザビームL (Y,M,CおよびB) と偏向後光学系21を通って光走査装置1の外部へ出射される各レーザビームLY,LM,LCおよびLBの傾きと折り返しミラー33B,37Y,37Mおよび37Cとの関係について説明する。
既に説明したように、光偏向装置5の多面鏡5aで反射され、第1ないし第3のプラスチックレンズ27,29および31により所定の収差特性が与えられた各レーザビームLY,LM,LCおよびLBは、それぞれ、第1の折り返しミラー33Y,33M,33Cおよび33Bを介して所定の方向に折り返される。
このとき、レーザビームLBは、第1の折り返しミラー33Bで反射されたのち、そのまま防塵ガラス39Bを通って感光体ドラム58に案内される。これに対し、残りのレーザビームLY,LMおよびLCは、それぞれ、第2の折り返しミラー35Y,35Mおよび35Cに案内され、第2の折り返しミラー35Y,35Mおよび35Cによって、第3の折り返しミラー37Y,37Mおよび37Cに向かって反射され、さらに、第3の折り返しミラー37Y,37Mおよび37Cで反射されたのち、それぞれ、防塵ガラス39Y,39Mおよび39Cにより、おおむね等間隔でそれぞれの感光体ドラムに結像される。この場合、第1の折り返しミラー33Bで出射されたレーザビームLBとレーザビームLBに隣り合うレーザビームLCも、おおむね等間隔で感光体ドラム58Bおよび58Cのそれぞれに結像される。
ところで、レーザビームLBは、レーザ素子3Bを出射されたのち、多面鏡5aと折り返しミラー33Bで反射されるのみで光走査装置1から感光体ドラム58に向かって出射される。このことから、実質的に折り返しミラー33B1枚のみで案内されるレーザビームLBが確保できる。
このレーザビームLBは、光路中に複数のミラーが存在する場合に、ミラーの数に従って増大 (逓倍) される結像面での像のさまざまな収差特性の変動あるいは主走査線曲がりなどに関し、残りのレーザビームL (Y,MおよびC) を相対的に補正する際の基準光線として有益である。
なお、光路中に複数のミラーが存在する場合には、それぞれのレーザビームLY,LM,LCおよびLBごとに利用されるミラーの枚数を奇数または偶数に揃えることが好ましい。すなわち、図2によれば、レーザビームLBに関与するミラーの枚数は、光偏向装置5の多面鏡5aを除いて1枚 (奇数) 、レーザビームLC,LMおよびLYに関与するミラーの枚数は、それぞれ、3枚 (奇数) である。ここで、いづれか1つのレーザビームLC,LMおよびLYに関し、第2のミラー35が省略されたと仮定すれば、第2のミラー35が省略された光路 (ミラーの枚数は偶数) を通るレーザビームのレンズなどの傾きなどによる主走査線曲がりの方向は、他のレーザビームすなわちミラーの枚数が奇数のレンズなど傾きなどによる主走査線曲がりの方向と逆になり、所定の色を再現する際に有害な問題である色ズレを引き起こす。
従って、4本のレーザビームLY,LM,LCおよびLBを重ねて所定の色を再現する際には、各レーザビームLY,LM,LCおよびLBの光路中に配置されるミラーの枚数は、実質的に、奇数または偶数に統一される。
図7は、第3の折り返しミラー37Y,37Mおよび37Cの支持機構を示す概略斜視図である。
図7によれば、第3の折り返しミラー37 (Y,MおよびC) は、それぞれ、光走査装置1の中間ベース1aの所定の位置に、中間ベース1aと一体的に形成された固定部41 (Y,MおよびC) 、及び、固定部41 (Y,MおよびC) に対し、対応するミラーを挟んで対向されるミラー押さえ板ばね43 (Y,MおよびC) により保持される。
固定部41 (Y,MおよびC) は、各ミラー37 (Y,MおよびC) の両端部 (主走査方向) に一対形成されている。一方の固定部41 (Y,MおよびC) には、それぞれ、ミラー37 (Y,MおよびC) を2点で保持するための2つの突起45 (Y,MおよびC) が形成されている。なお、2つの突起45 (Y,MおよびC) は、図7に点線で示すように、リブ46 (Y,MおよびC) であってもよい。なお、残りの固定部41 (Y,MおよびC) には、突起45 (Y,MおよびC) で保持されているミラーを、光軸に沿って移動可能に支持する止めねじ47 (Y,MおよびC) が配置されている。
図7に示されるように、それぞれのミラー37 (Y,MおよびC) は、止めねじ47 (Y,MおよびC) が前後進されることで、突起45 (Y,MおよびC) を支点として、光軸方向に移動される。なお、この方法では、主走査方向の傾きすなわち主走査線の曲りについては補正可能であるが、副走査方向の間隔のずれについては、対応できない。
このため、副走査方向の間隔のずれについては、図11を用いて後述する水平書き出しタイミングの変更により対応する。
図8は、図2に示したマルチビーム光走査装置の従来の例を示す概略断面図である。
図8に示したマルチビーム光走査装置と図2に示したマルチビーム光走査装置とを比較すると、図2に示した光走査装置における防塵ガラス39と感光体ドラム58との間の距離が図8の距離をαとするとき、おおむね、1.2αに拡大されることが認められる。
図9および図10は、それぞれ、図2に示したマルチビーム光走査装置の変形例を示す概略断面図である。
図9および図10において、α´を図2に示した1.2αとすると、図9に示した配置では、感光体ドラム58Bの近傍において、1.75α´まで、空間が確保される。また、図10に示した配置では、感光体ドラム58Bの近傍において、1.8α´まで拡大される。なお、1.8α´は、図8に示したαに比較して、2倍よりも大きな空間である。従って、黒 (ブラック) 画像の形成に利用される画像形成部58Bに対して供給可能なトナー (黒トナー) の量は、2倍以上に確保される。
図11は、図1に示した画像形成装置の画像形成動作を制御する画像制御部の概略ブロック図である。
画像形成装置100は、画像制御部110を有している。
画像制御部110は、画像制御CPU111、タイミング制御部113および各色成分に対応するデータ制御部115Y,115M,115Cおよび115Bなどの複数の制御ユニットを含んでいる。なお、画像制御CPU111、タイミング制御部113および各データ制御部115 (Y,M,CおよびB) は、それぞれ、バスライン112を介して相互に接続されている。
また、画像制御CPU111は、バスライン112により、画像形成装置100の機械要素、例えば、モータあるいはローラなどの動作、および、電気的要素、例えば、帯電装置60 (Y,M,CおよびB) ,現像装置62 (Y,M,CおよびB) あるいは転写装置64 (Y,M,CおよびB) に印加される電圧値または電流量などを制御する主制御装置101と接続されている。なお、主制御装置101には、装置100をイニシャルするためのイニシャルデータあるいはテストパターンなどが記憶されている図示しないROM (リード・オンリ・メモリ) 、入力された画像データあるいはレジストセンサ78および80の出力に応じて算出される補正データなどを一時的に記憶するRAM102 (ランダム・アクセス・メモリ) 、及び、後述する調整モードによって求められるさまざまな補正データを記憶する不揮発性メモリ103などが接続されている。
タイミング制御部113には、各色成分ごとの画像データが記憶される画像メモリ114Y,114M,114Cおよび114B、各画像メモリ114 (Y,M,CおよびB) に基づいて、各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) に向かってレーザビームを照射するために対応するレーザ素子3 (Y,M,CおよびB) を付勢するレーザ駆動部116 (Y,M,CおよびB) 、レジストセンサ78および80からの出力に基づいて、レーザビームLY,LM,LCおよびLBにより画像を書き込むタイミングの補正量をレジストセンサ78および80からの信号に基づいて演算するレジスト補正演算装置117、レジスト補正演算装置117からの信号に基づいて、各画像形成部50 (Y,M,CおよびB) および光走査装置1のレーザ素子3 (Y,M,CおよびB) を動作させるためのさまざまなタイミングを規定するタイミング設定装置118、及び、各画像形成部50 (Y,M,CおよびB) ごとの固体誤差および光走査装置1内の各光路の光路長の差に起因するずれを補正する発振周波数可変回路 (ボルテージ・コントロールド・オシレータすなわち電圧制御発振回路、以下、VCOとする) 119Y,119M,119Cおよび119Bなどが接続されている。
タイミング制御装置113は、内部に、補正データを記憶できるRAM部を含むマイクロプロセッサであって、例えば、個々の仕様に基づいて専用IC (アプリケーション・スペシフィック・インテグレーテッド・サーキット、以下、ASICとする) などに集積されている。データ制御部115 (Y,M,CおよびB) は、それぞれ、複数のラッチ回路およびORゲートなどを含むマイクロプロセッサであって、同様に、ASICなどに集積されている。レジスト補正演算装置117は、少なくとも4組のコンパレータおよびORゲートなどを含むマイクロプロセッサであって、同様に、ASICなどに集積されている。VCO119 (Y,M,CおよびB) は、それぞれ、出力される周波数が印加される電圧に応じて変化できる発振回路であって、±3%程度の周波数可変範囲を有する。この種の発振回路としては、調和発振回路、LC発振回路あるいはシミュレーテッドリアクタンス可変LC発振回路などが利用される。なお、VCO119としては、出力波形をサイン波から矩形波に変換する変換器が一体に組み込まれた回路素子も知られている。
なお、各画像メモリ114 (Y,M,CおよびB) には、図示しない外部記憶装置あるいはホストコンピュータなどからの画像データが記憶される。また、光走査装置1の水平同期検出器23の出力は、水平同期信号発生回路121を介して水平同期信号Hsyncに変換され、各データ制御部115 (Y,M,CおよびB) に入力される。
次に、図1および図11を参照して、画像形成装置100の動作を説明する。
画像形成装置100は、搬送ベルト52を介して搬送されている用紙P上に画像を形成する画像形成 (通常) モードと搬送ベルト52上に直接画像を形成するレジスト補正 (調整) モードとの2つのモードで動作可能である。
以下、レジスト補正 (調整) モードについて説明する。
図12は、レジスト補正モードを説明するために図1に示されている画像形成装置の搬送ベルトの近傍を抜き出した概略斜視図である。既に説明したように、レジストセンタ78および80は、搬送ベルト52の幅方向すなわち副走査方向Hに所定の間隔で配置されている。なお、レジストセンタ78および80相互の中心を結ぶ線 (仮想) は、各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) の軸線におおむね平行に規定される。レジストセンタ78および80の中心を結ぶ線は、好ましくは、画像形成部50Bの感光体ドラム58Bに、正確に平行に配置される。
搬送ベルト52は、ベルト駆動ローラ54が矢印の方向に回転されることにより、領域52aがローラ54からローラ56に向かう方向に移動される (以下、この方向を副走査方向Hとする) 。レジスト補正モードでは、搬送ベルト52に、副走査方向Hと直交する方向 (以下、この方向を主走査方向Vとする) に所定の距離をおいた2組のテスト画像178 (Y,M,CおよびB) および180 (Y,M,CおよびB) が形成される。
テスト画像178 (Y,M,CおよびB) および180 (Y,M,CおよびB) は、ROMにあらかじめ記憶されているレジスト調整用画像データに対応して形成される。テスト画像178および180は、搬送ベルト52の移動に伴なって副走査方向Hに沿って移動され、レジストセンサ78および80を通過される。この結果、テスト画像178および180とレジストセンサ78および80との間のずれが検出される。なお、レジスト補正モードでは、カセット70から用紙Pを給送する送り出しローラ72および定着装置84は、停止されたままである。
詳細には、主制御装置101の制御により、第1ないし第4の画像形成部50Y,50M,50Cおよび50Bが付勢され、各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) の表面に所定の電位が与えられる。同時に、画像制御部110の画像制御CPU111の制御により光走査装置1の光偏向装置5の多面鏡5aが所定の速度で回転される。
続いて、画像制御CPU111の制御によりROMから取り込まれたテスト画像に対応する画像データが各画像メモリ114 (Y,M,CおよびB) に取り込まれる。こののち、タイミング制御部113により、タイミング設定装置118により設定されたタイミングデータおよびタイミング制御部113の内部RAMに記憶されているレジスト補正データ (内部RAMにレジスト補正データが記憶されていない場合には、ROMに記憶されているイニシャルデータが利用される) に基づいてタイミング制御部113から垂直同期信号Vsyncが出力される。
タイミング制御部113により発生された垂直同期信号Vsyncは、各データ制御部115 (Y,M,CおよびB) および各VCO119 (Y,M,CおよびB) に供給される。
各データ制御部115 (Y,M,CおよびB) は、垂直同期信号Vsyncに基づいて、対応するレーザ駆動部116 (Y,M,CおよびB) により光走査装置1の対応するレーザ素子3 (Y,M,CおよびB) を動作させ、レーザ素子3 (Y,M,CおよびB) から出射されたレーザビームL (Y,M,CおよびB) が水平同期検出器23により検知され、水平同期信号発生回路121から水平同期信号Hsyncが出力されてから所定のクロック (レジストセンサ78および80からの出力が入力されるまでは、ROMに記憶されているイニシャルデータが利用される) を計数したのち、画像メモリ114 (Y,M,CおよびB) に記憶されている画像データを所定のタイミングで出力する。このとき、各VCO119 (Y,M,CおよびB) から各データ制御部115 (Y,M,CおよびB) には、ROMに記憶されているイニシャルデータである発振周波数データが供給される。こののち、各データ制御部115 (Y,M,CおよびB) の制御により、各レーザ駆動部116 (Y,M,CおよびB) から画像データに対応するレーザ駆動信号がレーザ素子3 (Y,M,CおよびB) に出力され、レーザ素子3 (Y,M,CおよびB) から画像データに基づいて強度変調されたレーザビームL (Y,M,CおよびB) が出力される。従って、あらかじめ所定の電位に対応されている画像形成部50Y,50M,50Cおよび50Bの各感光体ドラム58Y,58M,58Cおよび58Bのそれぞれに、テスト画像データに対応する静電潜像が形成される。この静電潜像は、現像装置62Y,62M,62Cおよび62Bにより、対応する色が与えられているトナーで現像され、4色 (2組) のテストトナー像に変換される。
各感光体ドラム58 (Y,M,CおよびB) 上の2組のテストトナー像は、転写装置64Y,64M,64Cおよび64Bを介して搬送ベルト52に転写され、レジストセンサ78および80に向かって搬送される。2組のテストトナー像がレジストセンサ78および80を通過される際に、レジストセンサ78および80の位置を基準としたそれぞれのテストトナー像の相対位置すなわちテストトナー像のずれに対応する所定の出力がレジストセンサ78および80から出力される。なお、搬送ベルト52上に形成された2組のテストトナー像は、搬送ベルト52の回転にともなってさらに搬送され、ベルトクリーナ82により取り除かれる。
レジストセンサ78および80からの各出力は、レジスト補正演算装置117に入力され、各テストトナー像のずれの演算に利用される。
レジスト補正演算装置117は、副走査方向に所定の距離だけ離れて形成された各色ごとのテストトナー像の対、すなわち、178Yと180Y、178Mと180M、178Cと180C、および、178Bと180Bごとに、副走査方向の位置のずれを検出したのち、平均値を算出し、この平均値とあらかじめ決められている設計値とのずれ量から垂直同期信号Vsyncを出力するタイミングの補正量Vrを規定する。これにより、光走査装置1の各レーザ素子3 (Y,M,CおよびB) の発光タイミング、すなわち、各画像形成部50 (Y,M,CおよびB) が配置された間隔および光走査装置1から出射される各レーザビームL (Y,M,CおよびB) 相互の副走査方向の距離に依存する副走査方向のずれが整合される。
また、レジスト補正演算装置117は、1組のテストトナー像、例えば、178Y,178M,178Cおよび178Bのそれぞれの主走査方向の位置のずれを検出したのち、平均値を算出し、この平均値とあらかじめ決められている設計値とのずれ量から水平同期信号Hsyncが出力されてから画像データを出力するタイミングの補正量Hrを規定する。これにより、光走査装置1の各レーザ素子3 (Y,M,CおよびB) から出射されるレーザビームL (Y,M,CおよびB) を画像データで強度変調するタイミング、すなわち、各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) に記録される画像データの主走査方向の書きだし位置が整合される。
レジスト補正演算装置117は、さらに、テストトナー像の対、すなわち、178Yと180Y、178Mと180M、178Cと180C、および、178Bと180Bごとに、主走査方向の位置のずれを検出したのち、平均値を算出し、この平均値とあらかじめ決められている設計値とのずれ量に基づいて、VCO119 (Y,M,CおよびB) から出力される発振周波数の補正量Frを規定する。これにより、光走査装置1の各レーザ素子3 (Y,M,CおよびB) から各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) に向かって出射される各レーザビームの1クロック当たりの主走査方向の長さ、すなわち、各感光体58 (Y,M,CおよびB) に結像される主走査方向の1ラインの長さが整合される。
なお、レジスト補正演算装置117により求められたそれぞれの補正量Vr,HrおよびFrは、それぞれ、タイミング制御部113内のRAM部に、一時的に記憶される。この場合、それぞれの補正量Vr,HrおよびFrは、不揮発性RAM103に記憶されてもよい。また、これらの補正動作は、図示しないコントロールパネルにより補正モードの選択が指示されたとき、画像形成装置100の図示しない電源スイッチがオンされたとき、あるいは、図示しないカウンタなどによりカウントされるプリント枚数が所定枚数に達したときなどのあらかじめ決められたタイミングで実行される。
次に、画像形成 (通常) モードについて説明する。
図示しない操作パネルあるいはホストコンピュータから画像形成開始信号が供給されることで、主制御装置101の制御により各画像形成部50 (Y,M,CおよびB) がウォームアップされるとともに、画像制御CPU111の制御により光走査装置1の光偏向装置5の多面鏡5aが所定の回転速度で回転される。
続いて、主制御装置101の制御により、外部記憶装置あるいはホストコンピュータもしくはスキャナ (画像読取装置) からプリントすべき画像データがRAM102に取り込まれる。RAM102に取り込まれた画像データの一部 (あるいは全部) は、画像制御部110の画像制御CPU111の制御により、各画像メモリ114 (Y,M,CおよびB) に収納される。また、主制御装置101の制御により、所定のタイミング、例えば、タイミング制御部113からの垂直同期信号Vsyncなどを基準として、送り出しローラ72が付勢され、用紙カセット70から1枚の用紙Pが取り出される。この取り出された用紙Pは、レジストローラ72により各画像形成部50 (Y,M,CおよびB) による画像形成動作により提供されるY,M,CおよびBの各トナー像とタイミングが整合され、吸着ローラ74により搬送ベルト52に密着されて、搬送ベルト52の回転にともなって、各画像形成部50に向かって案内される。
一方、用紙Pの給送および搬送動作と平行してあるいは同時に、タイミング設定装置118により設定されたデータおよびタイミング制御部113の内部RAMから読み出されたレジストデータおよびクロックデータに基づいて、タイミング制御部113から垂直同期信号Vsyncが出力される。
タイミング制御部113により垂直同期信号Vsyncが出力されることで、各データ制御部115 (Y,M,CおよびB) により、各レーザ駆動部116 (Y,M,CおよびB) が付勢され、各レーザ素子3 (Y,M,CおよびB) から主走査方向の1ライン分のレーザビームが各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) に照射される。この1ライン分のレーザビームに基づいて水平同期信号発生回路121から発生される水平同期信号Hsyncの入力直後から各VCO119 (Y,M,CおよびB) のクロック数がカウントされ、各VCO119 (Y,M,CおよびB) のクロック数が所定値に達した時点で、各画像メモリ114 (Y,M,CおよびB) からプリントすべき画像データが読み出される。続いて、各データ制御部115 (Y,M,CおよびB) の制御により、各レーザ駆動部116 (Y,M,CおよびB) に対し、各レーザ素子3 (Y,M,CおよびB) から出射される各レーザビームL (Y,M,CおよびB) の強度を変化するために画像データが転送され、各画像形成部50 (Y,M,CおよびB) の各感光体ドラム58 (Y,M,CおよびB) に、ずれのない画像が形成される。この結果、各感光体ドラム58 (Y,M,CおよびB) に案内される各レーザビームL (Y,M,CおよびB) が、各レーザ素子3 (Y,M,CおよびB) から各感光体ドラム58 (Y,M,CおよびB) までの間の光路の偏差あるいは各感光体ドラム58 (Y,M,CおよびB) の直径の偏差に起因する像面でのビームスポット径の変動の影響を受けることなく、各感光体ドラム58 (Y,M,CおよびB) に正確に結像される。
各感光体ドラム58 (Y,M,CおよびB) に結像された各レーザビームL (Y,M,CおよびB) は、予め所定の電位に帯電されている各感光体ドラム58 (Y,M,CおよびB) の電位を、画像データに基づいて変化させることで、各感光体ドラム58 (Y,M,CおよびB) に、画像データに対応する静電潜像を形成する。この静電潜像は、各現像装置62 (Y,M,CおよびB) により、対応する色を有するトナーにより現像され、トナー像に変換される。
各トナー像は、それぞれの感光体ドラム58 (Y,M,CおよびB) の回転にともなって搬送ベルト52により搬送されている用紙Pに向かって移動され、予め決められたタイミングにより、転写装置64により、搬送ベルト52上の用紙Pに、所定のタイミングで転写される。これにより、用紙P上で互いに正確に重なりあった4色のトナー像が用紙Pに形成される。なお、トナー像が用紙Pに転写されたあとの各感光体ドラム58 (Y,M,CおよびB) は、クリーナ66 (Y,M,CおよびB) および除電ランプ68 (Y,M,CおよびB) により、残存トナーおよび残存電位が除去されて、引き続く画像形成に利用される。
4色のトナー像を静電的に保持した用紙Pは、搬送ベルト52の回転にともなってさらに搬送され、ベルト駆動ローラ56の曲率と用紙Pの直進性との差によって搬送ベルト52から分離されて、定着装置84へ案内される。定着装置84へ導かれた用紙Pは、定着装置84によりそれぞれのトナーが溶融されることにより、カラー画像としてのトナー像が定着されたのち、図示しない排出トレイに排出される。
一方、用紙Pを定着装置84に供給したあとの搬送ベルト52はさらに回転されつつ、ベルトクリーナ82により、表面に残った不所望なトナーが除去され、再び、カセット70から給送される用紙Pの搬送に利用される。
以上説明したように、この実施例の光走査装置は、光学手段と走査対象物との間に複数の光のそれぞれに対応して配置される第1の反射手段と、複数の光のそれぞれに対応して第1の反射手段よりも走査対象物の側に配置され、第1の反射手段により反射されたそれぞれの光を相互に交差させたのち走査対象物に向けてさらに反射する第2の反射手段とを含む結像手段を有することから、光走査装置の厚さを低減できる。
また、この実施例の光走査装置の結像手段は、複数の光のそれぞれに対応して第1の反射手段よりも走査対象物の側に配置され、第1の反射手段により反射されたそれぞれの光の少なくとも1つを、入射角と反射角とのなす角が鈍角になるよう反射して走査対象物に案内する第2の反射手段を含むことから、入射角と反射角とのなす角が鈍角になるよう反射される光以外の光に対する第2の反射手段の位置が入射角と反射角とのなす角が鈍角になるよう反射される光に対応する第2の反射手段の位置に比較して、走査対象物から離れた位置に規定される。
なお、本発明の内容はここに記述した形態だけに限定されるものではなく、その主旨を逸脱しない範囲で、他にも様々な形態を取り得ることはいうまでもない。また、各実施の形態は、可能な限り適宜組み合わせて、もしくは一部を削除して実施されてもよく、その場合は、組み合わせもしくは削除に起因したさまざまな効果が得られる。
この発明の実施例であるカラー画像形成装置の概略断面図。 図1に示したカラー画像形成装置に利用される光走査装置の概略断面図。 図1に示した光走査装置の偏向前光学系部分を展開した光路図。 図1に示した光走査装置の偏向前折り返しミラーブロックの概略斜視図。 図1に示した光走査装置の水平同期検出用折り返しミラーの概略斜視図。 図1に示した光走査装置の偏向後光学系の各レンズを通るレーザビームの位置を示す概略断面図。 図1に示した光走査装置の出射ミラーの調整機構を示す概略斜視図。 図2に示した光走査装置の比較例としての従来例を示す概略断面図。 図2に示した光走査装置の変形例を示す概略断面図。 図2に示した光走査装置の変形例を示す概略断面図。 図1に示した画像形成装置の制御部を示す概略ブロック図。 図1に示した画像形成装置の副走査方向のタイミングを整合する方法を示す概略斜視図。
符号の説明
1…マルチビーム光走査装置、3…半導体レーザ素子、5…光偏向装置、7…偏向前光学系、9…有限焦点レンズ、11…ハイブリッドシリンダレンズ、13…ミラーブロック、15…保持部材、17…プラスチックシリンダレンズ、19…ガラスシリンダレンズ、21…偏向後光学系、23…水平同期検出器、25…水平同期用折り返しミラー、27…第1の結像レンズ、29…第2の結像レンズ、31…第3の結像レンズ、33…第1の折り返しミラー、35…第2の折り返しミラー、37…第3の折り返しミラー、39…防塵ガラス、41…固定部、43…ミラー押さえ板ばね、45…突起、47…止めねじ。

Claims (5)

  1. 少なくとも3つの感光体と、
    複数の光を前記少なくとも3つの感光体に向けて一群で走査する走査手段と、
    前記走査手段に案内される光のうちの少なくとも1つの光の光路と残りの光の光路とを合成する光路合成手段と、
    前記光路合成手段により光路が合成された複数の光のそれぞれに対して所定の光学特性を与える共通の光学手段と、前記光学手段を通過する前記光のうちで前記光学手段の系の光軸を挟んで前記少なくとも3つの感光体のそれぞれの露光位置を含む面から最も離れた位置を通過する第1の光に対応して少なくとも2以上配置され前記第1の光が対応する感光体に到達するまでの間に関与する順に1からiで識別されるi個により形成される第1の反射手段と前記光学手段を通過する前記光のうちで前記第1の光と前記系の光軸との間を通過する光のうちで前記第1の光に最も近接した位置を通過する第2の光に対応して少なくとも2以上配置され、前記第2の光が対応する感光体に到達するまでの間に関与する順に1からjで識別されるj個により形成され、かつj−1からjへ向かう光が前記第1の反射手段のi−1とi−2との間を通過するよう配置され、前記第の光を入射角と反射角とのなす角が鈍角である第2の反射手段と、前記光学手段を通過する前記光のうちで前記露光位置を含む面に最も近い位置を通過する第3の光に対応して配置され、対応する感光体に前記第3の光を案内する第3の反射手段と、を含み、前記走査手段により走査された前記光を前記それぞれの感光体露光位置に結像する結像手段と、
    前記それぞれの感光体と前記結像手段との間に、前記感光体のそれぞれについて、前記結像手段側に位置する防塵部材と、
    具備し、
    前記防塵部材のうちの前記第3の反射手段に対応する防塵部材は、前記少なくとも3つの感光体のそれぞれの露光位置を含む面との間の距離が、前記第1または第2の反射手段の少なくとも一方に対応する防塵部材と前記少なくとも3つの感光体のそれぞれの露光位置を含む面との間の距離よりも大きい
    画像形成装置。
  2. 第1の画像に対応する第1の光を出射する第1の光源と、
    第2の画像に対応する第2の光を出射する第2の光源と、
    第3の画像に対応する第3の光を出射する第3の光源と、
    前記第の光源からの光をそのまま通過させ、残りの光を反射する光路合成手段と、
    前記光路合成手段により1つの束に合成された前記それぞれの光源からの光をそれぞれの光源に対応する感光体に向けて走査する走査手段と、
    前記走査手段により走査された前記1つの束の光を再び前記それぞれの光に分離するとともに、前記それぞれの光対応する前記それぞれの感光体に到達した際、前記それぞれ光が所定の断面形状を有するよう前記それぞれ光に対して所定の光学特性を与える光学手段と、
    前記光学手段を通過する前記光のうちで所定の位置を通過する系の光軸を挟んで前記それぞれの感光体に対応するそれぞれの光が到達する露光位置を含む面から最も離れた位置を通過される第1の光に対応して少なくとも2以上配置され、前記第1の光が対応する前記感光体に到達するまでの間に関与する順に1からiで識別されるi個形成される第1の反射手段と、
    前記光学手段を通過する前記光のうちで前記第1の光と前記系の光軸との間を通過する光のうちで前記第1の光に最も近接した位置を通過する第2の光に対応して少なくとも2以上配置され、前記露光位置を含む面に到達されるまでの間に関与される順に1からjで識別されるj個形成される第2の反射手段であって、j−1からjへ向かう前記光が前記第1の反射手段のi−1とi−2との間を通過するよう配置され、かつ、前記第の光を入射角と反射角とのなす角が鈍角になるよう反射して前記走査対象物に案内する第の反射手段と、
    前記光学手段を通過する前記光のうちで前記露光位置を含む面に最も近い位置を通過する第3の光に対応して配置され、対応する感光体に前記第3の光を案内する第3の反射手段と、
    前記第1の反射手段と対応する前記感光体と前記第1の反射手段との間に位置する第1の防塵部材と、
    前記第2の反射手段と対応する前記感光体と前記第2の反射手段との間に位置する第2の防塵部材と、
    前記第3の反射手段と対応する前記感光体との間に、前記第1の防塵部材と対応する前記感光体との間の距離及び前記第2の防塵部材と対応する前記感光体との間の距離の少なくとも一方に比較して、対応する前記感光体との間の距離が大きくなるよう位置する第3の防塵部材と、
    を、具備する画像形成装置。
  3. 前記それぞれの感光体が保持する前記それぞれの光に対応する像を、トナーにより現像する現像する少なくとも3つの現像手段をさらに具備する請求項1または2記載の画像形成装置。
  4. 前記それぞれの現像手段に供給するトナーを収容する収容手段は、個々の前記現像手段と対応する前記感光体と前記防塵部材との間の距離に従う大きさである
    請求項3記載の画像形成装置。
  5. 前記第3の反射手段と対応する前記感光体との間に位置する現像装置は、黒画像を形成する請求項4記載の画像形成装置。
JP2007191385A 2007-07-23 2007-07-23 画像形成装置 Expired - Lifetime JP4621232B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191385A JP4621232B2 (ja) 2007-07-23 2007-07-23 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191385A JP4621232B2 (ja) 2007-07-23 2007-07-23 画像形成装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005113593A Division JP4012207B2 (ja) 2005-04-11 2005-04-11 画像形成装置ならびに光走査装置

Publications (2)

Publication Number Publication Date
JP2008015537A JP2008015537A (ja) 2008-01-24
JP4621232B2 true JP4621232B2 (ja) 2011-01-26

Family

ID=39072520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191385A Expired - Lifetime JP4621232B2 (ja) 2007-07-23 2007-07-23 画像形成装置

Country Status (1)

Country Link
JP (1) JP4621232B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147468A (ja) * 1985-12-20 1987-07-01 Canon Inc 画像形成装置
JPS64911A (en) * 1987-06-24 1989-01-05 Toshiba Corp Optical device in image forming device
JPH0258015A (ja) * 1988-08-24 1990-02-27 Canon Inc 光走査装置
JPH03179471A (ja) * 1989-12-08 1991-08-05 Toshiba Corp 光学装置
JPH03264970A (ja) * 1990-03-15 1991-11-26 Ricoh Co Ltd レーザ書込装置
JPH04251815A (ja) * 1991-01-29 1992-09-08 Ricoh Co Ltd 光走査装置
JPH04264416A (ja) * 1991-02-19 1992-09-21 Minolta Camera Co Ltd 画像形成装置の光学装置
JPH0560992A (ja) * 1991-09-02 1993-03-12 Canon Inc レーザービーム走査装置
JPH06214174A (ja) * 1993-01-19 1994-08-05 Fuji Xerox Co Ltd 光学走査装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147468A (ja) * 1985-12-20 1987-07-01 Canon Inc 画像形成装置
JPS64911A (en) * 1987-06-24 1989-01-05 Toshiba Corp Optical device in image forming device
JPH0258015A (ja) * 1988-08-24 1990-02-27 Canon Inc 光走査装置
JPH03179471A (ja) * 1989-12-08 1991-08-05 Toshiba Corp 光学装置
JPH03264970A (ja) * 1990-03-15 1991-11-26 Ricoh Co Ltd レーザ書込装置
JPH04251815A (ja) * 1991-01-29 1992-09-08 Ricoh Co Ltd 光走査装置
JPH04264416A (ja) * 1991-02-19 1992-09-21 Minolta Camera Co Ltd 画像形成装置の光学装置
JPH0560992A (ja) * 1991-09-02 1993-03-12 Canon Inc レーザービーム走査装置
JPH06214174A (ja) * 1993-01-19 1994-08-05 Fuji Xerox Co Ltd 光学走査装置

Also Published As

Publication number Publication date
JP2008015537A (ja) 2008-01-24

Similar Documents

Publication Publication Date Title
JP3375196B2 (ja) 光走査装置およびこの光走査装置に適した画像形成装置
JP3209656B2 (ja) 光走査装置
JP3652768B2 (ja) 光走査装置並びにこの光走査装置を利用した画像形成装置
JPH08262352A (ja) 光走査装置ならびにこの光走査装置を利用した画像形成装置
JPH08313833A (ja) 光走査装置
JP2001091873A (ja) 光走査装置
JPH09179046A (ja) 光走査装置
JP3872872B2 (ja) 光学装置及び画像形成装置
JP4662446B2 (ja) 光走査装置及び画像形成装置
JP4818070B2 (ja) 走査式光学装置及び画像形成装置
JP2008112041A5 (ja)
JP2005202416A (ja) 光走査装置および画像形成装置
JP3793212B2 (ja) 画像形成装置
JP4621232B2 (ja) 画像形成装置
JP4012207B2 (ja) 画像形成装置ならびに光走査装置
JP3869529B2 (ja) 光走査装置及び画像形成装置
JP2007034166A (ja) 走査光学装置及び画像形成装置
JPH1026732A (ja) 光走査装置並びにこの光走査装置を利用した画像形成装置
JPH09184991A (ja) 光走査装置並びにこの光走査装置を利用した画像形成装置
JPH09179047A (ja) 光走査装置
JP2008026909A (ja) 光走査装置
JP2005219502A (ja) 光走査装置を含む画像形成装置
JP3787285B2 (ja) 光走査装置
JP3749431B2 (ja) 光走査装置
JP3798619B2 (ja) マルチビーム露光装置

Legal Events

Date Code Title Description
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term