JP4600200B2 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP4600200B2
JP4600200B2 JP2005224119A JP2005224119A JP4600200B2 JP 4600200 B2 JP4600200 B2 JP 4600200B2 JP 2005224119 A JP2005224119 A JP 2005224119A JP 2005224119 A JP2005224119 A JP 2005224119A JP 4600200 B2 JP4600200 B2 JP 4600200B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
capillary tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005224119A
Other languages
English (en)
Other versions
JP2007040586A (ja
Inventor
洋 押谷
裕嗣 武内
春幸 西嶋
真 池上
直樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005224119A priority Critical patent/JP4600200B2/ja
Priority to US11/497,032 priority patent/US7320229B2/en
Priority to DE102006035881.3A priority patent/DE102006035881B4/de
Publication of JP2007040586A publication Critical patent/JP2007040586A/ja
Application granted granted Critical
Publication of JP4600200B2 publication Critical patent/JP4600200B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/11Reducing heat transfers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷媒減圧手段の役割および冷媒循環手段の役割を果たすエジェクタを有するエジェクタ式冷凍サイクルに関するものであり、例えば、車両用冷蔵装置(冷凍車)、車両用空調装置等の冷凍サイクルに適用して有効である。
従来、蒸気圧縮式冷凍サイクルにおいて、冷媒減圧手段および冷媒循環手段としてエジェクタを使用したエジェクタ式冷凍サイクルが特許文献1において提案されている。
この特許文献1では、エジェクタの冷媒流出側に第1蒸発器を接続し、この第1蒸発器の出口側に気液分離器を接続し、この気液分離器の液冷媒流出側とエジェクタの冷媒吸引口との間に第2蒸発器を接続した構成が記載されている。
これに対し、本出願人においては、先に特願2004−290120号において図15に示すエジェクタ式冷凍サイクルを提案している。この先願のエジェクタ式冷凍サイクルでは、エジェクタ14の上流側で分岐され、エジェクタ14の冷媒吸引口14bに接続される分岐通路16を形成し、この分岐通路16に絞り機構17と第2蒸発器18を設けている。
ところで、特許文献1のものでは、エジェクタの冷媒吸引能力だけで第2蒸発器に冷媒を吸引するので、サイクル高低圧差が小さくなって、エジェクタ14の入力が小さくなる運転条件下では、エジェクタの冷媒吸引能力が低下して第2蒸発器の冷媒流量が必然的に小さくなってしまう。
これに対し、上記先願のエジェクタ式冷凍サイクルによると、第2蒸発器18がエジェクタ14と並列的に配置されるので、エジェクタ14の冷媒吸引能力だけでなく、圧縮機11の冷媒吸入吐出能力をも利用して第2蒸発器18に冷媒を循環できる。そのため、エジェクタ14の入力が小さくなる運転条件でも第2蒸発器18の冷媒流量、ひいては第2蒸発器18の冷却性能を確保し易い。同時に、第2蒸発器18の冷媒流量調整を専用の絞り機構17によって容易に行うことができる等の利点がある。
特許第3322263号公報
ところで、上記先願のサイクル構成において、第2蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)は、エジェクタ14での昇圧作用相当分だけ第1蒸発器15よりも低くなる。このように第2蒸発器18の冷媒蒸発温度を下げることで第2蒸発器18の冷却性能を向上できる。
上記先願のサイクル構成では、低温側の第2蒸発器18に供給される冷媒量が過多の場合、第2蒸発器18で蒸発しきれない液相冷媒はエジェクタ14にて吸引された後、第1蒸発器15にて蒸発させることができるが、逆に低温側の第2蒸発器18に供給される冷媒量が不足している場合、第2蒸発器18の冷媒蒸発温度が第1蒸発器15よりも低いという折角の特徴を活かせず、第2蒸発器18の冷却能力が低下してしまう。従って、第2蒸発器18に冷媒を不足させないよう供給することが性能向上を図る上で重要である。
仮に第2蒸発器18用の絞り機構17として従来の代表的な手段である膨張弁を用いると、膨張弁では冷媒流れを急激に絞る構成になっているので、所定の減圧量を得るための冷媒通路面積がどうしても小さくなってしまう。このことから、膨張弁を流れる冷媒の流量が減少しやすくなり、第2蒸発器18の性能低下に繋がる。
また、膨張弁では冷媒通路面積が小さくなることから、異物が詰まりやすくなり、そのため、異物の詰まりに起因する大幅な性能低下が生じる場合がある。
本発明では、上記点に鑑みて、エジェクタ上流側で分岐した冷媒を絞り機構により減圧し、この減圧後の低圧冷媒を蒸発器にて蒸発させ、その後にこの蒸発器通過後の低圧冷媒をエジェクタの冷媒吸引口に吸入させるサイクル構成において、蒸発器の性能向上を図ることを目的とする。
上記目的を達成するため、本発明では、エジェクタ(14)の上流側で分岐されエジェクタ(14)の冷媒吸引口(14b)に接続される分岐通路(16)と、
分岐通路(16)に設けられた絞り機構(17)と、
分岐通路(16)において絞り機構(17)の下流側に設けられた蒸発器(18)とを備え、
絞り機構(17)をキャピラリチューブ(17、17a、17b、17c)により構成し、
さらに、キャピラリチューブ(17、17a、17b、17c)と圧縮機(11)の吸入配管(25)との間で熱交換を行う熱交換構造(24)を備え、
熱交換構造(24)は、少なくともキャピラリチューブ(17、17a、17b、17c)の入口直後から下流側へ向かって流れる冷媒と圧縮機(11)の吸入配管(25)を流れる吸入冷媒とを熱交換させる構成となっているエジェクタ式冷凍サイクルを特徴としている。
ところで、キャピラリチューブ(17、17a、17b、17c)は、その通路内径により形成される冷媒通路面積を小さくすることによる絞り効果と、キャピラリーチューブ配管長さ方向に生じる配管圧損によって、狙いの減圧量を得る構造であることから、膨張弁(主に冷媒通路面積を小さくすることによる絞り効果のみによって狙いの減圧量を得る構造)と比較して、最小冷媒通路面積をより大きく設計できる。
このため、エジェクタ(14)上流で分岐された冷媒を蒸発器(18)により多く流すことができるので、蒸発器(18)の冷却性能を向上できる。さらに、所定減圧量を得るための最小冷媒通路面積を膨張弁と比較して十分大きく設計できるため、異物による詰まりも防止しやすく、従って、異物の詰まりに起因する大幅な性能低下を防止できる。
また、キャピラリーチューブは膨張弁と比較して簡易な構造で冷媒を減圧することができるので、蒸発器上流の絞り機構の簡素化、コスト低減を図ることができる。
さらに、本発明では、キャピラリチューブ(17、17a、17b、17c)と圧縮機(11)の吸入配管(25)との間で熱交換を行う熱交換構造(24)を備え、熱交換構造(24)は、少なくともキャピラリチューブ(17、17a、17b、17c)の入口直後から下流側へ向かって流れる冷媒と圧縮機(11)の吸入配管(25)を流れる吸入冷媒とを熱交換させる構成となっている。
これによると、キャピラリーチューブと圧縮機吸入配管(25)との熱交換により、キャピラリーチューブ内の減圧過程の冷媒を冷却できる。その結果、キャピラリチューブでの減圧過程において冷媒の乾き度が小さくなり、液相冷媒の割合が増加する。
これにより、キャピラリチューブでの減圧過程では、後述の図8の実線bに示すように、キャピラリーチューブ内の冷媒が等比体積線に沿った変化をするため、キャピラリーチューブ内にて冷媒が急激に膨張することを抑制できる。そのため、キャピラリーチューブ内を冷媒が流れ易くなり、所定の減圧量における蒸発器(18)の冷媒流量を増加させることができる。
さらに、上記の熱交換により蒸発器(18)入口の冷媒乾き度を低下させ、液冷媒の割合を増加させるので、蒸発器(18)の冷却性能を向上させることができる。
本発明では、具体的には、エジェクタ(14)の下流側に第1蒸発器(15)を接続し、上記した分岐通路(16)の蒸発器は、第1蒸発器(15)よりも冷媒蒸発温度が低い第2蒸発器(18)を構成する。
これによると、冷媒蒸発温度が高い高温側の第1蒸発器(15)と冷媒蒸発温度が低い低温側の第2蒸発器(18)とを組み合わせて、共通の冷却対象空間を冷却したり、あるいは別々の冷却対象空間を冷却できる。
その際に、キャピラリチューブ(17、17a、17b、17c)を絞り機構として用いることにより、特に低温側の第2蒸発器(18)の冷媒流量を確保して、第2蒸発器(18)の冷却性能を効果的に発揮できる。
本発明では、具体的には、キャピラリチューブとして、絞り量が異なる複数のキャピラリチューブ(17a、17b、17c)を用い、
この複数のキャピラリチューブ(17a、17b、17c)を流路切替手段(21)にて切替使用するようになっている。
これによると、絞り量が異なる複数のキャピラリーチューブ(17a、17b、17c)の切替により、減圧量を可変し、蒸発器(18)の冷媒蒸発温度を調整することが可能となる。
この場合に、流路切替手段(21)は、より具体的には、分岐通路(16)の蒸発器(18)の出口冷媒の過熱度に応じて複数のキャピラリチューブ(17a、17b、17c)を切替使用するようにしてもよい。これによると、絞り量が異なる複数のキャピラリチューブ(17a、17b、17c)を蒸発器出口冷媒の過熱度に応じて切り替えることにより、蒸発器出口冷媒の過熱度を制御できる。
ところで、キャピラリチューブ(17、17a、17b、17c)内の冷媒温度は減圧が進行するに伴って低下するので、キャピラリチューブ下流側の所定領域(17x)ではキャピラリチューブ内の冷媒温度が圧縮機吸入配管(25)内の冷媒温度よりも低下するという現象が起きる。
そこで、本発明では、上記の熱交換構造(24)を備える構成において、キャピラリチューブ(17、17a、17b、17c)のうち下流側の所定領域(17x)を、吸入配管(25)から引き離して吸入配管(25)と熱交換しない構成としている。
これによると、キャピラリチューブ(17、17a、17b、17c)の下流側の所定領域(17x)でキャピラリチューブ内の冷媒が吸入配管(25)側から吸熱するという不具合を確実に防止できる。
また、本発明では、上記の熱交換構造(24)を具体的には、吸入配管(25)の外周面上にキャピラリチューブ(17、17a、17b、17c)を配置する構造とすることができる。
また、本発明では、上記の熱交換構造(24)を具体的には、吸入配管(25)の内部にキャピラリチューブ(17、17a、17b、17c)を配置する構造とすることができる。
また、本発明では、上記の熱交換構造(24)と周囲雰囲気との間を断熱する断熱手段(27、28a)を備えている。
これにより、吸入配管(25)内の冷媒が周囲雰囲気から吸熱するという不具合を断熱手段(27、28a)にて確実に抑制できる。そのため、吸入配管(25)とキャピラリチューブ(17、17a、17b、17c)との間の熱交換を効率よく行うことができる。
また、本発明では、上記断熱手段は、具体的には、吸入配管(25)の外周側に被覆される断熱材(27)で構成できる。
また、本発明では、分岐通路(16)の蒸発器(18)により冷却される冷却対象空間(29)を構成する断熱箱体(28)を有し、この断熱箱体(28)の断熱材(28a)中に熱交換構造(24)を埋設し、この断熱箱体(28)の断熱材(28a)により断熱手段を構成するようにしてもよい。
これによると、断熱箱体(28)の断熱材(28a)をそのまま利用して断熱手段を簡単に構成できる。
なお、上記各手段および特許請求の範囲に記載の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1は本発明の第1実施形態によるエジェクタ式冷凍サイクル10を車両用冷蔵装置に適用した例を示す。本実施形態のエジェクタ式冷凍サイクル10において、冷媒を吸入圧縮する圧縮機11は、プーリ12、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。
この圧縮機11の冷媒吐出側には放熱器13が配置されている。放熱器13は圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
ここで、エジェクタ式冷凍サイクル10の冷媒として、本実施形態ではフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いて、蒸気圧縮式の亜臨界サイクルを構成している。このため、放熱器13は冷媒を凝縮する凝縮器として作用する。
放熱器13の下流側にエジェクタ14が配置されている。このエジェクタ14は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用によって冷媒の循環を行う冷媒循環手段(運動量輸送式ポンプ)でもある。
エジェクタ14には、放熱器13の下流側流路から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部14aと、ノズル部14aの冷媒噴出口と連通するように配置され、後述する第2蒸発器18からの気相冷媒を吸引する冷媒吸引口14bが備えられている。
さらに、ノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側には、ノズル部14aからの高速度の冷媒流と冷媒吸引口14bからの吸引冷媒とを混合する混合部14cが設けられている。そして、混合部14cの冷媒流れ下流側に昇圧部をなすディフューザ部14dが配置されている。このディフューザ部14dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。エジェクタ14のディフューザ部14dの下流側に第1蒸発器15が接続される。
一方、エジェクタ14の上流側(放熱器13とエジェクタ14との間の中間部位)から分岐通路16が分岐され、この分岐通路16の下流側はエジェクタ14の冷媒吸引口14bに接続される。Zは分岐通路16の分岐点を示す。
この分岐通路16のうち、上流側には絞り機構としてキャピラリチューブ17が配置され、このキャピラリチューブ17よりも下流側に第2蒸発器18が配置されている。
このキャピラリチューブ17は、図2に示すように分岐通路16を構成する高圧配管16aの内径により形成される通路面積Adおよび低圧配管16bの内径により形成される通路面積よりも十分小さい通路面積Asを持つ小径の配管にて構成される。
キャピラリーチューブ17では、高圧配管16aの通路面積Adから、キャピラリーチューブ内径により形成される最小冷媒通路面積Asまで、冷媒通路面積を絞る効果に加え、キャピラリーチューブ17の配管長さL方向に生じる管内摩擦力によって、所定の減圧量が得られる構造である。ここで、減圧量は、高圧配管16aの冷媒圧力である高圧圧力PHと低圧配管16bの冷媒圧力である低圧圧力PLとの差(PH−PL)である。
図3はキャピラリーチューブ17の減圧特性を示すもので、所定の減圧量P1(=PH−PL)に対し、キャピラリーチューブ17の長さLを増加することにより、キャピラリーチューブ17の内径を大きく設計できる。そのため、膨張弁と比較してキャピラリーチューブ17の方が所定の減圧量P1に対する最小冷媒通路面積Asを大きく設計できる。
本実施形態では、第1蒸発器15および第2蒸発器18により1つの冷却ユニット(蒸発器ユニット)19を構成している。ここで、第1蒸発器15と第2蒸発器18はろう付けにより1つの熱交換器構造に一体化してもよい。
この冷却ユニット19により電動送風機20の送風空気を冷却するようになっている。
具体的には、車両用冷蔵装置の庫内空気を電動送風機20により吸入して冷却ユニット19に送風し、冷却ユニット19にて送風空気を冷却して車両用冷蔵装置の庫内へ吹き出し庫内空間(冷却対象空間)を冷却する。
ここで、後述の理由から第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)が低くなる。そこで、高温側の第1蒸発器15を電動送風機20の送風空気流れAの上流側に配置し、低温側の第2蒸発器18を電動送風機20の送風空気流れAの下流側に配置している。
次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の気相冷媒は放熱器13に流入する。放熱器13では高温高圧の気相冷媒が外気により冷却されて凝縮する。放熱器13から流出した凝縮後の高圧冷媒は分岐点Zにてエジェクタ14に向かう冷媒流れと分岐通路16に向かう冷媒流れとに分流する。
エジェクタ14に流入した冷媒流れはノズル部14aで減圧され膨張する。従って、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下に伴う吸引作用により、冷媒吸引口14bから分岐通路16の第2蒸発器18通過後の冷媒(気相冷媒)を吸引する。
ノズル部14aから噴出した高速度の冷媒流れと冷媒吸引口14bに吸引された冷媒流れは、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。このディフューザ部14dでは通路面積の拡大により冷媒速度を低下させて冷媒圧力を上昇させる。つまり、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換され、冷媒の圧力が上昇する。
そして、エジェクタ14のディフューザ部14dから流出した冷媒は第1蒸発器15に流入する。第1蒸発器15では、低温の低圧冷媒が電動送風機20の送風空気から吸熱して蒸発する。この第1蒸発器15通過後の冷媒は圧縮機11に吸入され再び圧縮される。
一方、分岐通路16に流入した冷媒流れはキャピラリチューブ17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。第2蒸発器18は電動送風機20の送風空気流れ方向Aにおいて第1蒸発器15の下流側に配置されているから、第2蒸発器18では、低温の低圧冷媒が第1蒸発器15通過後の空気から吸熱して蒸発する。従って、第1、第2蒸発器15、18の組み合わせにて電動送風機20の送風空気を冷却する。
以上のごとく、本実施形態によると、エジェクタ14のディフューザ部14dの下流側冷媒を第1蒸発器15にて蒸発させるととともに、分岐通路16側の冷媒をキャピラリチューブ17を通して減圧した後に第2蒸発器18にて蒸発させるので、第1、第2蒸発器15、18で同時に冷却作用を発揮できる。
その際に、第1蒸発器15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力であり、一方、第2蒸発器18の出口側はエジェクタ14の冷媒吸引口14bに接続されているから、ノズル部14aでの減圧直後の最も低い圧力を第2蒸発器18に作用させることができる。
これにより、第2蒸発器18における冷媒蒸発圧力はディフューザ部14dでの昇圧効果相当分だけ第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも低くすることができる。そこで、本実施形態では、高温側の第1蒸発器15を電動送風機20の送風空気流れAの上流側に配置し、低温側の第2蒸発器18を電動送風機20の送風空気流れAの下流側に配置して、第1、第2蒸発器15、18の冷媒流れと送風空気流れとの間で対向流型の熱交換を行う。
そのため、第1、第2蒸発器15、18の双方において冷媒蒸発温度と空気温度との温度差を確保できる。その結果、第1、第2蒸発器15、18の組み合わせにて送風空気を効率よく冷却できる。
もちろん、ディフューザ部14dでの昇圧効果によって圧縮機1の吸入圧を上昇できるので、圧縮機1の駆動動力を低減できる。
また、エジェクタ14の上流側で分岐され、エジェクタ14の冷媒吸引口14bに接続される分岐通路16を形成し、この分岐通路16にキャピラリチューブ17と第2蒸発器18を設けているから、第2蒸発器18がエジェクタ14と並列的に配置される。そのため、エジェクタ14の冷媒吸引能力だけでなく、圧縮機11の冷媒吸入吐出能力をも利用して第2蒸発器18に冷媒を循環できる。
それ故、エジェクタ14の入力が小さくなる運転条件(低熱負荷時)でも第2蒸発器18の冷媒流量、ひいては第2蒸発器18の冷却性能を確保し易い。同時に、第2蒸発器18の冷媒流量を専用のキャピラリチューブ17によって容易に調整することができる。
ところで、本実施形態では、第2蒸発器18上流側の絞り機構をキャピラリチューブ17により構成しているので、従来の絞り機構の代表例である膨張弁を第2蒸発器18上流側の絞り機構として用いる場合に比較して次のような効果を発揮できる。
図4は従来の膨張弁170の概要を示す断面図であって、弁体171が第2蒸発器18の出口冷媒の過熱度に応じて図4の上下方向に変位し、それにより、弁体171と弁座部172との隙間により形成される最小冷媒通路面積Asを調整するようになっている。
このような膨張弁170では、高圧配管16aの通路面積Adから弁体171と弁座部172との間に形成される最小冷媒通路面積Asまで冷媒通路を一挙に絞ることにより、所定の減圧量(=PH−PL)を得るようになっている。つまり、膨張弁170では、弁体171と弁座部172との間の最小冷媒通路面積Asだけで必要減圧量を得ている。
これに対し、本実施形態で用いるキャピラリチューブ17では、前述したようにキャピラリーチューブ内径による最小冷媒通路面積Asまで冷媒通路面積を絞る効果に加え、キャピラリーチューブ17の配管長さL方向に生じる管内摩擦力(配管圧損)によって、所定の減圧量(=PH−PL)が得られる構造である。
そして、図3の減圧特性に示すように、所定の減圧量P1(=PH−PL)に対し、キャピラリーチューブ17の配管長さLを増加することにより、キャピラリーチューブ17の内径を大きく設計できる。そのため、この配管長さLを選定することにより、キャピラリーチューブ17の方が膨張弁170よりも所定減圧量に対する最小冷媒通路面積Asを十分大きく設計できる。
この結果、キャピラリーチューブ17を用いることによりエジェクタ14の上流側で分岐された冷媒を低温側の第2蒸発器18により多く流すことができる。
換言すると、膨張弁170のように冷媒通路を急激に絞る絞り機構では、冷媒流れの損失が大きいのに対し、キャピラリーチューブ17のように配管長さL方向に生じる管内摩擦力(配管圧損)によって緩やかに減圧作用を果たす絞り機構では、冷媒流れの損失が小さいので、キャピラリーチューブ17の流量係数を膨張弁170よりも大きくすることができる。この結果、同一減圧量において、キャピラリーチューブ17は膨張弁170に比較してより多くの冷媒を低温側の第2蒸発器18に供給できる。
このため、第1蒸発器15より冷媒蒸発温度が低いという特徴を持つ低温側の第2蒸発器18の冷却性能(冷凍能力)を増大することができ、それにより、冷却ユニット19全体としての冷却性能を効果的に向上できる。
また、キャピラリーチューブ17では、その最小冷媒通路面積Asを膨張弁170よりも十分大きく設計できるため、異物による詰まりが発生しにくい。それ故、冷媒通路の詰まりに起因する著しい性能低下を防止できる。
さらに、キャピラリーチューブ17は膨張弁170と比較して簡素な構造にすることができるから、絞り機構の簡素化、コスト低減を図ることができる。
(第2実施形態)
図5は第2実施形態であり、低温側の第2蒸発器18の上流側に配置される絞り機構として、絞り量が異なる複数本のキャピラリーチューブ17a、17b、17cを用い、この複数本のキャピラリーチューブ17a、17b、17cを1つの流路切替弁21によって切替使用するようになっている。
ここで、複数本のキャピラリーチューブ17a、17b、17cの絞り量は17a<17b<17cの順に大きくしてある。なお、本例では、複数本のキャピラリーチューブ17a、17b、17cの配管長さLを17a<17b<17cの順に大きくし、これにより、絞り量を17a<17b<17cの順に大きくしている。
もちろん、複数本のキャピラリーチューブ17a、17b、17cの最小冷媒通路面積Asを17a>17b>17cの順に小さくし、これにより、絞り量を17a<17b<17cの順に大きくしてもよい。また、配管長さLと最小冷媒通路面積Asとの組み合わせにて複数本のキャピラリーチューブ17a、17b、17cの絞り量を変えてもよい。
流路切替弁21は例えば、円柱状の回転可能な弁体(図示せず)をサーボモータのようなアクチュエータ21aにより回転駆動するロータリ式の弁機構であって、この弁体の回転位置を選択することにより分岐通路16の高圧通路部16aを複数本のキャピラリーチューブ17a、17b、17cのいずれか1つに接続するものである。
アクチュエータ21aは、マイクロコンピュータを用いた制御装置22により制御される。制御装置22にはサイクル運転状態を検出するセンサ、例えば、第2蒸発器18の出口冷媒の状態(温度、圧力等)を検出するセンサ23等から検出信号が入力される。
第2実施形態によると、流路切替弁21により絞り量が異なる複数本のキャピラリーチューブ17a、17b、17cをサイクル運転状態に応じて切替使用することができる。その一例を具体的に述べると、第2蒸発器18の出口冷媒の状態を検出するセンサ23の検出信号に基づいて制御装置22にて第2蒸発器18の出口冷媒の過熱度を算出し、この算出過熱度が第1判定値より小さいときは絞り量が最も大きいキャピラリーチューブ17cを使用するように流路切替弁21を制御する。これにより、第2蒸発器18への冷媒流量を少なくすることができる。
上記算出過熱度が第1判定値とこの第1判定値より大きい第2判定値との間にあるときは絞り量が中間になっているキャピラリーチューブ17bを使用するように流路切替弁21を制御する。これにより、第2蒸発器18への冷媒流量を上記の場合よりも多くすることができる。
上記算出過熱度が第2判定値より大きいときは絞り量が最小になっているキャピラリーチューブ17aを使用するように流路切替弁21を制御する。これにより、第2蒸発器18への冷媒流量を上記の場合よりも更に多くすることができる。
このように、絞り量が異なる複数本のキャピラリーチューブ17a、17b、17cを第2蒸発器18の出口冷媒の過熱度の増減に応じて切替使用することにより、第2蒸発器18の出口冷媒の過熱度変化に応じて冷媒流量を調整して、第2蒸発器18の出口冷媒の過熱度を所定範囲に制御することができる。
もちろん、絞り量が異なる複数本のキャピラリーチューブ17a、17b、17cを切替使用することにより、第2蒸発器18の冷媒蒸発圧力が変化するので、第2蒸発器18の冷媒蒸発温度を制御することにもなる。
(第3実施形態)
図6、図7は第3実施形態であり、キャピラリーチューブ17自体が内部熱交換器24の一部を構成するようになっている。
具体的には、キャピラリーチューブ17と圧縮機11の吸入配管25とを熱交換可能に配置して、キャピラリーチューブ17内の減圧過程の冷媒と圧縮機11の吸入冷媒との間で熱交換を行うように構成している。
なお、圧縮機11の吸入配管25は第1蒸発器15の出口側と圧縮機11の吸入側との間を接続する冷媒配管である。内部熱交換器24は、キャピラリーチューブ17内の冷媒流れ方向と吸入配管25内の冷媒流れ方向とが逆方向となる対向流の熱交換構造になっている。
図7(a)は内部熱交換器24の具体的構成の第1例であり、キャピラリーチューブ17を圧縮機11の吸入配管25の外周面上に配置し、キャピラリーチューブ17と吸入配管25とを熱伝導性に優れた金属接合材26により一体に接合している。
金属接合材26は具体的には半田やろう材である。キャピラリーチューブ17および吸入配管25を銅管により構成する場合は、金属接合材26として半田を用い、キャピラリーチューブ17と吸入配管25とを半田付けすればよい。また、キャピラリーチューブ17および吸入配管25をアルミニウム管により構成する場合は、金属接合材26としてろう材を用い、キャピラリーチューブ17と吸入配管25とをろう付けすればよい。
キャピラリーチューブ17は、圧縮機11の吸入配管25の外周面上で配管軸方向に沿って直線的に配置したり、あるいは、吸入配管25の外周面上で螺旋状に巻き付けるように配置してもよい。
図7(b)は内部熱交換器24の具体的構成の第2例であり、キャピラリーチューブ17を吸入配管25内の中心部に同心状に配置し、これにより、内部熱交換器24を2重管式の熱交換構造に構成している。内部熱交換器24の具体的構成は図7(a)、(b)に示すものに限らず、キャピラリーチューブ17と吸入配管25との間で熱交換できる構成であれば何でもよい。
図6に示すように、キャピラリーチューブ17のうち、下流側の所定領域17xを吸入配管25から引き離して吸入配管25との間で熱交換しない構成にしている。ここで、キャピラリーチューブ17内の冷媒温度は上流側から下流側へ行くにしたがって低下し、キャピラリーチューブ17の下流側の所定領域17xではキャピラリーチューブ17内の冷媒温度が吸入配管25内の冷媒温度よりも低くなるので、この所定領域17xは吸入配管25との間で熱交換しない構成にしている。
次に、第3実施形態の作動を説明する。第3実施形態においても、放熱器13下流側の高圧冷媒は第1実施形態と同様に基本的にはエジェクタ14の上流で2つの冷媒流れに分岐され、その一方がエジェクタ14を通過した後、第1蒸発器15に流れ込む流れである。他方は分岐通路16側の流れであり、高圧冷媒はキャピラリーチューブ17により減圧された後、第2蒸発器18で蒸発しエジェクタ14に吸引される。
エジェクタ14に吸引される冷媒が流れる第2蒸発器18の冷媒蒸発温度がエジェクタ14の昇圧相当分だけ第1蒸発器15よりも低いといった基本的なサイクル挙動は第3実施形態でも第1実施形態と同じである。
一方、第3実施形態ではキャピラリーチューブ17自体を用いて内部熱交換器24を構成するという独自の構成を有している。そこで、この内部熱交換器24に基づく第3実施形態独自のサイクル挙動を図8に示すモリエル線図に基づいて説明する。
図8の破線aは、放熱器13下流側の高圧冷媒を内部熱交換なしでキャピラリーチューブ17により減圧する場合(比較例)であって、この場合は減圧過程において冷媒の乾き度、比体積が増加し、冷媒が急激な相変化(急激な膨張)をするため、キャピラリーチューブ17内を冷媒が流れ難くなる。
これに対し、第3実施形態では内部熱交換器24を構成してキャピラリーチューブ17と圧縮機吸入配管25との間で熱交換を行うので、減圧過程においてキャピラリーチューブ17内を流れる冷媒は圧縮機吸入配管25により冷却される。そのため、図8の実線bに示すように、キャピラリーチューブ17による減圧過程においてキャピラリーチューブ17内の冷媒の乾き度が小さくなり、冷媒は液相の割合が増加する方向に変化する。
その結果、減圧過程においてキャピラリーチューブ17内を流れる冷媒は等比体積線cに沿った変化をするため、キャピラリーチューブ17内にて冷媒が急激に膨張することが抑制される。このため、キャピラリーチューブ17内を冷媒が流れ易くなり、所定の減圧量における低温側第2蒸発器18の冷媒流量Geを増加させることができる。
従って、第3実施形態によると、前述したキャピラリーチューブ17自体の緩やかな減圧作用による流量増大効果に加えて、内部熱交換による等比体積線cに沿った減圧作用を発揮することができ、これにより、低温側第2蒸発器18の冷媒流量Geをより一層効果的に増大できる。
しかも、キャピラリーチューブ17内の冷媒を圧縮機吸入配管25との熱交換により冷却することにより、冷媒の乾き度が小さくなり、液相の割合が増加するので、低温側第2蒸発器18の冷凍効果を図8のエンタルピΔh2分増加させ、蒸発器冷却性能を向上させることができる。
なお、図8において、Gが圧縮機11の作動によるサイクル内の総冷媒流量で、G−Geは分岐点Zからエジェクタ14側へ流れる冷媒流量(エジェクタ駆動流の流量)である。上記冷媒流量Geは分岐点Zから分岐通路16側へ流れる第2蒸発器18の冷媒流量である。
内部熱交換器24においてキャピラリーチューブ17内の冷媒放熱量QはGe×Δh2であり、圧縮機吸入配管25側の冷媒吸熱量QはG×Δh1である。Δh1は内部熱交換器24における圧縮機吸入配管25の入口、出口間のエンタルピ差である。
図8の実線dはエジェクタ14のノズル部14aによる減圧過程であり、ノズル部14aでは冷媒が等エントロピ線に沿った変化をする。e点はノズル部14aの出口部の冷媒状態である。
一方、キャピラリーチューブ17の下流側の所定領域17xを吸入配管25から引き離して吸入配管25との間で熱交換しない構成にしている。これにより、キャピラリーチューブ17内の冷媒は下流側の所定領域17xに到達すると吸入配管25との間の熱の授受がなくなるので、図8の実線b’に示すように等エンタルピ変化をする。
もし、キャピラリーチューブ17の下流側の所定領域17xでも内部熱交換を行うと、この所定領域17xではキャピラリーチューブ17内の冷媒温度が吸入配管25内の冷媒温度より低くなるので、キャピラリーチューブ17内の冷媒が吸入配管25側から吸熱するという不具合が生じるが、第3実施形態によるとこの不具合を防止できる。
図8において、f点はキャピラリーチューブ17の出口部、換言すると第2蒸発器18の入口部の冷媒状態であり、g点は第2蒸発器18の出口部の冷媒状態である。Δhebaは低温側第2蒸発器18の入口、出口間のエンタルピ差(第2蒸発器18の冷凍効果)を示し、Δhevaは内部熱交換なしでキャピラリーチューブ17で減圧を行う場合(比較例)の低温側第2蒸発器18の入口、出口間のエンタルピ差を示す。
h点はエジェクタ14の混合部14cにおける冷媒状態、すなわち、第2蒸発器18出口からの吸引冷媒とノズル部14a通過後の冷媒とを混合した冷媒の状態である。i点はエジェクタ14のディフューザ部14dにて昇圧した後の冷媒の状態、すなわち、第1蒸発器15の入口部の冷媒状態である。j点は第1蒸発器15の出口部の冷媒状態である。なお、破線kは内部熱交換なしでキャピラリーチューブ17で減圧を行う場合の圧縮過程を示す。
(第4実施形態)
図9は第4実施形態であり、上記第3実施形態において第2実施形態による絞り量が異なる複数本のキャピラリーチューブ17a、17b、17cを用い、この複数本のキャピラリーチューブ17a、17b、17cを1つの流路切替弁21によって切替使用するようにしたものである。複数本のキャピラリーチューブ17a、17b、17cおよび流路切替弁21は第2実施形態と同じでよい。
第4実施形態によると、第3実施形態と第2実施形態の作用効果を併せ奏することができる。
図10(a)(b)は第4実施形態における内部熱交換器24の具体的構成例を示すもので、図10(a)は前述の図7(a)に対応し、図10(b)は前述の図7(b)に対応するので、具体的説明は省略する。
(第5実施形態)
上述の各実施形態では、キャピラリーチューブ17、17a、17b、17cの下流側の所定領域17xのみを吸入配管25から引き離して吸入配管25との間で熱交換しない構成にしているが、第5実施形態では、図11(a)に示すように、キャピラリーチューブ17の下流側の所定領域17xおよび上流側の所定領域17yの両方を吸入配管25から引き離して吸入配管25との間で熱交換しない構成にしている。
これにより、キャピラリーチューブ17の配管長さ方向の中央部分のみに内部熱交換器24の熱交換部24aを構成している。
なお、図11(a)では、キャピラリーチューブ17の下流側の所定領域17xおよび上流側の所定領域17yの両方を吸入配管25から離れる方向に曲げ成形しているが、図11(b)に示すように吸入配管25の上流側の所定領域25aおよび下流側の所定領域25bの両方をキャピラリーチューブ17から離れる方向に曲げ成形してもよい。
冷凍サイクル10を車両に搭載するに際しては、各種機器の配置上の理由等からキャピラリーチューブ17の配管長さ方向の全域を吸入配管25に沿って配置することが困難となることが多いので、実際の製品では図11(a)(b)に示す構成を採用することが多い。
(第6実施形態)
図12は第6実施形態であり、図12(a)は図7(a)の内部熱交換器24の構成において吸入配管25およびキャピラリーチューブ17の外表面全体を断熱材27により被覆したものである。断熱材27は例えば樹脂系の多孔質発泡材等が好適であり、吸入配管25およびキャピラリーチューブ17の外表面に接着等により固定される。
第6実施形態によると、周囲雰囲気よりも低温になっている吸入配管25が周囲雰囲気より吸熱すること、すなわち、周囲雰囲気への熱損失を断熱材27により抑制して、内部熱交換器24の熱交換効率を向上できる。
(第7実施形態)
図13は第7実施形態であり、冷蔵装置の断熱箱体28に設けられる断熱材28a自体を利用して、第6実施形態と同様の効果を発揮するようにしている。
断熱箱体28は冷却ユニット19により冷却される庫内空間29を構成するもので、断熱材28aを有する断熱構造になっている。そこで、第7実施形態ではこの断熱材28a中に内部熱交換器24を埋設している。これにより、断熱箱体28の断熱材28aをそのまま利用して周囲雰囲気への熱損失を抑制でき、内部熱交換器24の熱交換効率を向上できる。
(第8実施形態)
上記の各実施形態では、第2蒸発器18の絞り機構としてキャピラリーチューブ17のみを設ける場合について説明したが、第8実施形態では図14に示すように第2蒸発器18の絞り機構として、キャピラリーチューブ17と別の絞り機構30とを組み合わせている。キャピラリーチューブ17に対して別の絞り機構30を組み合わせても、キャピラリーチューブ17による減圧過程においては前述の作用効果を同様に得ることができる。
この別の絞り機構30はオリフィスのような固定絞り、或いは冷媒の温度、圧力等に応動して通路面積を変化させる可変絞りであってもよい。また、この別の絞り機構30は、図14に示す例のようにキャピラリーチューブ17の下流側に設けるだけでなく、キャピラリーチューブ17の上流側に設けてもよい。
なお、別の絞り機構30は第2実施形態(図5)のように絞り量の異なる複数本のキャピラリーチューブ17a、17b、17cを用いる場合、第3実施形態(図6)のように内部熱交換器24を構成する場合等にも同様に実施できる。

(他の実施形態)
本発明は上述の実施形態に限定されることなく以下述べるごとく種々変形可能である。
(1)上述の実施形態では、冷媒の気液を分離してサイクル内の余剰液冷媒を溜める気液分離器を配置しない例について説明したが、この種の気液分離器を配置するサイクル構成においても本発明を実施できることはもちろんである。
具体的には、第1蒸発器15の出口側に気液分離器(アキュムレータ)を配置し、この気液分離器で分離された気相冷媒を吸入配管25を通して圧縮機11の吸入側へ流出させるようにしてよい。
また、放熱器13の出口側に気液分離器(レシーバ)を配置し、この気液分離器で分離された液相冷媒を分岐点Z側へ流出させるようにしてもよい。この場合は、第1蒸発器15の出口冷媒の過熱度を制御できる冷媒流量調整機構を設けて、圧縮機11への液冷媒戻りを抑制するのがよい。この冷媒流量調整機構としては、例えば、エジェクタ14の上流側に温度式膨張弁を配置し、この温度式膨張弁により第1蒸発器15の出口冷媒の過熱度を制御すればよい。
(2)上述の実施形態では、いずれも高温側の第1蒸発器15と低温側の第2蒸発器18とを設ける例について説明したが、低温側の第2蒸発器18のみを設けるサイクル構成において本発明を実施してもよい。
(3)上述の実施形態では、いずれも高温側の第1蒸発器15と低温側の第2蒸発器18とを設ける例について説明したが、これらの両蒸発器15、18の他に、高温側の第1蒸発器15と同等の蒸発温度で冷媒が蒸発する第3蒸発器を設けるサイクル構成において本発明を実施してもよい。
(4)上述の各実施形態において、第1蒸発器15側の冷媒通路および分岐通路16にそれぞれ通路開閉用の電磁弁のような電気制御弁を設置すれば、第1蒸発器15および第2蒸発器18への冷媒流れを自由に選択できる。
(5)上述の各実施形態では、第1蒸発器15と第2蒸発器18とにより1つの冷却ユニット19を構成し、この1つの冷却ユニット19により冷蔵装置の庫内空間を冷却する例について説明したが、第1蒸発器15と第2蒸発器18をそれぞれ別の冷却対象空間に配置し、第1蒸発器15と第2蒸発器18によりそれぞれ別の冷却対象空間を冷却するようにしてもよい。この場合、第1蒸発器15側の冷却対象空間の冷却温度が高くて、第2蒸発器18側の冷却対象空間の冷却温度が低いという2温度の冷却が可能となる。
なお、高温側の第1蒸発器15を車室内冷房用に用い、低温側の第2蒸発器18を冷蔵庫内の冷却に用いてもよい。また、高温側の第1蒸発器15を冷凍冷蔵庫内の冷蔵室の冷却に用い、低温側の第2蒸発器18を冷凍冷蔵庫内の冷凍室の冷却に用いるようにしてもよい。
(6)上述の各実施形態では、冷媒としてフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いて、蒸気圧縮式の亜臨界サイクルを構成しているが、冷媒として二酸化炭素(CO2)のように高圧圧力が臨界圧力を超える冷媒を用いて、蒸気圧縮式の超臨界サイクルを構成する場合にも本発明を同様に適用できる。
但し、超臨界サイクルでは、圧縮機吐出冷媒が放熱器13にて超臨界状態のまま放熱するのみであり、凝縮しないので、気液分離器は第1蒸発器15の出口側に設けることになる。
(7)上述の各実施形態では、エジェクタ14として、通路面積が一定のノズル部14aを有する固定エジェクタを例示しているが、エジェクタ14として、通路面積を調整可能な可変ノズル部を有する可変エジェクタを用いてもよい。
なお、可変ノズル部の具体例としては、例えば、可変ノズル部の通路内にニードルを挿入し、このニードルの位置を電気的アクチュエータにより制御して通路面積を調整する機構とすればよい。
(8)上述の各実施形態では、第1蒸発器15および第2蒸発器18を、冷却対象空間を冷却する室内側熱交換器として構成し、放熱器13を大気側へ放熱する室外側熱交換器として構成する例について説明したが、これとは逆に、第1蒸発器15および第2蒸発器18を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器13を、空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成する例(ヒートポンプサイクル)に本発明を適用してもよい。
つまり、本発明による冷凍サイクルとは、放熱器13を室内側熱交換器として構成するヒートポンプサイクルを含む。
本発明の第1実施形態によるエジェクタ式冷凍サイクルを示す冷媒回路図である。 図1のキャピラリーチューブの拡大説明図である。 図1のキャピラリーチューブの減圧特性図である。 図1のキャピラリーチューブの比較例をなす膨張弁の概略断面図である。 第2実施形態によるエジェクタ式冷凍サイクルを示す冷媒回路図である。 第3実施形態によるエジェクタ式冷凍サイクルを示す冷媒回路図である。 第3実施形態によるキャピラリーチューブを含む内部熱交換器の組み付け構造を示す断面図である。 第3実施形態によるエジェクタ式冷凍サイクルの作動を示すモリエル線図である。 第4実施形態によるエジェクタ式冷凍サイクルを示す冷媒回路図である。 第4実施形態によるキャピラリーチューブを含む内部熱交換器の組み付け構造を示す断面図である。 第5実施形態によるキャピラリーチューブを含む内部熱交換器の組み付け構造を示す正面図である。 第6実施形態によるキャピラリーチューブを含む内部熱交換器の断熱組み付け構造を示す断面図である。 第7実施形態によるキャピラリーチューブを含む内部熱交換器の断熱組み付け構造を示す冷媒回路図である。 第8実施形態によるエジェクタ式冷凍サイクルを示す冷媒回路図である。 先願によるエジェクタ式冷凍サイクルを示す冷媒回路図である。
符号の説明
11…圧縮機、13…放熱器、14…エジェクタ、14a…ノズル部、
14b…冷媒吸引口、14d…昇圧部(ディフューザ部)、15…第1蒸発器、
16…分岐通路、17、17a〜17c…キャピラリーチューブ(絞り機構)、
18…第2蒸発器、24…内部熱交換器、25…吸入配管。

Claims (10)

  1. 冷媒を吸入し圧縮する圧縮機(11)と、
    前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
    前記放熱器(13)出口側の冷媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴出する高速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、および前記高速度の冷媒流と前記冷媒吸引口(14b)からの吸引冷媒とを混合した冷媒流の速度を減速して圧力を上昇させる昇圧部(14d)を有するエジェクタ(14)と、
    前記エジェクタ(14)の上流側で分岐され前記冷媒吸引口(14b)に接続される分岐通路(16)と、
    前記分岐通路(16)に設けられた絞り機構(17、17a、17b、17c)と、
    前記分岐通路(16)において前記絞り機構(17、17a、17b、17c)の下流側に設けられた蒸発器(18)とを備え、
    前記絞り機構をキャピラリチューブ(17、17a、17b、17c)により構成し、
    さらに、前記キャピラリチューブ(17、17a、17b、17c)と前記圧縮機(11)の吸入配管(25)との間で熱交換を行う熱交換構造(24)を備え、
    前記熱交換構造(24)は、少なくとも前記キャピラリチューブ(17、17a、17b、17c)の入口直後から下流側へ向かって流れる冷媒と前記圧縮機(11)の吸入配管(25)を流れる吸入冷媒とを熱交換させる構成となっていることを特徴とするエジェクタ式冷凍サイクル。
  2. 前記エジェクタ(14)の下流側に第1蒸発器(15)が接続され、
    前記分岐通路(16)の蒸発器は、前記第1蒸発器(15)よりも冷媒蒸発温度が低い第2蒸発器(18)を構成することを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
  3. 前記キャピラリチューブとして、絞り量が異なる複数のキャピラリチューブ(17a、17b、17c)を用い、
    前記複数のキャピラリチューブ(17a、17b、17c)を切替使用する流路切替手段(21)を備えることを特徴とする請求項1または2に記載のエジェクタ式冷凍サイクル。
  4. 前記流路切替手段(21)は、前記分岐通路(16)の蒸発器(18)の出口冷媒の過熱度に応じて前記複数のキャピラリチューブ(17a、17b、17c)を切替使用することを特徴とする請求項3に記載のエジェクタ式冷凍サイクル。
  5. 前記熱交換構造(24)は、前記キャピラリチューブ(17、17a、17b、17c)のうち下流側の所定領域(17x)、前記吸入配管(25)から引き離して前記吸入配管(25)と熱交換しない構成としたことを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
  6. 前記熱交換構造(24)は、前記吸入配管(25)の外周面上に前記キャピラリチューブ(17、17a、17b、17c)を配置する構造であることを特徴とする請求項1ないし5のいずれか1つに記載のエジェクタ式冷凍サイクル。
  7. 前記熱交換構造(24)は、前記吸入配管(25)の内部に前記キャピラリチューブ(17、17a、17b、17c)を配置する構造であることを特徴とする請求項1ないし5のいずれか1つに記載のエジェクタ式冷凍サイクル。
  8. 前記熱交換構造(24)と周囲雰囲気との間を断熱する断熱手段(27、28a)を備えることを特徴とする請求項ないしのいずれか1つに記載のエジェクタ式冷凍サイクル。
  9. 前記断熱手段は、前記吸入配管(25)の外周側に被覆される断熱材(27)であることを特徴とする請求項に記載のエジェクタ式冷凍サイクル。
  10. 前記分岐通路(16)の蒸発器(18)により冷却される冷却対象空間(29)を構成する断熱箱体(28)を有し、前記断熱箱体(28)の断熱材(28a)中に前記熱交換構造(24)を埋設し、
    前記断熱材(28a)により前記断熱手段を構成することを特徴とする請求項に記載のエジェクタ式冷凍サイクル。
JP2005224119A 2005-08-02 2005-08-02 エジェクタ式冷凍サイクル Expired - Fee Related JP4600200B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005224119A JP4600200B2 (ja) 2005-08-02 2005-08-02 エジェクタ式冷凍サイクル
US11/497,032 US7320229B2 (en) 2005-08-02 2006-07-31 Ejector refrigeration cycle
DE102006035881.3A DE102006035881B4 (de) 2005-08-02 2006-08-01 Ejektorpumpenkühlkreis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224119A JP4600200B2 (ja) 2005-08-02 2005-08-02 エジェクタ式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2007040586A JP2007040586A (ja) 2007-02-15
JP4600200B2 true JP4600200B2 (ja) 2010-12-15

Family

ID=37697513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224119A Expired - Fee Related JP4600200B2 (ja) 2005-08-02 2005-08-02 エジェクタ式冷凍サイクル

Country Status (3)

Country Link
US (1) US7320229B2 (ja)
JP (1) JP4600200B2 (ja)
DE (1) DE102006035881B4 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446694B2 (ja) * 2008-12-15 2014-03-19 株式会社デンソー エジェクタ式冷凍サイクル
US8820114B2 (en) 2009-03-25 2014-09-02 Pax Scientific, Inc. Cooling of heat intensive systems
US20110048048A1 (en) * 2009-03-25 2011-03-03 Thomas Gielda Personal Cooling System
JP2012522204A (ja) * 2009-03-25 2012-09-20 カイティン、インコーポレーテッド 超音速冷却システム
US8505322B2 (en) * 2009-03-25 2013-08-13 Pax Scientific, Inc. Battery cooling
US20110048062A1 (en) * 2009-03-25 2011-03-03 Thomas Gielda Portable Cooling Unit
US20110030390A1 (en) * 2009-04-02 2011-02-10 Serguei Charamko Vortex Tube
US20110051549A1 (en) * 2009-07-25 2011-03-03 Kristian Debus Nucleation Ring for a Central Insert
US8365540B2 (en) * 2009-09-04 2013-02-05 Pax Scientific, Inc. System and method for heat transfer
KR101169047B1 (ko) 2010-02-11 2012-07-26 한라공조주식회사 차량용 에어컨의 냉동사이클
US9759462B2 (en) * 2010-07-23 2017-09-12 Carrier Corporation High efficiency ejector cycle
EP2596302B1 (en) * 2010-07-23 2014-03-19 Carrier Corporation Ejector cycle
JP5900967B2 (ja) * 2010-10-14 2016-04-06 輝政 松本 冷凍サイクルの熱交換器及びその製造方法
JP5798445B2 (ja) * 2011-10-25 2015-10-21 輝政 松本 冷凍サイクルの熱交換器、冷蔵庫及び冷凍サイクルの熱交換器の製造方法
CN102767926A (zh) * 2012-07-03 2012-11-07 海尔集团公司 一种低温冰箱毛细管防堵结构组件及其控制方法
US20140311181A1 (en) * 2013-04-19 2014-10-23 Heesung Material Ltd. Heat Exchanger for Refrigeration Cycle
DE102014209542A1 (de) * 2014-05-20 2015-11-26 BSH Hausgeräte GmbH Kältemaschine
CN104676946A (zh) * 2015-02-03 2015-06-03 北京建筑大学 一种两级喷射式换热机组及其工作方式
JP2016200376A (ja) * 2015-04-14 2016-12-01 東芝ライフスタイル株式会社 冷蔵庫
KR101688166B1 (ko) * 2015-06-12 2016-12-20 엘지전자 주식회사 냉장고
EP3572747B1 (en) * 2017-05-23 2021-06-30 PHC Holdings Corporation Refrigeration device
JP7031482B2 (ja) * 2018-02-08 2022-03-08 株式会社デンソー エジェクタ式冷凍サイクル、および流量調整弁
WO2019155805A1 (ja) * 2018-02-08 2019-08-15 株式会社デンソー エジェクタ式冷凍サイクル、および流量調整弁
KR20220056855A (ko) * 2019-08-09 2022-05-06 하이드로 익스트루젼 브라질 에스.에이. 냉장 장치용 팽창 디바이스
US11692742B1 (en) * 2020-07-02 2023-07-04 Booz Allen Hamilton Inc. Thermal management systems
KR102530057B1 (ko) * 2021-04-16 2023-05-08 태성전기(주) 3열이 적용된 냉장고의 석션파이프 어셈블리
DE102021128680A1 (de) 2021-08-26 2023-03-02 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE102021128677A1 (de) 2021-08-26 2023-03-02 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
EP4141355A1 (de) * 2021-08-26 2023-03-01 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät
US20230392843A1 (en) * 2022-06-03 2023-12-07 Trane International Inc. Heat exchanger design for climate control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322263B1 (ja) * 2000-03-15 2002-09-09 株式会社デンソー エジェクタサイクル、これに用いる気液分離器、並びにこのエジェクタサイクルを用いた給湯器及び熱管理システム
JP2003050065A (ja) * 2001-08-03 2003-02-21 Nishiyama Seisakusho:Kk 冷凍サイクル用パイプの製造方法
JP2004156823A (ja) * 2002-11-06 2004-06-03 Matsushita Refrig Co Ltd 冷却システム
JP2004286328A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd 冷媒サイクル装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116516Y2 (ja) * 1971-09-03 1976-05-01
JPS554786Y2 (ja) * 1974-12-26 1980-02-04
JPS5236354A (en) * 1975-09-17 1977-03-19 Matsushita Electric Ind Co Ltd Refrigerant circuit
JPH05312421A (ja) 1992-05-14 1993-11-22 Nippondenso Co Ltd 冷凍装置
KR20010037714A (ko) * 1999-10-19 2001-05-15 구자홍 두 개의 증발기를 구비한 냉장고의 냉동 시스템
US6477857B2 (en) 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP4032875B2 (ja) 2001-10-04 2008-01-16 株式会社デンソー エジェクタサイクル
CN1189712C (zh) * 2002-07-08 2005-02-16 株式会社电装 喷射器循环装置
JP2004257694A (ja) 2003-02-27 2004-09-16 Denso Corp 蒸気圧縮式冷凍機
JP3931899B2 (ja) * 2004-02-18 2007-06-20 株式会社デンソー エジェクタサイクル
US7254961B2 (en) 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
CN1291196C (zh) 2004-02-18 2006-12-20 株式会社电装 具有多蒸发器的喷射循环
JP4581720B2 (ja) * 2004-09-29 2010-11-17 株式会社デンソー エジェクタを用いたサイクル
DE102006022557A1 (de) * 2005-05-16 2006-11-23 Denso Corp., Kariya Ejektorpumpenkreisvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322263B1 (ja) * 2000-03-15 2002-09-09 株式会社デンソー エジェクタサイクル、これに用いる気液分離器、並びにこのエジェクタサイクルを用いた給湯器及び熱管理システム
JP2003050065A (ja) * 2001-08-03 2003-02-21 Nishiyama Seisakusho:Kk 冷凍サイクル用パイプの製造方法
JP2004156823A (ja) * 2002-11-06 2004-06-03 Matsushita Refrig Co Ltd 冷却システム
JP2004286328A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd 冷媒サイクル装置

Also Published As

Publication number Publication date
DE102006035881B4 (de) 2017-12-21
DE102006035881A1 (de) 2007-02-22
JP2007040586A (ja) 2007-02-15
US20070028646A1 (en) 2007-02-08
US7320229B2 (en) 2008-01-22

Similar Documents

Publication Publication Date Title
JP4600200B2 (ja) エジェクタ式冷凍サイクル
JP4737001B2 (ja) エジェクタ式冷凍サイクル
JP4779928B2 (ja) エジェクタ式冷凍サイクル
JP4626531B2 (ja) エジェクタ式冷凍サイクル
JP4259478B2 (ja) 蒸発器構造およびエジェクタサイクル
JP4622960B2 (ja) エジェクタ式冷凍サイクル
JP4591413B2 (ja) エジェクタ式冷凍サイクル
JP3931899B2 (ja) エジェクタサイクル
JP2007051833A (ja) エジェクタ式冷凍サイクル
JP2004324955A (ja) 蒸気圧縮式冷凍機
JP4400522B2 (ja) エジェクタ式冷凍サイクル
JP4415835B2 (ja) 車両用冷凍サイクル装置
JP2007040612A (ja) 蒸気圧縮式サイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JP2009222255A (ja) 蒸気圧縮式冷凍サイクル
JP4577365B2 (ja) エジェクタを用いたサイクル
JP4270098B2 (ja) エジェクタサイクル
JP2007078349A (ja) エジェクタサイクル
JP2009138952A (ja) ブライン式冷却装置
JP2010038456A (ja) 蒸気圧縮式冷凍サイクル
JP4725449B2 (ja) エジェクタ式冷凍サイクル
JP4888050B2 (ja) 冷凍サイクル装置
JP2008281338A (ja) エジェクタサイクル
JP5021326B2 (ja) エジェクタ式冷凍サイクル
JP2007057177A (ja) 蒸気圧縮式冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees