JP4581794B2 - 火花点火式エンジンの制御装置 - Google Patents

火花点火式エンジンの制御装置 Download PDF

Info

Publication number
JP4581794B2
JP4581794B2 JP2005102399A JP2005102399A JP4581794B2 JP 4581794 B2 JP4581794 B2 JP 4581794B2 JP 2005102399 A JP2005102399 A JP 2005102399A JP 2005102399 A JP2005102399 A JP 2005102399A JP 4581794 B2 JP4581794 B2 JP 4581794B2
Authority
JP
Japan
Prior art keywords
ignition
control device
intake air
spark ignition
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102399A
Other languages
English (en)
Other versions
JP2006283618A (ja
Inventor
正尚 山川
敏朗 西本
好徳 林
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005102399A priority Critical patent/JP4581794B2/ja
Priority to EP06006397A priority patent/EP1707791B1/en
Priority to DE602006017767T priority patent/DE602006017767D1/de
Publication of JP2006283618A publication Critical patent/JP2006283618A/ja
Application granted granted Critical
Publication of JP4581794B2 publication Critical patent/JP4581794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は火花点火式エンジンの制御装置に関し、特に、予混合圧縮自己着火燃焼(HCCI:Homogeneous−Charge Compression−Ignition combustion。この明細書で「圧縮自己着火」という)を行わせる運転モードを有する火花点火式エンジンの制御装置に関する。
火花点火式のエンジンにおいて、圧縮自己着火タイミングを促進するために、吸気を加熱する吸気加熱手段を有するエンジンが知られている。例えば特許文献1に開示された技術では、火花点火で強制着火を実行する高負荷運転から圧縮自己着火運転を実行する低負荷運転へ移行する際には、混合気の温度を上げて空燃比をリーンに変化させる一方、低負荷運転から高負荷運転へ移行する際には、混合気の温度を下げて空燃比をリッチ側に変化させることにより、失火領域とノッキング領域との間でポンピングロスの低下とノッキング防止との両立とを図っている。
特開2003−269201号公報
ところで、圧縮自己着火運転を実行可能な運転領域を拡張するためには、圧縮自己着火運転が実行される運転領域と強制着火運転が実行される運転領域との間で空燃比と吸気温度とを変化させるだけでは充分ではなく、圧縮自己着火運転が実行される運転領域内においても空燃比と吸気温度とを運転状態に合わせて調整する必要がある。
しかしながら、特許文献1の発明では、圧縮自己着火運転が実行される運転領域内で空燃比と吸気温度を変更する制御は行われていなかった。このため、失火防止のために低負荷側の吸気温度を高く設定するとノッキングが生じる領域が広くなる一方、吸気温度を下げて高負荷側でのノッキングを回避しようとすると、低負荷側での失火が生じやすくなるため、圧縮自己着火運転を実行可能な運転領域を広く設定することができなかった。
本発明は上記課題に鑑みてなされたものであり、より広範な運転領域で圧縮自己着火を実現することのできる火花点火式エンジンの制御装置を提供することを課題としている。
上記課題を解決するために本発明は、気筒への吸気を加熱する吸気加熱手段と、エンジンの運転状態を検出する運転状態検出手段と、運転状態検出手段の検出に基づいて、吸気加熱手段を制御することにより、所定の運転領域で圧縮自己着火運転を実行する制御手段とを備えた火花点火式ガソリンエンジンの制御装置において、前記圧縮自己着火運転を実行する運転領域のうち、負荷が所定の低負荷以下でかつ最大熱発生率が圧縮上死点以降になる運転領域では、吸気温度を所定の高温度に維持し、負荷が前記所定の低負荷以下でかつ最大熱発生率が圧縮上死点よりも前になる運転領域では、圧縮自己着火が可能な最低温度に吸気温度を維持し、前記所定の低負荷を越える運転領域では、負荷の増加とともに吸気加熱を低減するように、前記制御手段が吸気加熱手段を制御するものであることを特徴とする火花点火式エンジンの制御装置である。
この態様では、圧縮自己着火運転が実行される運転領域のうち、負荷が所定の低負荷以下でかつ最大熱発生率が圧縮上死点以降になる範囲内で、吸気温度を高く維持することにより、低負荷側での失火を防止することができる。一方、負荷が前記所定の低負荷以下でかつ最大熱発生率が圧縮上死点よりも前になる範囲内では、吸気温度を必要最低限度の温度(例えば270℃)に維持することによって、過早燃焼による逆トルクの弊害を最小限に抑制しつつ、無負荷またはそれに近い状態で圧縮自己着火運転を実現することができる。さらに、エンジン負荷が所定の低負荷を超えると、負荷の増加に伴い吸気加熱を低減することにより、燃焼を緩慢化させてノッキング対策を図ることができる。この結果、圧縮自己着火運転の実行可能な運転領域を高負荷側に拡張し、高負荷側での燃費の向上を図ることが可能になる。
好ましい態様において、前記所定の高負荷運転領域で着火タイミングを促進する着火促進手段を設けている。この態様では、高負荷運転領域で圧縮自己着火運転を維持するに当たり、所定の低負荷を越えた時点で着火促進手段によって混合気の着火タイミングが促進されることにより、混合気の燃焼が過度に緩慢になるのを抑制し、高いトルクを出力することが可能になる。
好ましい態様において、前記着火促進手段は、一気筒当たり複数の点火プラグと、点火プラグを圧縮自己着火の開始前に多点点火する前記制御手段とによって構成されている。この態様では、比較的簡素な構成で確実に着火タイミングの促進を実現することが可能になる。
好ましい態様において、前記所定の高負荷運転領域で着火後の混合気の燃焼速度を促進する燃焼速度促進手段を設けている。この態様では、高負荷運転領域で圧縮自己着火運転を維持するに当たり、所定の低負荷を越えた時点で燃焼速度促進手段によって着火後の混合気の燃焼速度が促進されることにより、混合気の燃焼が過度に緩慢になるのを抑制し、混合気の燃焼エネルギーを高めて高いトルクを出力することが可能になる。
好ましい態様において、前記燃焼速度促進手段は、一気筒当たり複数の点火プラグと、点火プラグを圧縮自己着火の開始後に多点点火する前記制御手段とによって構成されている。この態様では、比較的簡素な構成で確実に燃焼速度の促進を実現することが可能になる。
好ましい態様において、EGRガスを吸気通路に還流する外部EGRシステムを設け、前記所定の高負荷運転領域の少なくとも高負荷側でEGRガスを吸気通路に導入するように制御手段が外部EGRシステムを制御する。この態様では、圧縮自己着火が緩慢になる所定の高負荷運転領域では、外部EGRシステムによってEGRガスが導入されるので、着火促進手段による着火タイミングや燃焼速度促進手段による燃焼速度の促進を適度に保ちつつ、ノッキングを回避し、しかも良好な排気性能を得ることが可能になる。
好ましい態様において、前記エンジンは、当該クランクシャフトの回転方向が右回りになる側から見て気筒のシリンダボア中心がクランクシャフトの回転中心から右側にオフセットしている。この態様では、気筒のシリンダボア中心がクランクシャフトの回転中心からオフセットすることにより、ピストンの昇降速度が上死点に対して非対称になり、膨張行程でのピストンの下降速度が相対的に遅くなる。このため、ピストンの下降速度に比べて燃焼速度が相対的に速くなるので、良好な燃焼環境を維持することができ、ピストンに作用するエネルギーが高くなって燃費の向上を図ることが可能になる。
好ましい態様において、前記所定の高負荷運転領域を越える高負荷領域では、吸気加熱手段を停止して火花点火を行うものである。
以上説明したように、本発明では、圧縮自己着火運転を実行可能な運転領域を高負荷側に拡張し、高負荷側での燃費の向上を図ることが可能になるので、より広範な運転領域で圧縮自己着火を実現することができるという顕著な効果を奏する。
以下、添付図面を参照しながら本発明の好ましい実施の形態について説明する。
図1は、本発明の実施の一形態に係る制御装置10の概略構成を示す構成図であり、図2は図1に係る4サイクルガソリンエンジン20の一つの気筒の構造を示す断面略図である。
図1および図2を参照して、図示の制御装置10は、4サイクルガソリンエンジン20と、このエンジン20を制御するためのコントロールユニット100とを備えている。
エンジン20は、クランクシャフト21を回転自在に支持するシリンダブロック22と、シリンダブロック22の上部に配置されたシリンダヘッド23とを一体的に有しており、これらシリンダブロック22およびシリンダヘッド23には、複数の気筒24が設けられている。
各気筒24には、コンロッド25を介してクランクシャフト21に連結されたピストン26と、ピストン26が気筒24内に形成する燃焼室27とが設けられている。本実施形態において、各気筒24の幾何学的圧縮比は14に設定されている。
図2を参照して、本実施形態に係るエンジン20は、当該クランクシャフト21の回転方向が右回りになる側(すなわち図2の状態)から見て気筒24のシリンダボア中心Zがクランクシャフト21の回転中心Oから右側にオフセットしている。このオフセット量Sは、気筒24のボア径が70mmの場合、例えば1mm〜2mmに設定されている。
図3は本実施形態におけるピストンのモデル図である。
同図を参照して、コンロッド25とピストン26とを連結する連結ピン25aの回転中心とコンロッド25とクランクシャフト21とを連結する連結ピン25bの回転中心の距離をA、連結ピン25bの回転中心とクランクシャフト21の回転中心Oの距離をA、オフセット量をS、連結ピン25bを通る鉛直線LN1とコンロッド25のなす角度をα、クランクシャフト21の角速度をωとする。
図3に基づくと、連結ピン25aの回転中心の座標(Xp,Yp)、連結ピン25bの回転中心の座標(Xc,Yc)は、クランクシャフト21の中心Oを通る水平線とシリンダボア中心Zとの交点座標を(0,0)とすると、それぞれ
(Xp,Yp)=(0, Acosωt+Acosα) ・・・(式1)
(Xc,Yc)=(Asinωt−S, Acosωt) ・・・(式2)
となる。また、ピストン26の拘束条件は
sinωt−S=Asinα ・・・(式3)
となる。ここで(式3)の両辺を微分すると
Figure 0004581794
・・・(式4)
が得られる。
次に(式1)のYp成分をtで微分し、(式4)を代入して、ピストン26の速度vを求めると
Figure 0004581794
・・・(式5)
が得られる。また、(式3)より
Figure 0004581794
・・・(式6)
であるから、(式6)を(式5)に代入すると、
Figure 0004581794
・・・(式7)
が得られる。
図4は、クランク角度に対するピストンの速度を表わすグラフである。また、図5はクランク角度とピストン移動量の関係を示すモデル図である。
図4および図5を参照して、(式5)から明らかなように、オフセット量S=0の場合、tanα=0であるから、ピストン26の速度vは、正弦波と等しくなる。
これに対して、オフセット量S>0とした場合、(式5)(式7)の第2項の値によって、ピストン26の波形は非対称となり、ピストン26が最も高速で移動する点P、P(ピストン26の上死点を通る直線が連結ピン25bの軌跡25L上になす接点)は、左右非対称となる。この結果、仮に、ピストン26が上死点にある時の点Pを中心に前後同量のクランク角度ωt(=30°)の移動量Y、Yを考えると、図5から明らかなように、上死点近傍から上死点に至るまでの移動量Yは比較的大きくなり、ピストン26は、速い速度で移動するのに対し、上死点を越えた後の移動量Yは比較的小さくなり、ピストン26は、比較的遅い速度で移動することになる。
図6は気筒24を拡大して示す平面略図である。
図6を参照して、シリンダヘッド23の下面には、気筒24毎に燃焼室27の天井部が構成され、この天井部は中央部分からシリンダヘッド23の下端まで延びる2つの傾斜面を有するいわゆるペントルーフ型となっている。
前記燃焼室27の天井部には各々独立した2つの吸気ポート28および排気ポート29が概ね対称形に開口しており、各ポート28、29の開口端に吸気弁30および排気弁31が設けられている。
燃焼室27の側部には、コントロールユニット100からの燃料噴射パルスを受けて、このパルス幅に対応する燃料を燃焼室27に噴射する燃料噴射弁32が設けられている。
図2も参照して、各気筒24には、シリンダヘッド23に固定され、燃焼室27内にスパークを発する3個の点火プラグ34が配設されている。各点火プラグ34は、ピストン26の稜線部分と平行なシリンダ直径沿いに並んでおり、中央のものがシリンダボア中心Z上に配置され、両側のものが燃焼室27の側縁に配置されている。各点火プラグ34には、電子制御による点火タイミングのコントロールが可能な点火回路35が接続されており、この点火回路35がコントロールユニット100に制御されることにより、点火プラグ34は、選択的に点火制御されるようになっている。
次に図2を参照して、各気筒24の吸気弁30および排気弁31には、それぞれ公知のタペットユニット36が設けられている。タペットユニット36は、シリンダヘッド23に設けられた動弁機構のカム軸37、38のカム37a、38aによって、周期的に駆動されるものである。また、吸気弁30に対する動弁機構には、吸気弁30の開閉タイミングを変更可能とする可変バルブタイミング機構40が設けられている。この可変バルブタイミング機構40は、吸気弁開時期を吸気上死点付近とする第1のタイミングとこれよりも吸気弁開時期を進角させた第2のタイミングとにわたり、運転状態に応じてバルブタイミングを変更するものである。
次に、図1および図2を参照して、エンジン20の吸気ポート28には、インテークマニホールド42の分岐吸気管43が接続している。分岐吸気管43は、気筒24毎に設けられており、それぞれがインテークマニホールド42に等長の吸気経路を形成した状態で接続されている。図示の実施形態において、各気筒24には、2つ一組の吸気ポート28が形成されており、前記分岐吸気管43の下流端は、各気筒24の吸気ポート28に対応して二股に形成されている。分岐吸気管43の上流側合流部分には、開閉弁44が設けられている。開閉弁44は、三方電磁弁で具体化されたものであり、アクチュエータ45によって、個別に分岐吸気管43の集合部分を所望量だけ開閉できるように構成されている。他方、二股に分岐した分岐吸気管43の一方の分岐部分には、図2に示すように周知のスワール生成用開閉弁43aが設けられている。このスワール生成用開閉弁43aはアクチュエータ43bにより駆動されて開閉作動するもので、このスワール生成用開閉弁43aにより当該分岐吸気管43の一方の分岐部分が閉じられたときは他方の分岐部分を通る吸気によって燃焼室27内にスワールが生成され、スワール生成用開閉弁43aが開かれるにつれてスワールが弱められるようになっている。
インテークマニホールド42の上流側には、新気をインテークマニホールド42内部に導入するための吸気通路46が接続されている。この吸気通路46には、スロットルバルブ47が設けられている。このスロットルバルブ47の上流側には、三方電磁弁48が設けられており、この三方電磁弁48に接続されたバイパス通路49には、吸気加熱手段としてのヒータ50が設けられている。従って、三方電磁弁48を切換えることにより、外気の新気をそのままインテークマニホールド42に導入したり、ヒータ50で加温された空気をインテークマニホールド42に導入したりすることができるようになっている。
次に、図1に示すように、排気ポート29には、各気筒24に2つ一組で形成された二股状の分岐排気管51が接続されている。各分岐排気管51の下流端は、エキゾーストマニホールド52に接続されている。このエキゾーストマニホールド52には、既燃ガスを排出する排気通路53が接続されている。
次に、図1、図2を参照して、前記インテークマニホールド42、エキゾーストマニホールド52の間には、排気された既燃ガスをインテークマニホールド42に還流させる外部EGRシステム60が設けられている。
外部EGRシステム60は、インテークマニホールド42とエキゾーストマニホールド52との間に形成された還流通路61に接続され、EGRクーラ62と、EGR弁63と、EGR弁63を駆動するアクチュエータ64とを備えた公知のバルブシステムである。
図7は図1の実施形態に係る吸気加熱手段としての吸気加熱システム70の構成を示す構成図である。
図7を参照して、吸気通路46には、スロットルバルブ47の上流側に三方電磁弁48が設けられており、この三方電磁弁48に接続されたバイパス通路49には、ヒータ50が設けられている。この三方電磁弁48は、開閉弁44と同様に、コントロールユニット100の制御により、開弁割合を変更可能に構成されている。従って、三方電磁弁48を切り換えることにより、所望の割合で外気をインテークマニホールド42に導入したり、ヒータ50で加温された空気をインテークマニホールド42に導入したりすることができるようになっている。
さらに吸気通路46には、加熱通路71が分岐接続されている。この加熱通路71の途中には、冷却水熱交換器72と、排気熱交換器73が接続されている。
加熱通路71は、各熱交換器72、73を経て吸熱した熱を吸気側に還流するためのものである。加熱通路71の下流側には、気筒24毎に分岐した分岐管71aが設けられ、各分岐管71aは、対応する開閉弁44の吸気側のポートに接続されている。
冷却水熱交換器72は、エンジン20の水冷システム74に接続されて、エンジン20からラジエータ(図示せず)に還流する冷却水が吸収した熱を、加熱通路71を通る吸気に吸収させるためのものである。
排気熱交換器73は、エンジン20の排気通路53に接続されて、既燃ガスの熱を、加熱通路71を通る吸気に吸収させるためのものである。排気熱交換器73は、加熱通路71において、冷却水熱交換器72の下流側に配置されている。
本実施形態において、上述したヒータ50と、これら熱交換器72、73が、吸気加熱システム70の主要部を構成している。
図1を参照して、エンジン20の運転状態を検出するために、吸気通路46には、エアフローセンサSW1が設けられ、開閉弁44の下流には筒内温度を予測するための吸気温度センサSW2(図2参照)が設けられている。また、シリンダブロック22には、クランクシャフト21の回転数を検出するクランク角センサSW3および冷却水の温度を検出するエンジン水温センサSW4が設けられている(図2参照)。さらに、排気通路53には、空燃比を制御するための酸素濃度センサSW5が設けられている。さらにヒータ50には、温度センサSW7が設けられており、ヒータ50で加熱されたバイパス通路49内の吸気の温度を検出することができるようになっている。
エンジン20には、制御手段としてのコントロールユニット100が設けられている。このコントロールユニット100には、エアフローセンサSW1、吸気温度センサSW2、クランク角センサSW3、エンジン水温センサSW4、酸素濃度センサSW5、エンジン負荷を検出するためのアクセル開度センサSW6並びに温度センサSW7が入力要素として接続されている。これら各センサSW1〜SW7は、何れも本実施形態における運転状態検出センサの具体例である。他方、コントロールユニット100には、開閉弁44のアクチュエータ45、スロットルバルブ47のアクチュエータ、可変バルブタイミング機構40、スワール生成用開閉弁43aのアクチュエータ43b、吸気通路46の三方電磁弁48、ヒータ50、外部EGRシステム60のアクチュエータ64が制御要素として接続されている。
図1を参照して、コントロールユニット100は、CPU101、メモリ102、インターフェース103並びにこれらのユニット101〜103を接続するバス104を有するものであり、メモリ102に記憶されるプログラム並びにデータによって、運転状態を判定する運転状態判定手段を機能的に構成している。
図8は、図1の実施形態に係る運転状態に応じた制御を行うための運転領域設定の一例を示す特性図である。また図9は、図8の部分負荷運転領域Dにおいて設定される空燃比、吸気温度、およびEGRガス導入量の特性図である。
図8を参照して、図示の実施形態では、エンジン回転数Nが所定回転数N1以下の部分負荷運転領域Dにおいて、圧縮自己着火運転を実行し、残余の領域では、火花点火による強制着火運転を実行するように設定されている。
圧縮自己着火運転を実行する部分負荷運転領域Dにおいて、空燃比は、図9に示すように、低負荷側から高負荷側に行くに連れて、ほぼ直線状にリッチ側に上昇するように設定されている。他方、吸気温度Tに関し、所定の低負荷以下の運転領域D1、Dでは、図9に示すように、比較的吸気温度Tを高温に維持し、この低負荷を越える高負荷運転領域D2側では、負荷の上昇に連れて吸気温度Tを下げるように設定されている。
図10〜図12はコントロールユニット100に設定される制御条件の基礎となったクランク角度と熱発生率dQ/dθとの関係を示すグラフである。これらのグラフは、本件発明者の研究結果によって得られたものであり、コントロールユニット100のメモリ102には、これらのグラフに基づく制御マップが記憶されている。なお各図において、破線で示す曲線はスロットル全開のときに圧縮自己着火可能な最小の燃料噴射量に設定した場合の特性、実線で示す曲線は破線と同じ吸気温度Tでノッキング限界まで空燃比を下げた場合の特性を表わしている。また、実線で示す曲線の符号は、吸気温度Tが対応する破線で示す曲線の符号に添え字を付加したものである。
図10を参照して、圧縮自己着火によってエンジン20を無負荷状態で運転する場合、吸気温度Tは、T1(=270℃)に設定する必要がある。このT1では、最大熱発生率(dQ/dθ)MAXが圧縮上死点よりも前に発生するため、このまま空燃比を下げると、逆トルクが大きくなる。また、T1よりも20℃低いT2(=250℃)でも、依然、最大熱発生率(dQ/dθ)MAXは圧縮上死点よりも前に発生し、燃料噴射量を増やした場合、大きな逆トルクが発生する。そこで、本実施形態では、図9に示すように、圧縮自己着火運転を行うための吸気温度では、最大熱発生率(dQ/dθ)MAXが圧縮上死点よりも前に発生する運転領域Dでは、吸気温度を圧縮自己着火運転に必要な最低限の温度にして、空燃比を超リーンに設定している。
次に、図11を参照して、負荷が高くなった場合、吸気温度Tは、T3(=225℃)、T4(=205℃)、T5(=190℃)、T6(=175℃)、T7(=160℃)の各曲線で示すように、圧縮上死点以降に最大熱発生率(dQ/dθ)MAXが現れる。そこで、本実施形態では、図9に示すように、運転領域D1においては、吸気温度TをT3に保ち、ノッキング限界ぎりぎりまで燃料噴射量を増量するようにしている。
他方、運転領域D2を越えると、吸気温度Tを負荷に応じて徐々にT4以降に低減することにより、ノッキングの発生を抑制しつつ、高負荷側へ圧縮自己着火運転が可能な運転領域を広く設定できるようにしている。
次に、図12を参照して、各吸気温度特性T1〜T7を重ね合わせた場合、仮想線で示すように、概ね熱発生率dQ/dθが所定の値(約80J/deg・m3)のところをピークとする山形のノッキング限界曲線を描くことになる。そこで本実施形態では、この所定の熱発生率dQ/dθ(約80J/deg・m3)を上限として吸気温度Tを低減するように設定されている。なお図12において、図の左側の直線は、各吸気温度T1〜T7での燃焼開始タイミングを示しており、右側の直線は、燃焼変動率が5%未満の燃焼終了(MFB=95%)限界を表わしている。
ところで図11および図12を参照して、負荷状態がさらに高まり、これに伴って吸気温度Tを下げ続けると、混合気の燃焼は温度低下に比例して燃焼開始時期そのものが遅くなり、最大熱発生率(dQ/dθ)MAXは徐々に圧縮下死点に近づくようになる。そのため、図12で示すように、所定の低温T8(=150℃)では、圧縮自己着火可能な空燃比がA/F=30(λ=2)となり、最大熱発生率(dQ/dθ)MAXもクランク角度で15°を越えたところになってしまう。そこで、本実施形態では、外部EGRのない自然吸気エンジンの場合で、空燃比がλ2のところを境にして、図8の運転領域D2の上限を決定し、運転領域D2の上限を超える高負荷運転領域では、火花点火による強制着火運転を実行するように設定されている。
ところで、上述したように、吸気温度Tが下がるほど、燃焼開始時期は遅くなり、最大熱発生率(dQ/dθ)MAXも圧縮上死点から圧縮下死点に向かって移行したクランク角度に表れるようになる。そこで本実施形態では、種々の方法によって、着火タイミングや燃焼速度を早めることにより、圧縮自己着火が可能な運転領域を高負荷側に拡張するようにしている。
図13は本発明の実施形態に係る点火タイミングを示す図である。
図8、図9、並びに図13を参照して、エンジンが、圧縮自己着火運転時の高負荷側の運転領域D2に移行した場合、吸気温度Tが下がることにより、燃焼開始が遅くなり、図13で示す仮想線のように最大熱発生率(dQ/dθ)MAXは、相当遅れることになる。ここで、本実施形態では、同運転領域D2においては、最大熱発生率(dQ/dθ)MAXが現れるよりも前のクランク角度CAで多点点火SPbfを実行し、着火タイミングを促進するように設定されている。これにより、仮想線で示す特性から実線で示す特性のように、圧縮自己着火による着火タイミングが促進される。
さらに、同運転領域D2において、最大熱発生率(dQ/dθ)MAXが現れた後のクランク角度CAで多点点火SPafを実行し、燃焼速度を促進するように設定されている。これにより、仮想線で示す特性から実線で示す特性のように、圧縮自己着火による燃焼速度が促進される。
ところで、図13で示したような着火促進手段や燃焼速度促進手段を採用した場合、多点点火によってノッキングが生じやすくなる場合も想定される。そこで、本実施形態では図9に示すように、運転領域D2において、高負荷側では外部EGRを導入するようにしている。
なお、図13において、SPは、圧縮上死点前において、スパークアシスト用の点火を示している。
以上説明したように本実施形態では、圧縮自己着火運転が実行される運転領域Dにおいて、燃焼安定性の悪い低負荷側の運転領域D、D1では、吸気温度Tが高く維持されるので、低負荷側での失火を防止することができる。他方、エンジン負荷が所定の低負荷運転領域D1を越えると、負荷の増加とともに吸気加熱が低減するので、吸気温度Tが下がり、燃焼が緩慢になるため、ノッキング対策が有利になる。この結果、圧縮自己着火運転を実行可能な運転領域Dを高負荷側に拡張し、高負荷側での燃費の向上を図ることが可能になる。
特に本実施形態では、圧縮自己着火運転を実行する運転領域Dにおいて、最大熱発生率(dQ/dθ)MAXが圧縮上死点以降になる運転領域D1では、吸気温度Tを所定の高温度に維持するとともに、エンジン負荷の増加に伴って吸気加熱を低減するようコントロールユニット100がヒータ50を制御するものである。このため本実施形態では、エンジン負荷が高まっても、高負荷側での圧縮自己着火運転を実行することが可能になる。すなわち、図10〜図12で示したように、負荷の増加に伴って吸気加熱を低減すると燃焼開始が遅くなり、最大熱発生率((J/deg・m3)MAX)(dQ/dθ)MAXが圧縮下死点に向かって移行することがわかった。そこで、最大熱発生率(dQ/dθ)MAXが圧縮上死点以降になる範囲内で当該吸気温度Tを最高に維持することにより、低負荷側での圧縮自己着火運転を維持するとともに、エンジン負荷の増加に伴って吸気加熱を低減することにより、圧縮自己着火運転の実行可能な運転領域Dを高負荷側に拡張することが可能となるのである。
また、本実施形態は、圧縮自己着火運転を実行する運転領域Dにおいて、最大熱発生率(dQ/dθ)MAXが圧縮上死点よりも前になる運転領域Dでは、圧縮自己着火が可能な最低温度に吸気温度Tを維持するようコントロールユニット100がヒータ50を制御するものである。このため本実施形態では、吸気温度Tを必要最低限度の温度(例えば270℃)に維持することによって、過早燃焼による逆トルクの弊害を最小限に抑制しつつ、無負荷またはそれに近い状態で圧縮自己着火運転を実現することが可能になる。
また、本実施形態は、前記所定の高負荷運転領域Dで着火タイミングを促進する着火促進手段として、図13で示した制御を行うようになっている。このため本実施形態では、高負荷運転領域Dで圧縮自己着火運転を維持するに当たり、所定の低負荷を越えた時点で混合気の着火タイミングが促進されることにより、混合気の燃焼が過度に緩慢になるのを抑制し、高いトルクを出力することが可能になる。
特に本実施形態において、前記着火促進手段は、一気筒当たり複数の点火プラグ34と、点火プラグ34を圧縮自己着火の開始前に多点点火する前記コントロールユニット100とによって構成されている。このため本実施形態では、比較的簡素な構成で確実に着火タイミングの促進を実現することが可能になる。
また、本実施形態において、前記所定の高負荷運転領域Dで着火後の混合気の燃焼速度を促進する燃焼速度促進手段として、図13で示した制御を行うようになっている。このため本実施形態では、高負荷運転領域Dで圧縮自己着火運転を維持するに当たり、所定の低負荷を越えた時点で着火後の混合気の燃焼速度が促進されることにより、混合気の燃焼が過度に緩慢になるのを抑制し、混合気の燃焼エネルギーを高めて高いトルクを出力することが可能になる。
特に本実施形態において、前記燃焼速度促進手段は、一気筒当たり複数の点火プラグ34と、点火プラグ34を圧縮自己着火の開始後に多点点火する前記コントロールユニット100とによって構成されている。このため本実施形態では、比較的簡素な構成で確実に燃焼速度の促進を実現することが可能になる。
さらに本実施形態において、EGRガスを吸気通路46に還流する外部EGRシステム60を設け、前記所定の高負荷運転領域D2の少なくとも高負荷側でEGRガスを吸気通路46に導入するようにコントロールユニット100が外部EGRシステム60を制御するものである。このため本実施形態では、圧縮自己着火が緩慢になる所定の高負荷運転領域D2の高負荷側では、外部EGRシステム60によってEGRガスが導入されるので、着火促進手段による着火タイミングや燃焼速度促進手段による燃焼速度の促進を適度に保ちつつ、ノッキングを回避し、しかも良好な排気性能を得ることが可能になる。
特に本実施形態において、前記エンジン20は、当該クランクシャフト21の回転方向が右回りになる側から見て気筒のシリンダボア中心Zがクランクシャフト21の回転中心Oから右側にオフセットしている。このため本実施形態では、気筒24のシリンダボア中心Zがクランクシャフト21の回転中心Oからオフセットすることにより、ピストン26の昇降速度が上死点に対して非対称になり、膨張行程でのピストン26の下降速度が相対的に遅くなる。このため、ピストン26の下降速度に比べて燃焼速度が相対的に速くなるので、良好な燃焼環境を維持することができ、ピストン26に作用するエネルギーが高くなって燃費の向上を図ることが可能になる。
なお、本実施形態においては、前記所定の高負荷運転領域Dを越える高負荷領域では、ヒータ50を停止して火花点火が実行される。
このように本実施形態によれば、圧縮自己着火運転を実行可能な運転領域を高負荷側に拡張し、高負荷側での燃費の向上を図ることが可能になるので、より広範な運転領域で圧縮自己着火を実現することができるという顕著な効果を奏する。
本発明の実施の一形態に係る制御装置の概略構成を示す構成図である。 図1に係る4サイクルガソリンエンジンの一つの気筒の構造を示す断面略図である。 本実施形態におけるピストンのモデル図である。 クランク角度に対するピストンの速度を表わすグラフである。 クランク角度とピストン移動量の関係を示すモデル図である。 気筒を拡大して示す平面略図である。 図1の実施形態に係る吸気加熱手段としての吸気加熱システムの構成を示す構成図である。 図1の実施形態に係る運転状態に応じた制御を行うための運転領域設定の一例を示す特性図である。 図8の部分負荷運転領域において設定される空燃比、吸気温度、およびEGRガス導入量の特性図である。 コントロールユニットに設定される制御条件の基礎となったクランク角度と熱発生率との関係を示すグラフである。 コントロールユニットに設定される制御条件の基礎となったクランク角度と熱発生率との関係を示すグラフである。 コントロールユニットに設定される制御条件の基礎となったクランク角度と熱発生率との関係を示すグラフである。 本発明の実施形態に係る点火タイミングを示す図である。
符号の説明
20 4サイクルガソリンエンジン
21 クランクシャフト
24 気筒
26 ピストン
27 燃焼室
34 点火プラグ
46 吸気通路
50 ヒータ(吸気加熱手段の一例)
60 外部EGRシステム(外部EGR装置の一例)
100 コントロールユニット
CA クランク角度
D 部分負荷運転領域
、D1 低負荷運転領域
2 高負荷運転領域
dQ/dθ 熱発生率
(dQ/dθ)MAX 最大熱発生率
N エンジン回転数
O 回転中心
S オフセット量
SW1 エアフローセンサ(運転状態検出手段の一例)
SW2 吸気温度センサ(運転状態検出手段の一例)
SW3 クランク角センサ(運転状態検出手段の一例)
SW4 エンジン水温センサ(運転状態検出手段の一例)
SW5 酸素濃度センサ(運転状態検出手段の一例)
SW6 アクセル開度センサ(運転状態検出手段の一例)
T 吸気温度
Z シリンダボア中心
ωt クランク角度

Claims (8)

  1. 気筒への吸気を加熱する吸気加熱手段と、
    エンジンの運転状態を検出する運転状態検出手段と、
    運転状態検出手段の検出に基づいて、吸気加熱手段を制御することにより、所定の運転領域で圧縮自己着火運転を実行する制御手段と
    を備えた火花点火式ガソリンエンジンの制御装置において、
    前記圧縮自己着火運転を実行する運転領域のうち、負荷が所定の低負荷以下でかつ最大熱発生率が圧縮上死点以降になる運転領域では、吸気温度を所定の高温度に維持し、負荷が前記所定の低負荷以下でかつ最大熱発生率が圧縮上死点よりも前になる運転領域では、圧縮自己着火が可能な最低温度に吸気温度を維持し、前記所定の低負荷を越える運転領域では、負荷の増加とともに吸気加熱を低減するように、前記制御手段が吸気加熱手段を制御するものであることを特徴とする火花点火式エンジンの制御装置。
  2. 請求項1記載の火花点火式エンジンの制御装置において、
    前記所定の高負荷運転領域で着火タイミングを促進する着火促進手段を設けていることを特徴とする火花点火式エンジンの制御装置。
  3. 請求項2記載の火花点火式エンジンの制御装置において、
    前記着火促進手段は、一気筒当たり複数の点火プラグと、点火プラグを圧縮自己着火の開始前に多点点火する前記制御手段とによって構成されていることを特徴とする火花点火式エンジンの制御装置。
  4. 請求項2または3記載の火花点火式エンジンの制御装置において、
    前記所定の高負荷運転領域で着火後の混合気の燃焼速度を促進する燃焼速度促進手段を設けていることを特徴とする火花点火式エンジンの制御装置。
  5. 請求項4記載の火花点火式エンジンの制御装置において、
    前記燃焼速度促進手段は、一気筒当たり複数の点火プラグと、点火プラグを圧縮自己着火の開始後に多点点火する前記制御手段とによって構成されていることを特徴とする火花点火式エンジンの制御装置。
  6. 請求項2から5の何れか1項に記載の火花点火式エンジンの制御装置において、
    EGRガスを吸気通路に還流する外部EGRシステムを設け、
    前記所定の高負荷運転領域の少なくとも高負荷側でEGRガスを吸気通路に導入するように制御手段が外部EGRシステムを制御するものであることを特徴とする火花点火式エンジンの制御装置。
  7. 請求項1から6の何れか1項に記載の火花点火式エンジンの制御装置において、
    前記エンジンは、当該クランクシャフトの回転方向が右回りになる側から見て気筒のシリンダボア中心がクランクシャフトの回転中心から右側にオフセットしていることを特徴とする火花点火式エンジンの制御装置。
  8. 請求項1から7の何れか1項に記載の火花点火式エンジンの制御装置において、
    前記所定の高負荷運転領域を越える高負荷領域では、吸気加熱手段を停止して火花点火を行うものであることを特徴とする火花点火式エンジンの制御装置。
JP2005102399A 2005-03-31 2005-03-31 火花点火式エンジンの制御装置 Active JP4581794B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005102399A JP4581794B2 (ja) 2005-03-31 2005-03-31 火花点火式エンジンの制御装置
EP06006397A EP1707791B1 (en) 2005-03-31 2006-03-28 Control system for spark-ignition type engine
DE602006017767T DE602006017767D1 (de) 2005-03-31 2006-03-28 Steuervorrichtung einer Otto-Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102399A JP4581794B2 (ja) 2005-03-31 2005-03-31 火花点火式エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2006283618A JP2006283618A (ja) 2006-10-19
JP4581794B2 true JP4581794B2 (ja) 2010-11-17

Family

ID=37405806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102399A Active JP4581794B2 (ja) 2005-03-31 2005-03-31 火花点火式エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP4581794B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540729B2 (ja) * 2010-01-27 2014-07-02 マツダ株式会社 過給機付エンジンの制御方法および制御装置
JP5540730B2 (ja) * 2010-01-27 2014-07-02 マツダ株式会社 火花点火式エンジンの制御装置
DE102011015629B4 (de) * 2010-10-07 2020-12-24 Daimler Ag Betriebsverfahren einer Brennkraftmaschine
JP2014173530A (ja) * 2013-03-11 2014-09-22 Mazda Motor Corp 圧縮自己着火式エンジン
JP5904144B2 (ja) 2013-03-11 2016-04-13 マツダ株式会社 圧縮自己着火式エンジン
JP5939179B2 (ja) * 2013-03-11 2016-06-22 マツダ株式会社 圧縮自己着火式エンジン
JP2017015037A (ja) * 2015-07-03 2017-01-19 ダイヤモンド電機株式会社 内燃機関の制御装置、制御方法、及び制御プログラム、並びに内燃機関システム
JP6992738B2 (ja) * 2018-12-26 2022-01-13 マツダ株式会社 エンジンの吸気温度制御装置
JP7044052B2 (ja) * 2018-12-26 2022-03-30 マツダ株式会社 エンジンの吸気温度制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162589A (ja) * 1997-08-27 1999-03-05 Nissan Motor Co Ltd 火花点火エンジン
JP2003049691A (ja) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd 自己着火式エンジンの制御装置
JP2003232252A (ja) * 2002-02-12 2003-08-22 Osaka Gas Co Ltd 予混合圧縮自着火エンジン及びその起動運転方法
JP2004285925A (ja) * 2003-03-24 2004-10-14 Mazda Motor Corp ガソリンエンジンの燃焼制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162589A (ja) * 1997-08-27 1999-03-05 Nissan Motor Co Ltd 火花点火エンジン
JP2003049691A (ja) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd 自己着火式エンジンの制御装置
JP2003232252A (ja) * 2002-02-12 2003-08-22 Osaka Gas Co Ltd 予混合圧縮自着火エンジン及びその起動運転方法
JP2004285925A (ja) * 2003-03-24 2004-10-14 Mazda Motor Corp ガソリンエンジンの燃焼制御装置

Also Published As

Publication number Publication date
JP2006283618A (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1707791B1 (en) Control system for spark-ignition type engine
JP4581794B2 (ja) 火花点火式エンジンの制御装置
JP4529764B2 (ja) 車両用4サイクル火花点火式エンジンの制御装置
JP4876557B2 (ja) 火花点火式ガソリンエンジンの制御装置
JP3894089B2 (ja) 火花点火式エンジンの制御装置
JP5392165B2 (ja) ガソリンエンジンの制御装置
JP4548183B2 (ja) 火花点火式エンジンの制御装置
JP4462166B2 (ja) 火花点火式ガソリンエンジンの制御装置
US9470174B2 (en) Control system and control method of spark ignition gasoline engine
JP4803151B2 (ja) ガソリンエンジンの制御装置
JP2011153562A (ja) 火花点火式エンジンの制御装置
JP2005214102A (ja) 筒内噴射式内燃機関の制御装置
JP4702249B2 (ja) 火花点火式直噴ガソリンエンジン
JP5565370B2 (ja) 火花点火式エンジンの制御方法および火花点火式エンジン
JP5552869B2 (ja) エンジンの制御装置
US10544744B2 (en) Engine control device
JP2011058372A (ja) エンジンの制御方法およびその制御装置
JP5381758B2 (ja) エンジンの制御装置
JP2006283668A (ja) 火花点火式多気筒エンジンの制御装置
JP2010121550A (ja) エンジン制御装置及び方法
JP2006283667A (ja) 火花点火式多気筒エンジンの制御装置
JP4501743B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP5316113B2 (ja) ガソリンエンジンの制御装置
JP6225699B2 (ja) 直噴エンジンの制御装置
JP4360323B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3