JP4561591B2 - 画像形成方法及び画像形成装置 - Google Patents

画像形成方法及び画像形成装置 Download PDF

Info

Publication number
JP4561591B2
JP4561591B2 JP2005306969A JP2005306969A JP4561591B2 JP 4561591 B2 JP4561591 B2 JP 4561591B2 JP 2005306969 A JP2005306969 A JP 2005306969A JP 2005306969 A JP2005306969 A JP 2005306969A JP 4561591 B2 JP4561591 B2 JP 4561591B2
Authority
JP
Japan
Prior art keywords
image
developing
image forming
toner
organic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005306969A
Other languages
English (en)
Other versions
JP2006178412A (ja
Inventor
明彦 伊丹
弘 山崎
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005306969A priority Critical patent/JP4561591B2/ja
Publication of JP2006178412A publication Critical patent/JP2006178412A/ja
Application granted granted Critical
Publication of JP4561591B2 publication Critical patent/JP4561591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真方式の画像形成に用いる画像形成方法及び画像形成装置に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる画像形成方法及び画像形成装置に関するものである。
電子写真用の感光体はSe、ヒ素、ヒ素/Se合金、CdS、ZnO等の無機感光体から、公害や製造の容易性等の利点に優れる有機感光体に主体が移り、様々な材料を用いた有機感光体(以下、単に感光体とも云う)が開発されている。
近年では電荷発生と電荷輸送の機能を異なる材料に担当させた機能分離型の感光体が主流となっており、例えば、導電性支持体上に表面層に無機粒子を含有する感光体が広く用いられている(特許文献1)。
また、電子写真プロセスに目を向けると潜像画像形成方式は、ハロゲンランプを光源とするアナログ画像形成とLEDやレーザーを光源とするデジタル方式の画像形成に大別される。最近はパソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さからデジタル方式の潜像画像形成方式が急激に主流となりつつある。
又、デジタル方式の画像形成方法では、オリジナルのプリント画像を作製する機会が増大し、高画質への要求が高まっいる。該電子写真画像の高画質化のために、有機感光体上にスポット径が小さい露光光源を用いて微細な潜像形成を行い、微細なドット画像をトナー画像に形成する技術が開発されている。
即ち、有機感光体上の潜像の現像方法としては、有機感光体に対設した現像スリーブを現像領域で、有機感光体の進行方向と平行に進行させる現像方式(以後、パラレル現像方式)と、カウンター方向に進行させる現像方式(以後、カウンター現像方式)が知られている(特許文献2)が、両者共、高密度のドット画像を形成するに際し、課題を十分に解決し得ていない。
前記、有機感光体に対設した現像スリーブを有機感光体の進行方向と平行に進行させるパラレル現像方式では、高濃度の画像の周辺の現像性が劣化し、濃度不足になりやすく、コントラストが高い写真画像等で、画質が劣化しやすい。
一方、カウンター方向に進行させる現像方式では、現像性が高く、高濃度のドット画像を形成できるが、しばしば、カブリが発生したり、先端部に濃度不足が発生しやすい。
上記のような現象は、単に現像剤の改善のみでは、十分に解決されず、有機感光体の特性によっても、これらの現象が強調されたり、改善されたりすることが見出されている。
即ち、有機感光体上に形成される静電潜像のコントラストや、有機感光体と現像剤の摩擦による逆帯電トナーの生成等にも関連していると推測される。
即ち、カウンター現像方式では、感光体とトナーの接触摩擦により、逆帯電性のトナーが生成しやすく、その結果、カブリやトナー飛散が発生したり、先端部濃度低下が発生したりしやすく、高精細の静電潜像をトナー画像として再現できない。
特開平8−262752号公報 特開2001−125435号公報
本発明は上述のような従来技術の問題点を解決して、即ち、カウンター現像方式で発生しやすい問題点を解決し、高精細のデジタル画像を安定して形成する画像形成方法に関するものであり、更に詳しくは、カウンター現像方式で発生しやすいカブリやトナー飛散を防止し、先端部濃度低下に基づく画像ムラの発生を防止して、画像濃度が高く、色再現性が良好な電子写真画像を作製できる画像形成方法及び画像形成装置を提供することである。
本発明の上記のような課題、即ち、カウンター現像方式で発生しやすいカブリの発生やトナー飛散を防止し、部分的な濃度不足を解消し、均一で高精細の電子写真画像を得るために、現像剤の構成、有機感光体の構成及び現像方式との関連を検討した結果、現像性が優れたカウンター方式でのカブリの発生やトナー飛散を防止し、画像先端部の濃度不良を防止するためには、表面層に金属酸化物粒子を含有する有機感光体を用いることが効果的であることを見出し、本発明を完成した。
即ち、本発明は以下のような構成を有することにより達成される。
1.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
2.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
3.前記表面層の表面粗さRaが0.001〜0.018であり、十点表面粗さRzが0.02〜0.08μmであることを特徴とする前記1又は2に記載の画像形成方法。
4.前記有機感光体は導電性基体上に少なくとも電荷発生層及び電荷輸送層を有する積層型有機感光体であることを特徴とする前記1〜3のいずれか1項に記載の画像形成方法。
5.前記表面層が酸化防止剤を含むことを特徴とする前記1〜4のいずれか1項に記載の画像形成方法。
6.前記トナーは重合トナーであることを特徴とする前記1〜5のいずれか1項に記載の画像形成方法。
7.前記有機感光体と現像スリーブ間の現像ギャップ(Dsd)が0.2〜0.6mmであることを特徴とする前記1〜6のいずれか1項に記載の画像形成方法。
8.前記有機感光体と現像スリーブ間の現像領域における磁気ブラシの食い込み深さ(Bsd)が0.0〜0.8mmであることを特徴とする前記1〜7のいずれか1項に記載の画像形成方法。
9.前記現像スリーブと有機感光体の周速比(Vs/Vopc)が1.2〜3.0であることを特徴とする前記1〜8のいずれか1項に記載の画像形成方法。
10.有機感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%、矩形波であることを特徴とする前記7〜9のいずれか1項に記載の画像形成方法。
11.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成装置において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径が3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
12.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成装置において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径が3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
本発明の画像形成方法及び画像形成装置を用いることにより、カウンター現像方式で発生しやすいカブリの発生や先端部の濃度不良やトナー飛散を防止でき、色再現性が良好な電子写真画像を提供することができる。
以下、本発明について、詳細に説明する。
本願発明の画像形成方法は、有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする。
又、本願発明の画像形成方法は、有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする。
本発明の画像形成方法は上記構成を有することにより、カウンター現像方式により発生しやすい、カブリの発生や先端部の濃度不良を防止でき、高画質のデジタル画像或いはカラー画像を提供することができる。
以下、本発明に係わる有機感光体の構成について記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
本発明に係わる感光体の表面層には数平均一次粒径が3〜150nmの周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子を含有させる。表面層に数平均一次粒径が3〜150nmの周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子を含有させることにより、カウンター現像方式で発生しやすい感光体とトナーとの接触摩擦による逆帯電性のトナーの発生が防止され、カブリや先端濃度むら等による画像ムラを防止でき、トナー飛散等も防止でき、高濃度で且つ色再現性のよい電子写真画像を形成することができる。
本発明に係わる有機感光体は、数平均一次粒径が3〜150nmの周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子を含有した表面層を有し、その上で、表面粗さRaが0.001〜0.018であり、十点表面粗さRzが0.02〜0.08μmであることが好ましい。
表面粗さRa(以後,単にRaともいう)と十点表面粗さRz(以後,単にRzともいう)について説明する(JIS B 0601に同じ)。
本発明で、Raは粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の式によって求められる値をマイクロメートル(μm)で表したものをいう。
Figure 0004561591
L基準長さであり、本発明ではLが2.5mm、カットオフ値は0.08mmとする。
十点表面粗さRz
Rzは基準長2.5mmの距離間で上位から5つの山頂の平均高さと、下位から5つの谷底の平均低さとの差である。
測定機は表面粗さ計(小坂研究所社製 Surfcorder SE−30H)で測定した。但し、誤差範囲内で同一の結果を生じる測定器であれば、他の測定器を用いても良い。
表面粗さの測定条件
測定速度(Drive speed:0.1mm/秒)
測定針直径(Stylus:2μm)
本発明に係わる表面層とは、層構成で形成されている有機感光体の空気界面と接触する層を意味し、該層が機能として保護層であっても、電荷輸送層であっても、又他の機能を有する層であってもよい。有機感光体の表面層は電子顕微鏡による断面構造の観察より確認でき、その膜厚は0.5〜10μmが好ましい。
本発明に係わる周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子としては、シリカ、酸化チタン、アルミナ、等の金属酸化物(遷移金属酸化物も含む)及びこれらの複合金属酸化物粒子が挙げられるが、中でもシリカ、酸化チタン、アルミナが好ましく用いられる。周期律表第2周期の金属酸化物は反応性が高く安定性に欠ける。周期律表第5周期の金属酸化物は比重が大きすぎ塗布乾燥中に沈み易く、表面に出てこない為、本発明の効果が出にくい。
本発明では、周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子の数平均一次粒子径が3.0〜150nmの範囲の微粒子を用いる。特に、5nm〜100nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。
数平均一次粒径が3.0nm未満の金属酸化物粒子は表面層中での均一な分散ができにくく、凝集粒子を形成しやすく、RaやRzが前記範囲より大きくなりやすく、感光体と現像剤の接触摩擦が増大し、逆帯電性トナーの発生を増大し、カウンター現像方式では、カブリを発生させたり、トナー飛散を増大させたり、先端部濃度低下を発生させやすい。一方、数平均一次粒径が150nmより大きい金属酸化物粒子は表面層の表面に大きな凹凸を作りやすく、RaやRzが前記範囲より大きくなりやすく、同様にカウンター現像方式では、カブリを発生させたり、トナー飛散を増大させたり、先端部濃度低下を発生させやすい。
又、表面粗さRaが0.001未満或いは十点表面粗さRzが0.02未満では、感光体の表面層に金属酸化物粒子を効果的な量で、含有させることが難しく、感光体の耐摩耗性が不足し、カウンター現像方式では表面層に擦過傷を生じやすく、ハーフトーン画像で先端部濃度低下が発生しやすい。
又、Rzの値は、表面層の金属酸化物粒子の粒径や含有量以外に、有機感光体の導電性支持体の表面粗さにも影響される。前記Rzの範囲を達成する為には、前記した金属酸化物粒子を用いると共に、導電性支持体のRzを0.1から1.0μmにすることが好ましい。
更に、表面層に含有させる周期律表第3又は第4周期の金属から選ばれる金属酸化物粒子としては、表面処理を施し、下記で定義する疎水化度を50以上、及び疎水化度分布値を25以下にした金属酸化物粒子を用いることが好ましい。疎水化度分布値の下限の設定は難しいが、あえて言うと、疎水化度分布値を1より小さくするのは技術的に困難、である。
即ち、これらの金属酸化物粒子は、表面に多数の水酸基を有しているので、これら水酸基を封鎖して疎水化度を高くすることが知られているが、本発明では、カウンター現像方式でのカブリや先端部濃度低下の発生を効果的に防止するには、この水酸基の平均的な封鎖レベルを示す疎水化度を50以上にすると共に、疎水化度分布値を25以下に制御した金属酸化物粒子を用いることが好ましいことを見出した。このような金属酸化物粒子を用いることにより、カブリや先端部濃度低下の発生を防止し、高耐久で、鮮鋭性が良好な電子写真画像を形成することができる。
金属酸化物粒子の疎水化度が50未満では、金属酸化物粒子の表面に存在する水酸基が多く、電位特性(帯電電位や残留電位等)の湿度依存性が大きく、カブリや先端部濃度低下を発生させやすい。金属酸化物粒子の疎水化度は55以上がより好ましい。又、シリカや酸化チタン等の表面に水酸基を多く有する金属酸化物粒子は疎水化度を95%以上にするには、これら水酸基を、表面処理によりほぼ100%封鎖することが必要であり、製造コストが高く、実用的ではない。製造コストと実用性の観点からは、疎水化度は90%以下がより好ましい。
又、疎水化度分布値が25より大きいと、表面に水酸基が多く残存する金属酸化物粒子が含まれ、カブリや先端部濃度低下が発生しやすい。
尚、前記疎水化度(メタノールウェッタビリティ)とはメタノールに対する濡れ性の尺度で示される。即ち、以下のように定義される。
疎水化度(メタノールウェッタビリティ)=(a/(a+50))×100
疎水化度の測定方法を以下に記す。
内容量200mlのビーカー中に入れた蒸留水50mlに、測定対象の金属酸化物粒子を0.2g秤量し添加する。メタノールを先端が液体中に浸せきされているビュレットから、ゆっくり撹拌した状態で金属酸化物粒子の全体が濡れるまで(全部が沈降するまで)ゆっくり滴下する。この金属酸化物粒子全体を濡らすために必要なメタノールの量をa(ml)とした場合に、上記式により疎水化度が算出される。
疎水化度分布値の測定方法
1)測定対象の金属酸化物粒子を0.2g秤量し、遠沈管に入れる。
(プロットしたい点数分+1本(全沈用)を用意する)
2)駒込ピペットにて濃度の異なるメタノール溶液を各7ml遠沈管に入れ、しっかりしめる(全沈用は上記疎水化度で決定されたメタノール濃度を用いる)。
3)ターブラーミキサー90rpmで30秒間分散する。
4)遠心分離器にかける(3500rpm、10分間、ローター半径18.1cm)
5)沈降容積を読みとり、全沈降容積(全部が沈降した容積)を100%としたときの各沈降容積%を求める。
6)上記、各測定値を基に、横軸メタノール量(Vol%)、縦軸沈降容積(%)のグラフを作製する。
上記測定より、疎水化度分布値を算出する。
疎水化度分布値が25以下とは次のように定義される。
{(沈降容積が100%のメタノールVol.%)
−(沈降容積が10%のメタノールVol.%)}≦25
疎水化度分布曲線を図1に示す。図1の分布曲線では、a点のメタノール濃度が疎水化度を表し、a点のメタノール濃度とb点のメタノール濃度の差;Δ(a−b)が疎水化度分布値を表す。
前記範囲の疎水化度及び疎水化度分布値を有する金属酸化物粒子を作製するにはシリカ等の表面をトリメチルシリル化剤を用いた表面処理で作製することができる。特に、下記一般式(1)又は一般式(2)で表されるトリメチルシリル化剤を用いることが好ましい。
一般式(1)
((CH33Si)2NR
(一般式(1)中、Rは水素または低級アルキル基である)
一般式(2)
(CH33SiY
〔一般式(2)中、Yはハロゲン原子、−OH、−OR’、または−NR’2、から選ばれる基(R’は一般式(1)のRと同じである)である〕で示される化合物が好ましい。ここで、上記化合物において、Rの低級アルキル基は、メチル基、エチル基、プロピル基等の炭素数1〜5、好適には炭素数1〜3のもの、特にメチル基が好ましい。また、Yのハロゲン原子は、塩素、フッ素、臭素、ヨウ素等が挙げられ、特に塩素が好ましい。
一般式(1)で示されるトリメチルシリル化剤を例示すれば、ヘキサメチルジシラザン、N−メチル−ヘキサメチルジシラザン、N−エチル−ヘキサメチルジシラザン、ヘキサメチル−N−プロピルジシラザン等が挙げられ、反応性の良さからヘキサメチルジシラザンを用いるのが特に好適である。
他方、一般式(2)で示されるトリアルキルシリル化剤を例示すれば、トリメチルクロロシラン、トリメチルシラノール、メトキシトリメチルシラン、エトキシトリメチルシラン、プロポキシトリメチルシラン、ジメチルアミノトリメチルシラン、ジエチルアミノトリメチルシラン等が挙げられ、反応性の良さからトリメチルシラノールを用いるのが特に好適である。
表面処理方法としては、シリカとトリメチルシリル化剤とを、水蒸気の存在下で反応させることが好ましい。かかる反応に際して、該水蒸気の分圧を4〜20kPa、好適には5〜15kPaで表面処理を行うことが好ましい。
ここで、水蒸気分圧が4kPaより小さいと疎水化度が上がらず、かつ疎水化度の分布も広がる。一方、水蒸気分圧が20kPaより大きくなっても、疎水化度の分布が広がり、その均一性が損なわれやすい。
また、上記シリカとトリメチルシリル化剤との反応は、短い反応時間でより疎水化度の高いシリカを得る場合には、トリメチルシリル化剤の気相の分圧が50〜200kPa、好適には80〜150kPaになるような条件下で行うのが好ましい。
さらに、上記反応は、トリメチルシリル化剤と水蒸気のみからなる雰囲気で反応を実施しても良いが、通常は、これらを、窒素、ヘリウム等の不活性ガスにより希釈して反応に供するのが一般的である。その場合、反応雰囲気の全圧は、150〜500kPa、好適には150〜250kPaであるのが一般的である。
なお、シリカとトリメチルシリル化剤との反応性をより高めるため、必要に応じてアンモニア、メチルアミン、ジメチルアミン等の塩基性ガス、好適にはアンモニアを反応雰囲気中に共存させても良い。こうした塩基性ガスの分圧は、1〜100kPaであるのが好適である。
シリカとトリメチルシリル化剤との反応温度は、疎水化反応の反応性の良好さやトリメチルシリル化剤の分解の危険性を勘案すると130〜300℃、好適には150〜250℃であるのが好ましい。一般には、上記範囲において反応温度が高いほど、得られるシリカの疎水性が高くなる傾向がある。
上記トリメチルシリル化剤以外の多官能シリル化剤や高炭素数のトリアルキルシリル化剤を用いた場合は、疎水化度が低くなったり、疎水化度分布値が大きくなりやすい。
前記表面層中には金属酸化物粒子の分散性を助けるバインダー樹脂を含有する。該バインダー樹脂としては、ポリカーボネートやポリアリレートが好ましい。これらポリカーボネートやポリアリレートの粘度平均分子量は10,000〜100,000が好ましい。
又、表面層中の金属酸化物粒子の比率は質量比でバインダー樹脂100質量部に対し、少なくとも5質量部以上50質量部以下の量で用いることが好ましい。5質量量部未満では表面層の摩耗が大きく、擦り傷等が発生してハーフトーン画像が荒れやすい。50質量部より多いと表面層が脆弱な膜となり、クラック等が発生しやすい。
本発明に係わる表面層は電荷輸送物質を含有することが好ましい。電荷輸送物質(CTM)としては公知の正孔輸送性(P型)の電荷輸送物質(CTM)を用いることが好ましい。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。
表面層中のバインダー樹脂と電荷輸送物質の質量比はバインダー100質量部に対し、電荷輸送物質30〜200質量部が好ましく、50〜150質量部がより好ましい。
又、表面層には酸化防止剤を含有させることが好ましい。表面層に酸化防止剤と本発明に係わる金属酸化物粒子を含有させることにより、繰り返し使用中の表面層の特性変動を防止し、カウンター現像方式でのカブリや先端部濃度低下の発生を防止し、良好な電子写真画像を提供することができる。該酸化防止剤とは、その代表的なものは有機感光体中ないしは有機感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸化作用を防止ないし、抑制する性質を有する物質である。
本発明に係わる酸化防止剤とは、感光体中ないしは感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。詳しくは下記の化合物群が挙げられる。
(1)ラジカル連鎖禁止剤
・フェノール系酸化防止剤(ヒンダードフェノール系)
・アミン系酸化防止剤(ヒンダードアミン系、ジアリルジアミン系、ジアリルアミン系)
・ハイドロキノン系酸化防止剤
(2)過酸化物分解剤
・硫黄系酸化防止剤(チオエーテル類)
・燐酸系酸化防止剤(亜燐酸エステル類)
上記酸化防止剤のうちでは、(1)のラジカル連鎖禁止剤が良く、特にヒンダードフェノール系或いはヒンダードアミン系酸化防止剤が好ましい。又、2種以上のものを併用してもよく、例えば(1)のヒンダードフェノール系酸化防止剤と(2)のチオエーテル類の酸化防止剤との併用も良い。更に、分子中に上記構造単位、例えばヒンダードフェノール構造単位とヒンダードアミン構造単位を含んでいるものでも良い。
前記酸化防止剤の中でも特にヒンダードフェノール系、ヒンダードアミン系酸化防止剤が高温高湿時のカブリの発生や画像ボケ防止に特に効果がある。
ヒンダードフェノール系或いはヒンダードアミン系酸化防止剤の表面層中の含有量は0.01〜20質量%が好ましい。0.01質量%未満だとポチが発生しやすく、20質量%より多い含有量では表面層中の電荷輸送能の低下がおこり、残留電位が増加しやすくなり、又膜強度の低下し、筋傷が発生しやすい。
ここでヒンダードフェノールとはフェノール化合物の水酸基に対しオルト位置に分岐アルキル基を有する化合物類及びその誘導体を云う(但し、水酸基がアルコキシに変成されていても良い。)。
ヒンダードアミン系とはN原子近傍にかさ高い有機基を有する化合物である。かさ高い有機基としては分岐状アルキル基があり、例えばt−ブチル基が好ましい。例えば下記構造式で示される有機基を有する化合物類が好ましい。
Figure 0004561591
式中のR13は水素原子又は1価の有機基、R14、R15、R16、R17はアルキル基、R18は水素原子、水酸基又は1価の有機基を示す。
ヒンダードフェノール部分構造を持つ酸化防止剤としては、例えば特開平1−118137号(P7〜P14)記載の化合物が挙げられるが本発明はこれに限定されるものではない。
ヒンダードアミン部分構造を持つ酸化防止剤としては、例えば特開平1−118138号(P7〜P9)記載の化合物も挙げられるが本発明はこれに限定されるものではない。
有機リン化合物としては、例えば、一般式:RO−P(OR)−ORで表される化合物である。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
有機硫黄系化合物としては、例えば、一般式:R−S−Rで表される化合物である。尚、ここにおいてRは水素原子、各々置換もしくは未置換のアルキル基、アルケニル基又はアリール基を表す。
以下に代表的な酸化防止剤の化合物例を挙げる。
Figure 0004561591
Figure 0004561591
Figure 0004561591
Figure 0004561591
又、製品化されている酸化防止剤としては以下のような化合物、例えばヒンダードフェノール系として「イルガノックス1076」、「イルガノックス1010」、「イルガノックス1098」、「イルガノックス245」、「イルガノックス1330」、「イルガノックス3114」、「イルガノックス1076」、「3,5−ジ−t−ブチル−4−ヒドロキシビフェニル」、ヒンダードアミン系として「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」が挙げられ、チオエーテル系として「スミライザーTPS」、「スミライザーTP−D」が挙げられ、ホスファイト系として「マーク2112」、「マークPEP−8」、「マークPEP−24G」、「マークPEP−36」、「マーク329K」、「マークHP−10」が挙げられる。
本発明は上記したような表面層を有する有機感光体であるが、表面層以外の有機感光体の構成について以下に記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
本発明に係わる有機感光体の構成は、前記した請求項(1)又は(2)に記載の表面層を有する限り特に制限されるものではなく、例えば、以下に示すような構成が挙げられる;
1)導電性支持体上に感光層として電荷発生層および電荷輸送層を順次積層した構成;
2)導電性支持体上に感光層として電荷発生層、第1電荷輸送層および第2電荷輸送層を順次積層した構成;
3)導電性支持体上に感光層として電荷輸送材料と電荷発生材料とを含む単層を形成した構成;
4)導電性支持体上に感光層として電荷輸送層および電荷発生層を順次積層した構成;
5)上記1)〜4)の感光体の感光層上にさらに表面保護層を形成した構成。
感光体が上記いずれの構成を有する場合であってもよい。感光体の表面層とは、感光体が空気界面と接触する層であり、導電性支持体上に単層式の感光層のみが形成されている場合は当該感光層が表面層であり、導電性支持体上に単層式または積層式感光層と表面保護層とが積層されている場合は表面保護層が最表面層である。本発明では上記2)の構成が最も好ましく用いられる。尚、本発明に係わる感光体はいずれの構成を有する場合であっても、導電性支持体上、感光層の形成に先だって、下引層(中間層)が形成されていてもよい。
電荷輸送層とは、光露光により電荷発生層で発生した電荷キャリアを有機感光体の表面に輸送する機能を有する層を意味し、該電荷輸送機能の具体的な検出は、電荷発生層と電荷輸送層を導電性支持体上に積層し、光導伝性を検知することにより確認することができる。
次に、有機感光体の層構成を上記2)の構成を中心にして記載する。
導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できる円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。本発明に係わる導電性支持体としては、アルミニウム支持体が最も好ましい。該アルミニウム支持体は、主成分のアルミニウム以外にマンガン、亜鉛、マグネシウム等の成分が混合したものも用いられる。
中間層
本発明においては導電性支持体と感光層の間に、中間層を設けることが好ましい。
本発明に用いられる中間層にはN型半導性粒子を含有することが好ましい。該N型半導性粒子とは、主たる電荷キャリアが電子である粒子を意味する。すなわち、主たる電荷キャリアが電子であることから、該N型半導性粒子を絶縁性バインダーに含有させた中間層は、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性が少ない性質を有する。
ここで、N型半導性粒子の判別方法について説明する。
導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。
N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。
N型半導性粒子としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)が好ましく、特に酸化チタンが特に好ましく用いられる。
N型半導性粒子は数平均一次粒子径が3.0〜200nmの範囲の微粒子を用いる。特に、5nm〜100nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。数平均一次粒径が3.0nm未満のN型半導性粒子は中間層バインダー中での均一な分散ができにくく、凝集粒子を形成しやすく、該凝集粒子が電荷トラップとなって残電上昇が発生しやすい。一方、数平均一次粒径が200nmより大きいN型半導性粒子は中間層の表面に大きな凹凸を作りやすく、これらの大きな凹凸を通してドット画像の再現性が劣化しやすい。又、数平均一次粒径が200nmより大きいN型半導性粒子は分散液中で沈澱しやすく、凝集物が発生しやすく、その結果、ドット画像の再現性が劣化しやすい。
前記酸化チタン粒子は、結晶形としては、アナターゼ形、ルチル形、ブルッカイト形及びアモルファス形等があるが、中でもルチル形酸化チタン顔料又はアナターゼ形酸化チタン顔料は、中間層を通過する電荷の整流性を高め、即ち、電子の移動性を高め、帯電電位を安定させ、残留電位の増大を防止すると共に、ドット画像の劣化を防止することができ、N型半導性粒子として最も好ましい。
N型半導性粒子はメチルハイドロジェンシロキサン単位を含む重合体で表面処理されたものが好ましい。該メチルハイドロジェンシロキサン単位を含む重合体の分子量は1000〜20000のものが表面処理効果が高く、その結果、N型半導性粒子の整流性を高め、このN型半導性粒子を含有する中間層を用いることにより、黒ポチ発生が防止され、又、良好なドット画像の再現性に効果がある。
メチルハイドロジェンシロキサン単位を含む重合体とは−(HSi(CH3)O)−の構造単位とこれ以外の構造単位(他のシロキサン単位のこと)の共重合体が好ましい。他のシロキサン単位としては、ジメチルシロキサン単位、メチルエチルシロキサン単位、メチルフェニルシロキサン単位及びジエチルシロキサン単位等が好ましく、特にジメチルシロキサンが好ましい。共重合体中のメチルハイドロジェンシロキサン単位の割合は10〜99モル%、好ましくは20〜90モル%である。
メチルハイドロジェンシロキサン共重合体はランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよいがランダム共重合体及びブロック共重合体が好ましい。又、共重合成分としてはメチルハイドロジェンシロキサン以外に、一成分でも二成分以上でもよい。
本発明に用いられる中間層を形成するために作製する中間層塗布液は前記表面処理酸化チタン等のN型半導性粒子の他にバインダー樹脂、分散溶媒等から構成される。
N型半導性粒子の中間層中での比率は、中間層のバインダー樹脂との体積比(バインダー樹脂の体積を1とすると)で1.0〜2.0倍が好ましい。中間層中でこのような高密度でN型半導性粒子を用いることにより、中間層の整流性が高まり、膜厚を厚くしても残留電位の上昇やドット画像の劣化を効果的に防止でき、良好な有機感光体を形成することができる。又、このような中間層はバインダー樹脂100体積部に対し、N型半導性粒子を100〜200体積部を用いることが好ましい。
一方、これらの粒子を分散し、中間層の層構造を形成するバインダー樹脂としては、粒子の良好な分散性を得る為にポリアミド樹脂が好ましいが、特に以下に示すポリアミド樹脂が好ましい。
即ち、中間層にはバインダー樹脂に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂が好ましい。該融解熱は0〜30J/gがより好ましく、0〜20J/gが最も好ましい。一方、前記吸水率が5質量%を超えると、中間層中の含水率が上昇し、中間層の整流性が低下し、黒ポチが発生しやすく、ドット画像の再現性が劣化しやすい。該吸水率は4質量%以下がより好ましい。
上記樹脂の融解熱はDSC(示差走査熱量測定:Differential Scanning Calorimetory)にて測定する。但し、DSCの測定値と同じ測定値が得られれば、DSC測定法にこだわらない。該融解熱はDSC昇温時の吸熱ピーク面積から求める。
一方、樹脂の吸水率は水中浸漬法による質量変化又はカールフィッシャー法により求める。
中間層のバインダー樹脂としてはアルコール可溶性ポリアミド樹脂が好ましい。有機感光体の中間層のバインダー樹脂としては、中間層を均一な膜厚で形成するために、溶媒溶解性の優れた樹脂が必要とされている。このようなアルコール可溶性のポリアミド樹脂としては、前記した6−ナイロン等のアミド結合間の炭素鎖の少ない化学構造から構成される共重合ポリアミド樹脂やメトキシメチル化ポリアミド樹脂が知られているが、これらの樹脂は吸水率が高く、このようなポリアミドを用いた中間層は環境依存性が高くなる傾向にあり、その結果、たとえば高温高湿や低温低湿下の帯電特性や感度等が変化しやすく、ドット画像の劣化を起しやすい。
アルコール可溶性ポリアミド樹脂には、上記のような欠点を改良し、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を与えることにより、従来のアルコール可溶性ポリアミド樹脂の欠点を改良し、外部環境が変化しても、又有機感光体の長時間連続使用を行っても、良好な電子写真画像を得ることができる。
以下、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を有するアルコール可溶性ポリアミド樹脂について説明する。
前記アルコール可溶性ポリアミド樹脂としては、アミド結合間の炭素数が7〜30の繰り返し単位構造を全繰り返し単位構造の40〜100モル%含有するポリアミド樹脂が好ましい。
ここで、アミド結合間の炭素数が7〜30の繰り返し単位構造について説明する。前記繰り返し単位構造とはポリアミド樹脂を形成するアミド結合単位を意味する。このことを、繰り返し単位構造がアミノ基とカルボン酸基の両方を持つ化合物の縮合により形成されるポリアミド樹脂(タイプA)と、ジアミノ化合物とジカルボン酸化合物の縮合で形成されるポリアミド樹脂(タイプB)の両方の例で説明する。
即ち、タイプAの繰り返し単位構造は一般式(3)で表され、Xに含まれる炭素数が繰り返し単位構造におけるアミド結合単位の炭素数である。一方タイプBの繰り返し単位構造は一般式(4)で表され、Yに含まれる炭素数もZに含まれる炭素数も、各々繰り返し単位構造におけるアミド結合単位の炭素数である。
Figure 0004561591
一般式(3)中、R1は水素原子、置換又は無置換のアルキル基、Xは置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、lは自然数を示す。
Figure 0004561591
一般式(4)中、R2、R3は各水素原子、置換又は無置換のアルキル基、Y、Zは各置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、m、nは自然数を示す。
前記のごとく、炭素数が7〜30の繰り返し単位構造は置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を有する化学構造等が挙げられるが、これらの中で2価のシクロアルカンを含む基を有する化学構造が好ましい。
上記ポリアミド樹脂は繰り返し単位構造のアミド結合間の炭素数が7〜30であるが、好ましくは9〜25、更には11〜20が良い。またアミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率は40〜100モル%、好ましくは60〜100モル%、更には80〜100モル%が良い。
前記炭素数が7より小だと、ポリアミド樹脂の吸湿性が大きく、電子写真特性、特に繰り返し使用時の電位の湿度依存性が大きく、更に黒ポチ等の画像欠陥が発生しやすく、ドット画像の再現性が劣化しやすい。30より大であるとポリアミド樹脂の塗布溶媒への溶解が悪くなり、中間層の塗布膜形成に適さない。
又、アミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率が40モル%より小さいと、上記効果が小さくなる。
好ましいポリアミド樹脂としては下記一般式(5)で示される繰り返し単位構造を有するポリアミドが挙げられる。
Figure 0004561591
一般式(5)中、Y1は2価のアルキル置換されたシクロアルカンを含む基、Z1はメチレン基、mは1〜3、nは3〜20を示す。
上記一般式(5)中、Y1の2価のアルキル置換されたシクロアルカンを含む基は下記化学構造が好ましい。即ち、Y1が下記化学構造を有するポリアミド樹脂は、黒ポチやドット画像の劣化に対する防止効果が著しい。
Figure 0004561591
上記化学構造において、Aは単結合、炭素数1〜4のアルキレン基を示し、R4は置換基で、アルキル基を示し、pは1〜5の自然数を示す。但し、複数のR4は同一でも、異なっていても良い。
上記ポリアミド樹脂の具体例としては下記のような例が挙げられる。
Figure 0004561591
Figure 0004561591
Figure 0004561591
上記具体例中の()内の%は繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
上記具体例の中でも、一般式(5)の繰り返し単位構造を有するN−1〜N−4のポリアミド樹脂が特に好ましい。
又、上記ポリアミド樹脂の分子量は数平均分子量で5,000〜80,000が好ましく、10,000〜60,000がより好ましい。数平均分子量が5,000以下だと中間層の膜厚の均一性が劣化し、本発明の効果が十分に発揮されにくい。一方、80,000より大きいと、樹脂の溶媒溶解性が低下しやすく、中間層中に凝集樹脂が発生しやすく、カブリの発生を起こしやすい。
上記ポリアミド樹脂はその一部が既に市販されており、例えばダイセル・デグサ(株)社製のベスタメルトX1010、X4685等の商品名で販売されて、一般的なポリアミドの合成法で作製することができるが、以下に合成例の一例を挙げる。
例示ポリアミド樹脂(N−1)の合成
攪拌機、窒素、窒素導入管、温度計、脱水管等を備えた重合釜にラウリルラクタム215質量部、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン112質量部、1,12−ドデカンシカルボン酸153質量部及び水2質量部を混合し、加熱加圧下、水を留出させながら9時間反応させた。重合物を取り出し、C13−NMRにより共重合組成を求めたところ、N−1の組成と一致した。尚、上記合成された共重合のメルトフローインデックス(MFI)は(230℃/2.16kg)の条件で、5g/10minであった。
上記ポリアミド樹脂を溶解し、塗布液を作製する溶媒としては、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール等の炭素数2〜4のアルコール類が好ましく、ポリアミドの溶解性と作製された塗布液の塗布性の点で優れている。これらの溶媒は全溶媒中に30〜100質量%、好ましくは40〜100質量%、更には50〜100質量%が好ましい。前記溶媒と併用し、好ましい効果を得られる助溶媒としては、メタノール、ベンジルアルコール、トルエン、メチレンクロライド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。
中間層の膜厚は0.3〜10μmが好ましい。中間層の膜厚が0.5μm未満では、黒ポチ等が発生しやすく、ドット画像の劣化を起こしやすい。10μmを超えると、残留電位の上昇が発生しやすく、ドット画像の再現性が劣化しやすい。中間層の膜厚は0.5〜5μmがより好ましい。
又、上記中間層は実質的に絶縁層であることが好ましい。ここで絶縁層とは、体積抵抗が1×108以上である。中間層及び保護層の体積抵抗は1×108〜1015Ω・cmが好ましく、1×109〜1014Ω・cmがより好ましく、更に好ましくは、2×109〜1×1013Ω・cmである。体積抵抗は下記のようにして測定できる。
測定条件;JIS:C2318−1975に準ずる。
測定器:三菱油化社製Hiresta IP
測定条件:測定プローブ HRS
印加電圧:500V
測定環境:30±2℃、80±5RH%
体積抵抗が1×108未満では中間層の電荷ブロッキング性が低下し、黒ポチの発生が増大し、有機感光体の電位保持性も劣化し、良好な画質が得られない。一方1015Ω・cmより大きいと繰り返し画像形成で残留電位が増大しやすく、良好な画質が得られない。
感光層
本発明に係わる感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。
以下に機能分離負帯電感光体の感光層構成について説明する。
電荷発生層
本発明に係わる有機感光体には、電荷発生物質として前述のチタニルフタロシアニン付加体顔料を使用するが、他のフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを併用して用いることができる。
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.3μm〜2μmが好ましい。
電荷輸送層
前記したように、本発明では電荷輸送層を複数の電荷輸送層から構成し、且つ最上層の電荷輸送層に本発明に係わる金属酸化物粒子を含有させた構成が好ましい。
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により前記した金属酸化物粒子の他に酸化防止剤等の添加剤を含有しても良い。
電荷輸送物質(CTM)としては公知の正孔輸送性(P型)の電荷輸送物質(CTM)を用いることが好ましい。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。
電荷輸送層(CTL)に用いられるバインダー樹脂としては熱可塑性樹脂、熱硬化性樹脂いずれの樹脂かを問わない。例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。これらの中で吸水率が小さく、CTMの分散性、電子写真特性が良好なポリカーボネート樹脂が最も好ましい。
バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し50〜200質量部が好ましい。
電荷輸送層の合計膜厚は、10〜40μmが好ましい。該合計膜厚が10μm未満では、先端部濃度低下が発生しやすく、40μmを超えると残電上昇が起こりやすく、鮮鋭性も劣化しやすい。また、表面層となる電荷輸送層の膜厚は0.5〜10μmが好ましい。
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。
次に有機感光体を製造するための塗布加工方法としては、ライドホッパー型塗布装置の他に、浸漬塗布、スプレー塗布等の塗布加工法が用いられる。本発明に係わる表面層の形成には円形スライドホッパー型塗布装置を用いるのが最も好ましい。
上記塗布液供給型の塗布装置の中でもスライドホッパー型塗布装置を用いた塗布加方法は、前記した低沸点溶媒を用いた分散液を塗布液として用いる場合に最も適しており、円筒状の感光体の場合は特開昭58−189061号公報等に詳細に記載されている円形スライドホッパー型塗布装置等を用いて塗布することが好ましい。
カウンター現像方式の現像装置(現像手段)を図2により説明する。なお、図2の現像装置は接触式二成分タイプの現像装置であるが、本発明はこの接触式二成分タイプの現像装置に限定されず、例えば、非接触式一成分タイプの現像装置も採用できる。現像装置102は、二成分現像剤を収容した現像容器110の開口部に、円筒状の磁石121を非回転に配置した現像スリーブ120(現像剤坦持体)が有機感光体(像坦持体)101に対向して配設され、この現像スリーブ120は、矢印方向に回転する有機感光体101に対しカウンター方向に回転して、その表面上に吸着保持された現像剤を有機感光体101と対向した現像部に搬送する。磁石121は、有機感光体101側に現像磁極N1を有し、この現像磁極N1から現像スリーブ120の回転方向に、第1搬送磁極S3、第2搬送磁極N2、第3搬送磁極S2、及び第3搬送磁極と離間磁極を構成する汲み上げ磁極S1を有している。
現像容器110内の現像剤は、磁石121の汲み上げ磁極S1に対応する現像スリーブ120の表面上の位置(汲み上げ位置)Qで、汲み上げ極S1の作用により現像スリーブ120上に吸着保持され、現像ブレード122(現像剤層厚規制手段)によって層厚が規制されたのち現像部に至り、現像部で現像磁極N1の作用により磁気ブラシ(現像ブラシ)を形成して、有機感光体101上の潜像を現像する。
現像によってトナー濃度が低下した現像剤は、第1、第2搬送磁極S3、N2の作用によって、現像容器110内まで現像スリーブ120上に保持されて戻され、第3搬送磁極S2と汲み上げ磁極S1の中間の磁束密度が最も小さい現像スリーブ120表面上の位置(現像剤落下位置)Pで、現像スリーブ120上から剥離して落下する。現像剤が剥離された現像スリーブ120は、上記のように、汲み上げ位置Qで新たな現像剤が吸着保持される。
現像容器110内の現像スリーブ120の下方には、第1の攪拌搬送部材123が設置され、隔壁140を介して更に第2の攪拌搬送部材124が設置されている。これら第1、第2の攪拌搬送部材123、124は、スクリュータイプとされ、らせん状のスクリュー羽根128及びその羽根の鍔間の板状突起130を有してなっている。
現像スリーブ120上から剥離したトナー濃度が低い現像剤は、第1攪拌搬送部材123上に落下して、第1攪拌搬送部材123により近傍の現像剤と軸方向に攪拌搬送され、隔壁140の一端部の図示しない開口を通って、第2攪拌搬送部材124に受け渡される。第2攪拌搬送部材124は、受け渡された現像剤、及び現像容器110の補給口118から補給されたトナーを攪拌しながら上記と逆回転に搬送し、隔壁140の他端部の図示しない開口を通って、第1攪拌搬送部材123側に戻す。
カウンター現像方式の好ましい構成を説明する。尚、ここで、図2における現像磁極N1付近の現像部における感光体101と現像スリーブ120間の間隙を現像ギャップ(Dsd)、現像磁極N1により現像スリーブ120上に形成される磁気ブラシの高さを現像ブラシ高さ(h)と言う。
(1)現像ギャップ(Dsd):0.2〜0.6mm
Dsdを0.2〜0.6mmにすると、強い現像電界のなかで現像が行われ、磁性キャリアの現像スリーブへの拘束力が大きくなり、磁性キャリアが感光体に移行して付着することを防止できる。また、現像ギャップでの現像電界が高くなるので、エッジ効果が低減し、現像能力が向上する。従って、横ライン像の細りや後端部白抜け(後端部現像不良)などの発生を防止し、ベタ画像の現像性を向上することが出来る。
(2)磁気ブラシの食い込み深さ(Bsd):0.0〜0.8mm、尚、磁気ブラシの食い込み深さ(Bsd)=現像ブラシ高さ(h)−現像ギャップ(Dsd)
磁気ブラシ食い込み深さを0.0〜0.8mmにすることにより、現像部での現像剤への圧接が軽減され、現像スリーブ120と現像ブレード122との間隙からの現像剤のすり抜けが防止される。また、磁気ブラシの不均一当接によって生ずる孤立ドット画像の現像不良やハーフトーン画像のざらつき感の増加を防止出来る。磁気ブラシ食い込み深さが0以下、すなわち、非接触状態では濃度の低下が起きやすいし、0.8mmより大きいと、ニップ部から現像剤が溢れ、均一な画像形成が期待できない。
(3)現像スリーブと感光体の周速比(Vs/Vopc):1.2〜3.0
感光体に対する現像スリーブの周速比を1.2〜3.0にすることにより、高い現像性を得ることができる。周速比を上げすぎると、感光体に対する現像スリーブ上の磁気ブラシの接触頻度が多くなり過ぎ、潜感光体に対する磁気ブラシの当たり具合、すなわち機械的力が極端に大きくなり過ぎ、磁気ブラシからキャリアが脱落しやすくなり、感光体にキャリアが付着しやすくなり、その結果、感光体上のトナー像に磁気ブラシの刷毛目が生ずる。また逆に周速比を下げすぎると、感光体に対する磁気ブラシの接触機会が減りすぎて、現像性が低下することになる。従って、周速比が1.2よりも小さいと濃度が低くなり、3.0より大きいとトナーの飛散、キャリアの付着あるいは現像スリーブの耐久性に問題が出てくる。これに対し、周速比を上記範囲にすることにより、刷毛目を防止することができる。更には現像能力が極端に高くなり過ぎてエッジ効果が強調されるのを防止する作用も有する。
(4)現像バイアス条件
感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%(矩形波での現像側の時間比率)、矩形波とすることが好ましい。すなわち、現像スリーブの外径がφ30mm以下、感光体の外径がφ60mm以下と小型の二成分現像装置においては、現像スリーブを小径にしたことにより現像ニップ幅が小さくなり、現像能力が低下するが、上記現像バイアス条件により、この現像能力の低下を改善できる。
次に、本発明に係わるプロセスカートリッジならびに電子写真装置について説明する。
図3に有機感光体を含むプロセスカートリッジを有する電子写真装置の概略構成を示す。
図3において、1はドラム状の有機感光体(感光体)であり、軸Cを中心に矢印方向に所定の周速度で回転駆動される。有機感光体1は、回転過程において、帯電手段2によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強調変調された露光光3(露光手段)を受ける。こうして有機感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
形成された静電潜像は、次いで現像手段4によりトナー現像され、不図示の給紙部から有機感光体1と転写手段5との間に有機感光体1の回転と同期して取り出されて給紙された転写材Pに、有機感光体1の表面に形成担持されているトナー画像が転写手段5により順次転写されていく。
トナー画像の転写を受けた転写材Pは、有機感光体面から分離されて像定着手段24へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
像転写後の有機感光体1の表面は、クリーニング手段6によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光Pexにより除電処理された後、繰り返し画像形成に使用される。なお、帯電手段2が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
本発明においては、上述の有機感光体1、帯電手段2、現像手段4及びクリーニング手段6等の構成要素のうち、複数のものを容器PCに納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、帯電手段2、現像手段4及びクリーニング手段6の少なくとも一つを有機感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段ANを用いて装置本体に着脱自在なプロセスカートリッジとすることができる。
さらに、本発明を適用したフルカラー画像形成装置として、電子写真方式のプリンタ(以下、単にプリンタという)の一実施形態について説明する。
図4は、本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。
このカラー画像形成装置は、タンデム型カラー画像形成装置と称せられるもので、4組の画像形成部(画像形成ユニット)10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7と、給紙搬送手段21及び定着手段24とから成る。画像形成装置の本体Aの上部には、原稿画像読み取り装置SCが配置されている。
イエロー色の画像を形成する画像形成部10Yは、第1の像担持体としてのドラム状の感光体1Yの周囲に配置された帯電手段2Y、露光手段3Y、現像手段4Y、一次転写手段としての一次転写ローラ5Y、クリーニング手段6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、第1の像担持体としてのドラム状の感光体1M、帯電手段2M、露光手段3M、現像手段4M、一次転写手段としての一次転写ローラ5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、第1の像担持体としてのドラム状の感光体1C、帯電手段2C、露光手段3C、現像手段4C、一次転写手段としての一次転写ローラ5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Bkは、第1の像担持体としてのドラム状の感光体1Bk、帯電手段2Bk、露光手段3Bk、現像手段4Bk、一次転写手段としての一次転写ローラ5Bk、クリーニング手段6Bkを有する。
前記4組の画像形成ユニット10Y、10M、10C、10Bkは、感光体ドラム1Y、1M、1C、1Bkを中心に、回転する帯電手段2Y、2M、2C、2Bkと、像露光手段3Y、3M、3C、3Bkと、回転する現像手段4Y、4M、4C、4Bk、及び、感光体ドラム1Y、1M、1C、1Bkをクリーニングするクリーニング手段5Y、5M、5C、5Bkより構成されている。
前記画像形成ユニット10Y、10M、10C、10Bkは、感光体1Y、1M、1C、1Bkにそれぞれ形成するトナー画像の色が異なるだけで、同じ構成であり、画像形成ユニット10Yを例にして詳細に説明する。
画像形成ユニット10Yは、像形成体である感光体ドラム1Yの周囲に、帯電手段2Y(以下、単に帯電手段2Y、あるいは、帯電器2Yという)、露光手段3Y、現像手段4Y、クリーニング手段5Y(以下、単にクリーニング手段5Y、あるいは、クリーニングブレード5Yという)を配置し、感光体ドラム1Y上にイエロー(Y)のトナー画像を形成するものである。また、本実施の形態においては、この画像形成ユニット10Yのうち、少なくとも感光体ドラム1Y、帯電手段2Y、現像手段4Y、クリーニング手段5Yを一体化するように設けている。
帯電手段2Yは、感光体ドラム1Yに対して一様な電位を与える手段であって、本実施の形態においては、感光体ドラム1Yにコロナ放電型の帯電器2Yが用いられている。
像露光手段3Yは、帯電器2Yによって一様な電位を与えられた感光体ドラム1Y上に、画像信号(イエロー)に基づいて露光を行い、イエローの画像に対応する静電潜像を形成する手段であって、この露光手段3Yとしては、感光体ドラム1Yの軸方向にアレイ状に発光素子を配列したLEDと結像素子(商品名;セルフォックレンズ)とから構成されるもの、あるいは、レーザ光学系などが用いられる。
本発明の画像形成方法においては、感光体上に静電潜像を形成するに際し、像露光をスポット面積が2000μm2以下の露光ビームを用いて行うことが好ましい。このような小径のビーム露光を行っても、本発明の有機感光体は、該スポット面積に対応した画像を忠実に形成することができる。より好ましいスポット面積は、100〜1000μm2である。その結果800dpi(dpiとは2.54cm当たりのドット数)以上で、階調性が豊かな電子写真画像を達成することができる。
前記露光ビームのスポット面積とは、該露光ビームを該ビームと垂直な面で切断したとき、該切断面に現れる光強度分布面で、光強度が最大ピーク強度の1/e2以上の領域に相当する面積を意味する。
用いられる光ビームとしては半導体レーザを用いた走査光学系、及びLEDや液晶シャッター等の固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e2までの部分をスポット面積とする。
無端ベルト状中間転写体ユニット7は、複数のローラにより巻回され、回動可能に支持された半導電性エンドレスベルト状の第2の像担持体としての無端ベルト状中間転写体70(転写媒体)を有する。
画像形成ユニット10Y、10M、10C、10Bkより形成された各色の画像は、一次転写手段としての一次転写ローラ5Y、5M、5C、5Bkにより、回動する無端ベルト状中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。給紙カセット20内に収容された転写材(定着された最終画像を担持する支持体:例えば普通紙、透明シート等)としての転写材(転写媒体)Pは、給紙手段21により給紙され、複数の中間ローラ22A、22B、22C、22D、レジストローラ23を経て、二次転写手段としての二次転写ローラ5bに搬送され、転写材P上に二次転写してカラー画像が一括転写される。カラー画像が転写された転写材Pは、定着手段24により定着処理され、排紙ローラ25に挟持されて機外の排紙トレイ26上に載置される。ここで、転写媒体とは中間転写体や転写材等の感光体上のトナー画像の転写媒体を云う。
一方、二次転写手段としての二次転写ローラ5bにより転写材Pにカラー画像を転写した後、転写材Pを曲率分離した無端ベルト状中間転写体70は、クリーニング手段6bにより残留トナーが除去される。
画像形成処理中、一次転写ローラ5Bkは常時、感光体1Bkに圧接している。他の一次転写ローラ5Y、5M、5Cはカラー画像形成時にのみ、それぞれ対応する感光体1Y、1M、1Cに圧接する。
二次転写ローラ5bは、ここを転写材Pが通過して二次転写が行われる時にのみ、無端ベルト状中間転写体70に圧接する。
また、装置本体Aから筐体8を支持レール82L、82Rを介して引き出し可能にしてある。
筐体8は、画像形成部10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7とから成る。
画像形成部10Y、10M、10C、10Bkは、垂直方向に縦列配置されている。感光体1Y、1M、1C、1Bkの図示左側方には無端ベルト状中間転写体ユニット7が配置されている。無端ベルト状中間転写体ユニット7は、ローラ71、72、73、74を巻回して回動可能な無端ベルト状中間転写体70、一次転写ローラ5Y、5M、5C、5Bk、及びクリーニング手段6bとから成る。
次に図5は本発明の有機感光体を用いたカラー画像形成装置(少なくとも有機感光体の周辺に帯電手段、露光手段、複数の現像手段、転写手段、クリーニング手段及び中間転写体を有する複写機あるいはレーザービームプリンタ)の構成断面図である。ベルト状の中間転写体70は中程度の抵抗の弾性体を使用している。
1は像形成体として繰り返し使用される回転ドラム型の感光体であり、矢示の反時計方向に所定の周速度をもって回転駆動される。
感光体1は回転過程で、帯電手段2により所定の極性・電位に一様に帯電処理され、次いで不図示の像露光手段3により画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームによる走査露光光等による画像露光を受けることにより目的のカラー画像のイエロー(Y)の色成分像に対応した静電潜像が形成される。
次いで、その静電潜像がイエロー(Y)の現像手段(イエロー色現像器)4Yにより第1色であるイエロートナーにより現像される。この時第2〜第4の現像手段(マゼンタ色現像器、シアン色現像器、ブラック色現像器)4M、4C、4Bkの各現像器は作動オフになっていて感光体1には作用せず、上記第1色目のイエロートナー画像は上記第2〜第4の現像器により影響を受けない。
中間転写体70はローラ79a、79b、79c、79d、79eで張架されて時計方向に感光体1と同じ周速度をもって回転駆動されている。
感光体1上に形成担持された上記第1色目のイエロートナー画像が、感光体1と中間転写体70とのニップ部を通過する過程で、1次転写ローラ5aから中間転写体70に印加される1次転写バイアスにより形成される電界により、中間転写体70の外周面に順次中間転写(1次転写)されていく。
中間転写体70に対応する第1色のイエロートナー画像の転写を終えた感光体1の表面は、クリーニング装置6aにより清掃される。
以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のクロ(ブラック)トナー画像が順次中間転写体70上に重ね合わせて転写され、目的のカラー画像に対応した重ね合わせカラートナー画像が形成される。
2次転写ローラ5bで、2次転写対向ローラ79bに対応し平行に軸受させて中間転写体70の下面部に離間可能な状態に配設してある。
感光体1から中間転写体70への第1〜第4色のトナー画像の順次重畳転写のための1次転写バイアスはトナーとは逆極性で、バイアス電源から印加される。その印加電圧は、例えば+100V〜+2kVの範囲である。
感光体1から中間転写体70への第1〜第3色のトナー画像の1次転写工程において、2次転写ローラ5b及び中間転写体クリーニング手段6bは中間転写体70から離間することも可能である。
ベルト状の中間転写体70上に転写された重ね合わせカラートナー画像の第2の画像担持体である転写材Pへの転写は、2次転写ローラ5bが中間転写体70のベルトに当接されると共に、対の給紙レジストローラ23から転写紙ガイドを通って、中間転写体70のベルトに2次転写ローラ5bとの当接ニップに所定のタイミングで転写材Pが給送される。2次転写バイアスがバイアス電源から2次転写ローラ5bに印加される。この2次転写バイアスにより中間転写体70から第2の画像担持体である転写材Pへ重ね合わせカラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着手段24へ導入され加熱定着される。
本発明の有機感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、下記文中「部」とは「質量部」を表す。
感光体1の作製
下記の様に感光体1を作製した。
中間層1
洗浄済み円筒状アルミニウム基体(切削加工により十点表面粗さRz:0.45μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚5μmの中間層1を形成した。
下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。
(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部
ルチル形酸化チタン(一次粒径35nm;末端に水酸基を有するジメチルポリシロキサンで表面処理を行ない、疎水化度を33に調製した酸化チタン顔料) 5.6部
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
〈電荷発生層:CGL〉
電荷発生物質(CGM):オキシチタニルフタロシアニン(Cu−Kα特性X線によるX線回折のスペクトルで、ブラッグ角(2θ±0.2°)27.3°に最大回折ピークを有するチタニルフタロシン顔料) 24部
ポリビニルブチラール樹脂「エスレックBL−1」(積水化学社製) 12部
2−ブタノン/シクロヘキサノン=4/1(v/v) 300部
上記組成物を混合し、サンドミルを用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.5μmの電荷発生層を形成した。
〈電荷輸送層1(CTL1)〉
電荷輸送物質(4,4′−ジメチル−4″−(α−フェニルスチリル)
トリフェニルアミン) 225部
ポリカーボネート(Z300:三菱ガス化学社製) 300部
酸化防止剤(Irganox1010:日本チバガイギー社製) 6部
ジクロロメタン 2000部
シリコンオイル(KF−54:信越化学社製) 1部
を混合し、溶解して電荷輸送層塗布液1を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、110℃70分の乾燥を行い、乾燥膜厚18.0μmの電荷輸送層1を形成した。
〈電荷輸送層2(CTL2)〉
金属酸化物粒子:シリカ粒子(ヘキサメチルジシラザンで表面処理された平均一次粒径35nmのシリカ:疎水化度72、疎水化度分布値20) 60部
電荷輸送物質(4,4′−ジメチル−4″−(α−フェニルスチリル)
トリフェニルアミン) 150部
ポリカーボネート(Z300:三菱ガス化学社製) 300部
酸化防止剤(Irganox1010:日本チバガイギー社製) 12部
THF:テトラヒドロフラン 2800部
シリコンオイル(KF−54:信越化学社製) 4部
を混合し、分散・溶解して電荷輸送層塗布液2を調製した。この塗布液を前記電荷輸送層1の上に円形スライドホッパ型塗布機で塗布し、110℃70分の乾燥を行い、乾燥膜厚2.0μmの電荷輸送層2を形成し、感光体1を作製した。
感光体2〜13、15の作製
感光体1の作製において、導電性支持体のRz、中間層、電荷輸送層2(CTL2)の金属酸化物粒子の種類を表1のように変化させた以外は感光体1と同様にして感光体2〜13、15を作製した。
感光体14の作製
感光体1の作製において、導電性支持体のRzを0.11μmにし、電荷輸送層2(CTL2)の金属酸化物粒子を除いた他は感光体1と同様にして感光体14を作製した。
Figure 0004561591
表1中、金属酸化物粒子1はシリカ、金属酸化物粒子2はアルミナ、金属酸化物粒子3は酸化チタン、金属酸化物粒子4は酸化ジルコニウムを表す。又、金属酸化物粒子の表面処理1、2については下記の表面処理剤を用いた表面処理を示す。
表面処理1;ヘキサメチルジシラザン
表面処理2;トリメチルシラノール
尚、感光体1〜13、15に用いた金属酸化物粒子の疎水化度及び疎水化度分布値は、金属酸化物粒子の表面処理剤と共に、表面処理の条件(水蒸気の分圧や表面処理剤の分圧、全圧、反応温度等の条件を変更して調整した)
又、表1中の中間層の内容については、表2に記載する。
Figure 0004561591
表2の中間層体積比は感光体1〜15の全ての中間層のバインダー樹脂の体積とN型半導性粒子の体積の合計体積を一定にした上で、バインダー樹脂の体積とN型半導性粒子の体積の比(Vn/Vb)を変えた中間層分散液を作製して、中間層を形成したものである。
表2中、
A1はルチル形酸化チタン
A2はアナターゼ形酸化チタン
*1はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)
*2はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比9:1)
*3はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比2:8)
*4はメチルハイドロジェンシロキサンとジエチルシロキサンの共重合体(モル比1:1)
*5はメチルハイドロジェンシロキサンとメチルエチルシロキサンの共重合体(モル比1:1)
*6はメチルハイドロジェンポリシロキサン
尚、表2中、表面処理とは粒子の表面に施した表面処理に用いた物質を示す。
又、表中の融解熱、吸水率の測定は以下のようにして行った。
融解熱の測定条件
測定機:島津製作所「島津熱流速示差走査熱量計DSC−50」を用いて測定した。
測定条件:測定試料を上記測定機に設定し、室温(24℃)から測定開始、200℃迄5℃/分で昇温し、次いで室温まで5℃/分で冷却する。これを2回連続で行い、2回めの昇温時の融解による吸熱ピーク面積より融解熱を算出する。
吸水率の測定条件
測定対象の試料を70〜80℃で3〜4時間で十分に乾燥させ、その質量を精密に秤量する。次に、20℃に維持したイオン交換水に試料を投入し、一定時間経過後に引き上げ試料表面の水を清潔な布で拭き取り、質量を測定する。以上の操作を質量増が飽和するまで繰り返し、その結果得られた試料の増加質量(増加分)を初期の質量で除した値を吸水率とした。
表2中、炭素数が7以上の単位構造の比率とは、繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
評価1(カウンター現像方式での評価)
得られた感光体を市販のフルカラー複合機8050(中間転写体を用いたタンデム方式のフルカラー複合機8050(コニカミノルタビジネステクノロジーズ(株)社製)をカウンター現像方式及び下記プロセス条件に改造)に搭載し、Y、M、C、Brの各色トナーを用いたカラーの画像評価を行った。白地部、べた部のソリット画像部、ハーフトーン画像部、文字画像部を有するオリジナル画像を用いて、A4紙に連続複写し評価した。詳しくは、スタート時及び5000枚毎に、評価画像を取り出し、計30万枚印刷して評価した。評価項目と評価基準を以下に示す。
評価条件
カウンター現像方式のプロセス条件としては以下の条件を用いて評価を行なった。
感光体線速;220mm/sec
磁気ブラシ食い込み深さ(Bsd);0.30mm
現像ギャップ(Dsd);0.28mm
現像バイアスの交流成分(Vac);1.0KVp−p
現像スリーブと感光体の周速比(Vs/Vopc);2.0
現像バイアスの直流成分(Vdc);−500V
感光体の表面電位V0と現像バイアスの直流成分Vdcの差(|V0−Vdc|);200V
周波数;5KHz
Duty;50%の矩形波
現像:各現像手段(4Y、4M、4C、4Br)に用いるイエロートナー、マゼンタトナー、シアントナー及びブラックトナーには、各々平均粒径6.5μmで、0.3μmの疎水性酸化チタン及び15nmの疎水性シリカの外添剤を含有した重合トナーを用いた二成分現像剤を用いた。反転現像法
画像評価に当たっては室温にてプリントを行った。
画像評価
画像濃度
スタート時、30万枚目について濃度計「RD−918」(マクベス社製)を使用し、プリンター用紙の濃度を0.0とした相対濃度で測定した。
◎:1.3以上/良好
○:1.0以上〜1.3未満/実用上問題ないレベル
×:1.0未満/実用上問題あり
カブリ
スタート時、30万枚目について濃度計「RD−918」(マクベス社製)を使用し、カブリ濃度についてはA4紙の反射濃度を0.000とした相対濃度で測定した。
◎:0.010未満(非常に良好)
○:0.010以上0.020未満(実用上問題ないレベル)
×:0.020以上(実用上問題あり)
先端部濃度低下
30万枚時のハーフトーン画像を作製して評価した。
◎:先端部濃度低下の発生が見られず、ハーフトーン画像が明瞭に再現されている(非常に良好)。
○:ハーフトーン画像が明瞭に再現されているが、反射濃度で0.04未満の先端部濃度低下有り(実用的に問題なし)。
×:ハーフトーン画像に反射濃度で0.04以上の先端部濃度低下有り(実用的に問題あり)。
トナー飛散
◎:トナー飛散が非常に少なく、文字画像の鮮鋭性が良好である(良好)
○:微かにトナー飛散があるが、3ポイントの文字画像まで判定できる(実用可)
×:トナー飛散が多く、3ポイントの文字画像の一部が判定できない。(実用不可)
色再現性
1枚目の画像および100枚目の画像のY、M、C各トナーにおける二次色(レッド、ブルー、グリーン)のソリッド画像部の色を「MacbethColor−Eye7000」により測定し、CMC(2:1)色差式を用いて各ソリッド画像の1枚目と100枚目の色差を算出した。
◎:色差が3以下(良好)
×:色差が3より大の(実用上問題あり実用不可)
結果を表3に示す。
Figure 0004561591
表3から明らかなように、カウンター現像方式で作製した画像評価では、表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有している有機感光体1〜3、5、7〜13は、画像濃度、カブリ、先端部濃度低下、トナー飛散、色再現性等の全ての評価項目で良好な特性を示しているのに対し、表面層が数平均一次粒径が1nmの金属酸化物粒子を含有している有機感光体4では、先端部濃度低下が発生し、色再現性が発生している。表面層が数平均一次粒径が160nmの金属酸化物粒子を含有している有機感光体6では、トナー飛散が発生し、先端部濃度低下も発生し、色再現性が劣化している。表面層が酸化ジルコニウム粒子を含有している有機感光体15は比重が大きい為、表面には殆ど無く、先端部濃度低下が発生している。有機感光体14では、画像濃度が低く、先端部濃度低下も発生している。
評価2(パラレル現像方式での評価)
評価1で行なった評価を感光体と現像スリーブの進行方向を平行に進行させるパラレル現像方式で評価した。
評価条件
感光体の線速:220mm/sec
現像スリーブの線速:440mm/sec
その結果、評価1の本発明と比較例の差が明瞭に現れず、且つ全部の本発明及び比較例で、先端部濃度低下やカブリの発生は見られなかったが、カウンター現像方式に比し、画像濃度が低下し、濃度不足の電子写真画像が得られた。
疎水化度分布曲線の図である。 カウンター方向現像方法の現像装置の断面を示す図である。 有機感光体を含むプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。 本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。 本発明の有機感光体を用いたカラー画像形成装置の構成断面図である。
符号の説明
1 有機感光体
C 軸
2 帯電手段
3 露光光
4 現像手段
5 転写手段
P 転写材
24 定着手段
6 クリーニング手段
Pex 前露光光
PC プロセスカートリッジ容器
AN 案内手段
101 有機感光体
102 現像装置
110 現像容器
118 補給口
120 現像スリーブ
121 磁石
122 現像ブレード
123 第1攪拌搬送部材
124 第2攪拌搬送部材
128 スクリュー羽根
130 板状突起
140 隔壁
N1 現像磁極
N2 第2搬送磁極
S1 汲み上げ磁極
S2 第3搬送磁極
S3 第1搬送磁極
P 現像剤落下位置
Q 汲み上げ位置

Claims (12)

  1. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
  2. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
  3. 前記表面層の表面粗さRaが0.001〜0.018であり、十点表面粗さRzが0.02〜0.08μmであることを特徴とする請求項1又は2に記載の画像形成方法。
  4. 前記有機感光体は導電性基体上に少なくとも電荷発生層及び電荷輸送層を有する積層型有機感光体であることを特徴とする請求項1〜3のいずれか1項に記載の画像形成方法。
  5. 前記表面層が酸化防止剤を含むことを特徴とする請求項1〜4のいずれか1項に記載の画像形成方法。
  6. 前記トナーは重合トナーであることを特徴とする請求項1〜5のいずれか1項に記載の画像形成方法。
  7. 前記有機感光体と現像スリーブ間の現像ギャップ(Dsd)が0.2〜0.6mmであることを特徴とする請求項1〜6のいずれか1項に記載の画像形成方法。
  8. 前記有機感光体と現像スリーブ間の現像領域における磁気ブラシの食い込み深さ(Bsd)が0.0〜0.8mmであることを特徴とする請求項1〜7のいずれか1項に記載の画像形成方法。
  9. 前記現像スリーブと有機感光体の周速比(Vs/Vopc)が1.2〜3.0であることを特徴とする請求項1〜8のいずれか1項に記載の画像形成方法。
  10. 有機感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%、矩形波であることを特徴とする請求項7〜9のいずれか1項に記載の画像形成方法。
  11. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成装置において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径が3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
  12. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成装置において、前記有機感光体の表面層が疎水化度が50以上、疎水化度分布が25以下で、数平均一次粒径が3〜150nmのシリカ、アルミナ又はチタニアのいずれが一種の金属酸化物粒子を含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
JP2005306969A 2004-11-26 2005-10-21 画像形成方法及び画像形成装置 Active JP4561591B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306969A JP4561591B2 (ja) 2004-11-26 2005-10-21 画像形成方法及び画像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004342141 2004-11-26
JP2005306969A JP4561591B2 (ja) 2004-11-26 2005-10-21 画像形成方法及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2006178412A JP2006178412A (ja) 2006-07-06
JP4561591B2 true JP4561591B2 (ja) 2010-10-13

Family

ID=36732546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306969A Active JP4561591B2 (ja) 2004-11-26 2005-10-21 画像形成方法及び画像形成装置

Country Status (1)

Country Link
JP (1) JP4561591B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066801A (ja) 2012-09-25 2014-04-17 Fuji Xerox Co Ltd 二成分現像剤、現像装置及び画像形成装置
US11573499B2 (en) 2019-07-25 2023-02-07 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190125A (ja) * 1996-01-09 1997-07-22 Konica Corp 画像形成方法及びその装置
JPH10339962A (ja) * 1997-06-09 1998-12-22 Matsushita Electric Ind Co Ltd 電子写真用感光体、輸送層形成用塗料及び該塗料の製造方法
JP2001125435A (ja) * 1999-10-29 2001-05-11 Canon Inc 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2001265040A (ja) * 2000-03-15 2001-09-28 Konica Corp 画像形成方法、画像形成装置、及び該装置に用いられるプロセスカートリッジ
JP2003241518A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 現像装置、及びこれを用いた画像形成装置
JP2004004504A (ja) * 2002-03-27 2004-01-08 Konica Minolta Holdings Inc 画像形成方法、画像形成装置及び電子写真感光体
JP2004054001A (ja) * 2002-07-22 2004-02-19 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP2004226452A (ja) * 2003-01-20 2004-08-12 Canon Inc 画像形成方法
JP2006010921A (ja) * 2004-06-24 2006-01-12 Konica Minolta Business Technologies Inc 有機感光体、プロセスカートリッジ及び画像形成装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09190125A (ja) * 1996-01-09 1997-07-22 Konica Corp 画像形成方法及びその装置
JPH10339962A (ja) * 1997-06-09 1998-12-22 Matsushita Electric Ind Co Ltd 電子写真用感光体、輸送層形成用塗料及び該塗料の製造方法
JP2001125435A (ja) * 1999-10-29 2001-05-11 Canon Inc 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2001265040A (ja) * 2000-03-15 2001-09-28 Konica Corp 画像形成方法、画像形成装置、及び該装置に用いられるプロセスカートリッジ
JP2003241518A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 現像装置、及びこれを用いた画像形成装置
JP2004004504A (ja) * 2002-03-27 2004-01-08 Konica Minolta Holdings Inc 画像形成方法、画像形成装置及び電子写真感光体
JP2004054001A (ja) * 2002-07-22 2004-02-19 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP2004226452A (ja) * 2003-01-20 2004-08-12 Canon Inc 画像形成方法
JP2006010921A (ja) * 2004-06-24 2006-01-12 Konica Minolta Business Technologies Inc 有機感光体、プロセスカートリッジ及び画像形成装置

Also Published As

Publication number Publication date
JP2006178412A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
US7473509B2 (en) Image forming method and image forming apparatus
US7477866B2 (en) Image forming method and image forming apparatus
JP4461921B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP2006154753A (ja) 画像形成方法、画像形成装置及び有機感光体
JP4396396B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP5035273B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP2003307861A (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2005292782A (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP2006259301A (ja) 画像形成方法及び画像形成装置
JP4561591B2 (ja) 画像形成方法及び画像形成装置
JP4792916B2 (ja) 画像形成方法及び画像形成装置
JP4604960B2 (ja) 画像形成方法及び画像形成装置
JP2006010918A (ja) 有機感光体、画像形成装置及び画像形成方法
JP4349218B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP4449740B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP3952833B2 (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2006227579A (ja) 画像形成方法及び画像形成装置
JP4241490B2 (ja) 画像形成装置及び画像形成方法
JP2006154071A (ja) 画像形成方法及び画像形成装置
JP2006301399A (ja) 画像形成方法及び画像形成装置
JP5375304B2 (ja) 画像形成方法及び画像形成装置
JP4816361B2 (ja) 画像形成方法及び画像形成装置
JP4449741B2 (ja) 有機感光体、プロセスカートリッジ及び画像形成装置
JP2011191486A (ja) 画像形成方法及び画像形成装置
JP2011133731A (ja) 画像形成方法及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350