JP4554702B2 - 動力伝達装置の制御装置 - Google Patents

動力伝達装置の制御装置 Download PDF

Info

Publication number
JP4554702B2
JP4554702B2 JP2008296081A JP2008296081A JP4554702B2 JP 4554702 B2 JP4554702 B2 JP 4554702B2 JP 2008296081 A JP2008296081 A JP 2008296081A JP 2008296081 A JP2008296081 A JP 2008296081A JP 4554702 B2 JP4554702 B2 JP 4554702B2
Authority
JP
Japan
Prior art keywords
engine
shift
torque
gear
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008296081A
Other languages
English (en)
Other versions
JP2010120517A (ja
Inventor
亨 松原
淳 田端
雅一 貝吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2008296081A priority Critical patent/JP4554702B2/ja
Priority to US12/588,879 priority patent/US8591378B2/en
Publication of JP2010120517A publication Critical patent/JP2010120517A/ja
Application granted granted Critical
Publication of JP4554702B2 publication Critical patent/JP4554702B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、エンジンおよび電動機を駆動力源として備えているとともに、その駆動力源の下流側に変速部が設けられている動力伝達装置に係り、特に、駆動力源の運転状態に拘らず変速部の変速制御を適切に行う技術に関するものである。
エンジンおよび電動機を駆動力源として備えているとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部が前記駆動力源の下流側に配設されている動力伝達装置が知られている。特許文献1に記載の動力伝達装置はその一例で、車両用動力伝達装置に関するものであり、(a) エンジンと、(b) 差動機構の回転要素に動力伝達可能に連結された回転機の運転状態が制御されることにより前記エンジンに連結された差動入力部材の回転速度と差動出力部材の回転速度の差動状態が制御される電気式差動部と、(c) その電気式差動部の差動出力部材に動力伝達可能に配設された電動機と、(d) その差動出力部材と駆動輪との間に配設された変速部とを有して構成されている。そして、このようなハイブリッド車両の動力伝達装置においては、低車速領域や低出力領域などのエンジン効率の悪い運転領域ではエンジンを停止させて電動機のみで走行するモータ走行を行う一方、中高車速領域或いは中高出力領域などのエンジン効率の良い領域に達すると、エンジンを始動してエンジンのみで走行するエンジン走行或いはエンジンおよび電動機を用いて走行するエンジン+モータ走行を行うようになっているのが普通である。また、電動機のみで走行するモータ走行領域においても、バッテリー充電のためや暖機等のために必要に応じてエンジンが始動される。
一方、前記変速部の変速時には、入力トルクや変速の種類(アップシフトかダウンシフトかなど)に応じて摩擦係合装置のトルク伝達容量(油圧など)の大きさや制御パターンが定められるが、前記エンジンの始動や停止と変速部の変速とが重複すると変速ショックが生じ易くなる。例えばモータ走行からエンジン走行またはエンジン+モータ走行へ切り換える場合、前記回転機でエンジンを回転駆動(クランキング)するとともに前記電動機で反力を受け止めることにより、駆動力変動を抑制しつつエンジンを始動できるが、このようなエンジンの始動が変速部の変速と重なった場合、エンジンの始動(運転開始)に伴う入力トルクの立ち上がりに対して摩擦係合装置のトルク伝達容量制御のタイミングがずれて変速ショックが発生することがある。このため、特許文献1では、エンジンの始動または停止と変速部の変速とが重複した場合には、何れか一方を先に実行して他方を後から実行するようになっている。
特開2006−213149号公報
しかしながら、このようにエンジンの始動または停止と変速部の変速とが重複した場合に何れか一方を先に実行し、他方を後から実行するようにすると、運転者の要求駆動力の変化に対して応答性が悪くなるという問題があった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、電動機およびエンジンの運転状態の変化と変速部の変速とが重複した場合でも、電動機およびエンジンの運転状態の変化に拘らず変速部の変速が適切に行われるようにして、変速ショックを抑制しつつ所望の要求駆動力が速やかに得られるようにすることにある。
かかる目的を達成するために、第1発明は、エンジンおよび電動機を駆動力源として備えているとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部が前記駆動力源の下流側に配設されている動力伝達装置において、前記電動機のみを駆動力源とするモータ走行中の前記変速部のダウンシフト時に前記エンジンの始動が行われるエンジン始動制御中の場合は、そのモータ走行中のダウンシフト時に前記エンジンが既に運転中の場合に比べて、前記変速部の変速に関与する解放側の摩擦係合装置のトルク伝達容量を低く設定するとともに、係合側の摩擦係合装置のトルク伝達容量を高く設定することを特徴とする。
発明は、第発明の動力伝達装置の制御装置において、前記エンジンの始動による運転開始で入力トルクの増大が予測される所定時間前に、前記解放側のトルク伝達容量を増大させるための指令を出力することを特徴とする。
発明は、第1発明または第2発明の動力伝達装置の制御装置において、前記モータ走行中の前記ダウンシフト時に前記エンジン始動制御中の場合は、そのモータ走行中のそのダウンシフト時に前記エンジンが停止しているエンジン停止時で且つそのエンジンの始動が行われない場合に比べて、前記変速部の前記解放側の摩擦係合装置のトルク伝達容量を高く設定することを特徴とする。
第4発明は、エンジンおよび電動機を駆動力源として備えているとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部が前記駆動力源の下流側に配設されている動力伝達装置において、前記電動機のみを駆動力源とするモータ走行中の前記変速部のダウンシフト時に前記エンジンの始動が行われるエンジン始動制御中の場合は、そのモータ走行中のそのダウンシフト時に前記エンジンが停止しているエンジン停止時で且つそのエンジンの始動が行われない場合に比べて、前記変速部の変速に関与する解放側の摩擦係合装置のトルク伝達容量を高く設定することを特徴とする。
第5発明は、第1発明〜第4発明の何れかの動力伝達装置の制御装置において、前記変速部を変速するための変速出力時またはその変速に伴うイナーシャ相開始時に前記エンジンの運転状態を判定することを特徴とする。
発明は、エンジンの運転状態に基づいて入力トルクの変化を先読み(予測)して予めトルク伝達容量を設定する車両用の動力伝達装置に関するものであり、電動機のみを駆動力源とするモータ走行中の変速部のダウンシフト時にエンジンの始動が行われる場合は、そのエンジンが既に運転中の場合に比べて解放側の摩擦係合装置のトルク伝達容量を低く設定するとともに係合側の摩擦係合装置のトルク伝達容量を高く設定するため、エンジンの始動で運転(自力回転)が開始して入力トルクが上昇するまでの時間が長い場合でも電動機のトルクによって入力側回転速度が速やかに上昇させられ、変速が速やかに進行するとともに、係合側のトルク伝達容量が高く設定されることによりエンジンの運転開始後の入力側回転速度の吹き上がりを適切に防止できる。また、エンジンが既に運転中の場合は入力トルクが速やかに上昇させられるが、解放側の摩擦係合装置のトルク伝達容量が高いため入力側回転速度の吹き上がりを抑制しつつ徐々に上昇させることができるとともに、変速後ギヤ段の同期回転速度付近に達した段階で、比較的低トルク伝達容量の係合側の摩擦係合装置のトルク伝達容量を増大させて係合させることにより変速を適切に行うことができる。すなわち、エンジンが既に運転中の場合と始動制御中とではエンジンの始動タイミング、更には入力トルクの立ち上がりのタイミングが異なるため、同じトルク伝達容量制御では変速時間が長くなったり吹き上がり等の変速ショックが発生したりする恐れがあるが、本発明ではエンジン運転中と始動制御中とでトルク伝達容量が変更されることにより、変速ショックを抑制しつつ適切に変速制御が行われて所望の要求駆動力が速やかに得られるようになるのである。
発明では、エンジンの始動による運転開始(自力回転の開始)で入力トルクの増大が予測される所定時間前に、解放側のトルク伝達容量を増大させるための指令が出力されるため、入力トルクの急な増大やトルク伝達容量制御の応答遅れに拘らず入力側回転速度の吹き上がりを適切に防止することができる。
第4発明は、エンジンの運転状態に基づいて入力トルクの変化を先読み(予測)して予めトルク伝達容量を設定する車両用の動力伝達装置に関するものであり、電動機のみを駆動力源とするモータ走行中の変速部のダウンシフト時にエンジンの始動が行われる場合は、そのエンジンの始動が行われない場合に比べて、その変速部の解放側の摩擦係合装置のトルク伝達容量を高く設定するため、エンジンの始動に伴う運転開始により入力トルクが上昇した際の入力側回転速度の吹き上がりを適切に防止できる。また、エンジンの始動が行われない場合には、変速に伴う入力側回転速度の上昇で電動機の回転速度も上昇し、等パワー変速では電動機のトルクが低下して入力トルクも低下するが、解放側のトルク伝達容量が低いことからその入力トルク(電動機のトルク)によって入力側回転速度が速やかに上昇させられ、変速が速やかに行われる。第3発明についても、第4発明と同様の効果が得られる。
第5発明では、変速部を変速するための変速出力時またはその変速に伴うイナーシャ相開始時にエンジンの運転状態を判定するため、変速出力時にエンジンの運転状態を判定する場合は、変速制御の開始当初からエンジンの運転状態に応じて入力トルクの変化を先読み(予測)するなどしてトルク伝達容量を適切に制御することができる。また、イナーシャ相開始時にエンジンの運転状態を判定する場合は、例えば変速出力の後にエンジンの始動制御が開始された場合にも、そのエンジンの運転状態に応じて入力トルクの変化を先読み(予測)するなどしてトルク伝達容量を制御することにより、変速制御を適切に行うことができる。
本発明は、例えば(a) エンジンと、(b) 差動機構の回転要素に動力伝達可能に連結された回転機の運転状態が制御されることにより前記エンジンに連結された差動入力部材の回転速度と差動出力部材の回転速度の差動状態が制御される電気式差動部と、(c) その電気式差動部の差動出力部材に動力伝達可能に配設された電動機と、(d) その差動出力部材と駆動輪との間に配設されるとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部とを有するハイブリッド式の車両用動力伝達装置に好適に適用されるが、少なくともエンジンおよび電動機を駆動力源として備えているとともに下流側に変速部を有する種々のハイブリッド式の動力伝達装置に適用され得る。差動機構としては、シングルピニオン型或いはダブルピニオン型の遊星歯車装置が好適に用いられるが、傘歯車式等の他の差動機構を採用することもできる。回転機は、回転電気機械(JIS−Z9212)のことで、電動モータ、発電機、或いはそれ等の両方の機能を選択的に用いることができるモータジェネレータであり、電動機は電動モータ或いはモータジェネレータである。
変速部は、遊星歯車式或いは平行軸式等の有段の変速機で、複数の摩擦係合装置の係合解放状態によって複数のギヤ段が成立させられる。一対の摩擦係合装置の一方を係合するとともに他方を解放することによって変速を行うクラッチツークラッチ変速に好適に適用されるが、第4発明については、一方向クラッチが設けられることにより単一の摩擦係合装置の係合または解放によって変速が行われる場合にも適用され得る。また、車速や要求駆動力(アクセル操作量など)に応じて自動的に変速が行われる自動変速機であっても良いが、運転者の手動操作に従って電気的に変速を行うマニュアル変速にも適用され得る。上記摩擦係合装置としては、油圧によってトルク伝達容量が制御される油圧式摩擦係合装置が広く用いられており、トルク伝達容量は油圧に相当するが、電磁クラッチなどトルク伝達容量を制御可能な他の摩擦係合装置を用いることもできる。
本発明は、例えば(a) 電動機のみを駆動力源として走行するモータ走行時に変速部の変速が行われる際に、エンジンの運転状態としてエンジン停止時か、エンジン運転時か、エンジン始動制御中かを判定するエンジン状態判定手段と、(b) 該エンジン状態判定手段による判定結果に従って摩擦係合装置のトルク伝達容量を変更する変速時トルク伝達容量設定手段(例えば油圧式摩擦係合装置の場合は変速油圧設定手段)とを有して構成される。エンジン状態判定手段は、例えば第5発明のように変速出力時やイナーシャ相開始時にエンジンの運転状態を判定するように構成されるが、エンジンの運転状態を常時判定してリアルタイムでトルク伝達容量を変更するようにしても良い。エンジン始動制御中の場合、その始動制御の進行の程度によって変速制御のトルク伝達容量も変更することが望ましく、例えばエンジン回転速度やエンジンの始動制御開始時からの経過時間などで始動制御の進行の程度を判断することができる。
変速時トルク伝達容量設定手段は、エンジンの運転状態に応じてトルク伝達容量を変更するように構成されるが、トルク伝達容量の大きさだけでなく、そのトルク伝達容量を増減させる際の増減開始タイミングや変化率などを変更するようにしても良い。この変速時トルク伝達容量設定手段は、例えば第5発明のように所定のタイミングでエンジンの運転状態が判定され、その運転状態に応じてトルク伝達容量を変更した場合には、その後にエンジンの運転状態が変化しても一旦定められたトルク伝達容量に基づいて所定の制御パターンに従って変速制御(トルク伝達容量制御)を実行することが、トルク伝達容量制御の応答遅れを防止する上で望ましい。
上記変速時トルク伝達容量設定手段はまた、第発明のようにエンジンの運転開始による入力トルクの増大を予測し、その増大の所定時間前に解放側のトルク伝達容量を増大させる指令が出力されるように構成されるが、エンジンを始動しないモータ走行時であって、例えば電池容量を超えた駆動力要求時等に電動機が許容最大出力とされている時など、その電動機の出力が一定の状態で変速する等パワー変速が行われると、ダウンシフトに伴うモータ回転速度の上昇で電動機のトルクが低下し、更には入力トルクが低下するため、そのトルクの低下を見越したトルク伝達容量を予め設定することで、入力トルクの低下に対するトルク伝達容量制御の応答遅れを防止することができる。
本発明はダウンシフト時のトルク伝達容量制御に関するものであるが、アップシフト時にもエンジンの運転状態に応じてトルク伝達容量制御を行うことができる。例えば、電動機のみを駆動力源とするモータ走行中の前記変速部のアップシフト時に前記エンジンの始動が行われる場合は、該エンジンが既に運転中の場合に比べて、前記変速部の係合側の摩擦係合装置のトルク伝達容量を低く設定するとともに、エンジンの始動が行われない場合に比べて該変速部の係合側の摩擦係合装置のトルク伝達容量を高く設定するように構成される。すなわち、アップシフトでは解放側の摩擦係合装置を解放するとともに係合側の摩擦係合装置の係合で入力側回転速度を引き下げる必要があるが、エンジンが既に運転中の場合は短時間で入力トルクが上昇するため、吹き上がりを防止しつつ入力側回転速度を低下させるために係合側のトルク伝達容量を比較的高く設定する必要があり、エンジンの始動が行われない場合は係合側のトルク伝達容量が比較的低くても吹き上がりを防止しつつ入力側回転速度を引き下げることができ、エンジンの始動が行われる場合はその中間のトルク伝達容量としてエンジン始動時の吹き上がりを防止しつつ入力側回転速度を引き下げれば良い。また、エンジンの運転開始による入力トルクの増大が予測される所定時間前に係合側のトルク伝達容量を増大させることにより、トルク伝達容量制御の応答遅れに拘らず入力トルクの増大に起因する入力側回転速度の吹き上がりを適切に防止することができる。
以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用されるハイブリッド車両用の動力伝達装置8を説明する骨子図である。図1において、動力伝達装置8は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された差動入力部材としての入力軸14と、この入力軸14に連結された無段変速部としての電気式差動部16と、その電気式差動部16と駆動輪34(図7参照)との間の動力伝達経路に伝達部材18を介して直列に連結されている自動変速部20と、この自動変速部20に連結されている出力軸22とを直列に備えている。この動力伝達装置8は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるもので、入力軸14には直接或いは図示しない脈動吸収ダンパーを介して間接的に走行用の駆動力源としてガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8が連結されているとともに、伝達部材18には同じく走行用の駆動力源として用いられる電動機として第2モータジェネレータMG2が連結されており、それ等の動力を自動変速部20から出力軸22、差動歯車装置(終減速機)32(図7参照)、および一対の車軸等を順次介して一対の駆動輪34へ伝達する。上記伝達部材18は、電気式差動部16の出力部材すなわち差動出力部材で、且つ自動変速部20の入力部材として機能する。
このように、本実施例の動力伝達装置8は、エンジン10と電気式差動部16とが直結されている。直結とは、トルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されていることで、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、電気式差動部16および自動変速部20は、その軸心に対して対称的に構成されているため、図1および図7の骨子図においてはその下側半分が省略されている。
電気式差動部16は、回転機としての第1モータジェネレータMG1と、入力軸14に入力されたエンジン10の出力を機械的に分配する動力分配機構であって、エンジン10の出力を第1モータジェネレータMG1および伝達部材18に分配する第1遊星歯車装置24とを備えており、伝達部材18と一体的に回転するように前記第2モータジェネレータMG2が作動的に連結されている。第1モータジェネレータMG1および第2モータジェネレータMG2は、電動モータおよび発電機(ジェネレータ)の機能を選択的に用いることができるものである。第1遊星歯車装置24は差動機構として機能するもので、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の遊星歯車装置であり、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリアCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えているとともに、第1キャリアCA1は入力軸14すなわちエンジン10に連結され、第1サンギヤS1は第1モータジェネレータMG1に連結され、第1リングギヤR1は伝達部材18に連結されている。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。
このように構成された電気式差動部16は、第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリアCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が働く差動状態とされることから、エンジン10の出力が第1モータジェネレータMG1と伝達部材18とに分配されるとともに、分配されたエンジン10の出力の一部で第1モータジェネレータMG1が回転駆動されることにより、その第1モータジェネレータMG1の回生制御(発電制御)で電気エネルギーが発生させられ、その電気エネルギーで第2モータジェネレータMG2が力行制御されるとともに、余剰の電気エネルギーがバッテリーである蓄電装置56(図7参照)に充電される。また、電気式差動部16は電気的な差動装置として機能させられ、所謂無段変速状態(電気的CVT状態)とされて、エンジン10の所定回転に拘わらず伝達部材18の回転が第1モータジェネレータMG1の回転速度に応じて連続的に変化させられる。すなわち、電気式差動部16は、その変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する。このように、電気式差動部16に動力伝達可能に連結された第1モータジェネレータMG1、第2モータジェネレータMG2、およびエンジン10の運転状態が制御されることにより、入力軸14の回転速度すなわちエンジン回転速度NEと伝達部材18の回転速度との差動状態が制御される。
自動変速部20は、電気式差動部16から駆動輪34への動力伝達経路の一部を構成し、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備え、有段式の自動変速機として機能する遊星歯車式の多段変速機である。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリアCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.562」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリアCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.425」程度の所定のギヤ比ρ3を有している。第4遊星歯車装置30は、第4サンギヤS4、第4遊星歯車P4、その第4遊星歯車P4を自転および公転可能に支持する第4キャリアCA4、第4遊星歯車P4を介して第4サンギヤS4と噛み合う第4リングギヤR4を備えており、例えば「0.421」程度の所定のギヤ比ρ4を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3、第4サンギヤS4の歯数をZS4、第4リングギヤR4の歯数をZR4とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3、上記ギヤ比ρ4はZS4/ZR4である。なお、本実施例の自動変速部20が、本発明の変速部に対応している。
自動変速部20では、第2サンギヤS2と第3サンギヤS3とが一体的に連結され、第2クラッチC2を介して伝達部材18に選択的に連結されるとともに、第1ブレーキB1を介してケース12に選択的に連結されるようになっている。第2キャリアCA2は、第2ブレーキB2を介してケース12に選択的に連結されるようになっている。第4リングギヤR4は,第3ブレーキB3を介してケース12に選択的に連結されるようになっている。第2リングギヤR2と第3キャリアCA3と第4キャリアCA4とが一体的に連結され、出力軸22に一体的に連結されている。第3リングギヤR3と第4サンギヤS4とが一体的に連結され、第1クラッチC1を介して伝達部材18に選択的に連結されるようになっている。
このように、自動変速部20内と電気式差動部16(伝達部材18)とは、自動変速部20の複数のギヤ段を成立させるために用いられる第1クラッチC1または第2クラッチC2を介して選択的に連結されている。言い換えれば、第1クラッチC1および第2クラッチC2は、伝達部材18と自動変速部20との間の動力伝達経路すなわち電気式差動部16(伝達部材18)から駆動輪34への動力伝達経路を、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択的に切り換える係合装置として機能している。つまり、第1クラッチC1および第2クラッチC2の少なくとの一方が係合されることで上記動力伝達経路が動力伝達可能状態とされ、第1クラッチC1および第2クラッチC2が共に解放されることで上記動力伝達経路が動力伝達遮断状態とされる。
また、この自動変速部20は、解放側係合装置の解放と係合側係合装置の係合とによりクラッチツークラッチ変速が実行されて各ギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT )が各ギヤ段毎に得られる。具体的には、図2の係合作動表に示されるように、第1クラッチC1および第3ブレーキB3の係合により変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、第1クラッチC1および第2ブレーキB2の係合により変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、第1クラッチC1および第1ブレーキB1の係合により変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、第1クラッチC1および第2クラッチC2の係合により変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により変速比γRが例えば「3.209」程度である後進ギヤ段(後進変速段)が成立させられる。また、第1クラッチC1、第2クラッチC2、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3の解放によりニュートラル「N」状態とされる。
前記第1クラッチC1、第2クラッチC2、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
以上のように構成された動力伝達装置8において、無段変速機として機能する電気式差動部16と自動変速部20とで全体として無段変速機が構成される。また、電気式差動部16の変速比γ0が一定となるように制御することにより、電気式電気式差動部16と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
具体的には、電気式差動部16が無段変速機として機能し、且つ電気式差動部16に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つのギヤ段Mに対して自動変速部20に入力される回転速度すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18という)が無段的に変化させられ、そのギヤ段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置8の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT )が無段階に得られ、動力伝達装置8において無段変速機が構成される。この動力伝達装置8の総合変速比γTは、電気式差動部16の変速比γ0と自動変速部20の変速比γとに基づいて形成される動力伝達装置8全体の変速比である。
例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し、伝達部材回転速度N18が無段的に変化させられることより、各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置8全体としての総合変速比γTが無段階に得られる。
また、電気式差動部16の変速比γ0が一定となるように制御され、且つクラッチCおよびブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置8の総合変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置8において有段変速機と同等の状態が構成される。
例えば、電気式差動部16の変速比γ0が「1」に固定されるように制御されると、図2の係合作動表に示されるように自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対応する動力伝達装置8の総合変速比γTが各ギヤ段毎に得られる。また、自動変速部20の第4速ギヤ段において電気式電気式差動部16の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように制御されると、第4速ギヤ段よりも小さい値例えば「0.7」程度である総合変速比γTが得られる。
図3は、電気式差動部16と自動変速部20とから構成される動力伝達装置8において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、横線X1が回転速度零を示し、横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン10の回転速度NEを示し、横線XGが伝達部材18の回転速度を示している。
また、電気式差動部16を構成する第1遊星歯車装置24の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応する第1サンギヤS1、第1回転要素RE1に対応する第1キャリアCA1、第3回転要素RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素RE5に対応する第2キャリアCA2を、第6回転要素RE6に対応する第4リングギヤR4を、第7回転要素RE7に対応し且つ相互に連結された第2リングギヤR2、第3キャリアCA3、第4キャリアCA4を、第8回転要素RE8に対応し且つ相互に連結された第3リングギヤR3、第4サンギヤS4をそれぞれ表し、それらの間隔は第2、第3、第4遊星歯車装置26、28、30のギヤ比ρ2、ρ3、ρ4に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリアとの間が「1」に対応する間隔とされるとキャリアとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。
上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置8は、電気式差動部16において、第1遊星歯車装置24の第1回転要素RE1(第1キャリアCA1)が入力軸14すなわちエンジン10に連結され、第2回転要素RE2が第1モータジェネレータMG1に連結され、第3回転要素(第1リングギヤR1)RE3が伝達部材18および第2モータジェネレータMG2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。
例えば、電気式差動部16においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が車速Vに拘束されて略一定である場合には、エンジン回転速度NEを制御することによって直線L0と縦線Y2との交点で示される第1キャリアCA1の回転速度が上昇或いは下降させられると、直線L0と縦線Y1との交点で示される第1サンギヤS1の回転速度すなわち第1モータジェネレータMG1の回転速度が上昇或いは下降させられる。
また、電気式差動部16の変速比γ0が「1」に固定されるように第1モータジェネレータMG1の回転速度を制御することによって第1サンギヤS1の回転がエンジン回転速度NEと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で第1リングギヤR1の回転速度すなわち伝達部材18が回転させられる。或いは、電気式差動部16の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1モータジェネレータMG1の回転速度を制御することによって第1サンギヤS1の回転が零とされると、エンジン回転速度NEよりも増速された回転速度で伝達部材18が回転させられる。
また、自動変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結される。
自動変速部20では、電気式差動部16において出力回転部材である伝達部材18(第3回転要素RE3)の回転が第1クラッチC1が係合されることで第8回転要素RE8に入力されると、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線XGとの交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速ギヤ段(1st )の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速ギヤ段(2nd )の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速ギヤ段(3rd )の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速ギヤ段(4th )の出力軸22の回転速度が示される。
図4は、本実施例の動力伝達装置8を制御するための電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン10、第1モータジェネレータMG1、第2モータジェネレータMG2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン水温TEMPW を表す信号、シフトレバー52(図6参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン10の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、出力軸22の回転速度NOUT に対応する車速Vを表す信号、自動変速部20の作動油温TOIL を表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル操作量(開度)Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、第1モータジェネレータMG1の回転速度NMG1を表す信号、第2モータジェネレータMG2の回転速度NMG2を表す信号、蓄電装置56の蓄電量(残量)SOCを表す信号などが、それぞれ供給される。なお、第2モータジェネレータ回転速度NMG2は、前記伝達部材回転速度N18と同じである。
また、上記電子制御装置80からは、エンジン出力を制御するエンジン出力制御装置58(図7参照)への制御信号、例えばエンジン10の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や、燃料噴射装置66による吸気管60或いはエンジン10の筒内への燃料供給量を制御する燃料供給量信号、点火装置68によるエンジン10の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号などが出力される。また、電動エアコンを作動させるための電動エアコン駆動信号、第1モータジェネレータMG1、第2モータジェネレータMG2の作動をそれぞれ指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、電気式差動部16や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図5、図7参照)に含まれる電磁弁(リニアソレノイドバルブ)を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧PLを調圧するための信号、そのライン油圧PLが調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は、油圧制御回路70のうちクラッチC1、C2、およびブレーキB1〜B3の各油圧アクチュエータ(油圧シリンダ)AC1、AC2、AB1、AB2、AB3の作動を制御するリニアソレノイドバルブSL1〜SL5に関する回路図である。リニアソレノイドバルブSL1〜SL5にはそれぞれライン油圧PLが供給されるようになっており、それぞれ電子制御装置80からの指令信号に応じた係合圧PC1、PC2、PB1、PB2、PB3に調圧した後、各油圧アクチュエータAC1、AC2、AB1、AB2、AB3に直接的に供給するようになっている。ライン油圧PLは、例えばリリーフ型調圧弁(レギュレータバルブ)によってアクセル操作量Acc或いはスロットル弁開度θTHで表されるエンジン負荷等に応じた値に調圧されるようになっている。
リニアソレノイドバルブSL1〜SL5は、基本的には何れも同じ構成で、電子制御装置80により独立に励磁、非励磁され、各油圧アクチュエータAC1、AC2、AB1、AB2、AB3の油圧が独立に調圧制御されてクラッチC1、C2、ブレーキB1〜B3の係合圧PC1、PC2、PB1、PB2、PB3が制御される。そして、自動変速部20は、例えば図2の係合作動表に示すように予め定められた係合装置が係合されることによって各ギヤ段が成立させられる。また、自動変速部20の変速制御においては、例えば変速に関与するクラッチCやブレーキBの解放と係合とが同時に制御される所謂クラッチツークラッチ変速が実行される。
図6は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。シフトレバー52は、動力伝達装置8内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置8内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、自動変速モードを成立させて電気式差動部16の無段的な変速比幅と自動変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる動力伝達装置8の変速可能な総合変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて自動変速部20における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、第1速ギヤ段〜第4速ギヤ段の何れかの前進ギヤ段が成立するように、例えば油圧制御回路70が電気的に切り換えられる。
上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放され、自動変速部20内の動力伝達経路が遮断された動力伝達遮断状態への切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された動力伝達可能状態への切換えを選択するための駆動ポジションである。
具体的には、シフトレバー52が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー52が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、シフトレバー52が「R」ポジションから「P」ポジション或いは「N」ポジションへ手動操作されることで、第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされ、シフトレバー52が「D」ポジションから「N」ポジションへ手動操作されることで、第1クラッチC1および第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされる。
図7は、電子制御装置80による制御機能の要部を説明する機能ブロック線図で、ハイブリッド制御手段82および有段変速制御手段90を機能的に備えている。ハイブリッド制御手段82は、エンジン10を効率のよい作動域で作動させる一方で、エンジン10と第2モータジェネレータMG2との駆動力配分を制御したり、第1モータジェネレータMG1の発電による反力を最適になるように変化させて電気式差動部16の電気的な無段変速機としての変速比γ0を制御したりする。すなわち、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル操作量Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2モータジェネレータMG2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NEとエンジントルクTEとなるようにエンジン10を制御するとともに第1モータジェネレータMG1の発電量を制御する。
また、エンジン10を効率のよい作動域で作動させるために定まるエンジン回転速度NEと、車速Vおよび自動変速部20のギヤ段で定まる伝達部材18の回転速度とを整合させるために、電気式差動部16が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段82は、エンジン回転速度NEとエンジン10の出力トルク(エンジントルク)TEとで構成される二次元座標内において、無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶された図9に破線で示すようなエンジン10の最適燃費率曲線(燃費マップ、関係)に基づいて、その最適燃費率曲線に沿ってエンジン10が作動させられるように、車速Vに応じて動力伝達装置8の総合変速比γTの目標値を定め、その目標値が得られるように自動変速部20のギヤ段を考慮して電気式差動部16の変速比γ0を制御する。
このとき、ハイブリッド制御手段82は、第1モータジェネレータMG1により発電された電気エネルギーをインバータ54を通して蓄電装置56や第2モータジェネレータMG2へ供給するので、エンジン10の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン10の動力の一部は第1モータジェネレータMG1の発電のために消費されてそこで電気エネルギーに変換され、インバータ54を通してその電気エネルギーが第2モータジェネレータMG2へ供給され、その第2モータジェネレータMG2が駆動されて第2モータジェネレータMG2から伝達部材18へ伝達される。この電気エネルギーの発生から第2モータジェネレータMG2で消費されるまでに関連する機器により、エンジン10の動力の一部を電気エネルギーに変換し、その電気エネルギーを機械的エネルギーに変換するまでの電気パスが構成される。
また、ハイブリッド制御手段82は、車両の停止中又は走行中に拘わらず、電気式差動部16の電気的CVT機能によって第1モータジェネレータ回転速度NMG1を制御することにより、エンジン回転速度NEを略一定に維持したり任意の回転速度に制御したりする。例えば、図3の共線図からも分かるように、車両走行中にエンジン回転速度NEを引き上げる場合には、車速V(駆動輪34)に拘束される第2モータジェネレータ回転速度NMG2を略一定に維持しつつ、第1モータジェネレータ回転速度NMG1の引き上げを実行する。
モータ走行時にエンジン10を始動する場合について具体的に説明すると、第1モータジェネレータMG1の回生および必要に応じて力行制御を行うことにより、エンジン10をクランキングして所定の回転速度まで引き上げ、燃料噴射制御等を行ってエンジン10を始動するが、この時の反力は第2モータジェネレータMG2によって受け止められるため、その反力トルク分だけ第2モータジェネレータMG2のトルクを上乗せすることにより、エンジン始動時の駆動力変動を抑制することができる。図11のタイムチャートにおいて、MG1トルク(第1モータジェネレータMG1のトルク)、MG2トルク(第2モータジェネレータMG2のトルク)、エンジン回転速度NEの欄に実線で示すグラフはエンジン始動制御が行われた時のもので、時間t2はエンジン10の始動制御が開始された時間、時間t6はエンジン10が完爆して自力で回転(運転開始)するようになった時間であり、MG1トルクによって伝達部材18に生じる反力を相殺するように、MG1トルクに対応してMG2トルクが制御される。
また、ハイブリッド制御手段82は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力を発生するようにエンジン10の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、基本的には図示しない予め記憶された関係からアクセル操作量Accに基づいてスロットルアクチュエータ60を駆動し、アクセル操作量Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。
また、ハイブリッド制御手段82は、エンジン10の停止又はアイドル状態に拘わらず、電気式差動部16の電気的CVT機能(差動作用)によってモータ走行させることができる。例えば、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルク域すなわち低エンジントルク域、或いは車速Vの比較的低車速域すなわち低負荷域においては、エンジン10を停止又はアイドル状態とし、第2モータジェネレータMG2のみを駆動力源として用いて走行するモータ走行を実行する。例えば図8において実線Aよりも原点側、すなわち低トルク側或いは低車速側は予め定められたモータ走行領域である。このモータ走行時においてエンジン10が停止している時には、そのエンジン10の引き摺りを抑制して燃費を向上させるために、第1モータジェネレータ回転速度NMG1を負の回転速度で制御して例えば第1モータジェネレータMG1を無負荷状態とすることにより空転させて、電気式差動部16の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度NEを零乃至略零に維持する。モータ走行時であっても、蓄電装置56の充電や暖機等のために必要に応じてエンジン10を運転状態とする。
また、ハイブリッド制御手段82は、エンジン10を駆動力源として走行するエンジン走行時であっても、上述した電気パスによる第1モータジェネレータMG1からの電気エネルギーおよび/または蓄電装置56からの電気エネルギーを第2モータジェネレータMG2へ供給し、その第2モータジェネレータMG2を駆動して駆動輪34にトルクを付与することにより、エンジン10の動力を補助するための所謂トルクアシストが可能である。例えばアクセルペダルが大きく踏込み操作された加速走行時や登坂路などでは、第2モータジェネレータMG2を力行制御してトルクアシストを行う。図8において実線Aよりも外側、すなわち高トルク側或いは高車速側は、エンジン走行が行われるエンジン走行領域であるが、必要に応じて第2モータジェネレータMG2によるトルクアシストが行われる。
また、ハイブリッド制御手段82は、第1モータジェネレータMG1を無負荷状態として自由回転すなわち空転させることにより、電気式差動部16がトルクの伝達を不能な状態すなわち電気式差動部16内の動力伝達経路が遮断された状態と同等の状態であって、且つ電気式差動部16からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段82は、第1モータジェネレータMG1を無負荷状態とすることにより電気式差動部16をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
また、ハイブリッド制御手段82は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上させるために車両の運動エネルギーすなわち駆動輪34からエンジン10側へ伝達される逆駆動力により第2モータジェネレータMG2を回転駆動して発電機として作動させ、その電気エネルギーをインバータ54を介して蓄電装置56へ充電する回生制御手段としての機能を有する。この回生制御は、蓄電装置56の蓄電容量SOCやブレーキペダル操作量に応じた制動力を得るための油圧ブレーキによる制動力の制動力配分等に基づいて決定された回生量となるように制御される。
一方、前記有段変速制御手段90は、例えば変速線図記憶手段84に予め記憶された図8に示す変速線図、すなわち車速Vと要求出力トルクTOUT(アクセル操作量Accなど)とをパラメータとして予め記憶されたアップシフト線(実線)およびダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)に従って、実際の車速Vおよび要求出力トルクTOUTで示される車両状態に基づいて自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべきギヤ段を判断し、その判断したギヤ段が得られるように自動変速部20の自動変速制御を実行する。
このとき、有段変速制御手段90は、例えば図2に示す係合表に従って所定のギヤ段を成立させるように、自動変速部20の変速に関与する油圧式摩擦係合装置(クラッチC、ブレーキB)を係合および解放する指令(変速出力指令、油圧指令)、すなわち自動変速部20の変速に関与する解放側摩擦係合装置を解放すると共に係合側摩擦係合装置を係合することによりクラッチツークラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、変速に関与する油圧式摩擦係合装置の係合圧をリニアソレノイドバルブSLにより所定の油圧変化パターンに従って変化させ、解放側摩擦係合装置を解放すると共に係合側摩擦係合装置を係合させて自動変速部20の変速を実行する。
有段変速制御手段90はまた、エンジン状態判定手段92および変速油圧設定手段94を機能的に備えており、図10のフローチャートに従って信号処理を行うことにより、上記自動変速部20の変速時にエンジン10の運転状態に応じて入力トルクの変化を先読み(予測)して、予め油圧式摩擦係合装置(クラッチCやブレーキB)の油圧すなわちトルク伝達容量を個別に設定する。図10のステップS2およびS4はエンジン状態判定手段92に相当し、ステップS3、S5、およびS6は変速油圧設定手段94に相当する。また、図11は、第3速ギヤ段(3rd)から第2速ギヤ段(2nd)へのダウンシフトが行われる際に、図10のフローチャートに従って解放側および係合側の油圧式摩擦係合装置の油圧制御が行われた場合の各部の回転速度やトルクの変化を示すタイムチャートの一例である。3→2ダウンシフト変速では、図2の作動表から明らかなように第1ブレーキB1が解放側摩擦係合装置で、第2ブレーキB2が係合側摩擦係合装置であり、それ等の係合圧PB1、PB2がそれぞれ解放側油圧、係合側油圧に相当し、トルク伝達容量に対応する。なお、実際の解放側油圧および係合側油圧は、図11に示される油圧指令値に対して所定の応答遅れを有して変化させられる。
図10のステップS1では、図8の変速線図に従って変速判断が為され、或いは運転者のシフトレバー52によるマニュアル変速操作により、自動変速部20のギヤ段を切り換えるための変速指令が出力されたか否か、すなわち変速に関与する油圧式摩擦係合装置の油圧制御が開始されたか否かを判断する。総ての変速指令について本油圧制御を行うこともできるが、ダウンシフトのみを対象して本油圧制御を実行したり、アクセルペダルが踏み込まれている駆動状態(パワーON状態)の変速時のみ本油圧制御を実行したりすることも可能で、その場合は対象とする変速指令か否かを判断すれば良い。そして、変速指令が出力されなかった場合は、ステップS7でその他の制御を実行してそのまま終了するが、変速指令が出力された場合はステップS2以下を実行する。
図11の時間t3は、3→2ダウンシフトの変速指令が出力された時間である。この図11のタイムチャートは、アクセルペダルの踏込み操作(要求出力トルクTOUTの増大)により前記図8の変速線図に従って自動的にダウンシフトが行われる場合で、図11の実線および一点鎖線は、図8において点線の矢印abに示すように要求出力トルクTOUTが変化し、モータ走行からエンジン+モータアシスト走行へ切り換えられるとともに3→2ダウンシフトの変速指令が出力された場合である。時間t1は、アクセルペダルの踏込み操作(増し踏み)が開始された時間で、時間t2は、第2モータジェネレータMG2が許容最大出力に達してエンジン+モータアシスト走行への移行制御が開始された時間である。図11の実線は、モータ走行時にエンジン10が停止状態の場合で、時間t2でエンジン10の始動制御が開始される。図11の一点鎖線は、暖機等によりモータ走行時において既にエンジン10が運転状態とされている場合である。また、図11の破線は、図8において点線の矢印cdに示すように要求出力トルクTOUTが変化し、エンジン10が停止状態のモータ走行のまま3→2ダウンシフトの変速指令が出力された場合で、第2モータジェネレータMG2のトルク(MG2トルク)や回転速度(MG2回転速度)、入力トルクの大きさは、厳密には実線および一点鎖線の場合と相違する。
図10のステップS2では、暖機等のためにエンジン10が既に運転中か否かを判断し、エンジン運転中の場合はステップS3を実行する。このステップS3では、予め定められたエンジン運転時の油圧指令値に従って変速油圧、すなわち変速に関与する摩擦係合装置の係合側油圧および解放側油圧を制御する。ステップS2の判断がNO(否定)の場合、すなわちエンジン運転中でない場合は、ステップS4でエンジン始動制御を実行中か否かを判断し、エンジン始動制御中の場合はステップS5を実行する。ステップS5では、予め定められたエンジン始動制御時の油圧指令値に従って変速油圧、すなわち変速に関与する摩擦係合装置の係合側油圧および解放側油圧を制御する。また、ステップS4の判断がNO(否定)の場合、すなわちエンジン運転中でも始動制御中でもないエンジン停止時の場合は、ステップS6を実行し、予め定められたエンジン停止時の油圧指令値に従って変速油圧、すなわち変速に関与する摩擦係合装置の係合側油圧および解放側油圧を制御する。
上記ステップS3、S5、またはS6で設定される解放側油圧および係合側油圧の油圧指令値の油圧値や油圧の変化パターンは、エンジン10の運転状態に応じて入力トルクの変化を先読み(予測)し、且つ油圧制御の応答遅れを考慮して予め設定されている。例えば、ステップS3で設定されるエンジン運転時の場合、図11に一点鎖線で示されるようにモータ走行からエンジン+モータアシスト走行への移行に伴ってエンジン回転速度NEが速やかに上昇させられ、入力トルクが速やかに増大するため、自動変速部20の入力側の回転速度であるMG2回転速度NMG2の吹き上がりを防止する必要があり、エンジン始動制御時(実線)やエンジン停止時(破線)に比べて解放側油圧が高く設定されるとともに、タイアップ(同時係合)によるロック現象を防止するために係合側油圧が低く設定される。また、自動変速部20の入力側回転速度、すなわち伝達部材18の回転速度(MG2回転速度NMG2)が上昇するイナーシャ相が始まったら(時間t4)、その回転上昇に伴って解放側油圧を徐々に低下させることにより、入力側回転速度(MG2回転速度NMG2)の吹き上がりを防止しつつ変速を速やかに進行させ、その入力側回転速度(MG2回転速度NMG2)が変速後ギヤ段の同期回転速度付近に達したら(時間t7)、係合側油圧を増大させて係合側摩擦係合装置を完全係合させるとともに、解放側油圧を0として解放側摩擦係合装置を解放することにより変速制御を終了する。
ステップS5で設定されるエンジン始動制御時の場合は、図11に実線で示されるようにエンジン10が始動(運転開始)するまではMG2トルクのみが作用し、最大出力による等パワー変速が行われるため、イナーシャ相が始まってMG2回転速度NMG2が上昇するとMG2トルク、更には入力トルクが低下する一方、エンジン10が完爆して自力回転するようになると入力トルクが急に増大する。このため、基本的には前記エンジン運転時(一点鎖線)よりも解放側油圧は低く設定され、係合側油圧は高く設定されるが、エンジン始動に伴う運転開始(自力回転の開始)による入力トルクの急な上昇に備えて、エンジン停止時(破線)に比べて解放側油圧を高く設定する。また、イナーシャ相が始まって入力側回転速度(MG2回転速度NMG2)が上昇するとMG2トルク、更には入力トルクが低下するため、その入力側回転速度(MG2回転速度NMG2)が所定の変化率で上昇するように解放側油圧を低下させるとともに、エンジン10が完爆して自力回転するようになると入力トルクが急に増大するため、入力側回転速度(MG2回転速度NMG2)の吹き上がりを防止するためにエンジン10の完爆を予測して解放側油圧を増大させるように油圧指令値を変更する。エンジン10の完爆(時間t6)は、エンジン回転速度NE或いは始動制御開始時(時間t2)からの経過時間から予測することが可能で、その完爆予測時間よりも油圧制御の応答遅れを考慮して予め定められた所定時間T1だけ早い時間t5で解放側油圧の油圧指令値を上昇させる。この所定時間T1は一定の時間であっても良いが、アクセル操作量Accやスロットル弁開度θTH、或いはエンジン冷却水温等をパラメータとして設定されても良い。その後、入力側回転速度(MG2回転速度NMG2)が変速後ギヤ段の同期回転速度付近に達したら(時間t7)、係合側油圧を増大させて係合側摩擦係合装置を完全係合させるとともに、解放側油圧を0として解放側摩擦係合装置を解放することにより変速制御を終了する。なお、エンジン10の始動制御が開始される時間t2以後は、第2モータジェネレータMG2は最大出力に保持されるが、実線で示すエンジン始動時の反力トルク分については別個に上乗せできるように予め定められている。
ステップS6で設定されるエンジン停止時の場合は、MG2トルクのみが作用するとともに本実施例では等パワー変速が行われるため、図11に破線で示されるように、イナーシャ相が始まって入力側回転速度(MG2回転速度NMG2)が上昇するとMG2トルク、更には入力トルクが低下する。このため、解放側油圧については、前記エンジン運転時(一点鎖線)は勿論エンジン始動制御時(実線)よりも低い油圧が設定され、イナーシャ相が始まったら(時間t4)、入力側回転速度(MG2回転速度NMG2)が所定の変化率で上昇するように解放側油圧を低下させるとともに、アクセル操作量Acc等に応じて求められる変速後の入力トルクを予測して油圧値が制御される。また、係合側油圧については、前記エンジン運転時(一点鎖線)よりも高く、前記エンジン始動制御時(実線)と同程度の油圧に設定される。そして、入力側回転速度(MG2回転速度NMG2)が変速後ギヤ段の同期回転速度付近に達したら(時間t7)、係合側油圧を増大させて係合側摩擦係合装置を完全係合させるとともに、解放側油圧を0として解放側摩擦係合装置を解放することにより変速制御を終了する。
このように本実施例の動力伝達装置8は、自動変速部20の変速が行われる際に、エンジン10の運転状態すなわちエンジン運転時かエンジン始動制御中かエンジン停止時かに応じて、変速に関与する油圧式摩擦係合装置(クラッチC、ブレーキB)の油圧指令値が設定され、その際にエンジン10の運転状態に基づいて入力トルクの変化を先読み(予測)して油圧設定が行われるため、第2モータジェネレータMG2およびエンジン10の運転状態の変化と自動変速部20の変速とが重複した場合でも、そのエンジン10の運転状態の変化に拘らず且つ油圧制御の応答遅れに拘らず、自動変速部20の変速制御(油圧制御)を常に適切に行うことができるようになり、変速ショックを抑制しつつ所望の要求駆動力が速やかに得られるようになる。
具体的には、第2モータジェネレータMG2のみを駆動力源とするモータ走行中の自動変速部20のダウンシフト時に、図11に実線で示すようにエンジン10の始動制御が行われる場合は、そのエンジン10が既に運転中の場合(図11では一点鎖線)に比べて解放側油圧を低く設定するとともに係合側油圧を高く設定するため、エンジン10の始動で運転(自力回転)が開始して入力トルクが上昇するまでの時間が長い場合でも第2モータジェネレータMG2のトルク(MG2トルク)によって入力側回転速度(MG2回転速度NMG2)が速やかに上昇させられ、変速が速やかに進行するとともに、係合側油圧が高く設定されることによりエンジン始動後の入力側回転速度(MG2回転速度NMG2)の吹き上がりを適切に防止できる。エンジン10が既に運転中の場合は入力トルクが速やかに上昇させられるが、解放側油圧が高いため入力側回転速度(MG2回転速度NMG2)の吹き上がりを抑制しつつ徐々に上昇させることができるとともに、変速後ギヤ段の同期回転速度付近に達した段階で比較的低圧の係合側油圧を増大させて係合させることにより変速を適切に行うことができる。すなわち、エンジン10が既に運転中の場合と始動制御中とではエンジン10の始動タイミング、更には入力トルクの立ち上がりのタイミングが異なるため、同じ油圧制御では変速時間が長くなったり吹き上がり等の変速ショックが発生したりする恐れがあるが、本実施例ではエンジン運転中と始動制御中とで油圧設定が変更されることにより、変速ショックを抑制しつつ適切に変速制御が行われて所望の要求駆動力が速やかに得られるようになるのである。
また、エンジン10の始動制御が行われる場合(図11では実線)に、エンジン10の運転開始による入力トルクの増大が予測される時間(時間t6)よりも所定時間T1だけ前に解放側油圧の油圧指令値が増大されるため、入力トルクの急な増大や油圧制御の応答遅れに拘らず入力側回転速度(MG2回転速度NMG2)の吹き上がりを適切に防止することができる。
また、エンジン10の始動制御が行われる場合(図11では実線)は、そのエンジン10の始動が行われない場合(図11では破線)に比べて、自動変速部20の解放側油圧が高く設定されるため、エンジン10の運転開始により入力トルクが上昇した際の入力側回転速度(MG2回転速度NMG2)の吹き上がりを適切に防止できる。エンジン10の始動が行われない場合には、変速に伴う入力側回転速度(MG2回転速度NMG2)の上昇で第2モータジェネレータMG2のトルク(MG2トルク)が低下するが、解放側油圧が低いことからそのMG2トルクによって入力側回転速度(MG2回転速度NMG2)が速やかに上昇させられ、変速が速やかに行われる。本実施例では等パワー変速が行われ、イナーシャ相では入力側回転速度(MG2回転速度NMG2)の上昇に伴ってMG2トルク、更には入力トルクが低下するが、その入力トルクの低下を見込んで解放側油圧が低下させられるため、変速制御(油圧制御)が一層適切に行われて変速が速やかに実行される。
また、本実施例では自動変速部20を変速するための変速指令が出力された時(時間t3)にエンジン10の運転状態を判定し、その判定結果に応じて入力トルクの変化を先読み(予測)するなどして油圧指令値が設定されるため、変速制御の開始当初からエンジン10の運転状態に応じて変速油圧が適切に制御され、変速ショックを抑制しつつ速やかに変速を行うことができる。
また、変速指令の出力時にエンジン10の運転状態を判定してステップS3、S5、またはS6で油圧設定を行った後は、その後にエンジン10の運転状態が変化しても一旦定められた油圧設定に従って変速制御(油圧制御)が行われるため、途中で油圧の設定を変更する場合に比較して油圧制御の応答遅れによる変速ショック等の発生が防止される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することが可能で、以下に幾つか例示する。
例えば、前記実施例では変速指令が出力された時点でエンジン10の運転状態を判定するようになっていたが、イナーシャ相の開始が検出された時点(図11の時間t4)でエンジン10の運転状態を判定し、その判定結果に応じて入力トルクの変化を先読み(予測)するなどして油圧設定を変更することも可能である。その場合は、例えば変速出力(時間t3)の後にエンジン10の始動制御が開始された場合にも、そのエンジン10の運転状態に応じて油圧設定が変更されるようになり、変速制御を適切に行うことができる。変速出力からイナーシャ相開始までは、例えば従来と同様に入力トルクに基づいて係合側および解放側の油圧制御を行えば良い。
また、前記実施例の第2モータジェネレータMG2は、伝達部材18に直接連結されているが、変速機等を介して間接的に連結されていてもよい。
また、前記実施例の電気式差動部16は、そのギヤ比γ0が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば電気式差動部16の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであっても本発明は適用することができる。
また、前記実施例の電気式差動部16において、クラッチやブレーキを設けて差動作用を制限することにより有段変速機として機能させることもできる。例えばクラッチにより2つの回転要素を連結して一体回転させる直結状態と、ブレーキにより第1サンギヤS1をケース12に連結して第1リングギヤR1を増速回転させるOD状態とから成る前進2段の有段変速機を構成することができる。
また、前記実施例の電気式差動部16は、第1キャリヤCA1がエンジン10に連結され、第1サンギヤS1が第1モータジェネレータMG1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン10、第1モータジェネレータMG1、伝達部材18は、第1遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。
また、前記実施例では、エンジン10は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前記実施例では、第1モータジェネレータMG1および第2モータジェネレータMG2は入力軸14に同心に配置され、第1モータジェネレータMG1は第1サンギヤS1に連結され、第2モータジェネレータMG2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1モータジェネレータMG1は第1サンギヤS1に連結され、第2モータジェネレータMG2は伝達部材18に連結されていてもよい。
また、前記実施例では、自動変速部20は伝達部材18を介して電気式差動部16と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、電気式差動部16と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前記実施例の電気式差動部16は、1組の遊星歯車装置から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、その遊星歯車装置はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン10、第1および第2モータジェネレータMG1、MG2、伝達部材18が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっても構わない。
また、前記実施例ではエンジン10と電気式差動部16とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン10と電気式差動部16との間に動力伝達を接続遮断するクラッチが介在されてもよい。
本発明が好適に適用されるハイブリッド車両用の動力伝達装置を説明する骨子図である。 図1の動力伝達装置が備えている自動変速部の複数のギヤ段とそのギヤ段を成立させるための摩擦係合装置との関係を説明する作動表である。 図1の動力伝達装置における電気式差動部および自動変速部の各回転要素の相対回転速度を説明する共線図である。 図1の動力伝達装置が備えている電子制御装置の入出力信号の一例を説明する図である。 図1の動力伝達装置が備えている自動変速部の油圧式摩擦係合装置を係合解放制御するリニアソレノイドバルブ等の油圧回路図である。 図1の動力伝達装置に設けられたシフト操作装置の一例を説明する図である。 図4の電子制御装置によって実行される制御機能の要部を説明する機能ブロック線図である。 自動変速部の変速制御で用いられる変速マップの一例と併せて、エンジン走行とモータ走行とを切り換える駆動力源切換制御で用いられる駆動力源マップの一例を示す図である。 図1の動力伝達装置が備えているエンジンの燃費マップの一例である。 図7のエンジン状態判定手段および変速油圧設定手段によって実行される信号処理の内容を具体的に説明するフローチャートである。 変速時に図10のフローチャートに従って信号処理が行われた場合の各部のトルクや回転速度等の変化を、エンジンの運転状態に応じて実線、点線、破線で示すタイムチャートの一例である。
符号の説明
8:動力伝達装置 10:エンジン 20:自動変速部(変速部) 80:電子制御装置 90:有段変速制御手段 92:エンジン状態判定手段 94:変速油圧設定手段 MG1:第1モータジェネレータ MG2:第2モータジェネレータ(電動機) B1〜B3:ブレーキ(摩擦係合装置) C1、C2:クラッチ(摩擦係合装置) t3:変速出力時 t4:イナーシャ相開始時 T1:所定時間

Claims (5)

  1. エンジンおよび電動機を駆動力源として備えているとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部が前記駆動力源の下流側に配設されている動力伝達装置において、
    前記電動機のみを駆動力源とするモータ走行中の前記変速部のダウンシフト時に前記エンジンの始動が行われるエンジン始動制御中の場合は、該モータ走行中の該ダウンシフト時に前記エンジンが既に運転中の場合に比べて、前記変速部の変速に関与する解放側の摩擦係合装置のトルク伝達容量を低く設定するとともに、係合側の摩擦係合装置のトルク伝達容量を高く設定する
    ことを特徴とする動力伝達装置の制御装置。
  2. 前記エンジンの始動による運転開始で入力トルクの増大が予測される所定時間前に、前記解放側のトルク伝達容量を増大させるための指令を出力する
    ことを特徴とする請求項に記載の動力伝達装置の制御装置。
  3. 前記モータ走行中の前記ダウンシフト時に前記エンジン始動制御中の場合は、該モータ走行中の該ダウンシフト時に前記エンジンが停止しているエンジン停止時で且つ該エンジンの始動が行われない場合に比べて、前記変速部の前記解放側の摩擦係合装置のトルク伝達容量を高く設定する
    ことを特徴とする請求項1または2に記載の動力伝達装置の制御装置。
  4. エンジンおよび電動機を駆動力源として備えているとともに、摩擦係合装置によって変速比が異なる複数のギヤ段が成立させられる変速部が前記駆動力源の下流側に配設されている動力伝達装置において、
    前記電動機のみを駆動力源とするモータ走行中の前記変速部のダウンシフト時に前記エンジンの始動が行われるエンジン始動制御中の場合は、該モータ走行中の該ダウンシフト時に前記エンジンが停止しているエンジン停止時で且つ該エンジンの始動が行われない場合に比べて、前記変速部の変速に関与する解放側の摩擦係合装置のトルク伝達容量を高く設定する
    ことを特徴とする動力伝達装置の制御装置。
  5. 前記変速部を変速するための変速出力時または該変速に伴うイナーシャ相開始時に前記エンジンの運転状態を判定する
    ことを特徴とする請求項1〜4の何れか1項に記載の動力伝達装置の制御装置。
JP2008296081A 2008-11-19 2008-11-19 動力伝達装置の制御装置 Expired - Fee Related JP4554702B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008296081A JP4554702B2 (ja) 2008-11-19 2008-11-19 動力伝達装置の制御装置
US12/588,879 US8591378B2 (en) 2008-11-19 2009-10-30 Controller for power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296081A JP4554702B2 (ja) 2008-11-19 2008-11-19 動力伝達装置の制御装置

Publications (2)

Publication Number Publication Date
JP2010120517A JP2010120517A (ja) 2010-06-03
JP4554702B2 true JP4554702B2 (ja) 2010-09-29

Family

ID=42172492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296081A Expired - Fee Related JP4554702B2 (ja) 2008-11-19 2008-11-19 動力伝達装置の制御装置

Country Status (2)

Country Link
US (1) US8591378B2 (ja)
JP (1) JP4554702B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841433B2 (en) * 2007-06-20 2010-11-30 Ford Global Technologies, Llc Negative driveline torque control incorporating transmission state selection for a hybrid vehicle
JP5015670B2 (ja) * 2007-06-20 2012-08-29 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5207080B2 (ja) * 2009-10-30 2013-06-12 アイシン・エィ・ダブリュ株式会社 車両用制御装置
CN102114766B (zh) * 2009-12-31 2014-03-19 比亚迪股份有限公司 一种混合动力驱动系统及其驱动方法
ES2400344T3 (es) * 2010-03-25 2013-04-09 Iveco S.P.A. Método para accionamiento de la función de parada y arranque en un vehículo en movimiento, en especial un vehículo industrial o comercial o especial
JP5213914B2 (ja) * 2010-06-15 2013-06-19 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5435304B2 (ja) * 2011-03-25 2014-03-05 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
DE102011007260A1 (de) * 2011-04-13 2012-10-18 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung mit wenigstens einer elektrischen Maschine
KR101294054B1 (ko) * 2011-06-01 2013-08-07 현대자동차주식회사 하이브리드 차량의 연료 차단 방법
DE102011078670A1 (de) * 2011-07-05 2013-01-10 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridantriebsstrangs eines Fahrzeugs
KR101713708B1 (ko) * 2011-12-12 2017-03-09 현대자동차주식회사 하이브리드 차량의 제어방법
US8897946B2 (en) 2011-12-14 2014-11-25 Hyundai Motor Company Control method of hybrid vehicle
KR20130067865A (ko) * 2011-12-14 2013-06-25 현대자동차주식회사 하이브리드 차량의 제어방법
WO2013132534A1 (ja) * 2012-03-07 2013-09-12 トヨタ自動車株式会社 車両の制御装置
JP5874464B2 (ja) * 2012-03-16 2016-03-02 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6019732B2 (ja) * 2012-05-15 2016-11-02 三菱自動車工業株式会社 ハイブリッド自動車の制御装置
KR101896311B1 (ko) * 2012-09-20 2018-09-07 현대자동차 주식회사 변속기의 제어방법 및 이를 수행하는 변속시스템
EP2905192B1 (en) * 2012-10-04 2017-03-01 Nissan Motor Company, Limited Startup control device for hybrid vehicle
WO2014083705A1 (ja) * 2012-11-30 2014-06-05 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP2014184804A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP6036537B2 (ja) * 2013-05-15 2016-11-30 株式会社デンソー 回転位置検出装置
TWI697418B (zh) * 2014-12-31 2020-07-01 蔡文田 電動車輛排檔控制方法及裝置
US9944269B2 (en) * 2015-04-14 2018-04-17 Ford Global Technologies, Llc Input torque trim for transmission shift control during regenerative braking
KR101714521B1 (ko) * 2015-11-06 2017-03-22 현대자동차주식회사 하이브리드 자동차 및 그를 위한 효율적인 변속 제어 방법
CN106915239B (zh) * 2015-12-25 2020-06-19 比亚迪股份有限公司 动力驱动系统及具有该动力驱动系统的车辆
JP6443692B2 (ja) * 2016-02-23 2018-12-26 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP6414571B2 (ja) 2016-07-25 2018-10-31 トヨタ自動車株式会社 自動変速機の制御装置
US10576837B2 (en) * 2018-07-11 2020-03-03 GM Global Technology Operations LLC Electrical drive unit
DE102018215552A1 (de) * 2018-09-12 2020-03-12 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines automatischen Hybrid-Getriebes eines Kraftfahrzeugs, insbesondere eines DHT-Getriebes bzw. Hybrid-Getriebe für ein Kraftfahrzeug, insbesondere DHT-Getriebe, arbeitend nach dem zuvor genannten Verfahren
JP2020063815A (ja) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179242A (ja) * 2007-01-24 2008-08-07 Nissan Motor Co Ltd ハイブリッド車両の変速時モード切り替え制御装置
JP2008201229A (ja) * 2007-02-19 2008-09-04 Toyota Motor Corp 車両用駆動装置の制御装置
JP2008213686A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 車両用駆動装置の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277806B2 (ja) 2005-02-02 2009-06-10 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4234710B2 (ja) 2005-10-26 2009-03-04 トヨタ自動車株式会社 電動車両駆動制御装置及びその制御方法
JP5371200B2 (ja) * 2006-05-24 2013-12-18 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
JP2008137619A (ja) 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
JP5015670B2 (ja) * 2007-06-20 2012-08-29 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179242A (ja) * 2007-01-24 2008-08-07 Nissan Motor Co Ltd ハイブリッド車両の変速時モード切り替え制御装置
JP2008201229A (ja) * 2007-02-19 2008-09-04 Toyota Motor Corp 車両用駆動装置の制御装置
JP2008213686A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 車両用駆動装置の制御装置

Also Published As

Publication number Publication date
US8591378B2 (en) 2013-11-26
US20100125021A1 (en) 2010-05-20
JP2010120517A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
JP4554702B2 (ja) 動力伝達装置の制御装置
JP5015670B2 (ja) 車両用動力伝達装置の制御装置
JP5092540B2 (ja) 車両用動力伝達装置の制御装置
JP5210826B2 (ja) 車両用動力伝達装置
JP5018445B2 (ja) 車両用動力伝達装置の制御装置
JP4973165B2 (ja) 車両用駆動装置の制御装置
JP5092569B2 (ja) 車両の動力伝達装置の制御装置
JP4501925B2 (ja) 車両用駆動装置の制御装置
JP4470938B2 (ja) 車両用駆動装置の制御装置
JPWO2008132893A1 (ja) 車両用動力伝達装置の制御装置
JP4930261B2 (ja) 車両用動力伝達装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP2008174159A (ja) ハイブリッド車両の制御装置
JP2009298175A (ja) 車両用動力伝達装置の制御装置
JP2008265577A (ja) ハイブリッド車両のエンジン始動制御装置
JP2008290555A (ja) 車両用駆動装置の制御装置
JP5076654B2 (ja) 車両用動力伝達装置の制御装置
JP2008296610A (ja) 車両用動力伝達装置の制御装置
JP2010215189A (ja) 車両用駆動装置
JP4483879B2 (ja) 車両用駆動装置の制御装置
JP5018452B2 (ja) 車両用動力伝達装置の制御装置
JP2008273408A (ja) 車両用動力伝達装置の制御装置
JP4561760B2 (ja) 車両用駆動装置の制御装置
JP2009280177A (ja) 車両用動力伝達装置の制御装置
JP4992454B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4554702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees