JP4544387B2 - セラミックコンデンサ及びその製造方法 - Google Patents

セラミックコンデンサ及びその製造方法 Download PDF

Info

Publication number
JP4544387B2
JP4544387B2 JP2001029694A JP2001029694A JP4544387B2 JP 4544387 B2 JP4544387 B2 JP 4544387B2 JP 2001029694 A JP2001029694 A JP 2001029694A JP 2001029694 A JP2001029694 A JP 2001029694A JP 4544387 B2 JP4544387 B2 JP 4544387B2
Authority
JP
Japan
Prior art keywords
film
ceramic capacitor
terminal
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001029694A
Other languages
English (en)
Other versions
JP2002231569A (ja
Inventor
克彦 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001029694A priority Critical patent/JP4544387B2/ja
Publication of JP2002231569A publication Critical patent/JP2002231569A/ja
Application granted granted Critical
Publication of JP4544387B2 publication Critical patent/JP4544387B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックコンデンサ及びその製造方法に関する。本発明に係るセラミックコンデンサは、主に、スイッチング電源用の平滑用コンデンサとして用いるのに適する。
【0002】
【従来の技術】
これまで、スイッチング電源用の平滑用コンデンサとしては、アルミ電解コンデンサが主流であった。しかしながら、小型化、信頼性向上等の市場要求が強まり、これに対応すべく、小型で高信頼性のセラミックコンデンサの要求が高まっている。
【0003】
一般に、電源周辺は高熱を発するため、基板は放熱性の良いアルミニウム基板が用いられる。しかしながら、電源周辺では、電源のオン/オフによる温度変化が大きく、熱膨張率の大きなアルミニウム基板上に実装したセラミックコンデンサには大きな熱応力が発生する。この熱応力は、セラミックコンデンサにクラックを発生させ、ショート不良や、発火等のトラブルを発生させる原因となる。
【0004】
発火等のトラブルを無くするためには、セラミックコンデンサに発生する熱応力を緩和することが重要である。熱応力を緩和する手段として、実公平5−46258号公報、特開平4−171911号公報および特開平4−259205号公報等は、セラミックコンデンサの端子電極に金属板をはんだ付けし、金属板をアルミニウム基板上に実装することにより、セラミックコンデンサがアルミニウム基板に直接はんだ付されるのを防ぐ構造を開示している。
【0005】
ところが、この種のセラミックコンデンサにおいても、小型化の要求から、はんだ接合面積の狭小化が急速に進展しつつあり、現段階でも、既に、十分な合金接合強度を確保することが困難になっている。
【0006】
また、この種のセラミックコンデンサは、セラミックコンデンサ素子の端子電極に金属端子をはんだ付け(通炉)した後、回路基板等に搭載し、再び通炉する。従って、回路基板へのはんだ付けに当たっては、端子電極と金属端子とをはんだ付けする高温はんだよりも低い融点を持つ低温はんだを用いてはんだ付けする必要がある。従来、はんだの融点はPbの含有量によって調整するのが一般的であった。
【0007】
ところが、地球環境保全の立場から、Pbを含有しないはんだ(Pbフリーはんだ)が要求され、そのようなはんだ組成の開発が盛んに行われている。しかし、Pbフリーはんだで、従来の高温はんだに匹敵する高温融点のはんだ組成は、現在のところ、実用化されていない。
【0008】
このため、セラミックコンデンサ素子の端子電極及び金属端子の間のはんだ付けに用いられるはんだと、回路基板への実装時に用いられるはんだとの間の融点差を十分にとることができず、セラミックコンデンサを回路基板上に実装する際、セラミックコンデンサが浮動し、または脱落する等の不具合が生じる。
【0009】
【発明が解決しようとする課題】
本発明の課題は、セラミックコンデンサ素子の端子電極及び金属端子を、十分な接合強度をもって接合し得るセラミックコンデンサを提供することである。
【0010】
本発明のもう一つの課題は、リフロー時の浮動または脱落等の不具合を確実に阻止し得るセラミックコンデンサを提供することである。
【0011】
本発明の更にもう一つの課題は、Pbフリーを実現したセラミックコンデンサを提供することである。
【0012】
本発明の更にもう一つの課題は、上述したセラミックコンデンサの製造に適した方法を提供することである。
【0013】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係るセラミックコンデンサは、少なくとも1つのセラミックコンデンサ素子と、少なくとも一対の金属端子とを含む。前記セラミックコンデンサ素子は、相対する両側端面に端子電極を有しており、前記金属端子のそれぞれは、前記端子電極の一つに、合金接合によって接続されている。
【0014】
上述したように、金属端子のそれぞれは、コンデンサ素子の端子電極の一つに、合金接合によって接続されているから、金属端子とコンデンサ素子の端子電極との間に、セラミックコンデンサを回路基板上にはんだ付けするときのリフロー温度よりも、著しく高融点の合金接合が形成される。このため、リフロー時に、セラミックコンデンサが回路基板上で浮動したり、あるいは脱落する等の不具合を回避することができる。
【0015】
しかも、合金接合であるので、Pb含有の高温はんだを用いる必要がなくなる。即ち、Pbフリーが実現できる。
【0016】
前記合金接合は、典型的には、Ag−Cu合金による。金属端子とセラミックコンデンサ素子との間に、Ag−Cu合金接合を生じさせる具体的方法として、金属端子の最外側層にAg膜を形成し、コンデンサ素子の端子電極の表面にCu膜を形成する。そして、前記金属端子の前記Ag膜と、前記コンデンサ素子の前記端子電極のCu膜とを接触させた状態で熱処理を行い、前記Ag膜及び前記Cu膜によるAg−Cu合金接合を生じさせる。Ag−Cu合金の共晶温度は、779℃であるから、セラミックコンデンサを回路基板に実装する際のはんだ共晶温度、例えば183℃よりも著しく高い。このため、リフロー時に、セラミックコンデンサが回路基板上で浮動したり、あるいは脱落する等の不具合を回避することができる。また、合金接合であるので、Pb含有の高温はんだを用いる必要がなくなり、Pbフリーが実現できる。
【0017】
別の方法として、前記金属端子の最外側層にCu膜を形成し、前記コンデンサ素子の前記端子電極の表面にAg膜を形成する。そして、前記金属端子の前記Cu膜と、前記コンデンサ素子の前記端子電極のAg膜とを接触させた状態で熱処理を行い、前記Ag膜及び前記Cu膜によるAg−Cu合金接合を生じさせる。
何れの場合も、前記熱処理は中性雰囲気または還元性雰囲気中で行う。
【0018】
Ag膜及びCu膜によるAg−Cu合金接合の他、Au膜及びCu膜によるAu−Cu合金接合も有効である。
【0019】
本発明に係るセラミックコンデンサにおいて、好ましくは、少なくとも一対備えられる金属端子のそれぞれは、中間部に曲げ部を有し、曲げ部は鋭角に折り曲げられ、前記曲げ部より先の部分が前記端子電極に接続される。
【0020】
かかる構造の金属端子は、曲げ部が一種のスプリング作用を奏する。このため、基板の撓みおよび熱膨張を、確実に吸収し、セラミックコンデンサ素子に生じる機械的応力および熱応力を低減し、セラミックコンデンサ素子にクラックが発生するのを阻止することができる。従って、アルミニウム基板に実装されることの多いスイッチング電源用平滑コンデンサとして用いた場合でも、クラックの発生、それに起因する発火の危険を回避することができる。
【0021】
本発明の他の目的、構成及び利点については、添付図面を参照し、更に具体的に説明する。添付図面は単に例を示すに過ぎない。
【0022】
【発明の実施の形態】
図1は本発明に係るセラミックコンデンサの正面部分断面図、図2は図1に示したセラミックコンデンサの正面断面図である。図1及び図2に図示されたセラミックコンデンサは、1つのセラミックコンデンサ素子1と、一対の金属端子2、3とを含む。セラミックコンデンサ素子1は、長さ方向において相対する両側端面に端子電極11、12を有する。
【0023】
金属端子2は、中間部に曲げ部22を有し、曲げ部22の先の一端21が端子電極11に接続され、曲げ部22の後方に、外部と接続される端子部23を有する。金属端子3も、中間部に曲げ部32を有し、曲げ部32の一端31が端子電極12に接続され、曲げ部32の後方に外部と接続される端子部33を有する。
【0024】
金属端子2は、端子電極11に、合金接合4によって接続され、金属端子3は端子電極12に合金接合5によって接続されている。より具体的には、図3に拡大して示すように、金属端子2、3の表面に形成したAg膜41、51と、セラミックコンデンサ素子1の端子電極11、12に形成したCu膜42、52との間にAg−Cu合金接合4、5を生じさせる。図示では、Ag膜41とCu膜42、及び、Ag膜51とCu膜52とは、境界が明確に分離されているが、これは、説明の便宜のためであって、Ag−Cu合金として見た場合、明確な境界がある訳ではなく、成分分析的に見て、Ag成分の豊富(リッチ)な領域、共晶領域及びCu成分の豊富な領域等が存在するだけである。この点は、他の図示でも同様である。Ag膜及びCu膜によるAg−Cu合金接合の他、Au膜及びCu膜によるAu−Cu合金接合も有効であることは前述した通りである。
【0025】
図3において、金属端子2、3は、基体200の表面に、めっきによるAg膜41、51を付着させてある。基体200とAg膜41、51との間に、例えば、Niめっき膜等の他の金属膜を設けてもよい。基体200は、電気抵抗が低く、しかもバネ性に優れた材料によって構成することが好ましい。例えば、Feが55〜70wt%で、Niが30〜45wt%の合金、更に詳しくは、アンバー(Fe−Ni合金)、42アロイ(登録商標)(Fe58wt%、Ni42wt%)等がある。更に、Ru、ニモニック80(登録商標)、Pt、Pd、チタン、炭素銅等を用いることもできる。板厚は、限定するものではないが、代表的には0.1mm程度である。
【0026】
図4は図1及び図2に示したセラミックコンデンサを回路基板上に実装した時の状態を示す部分断面図である。セラミックコンデンサは、回路基板70の上に搭載されている。回路基板70の表面には導体パターン71、72が設けられている。セラミックコンデンサに備えられた金属端子2の端子部23がはんだ81によって導体パターン71にはんだ付けされ、金属端子3の端子部33がはんだ82によって導体パターン72にはんだ付けされている。
【0027】
本発明に係るセラミックコンデンサにおいて、金属端子2、3は、コンデンサ素子1の端子電極11、12の一つに、合金接合4、5によって接続されているから、金属端子2、3と、コンデンサ素子1の端子電極11、12との間に、はんだ81、82のリフロー温度よりも、著しく高融点の合金接合4、5が形成される。実施例に示すように、合金接合4、5をAg−Cu合金とした場合、AgーCu合金の共晶温度は、779℃であるから、セラミックコンデンサを回路基板70に実装する際のはんだ共晶温度、例えば183℃よりも、著しく高い。このため、リフロー時に、セラミックコンデンサが回路基板70上で浮動したり、あるいは脱落する等の不具合を回避することができる。また、合金接合4、5であるので、Pb含有の高温はんだを用いる必要がなくなり、Pbフリーが実現できる。
【0028】
Ag−Cu合金による合金接合4、5を生じさせる具体的方法として、金属端子2、3の最外側層にAg膜41、51を形成し、コンデンサ素子1の端子電極11、12の表面にCu膜42、52を形成する。Ag膜41、51は、めっきによって形成し、Cu膜42、52はCuペーストを塗布することによって形成することができる。
【0029】
そして、金属端子2、3のAg膜41、51と、コンデンサ素子1の端子電極11、12のCu膜42、52とを、Cuペーストの粘着力または接着力を利用して接触させ、この状態で熱処理を行い、Ag膜41、51及びCu膜42、52によるAg−Cu合金接合4、5を生じさせる。熱処理は中性雰囲気または還元性雰囲気中で行う。
【0030】
別の方法として、金属端子2、3の最外側層にCu膜を形成し、コンデンサ素子1の端子電極11、12の表面にAg膜を形成する。そして、金属端子2、3の前記Cu膜と、コンデンサ素子1の端子電極11、12のAg膜とを接触させた状態で熱処理を行い、Ag膜及びCu膜によるAgーCu合金接合4、5を生じさせる。熱処理は中性雰囲気または還元性雰囲気中で行う。
次に、実施例及び比較例を挙げて説明する。
【0031】
<実施例>
図1、2に図示したセラミックコンデンサにおいて、Ag−Cu合金接合4、5により、金属端子2、3をセラミックコンデンサ素子1の端子電極11、12に接合した。上述したコンデンサを用いて、荷重による落下試験を行った。荷重は5g、10g、15g及び20gとした。各荷重毎に30個のサンプルNo.1〜30、31〜60、61〜90、91〜120を用意した。落下試験結果を表1に示す。
Figure 0004544387
【0032】
<比較例1>
図1、2において、セラミックコンデンサ素子1の端子電極11、12と金属端子2、3とを、Sn−3.5Agによってはんだ付けした。得られたサンプルについて、実施例と同様にして、落下試験を行った。各荷重毎に30個のサンプルNo.121〜150、151〜180、181〜210、211〜240を用意した。落下試験結果を表2に示す。
Figure 0004544387
【0033】
<比較例2>
図1、2において、セラミックコンデンサ素子1の端子電極11、12と金属端子2、3とを、Sn−5Sbによってはんだ付けした。得られたサンプルについて、実施例と同様にして、落下試験を行った。各荷重毎に30個のサンプルNo.241〜270、271〜300、301〜330、331〜360を用意した。落下試験結果を表3に示す。
Figure 0004544387
【0034】
表2に示すように、比較例1のサンプルNo.121〜240は、5gの荷重では落下はしないが、10g以上の荷重が加わると、落下するものが生じ、20gの荷重では、サンプル30個中、16個が落下した(落下率53.3%)。また、表3に示すように、比較例2のサンプルNo.241〜360は、5gの荷重では落下はしないが、10g以上の荷重が加わると、落下するものが生じ、20gの荷重では、サンプル30個中、13個が落下した(落下率43.3%)。
【0035】
これに対して、表1に示すように、本発明の実施例に属するサンプルNo.1〜120の全てが、20gの荷重を受けても、セラミックコンデンサ素子は落下しなかった。
【0036】
再び、図1及び図2を参照して説明する。セラミックコンデンサ素子1は、セラミック誘電体基体100の内部に多数(例えば100層)の内部電極101、102を有する。内部電極101は一端が端子電極11に接続され、他端が自由端になっている。内部電極102は一端が端子電極12に接続され、他端が自由端になっている。端子電極11、12、内部電極101、102およびセラミック誘電体基体100の構成材料およびその製造方法等は周知である。典型的な例では、セラミックコンデンサ素子1は、チタン酸バリウム系のセラミック誘電体の内部にNiまたはNi合金よりなる内部電極101、102を有し、セラミック誘電体の相対する両側端部にガラスフリットを含んだCuペーストの焼き付け電極でなる端子電極11、12を有する。
【0037】
好ましくは、内部電極101は、その自由端と端子電極12との間に、間隔△L1が生じるように形成する。内部電極102は、その自由端と端子電極11との間に、間隔△L2が生じるように形成する。間隔△L1および△L2は、自由端と端子電極11、12との間の最短距離で与えられる。具体的には、間隔△L1は、端子電極12の内、セラミック誘電体基体100の表面および裏面に付着されている垂れ部分121の先端からセラミック誘電体基体100の厚み方向に引かれた線分S11と、自由端の先端からセラミック誘電体基体100の厚み方向に引かれた線分S12との間の間隔として与えられる。
【0038】
間隔△L2は、端子電極11の内、セラミック誘電体基体100の表面および裏面に付着されている垂れ部分111の先端からセラミック誘電体基体100の厚み方向に引かれた線分S21と、自由端の先端からセラミック誘電体基体100の厚み方向に引かれた線分S22との間の間隔として与えられる。
【0039】
図2において、セラミックコンデンサ素子1は、内部電極101、102の電極面が水平面と平行となる横配置となっているが、図2の位置からセラミックコンデンサ素子1を約90度回転させて、内部電極101、102の電極面が水平面に対して垂直となる縦配置としてもよい。
【0040】
金属端子2、3のそれぞれは、一端21、31が、セラミックコンデンサ素子1の端子電極11、12に接続され、中間部に曲げ部22、32を有し、曲げ部22、32の先に外部と接続される端子部23、33を有する。
【0041】
かかる構造の金属端子2、3は、中間部に設けられた曲げ部22、32により、回路基板70の導体パターン72と接続される端子部23、33からセラミックコンデンサ素子1の端子電極11、12に接続された一端21、31までの長さが、中間部に設けられた曲げ部22、32により拡大される。
【0042】
しかも、曲げ部22、32が一種のスプリング作用を奏する。このため、回路基板70の撓みおよび熱膨張を、確実に吸収し、セラミックコンデンサ素子1に生じる機械的応力および熱応力を低減し、セラミックコンデンサ素子1にクラックが発生するのを阻止することができる。従って、アルミニウム回路基板70に実装されることの多いスイッチング電源用平滑コンデンサとして用いた場合でも、クラックの発生、それに起因する発火の危険を回避することができる。
【0043】
また、回路基板70の撓みおよび熱膨張を、金属端子2、3に設けた曲げ部22、32によって吸収し、セラミックコンデンサ素子1に機械的応力および熱応力を生じさせないようにするものであり、折り返しによって、高さ増大を回避することができる。このため、金属端子2、3について、高さを増大させずに、回路基板70側端子部23、33からセラミックコンデンサ素子1取り付け部までの長さを増大させ、回路基板70の撓みおよび熱膨張に対する吸収作用を改善し、セラミックコンデンサ素子1に発生する機械的応力、及び、熱応力を低減することができる。
【0044】
図1及び図2の実施例において、金属端子2、3は端子部23、33を有する。端子部23、33はセラミックコンデンサ素子1の下側に間隔をおいて配置されている。このような構造であると、端子部23、33による基板占有面積の増大を抑え、実装面積を最小にしたコンデンサを得ることができる。
【0045】
また、金属端子2の曲げ部22は、第1の曲げ部221と、第2の曲げ部222とを含んでいる。第1の曲げ部221では、斜め下方向に折り曲げられている。金属端子2は、先端部から第1の曲げ部221に至る部分が、端子電極11に接続されている。
【0046】
第2の曲げ部222において、端子部23がセラミックコンデンサ素子1に近付づく方向に折り曲げられている。金属端子2の端子部23は、セラミックコンデンサ素子1の下側に間隔G01をおいて配置されており、これにより、端子部23による基板占有面積の増大を抑え、実装面積を最小にしてある。
【0047】
同様に、金属端子3の曲げ部32は、第1の曲げ部321と、第2の曲げ部322とを含んでいる。第1の曲げ部321では、端面と平行する方向に折り曲げられている。金属端子3は、先端部から第1の曲げ部321に至る部分が、端子電極12に接続されている。第2の曲げ部322において、端子部33がセラミックコンデンサ素子1に近付づく方向に折り曲げられている。金属端子3の端子部33は、セラミックコンデンサ素子1の下側に間隔G02をおいて配置されており、これにより、端子部23による基板占有面積の増大を抑え、実装面積を最小にしてある。
【0048】
上記構造によれば、第1の曲げ部221、321、第2の曲げ部222、322から端子部23、33に至る部分が、スプリング作用を持つようになり、そのスプリング作用によって、基板の撓みおよび熱膨張を吸収することができる。
【0049】
更に、内部電極101の自由端と端子電極12との間に、間隔△L1を生じさせ、内部電極102の自由端と端子電極11との間に、間隔△L2を生じさせている構造の場合、クラックや、破壊等を生じ易い金属端子との接合界面付近に、内部電極101と内部電極102の重なりが存在しない。このため、クラックによるショート、および、それに起因する発火等を生じる危険性が激減する。
【0050】
本発明に係るセラミックコンデンサは、種々の態様をとることができる。その具体例を図5〜図10に示す。これらの図において、図1および図2に現れた構成部分と同一の構成部分には、同一の参照符号を付してある。
【0051】
まず、図5は本発明に係るセラミックコンデンサの更に別の実施例を示す正面部分図、図6は図5に示したセラミックコンデンサの正面断面図である。この実施例に示されたセラミックコンデンサでは、2個のセラミックコンデンサ素子110、120を備える。セラミックコンデンサ素子110、120は順次に積層され、端子電極11、12が、合金接合4、5によって、並列に接続されている。金属端子2、3の端子部23、33は、セラミックコンデンサ素子110、120の内、最下層に位置するセラミックコンデンサ素子120の下側に間隔G01、G02をおいて配置されており、これにより、端子部23、33による基板占有面積の増大を抑え、実装面積を最小にしてある。
【0052】
金属端子2、3の曲げ部22、32は、第1の曲げ部221、321と、第2の曲げ部222、322とを含む。金属端子2、3のそれぞれは、先端部から第1の曲げ部221、321に至る部分が、セラミックコンデンサ素子110、120の側端面に形成された端子電極11、12に接続されている。
【0053】
金属端子2、3と端子電極11、12とは合金接合4、5によって接合される。その詳細及び作用効果については、既に述べた通りである。
【0054】
図5および図6に示した実施例によれば、図1および図2を参照して説明した作用効果のほか、2つのセラミックコンデンサ素子110、120のそれぞれの静電容量値を加算した大きな静電容量が取得できる。
【0055】
図7は本発明に係るセラミックコンデンサの更に別の実施例を示す斜視図である。この実施例では、金属端子2、3は、曲げ部22、32の幅方向の中間部に、切り抜き部225、325を有する。このような切り抜き部225、325があると、金属端子2、3からセラミックコンデンサ素子110、120への熱伝導が低下するので、セラミックコンデンサ素子110、120における熱応力を緩和できる。また、金属端子2、3の剛性が低下するので、基板の撓みおよび熱膨張を吸収するのに適したスプリング作用を得ることができる金属端子2、3と端子電極11、12が合金接合4、5によって接合されることは、既に述べた通りである。
【0056】
図8は本発明に係るセラミックコンデンサの別の実施例を示す斜視図である。
この実施例では、金属端子2は、抜き部24を有する。抜き部は、端子電極11を取り付けた取り付け部に向き合う。図示されていないが、金属端子3も、同様に、抜き部34を有する。抜き部34は、端子電極12を取り付けた取り付け部に向き合う。
【0057】
上記構造であると、金属端子2、3を端子電極11、12に接続する作業において、金属端子2、3の抜き部24、34を通して、金属端子2、3の取り付け部を押さえ、端子電極11、12に接触させ、接続作業を容易に行なうことができる。また、抜き部24、34を通して、均一な力で取り付け部を端子電極11、12に接着することができる。金属端子2、3と端子電極11、12が合金接合4、5によって接合されることは、既に述べた通りである。
【0058】
図9は本発明に係るセラミックコンデンサの別の実施例を示す底面図である。
この実施例では、金属端子2の端子部23は、2つの穴231、232を有する。同様に、金属端子3の端子部33は、2つの穴331、332を有する。穴数は任意である。
【0059】
図9に図示されたセラミックコンデンサを、図4図に示したように、回路基板70に設けられた導体パターン71、72に合金接合する際、端子部23、33の穴231、232、331、332に、はんだ82、81を充填し、セラミックコンデンサを回路基板70に確実に合金接合することができる。金属端子2、3と端子電極11、12が合金接合4、5によって接合されることは、既に述べた通りである。
【0060】
図10は本発明に係るセラミックコンデンサの別の実施例を示す正面断面図である。この実施例では、4個のセラミックコンデンサ素子110〜140を順次に積層する。そして、金属端子2において、先端部と第1の曲げ部221との間を、合金接合4によって、端子電極11に接続固定する。金属端子3において、先端部と第1の曲げ部321との間を、合金接合5によって、端子電極12に接続固定する。
【0061】
図10に示された実施例によれば、図1〜図9に示した実施例よりも、更に大きな静電容量を取得できる。セラミックコンデンサ素子110〜140の個数は、要求される静電容量に応じて更に増加できる。金属端子2、3と端子電極11、12が合金接合4、5によって接合されることは、既に述べた通りである。
【0062】
重複説明を回避するため、図示は省略するけれども、実施例の組み合わせが多数存在することはいうまでもない。
【0063】
【発明の効果】
以上述べたように、本発明によれば、次のような効果が得られる。
(a)セラミックコンデンサ素子の端子電極及び金属端子を、十分な接合強度をもって接合し得るセラミックコンデンサを提供することができる。
(b)リフロー時の浮動または脱落等の不具合を確実に阻止し得るセラミックコンデンサを提供することができる。
(c)Pbフリーを実現したセラミックコンデンサを提供することができる。
(d)上述したセラミックコンデンサの製造に適した方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るセラミックコンデンサの正面部分断面図である。
【図2】図1に示したセラミックコンデンサの正面断面図である。
【図3】本発明に係るセラミックコンデンサの一部を拡大して示す断面図である。
【図4】図1及び図2に示したセラミックコンデンサを回路基板上に実装した時の状態を示す部分断面図である。
【図5】本発明に係るセラミックコンデンサの更に別の実施例を示す正面部分図である。
【図6】図5に示したセラミックコンデンサの正面図である。
【図7】本発明に係るセラミックコンデンサの更に別の実施例を示す斜視図である。
【図8】本発明に係るセラミックコンデンサの更に別の実施例を示す斜視図である。
【図9】本発明に係るセラミックコンデンサの更に別の実施例を示す底面図である。
【図10】本発明に係るセラミックコンデンサの更に別の実施例を示す正面断面図である。
【符号の説明】
1 セラミックコンデンサ素子
2、3 金属端子
4、5 合金接合

Claims (6)

  1. 少なくとも1つのセラミックコンデンサ素子と、少なくとも一対の金属端子と、接合部とを含むセラミックコンデンサであって、
    前記セラミックコンデンサ素子は、相対する両側端面に端子電極を有しており、
    前記一対の金属端子のそれぞれは、中間部に曲げ部を有し、前記曲げ部より先の部分に接続面を有しており、
    前記接合部は、第1の金属膜と、第2の金属膜と、共晶領域とを含み、前記端子電極の一つと、前記金属端子とを合金接合によって接続しており、
    前記第1の金属膜は、前記端子電極の側面に形成されており、
    前記第2の金属膜は、前記金属端子の前記接続面に形成され、前記第1の金属膜と面接触しており、
    前記共晶領域は、前記第1の金属膜と第2の金属膜との合金成分を有し、前記第1の金属膜と前記第2の金属膜との面接触部分の全面に亘って形成されている、
    セラミックコンデンサ。
  2. 請求項1に記載されたセラミックコンデンサであって、
    前記第1の金属膜は、Ag膜またはAu膜の何れかを有しており、
    前記第2の金属膜は、Cu膜を有している
    セラミックコンデンサ。
  3. 請求項1又は2に記載されたセラミックコンデンサであって、
    前記金属端子は、Feを主成分としている、
    セラミックコンデンサ。
  4. 請求項1乃至3の何れかに記載されたセラミックコンデンサを製造する方法であって、
    前記金属端子の最外側層にAg膜またはAu膜を形成し、
    前記コンデンサ素子の前記端子電極の表面にCu膜を形成し、
    前記金属端子の前記Ag膜またはAu膜と、前記コンデンサ素子の前記端子電極のCu膜とを接触させた状態で熱処理を行い、前記Ag膜またはAu膜及び前記Cu膜によるAg−Cu合金接合またはAu−Cu合金接合を生じさせる
    工程を含むセラミックコンデンサの製造方法。
  5. 請求項1乃至3の何れかに記載されたセラミックコンデンサを製造する方法であって、
    前記金属端子の最外側層にCu膜を形成し、
    前記コンデンサ素子の前記端子電極の表面にAg膜またはAu膜を形成し、
    前記金属端子の前記Cu膜と、前記コンデンサ素子の前記端子電極のAg膜またはAu膜とを接触させた状態で熱処理を行い、前記Ag膜またはAu膜及び前記Cu膜によるAg−Cu合金接合またはAu−Cu合金接合を生じさせる
    工程を含むセラミックコンデンサの製造方法。
  6. 請求項4または5の何れかに記載された製造する方法であって、
    前記熱処理は中性雰囲気または還元性雰囲気中で行う
    セラミックコンデンサの製造方法。
JP2001029694A 2001-02-06 2001-02-06 セラミックコンデンサ及びその製造方法 Expired - Fee Related JP4544387B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029694A JP4544387B2 (ja) 2001-02-06 2001-02-06 セラミックコンデンサ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029694A JP4544387B2 (ja) 2001-02-06 2001-02-06 セラミックコンデンサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002231569A JP2002231569A (ja) 2002-08-16
JP4544387B2 true JP4544387B2 (ja) 2010-09-15

Family

ID=18894007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029694A Expired - Fee Related JP4544387B2 (ja) 2001-02-06 2001-02-06 セラミックコンデンサ及びその製造方法

Country Status (1)

Country Link
JP (1) JP4544387B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958899B2 (en) 2003-03-20 2005-10-25 Tdk Corporation Electronic device
JP4665966B2 (ja) 2005-05-23 2011-04-06 株式会社村田製作所 セラミック電子部品およびその製造方法
JP5432061B2 (ja) * 2010-05-19 2014-03-05 太陽誘電株式会社 セラミックコンデンサ
JP5589891B2 (ja) * 2010-05-27 2014-09-17 株式会社村田製作所 セラミック電子部品及びその製造方法
JP6201900B2 (ja) * 2013-08-20 2017-09-27 株式会社村田製作所 セラミック電子部品
JP6841682B2 (ja) 2017-02-22 2021-03-10 太陽誘電株式会社 金属端子付き電子部品
JP7059751B2 (ja) * 2018-03-29 2022-04-26 Tdk株式会社 電子部品及び電子部品の製造方法
KR102298427B1 (ko) * 2020-01-09 2021-09-06 삼화콘덴서공업 주식회사 리드 구조를 가지는 mlcc

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340079A (ja) * 1998-05-29 1999-12-10 Murata Mfg Co Ltd セラミック電子部品およびその実装構造
JP2000138128A (ja) * 1998-10-30 2000-05-16 Tdk Corp セラミック電子部品の端子電極形成方法
JP2000306764A (ja) * 1999-04-23 2000-11-02 Murata Mfg Co Ltd セラミック電子部品及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340079A (ja) * 1998-05-29 1999-12-10 Murata Mfg Co Ltd セラミック電子部品およびその実装構造
JP2000138128A (ja) * 1998-10-30 2000-05-16 Tdk Corp セラミック電子部品の端子電極形成方法
JP2000306764A (ja) * 1999-04-23 2000-11-02 Murata Mfg Co Ltd セラミック電子部品及びその製造方法

Also Published As

Publication number Publication date
JP2002231569A (ja) 2002-08-16

Similar Documents

Publication Publication Date Title
JP3376971B2 (ja) セラミック電子部品
JP3206735B2 (ja) セラミックコンデンサ
KR102408016B1 (ko) 칩형 전자 부품
JP3206734B2 (ja) セラミックコンデンサ
JP5239236B2 (ja) 電子部品およびその製造方法
US6201683B1 (en) Ceramic electronic part and mounting structure for the same
JPH11251176A (ja) セラミック電子部品
JP4544387B2 (ja) セラミックコンデンサ及びその製造方法
JP4605329B2 (ja) セラミックコンデンサ
CN111048312B (zh) 电子组件
JP3809575B2 (ja) 表面実装型積層セラミック電子部品
JP3358499B2 (ja) セラミック電子部品
JP2002231564A (ja) セラミックコンデンサ
JP3206736B2 (ja) セラミックコンデンサ
KR102620523B1 (ko) 전자 부품 및 그 실장 기판
JP2002198254A (ja) セラミックコンデンサ
KR102632358B1 (ko) 전자 부품
JP3770022B2 (ja) 電子部品
JP6656000B2 (ja) 電子部品モジュール、回路モジュール、電子部品モジュールの製造方法及び回路モジュールの製造方法
JP3606215B2 (ja) 電子部品への端子板部材の取付方法
JP2006310618A (ja) セラミック電子部品及びその製造方法
JP3624740B2 (ja) セラミック電子部品
JP2002270464A (ja) セラミックコンデンサ
KR102442390B1 (ko) 전자 부품
JP2003303732A (ja) 外部金属端子付き電子部品及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

LAPS Cancellation because of no payment of annual fees