JP4518247B2 - α,α−ジフルオロメチル化合物の製造方法 - Google Patents

α,α−ジフルオロメチル化合物の製造方法 Download PDF

Info

Publication number
JP4518247B2
JP4518247B2 JP2004113302A JP2004113302A JP4518247B2 JP 4518247 B2 JP4518247 B2 JP 4518247B2 JP 2004113302 A JP2004113302 A JP 2004113302A JP 2004113302 A JP2004113302 A JP 2004113302A JP 4518247 B2 JP4518247 B2 JP 4518247B2
Authority
JP
Japan
Prior art keywords
mol
reaction
general formula
represented
difluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004113302A
Other languages
English (en)
Other versions
JP2005298363A (ja
Inventor
正治 原
彊 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004113302A priority Critical patent/JP4518247B2/ja
Publication of JP2005298363A publication Critical patent/JP2005298363A/ja
Application granted granted Critical
Publication of JP4518247B2 publication Critical patent/JP4518247B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はアルデヒドからα,α−ジフルオロメチル化合物を製造する方法に関するものである。α,α−ジフルオロメチル化合物は医薬、農薬の他、機能化学品の原料として有用な化合物である。
有機化合物の特定部位にフッ素原子を導入する方法として、フッ素化剤を利用する方法が良く知られている。無水フッ化水素(HF)は安価に大量に製造されており、フッ素化剤としても使用されている。しかしHFは毒性、腐蝕性があり取扱いに特殊な設備や技術を必要とする上、フッ素化剤としては反応性が低いという問題点がある。HFとルイス塩基の錯体は、これらの問題点を改良したフッ素化剤であるが、なかでもHFとトリエチルアミンのモル比が3:1であるトリエチルアミン−3HF(EtN−3HF)錯体はガラス容器中で使用でき、HFやピリジン−9HF(Olah試薬)よりも求核性が高い(非特許文献1参照)。しかしEtN−3HFでフッ素化できるのは含酸素官能基のうちアルコールのみであり、アルデヒドをフッ素化することは困難である。
アルデヒドからα,α−ジフルオロメチル化合物を製造する方法としては、フッ素化剤として四フッ化硫黄(SF)やジメチルアミノ三フッ化硫黄(DAST),フェニル三フッ化硫黄,2,2−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI),N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミン(DFMBA)等を利用する方法が知られ、特にDASTが汎用されている(非特許文献2、3、4、特許文献1、2参照)。しかし、SFやフェニル三フッ化硫黄は毒性、爆発性が高く、製造に特殊な装置や技術を必要とする問題点がある。またDASTは高価であり、爆発性もあることから大量使用は困難である(非特許文献5参照)。
DFMBAは取扱いが容易で熱安定性に優れたフッ素化剤であり、例えば200℃近い高温やマイクロ波照射条件下でも反応に使用することができる。DFMBAは熱安定性が高くこの様な条件下でも反応に使用できるが、一方アルデヒドの様なカルボニル化合物との反応では充分な収率が得られない場合があるという問題点を有していた。
有機合成化学協会誌,vol.56, No. 4 (1998) p80-87 Tetrahedron, vol. 27, 1971, pp3965-3969 Journal of American Chemical Society, vol. 84, 1962, p3058 ファインケミカル,vol.31, No. 10 (2002) pp5-12 Patricia A. Messina, Kevin C. Mange and W. J. Middleton,Journal of Fluorine Chemistry,42,p137-143,1989 米国特許第3914265号明細書 特開2003−64034号公報
本発明の目的は、熱安定性の高い新規なフルオロアミンをフッ素化剤として使用し、アルデヒドからα,α−ジフルオロメチル化合物を安全かつ短時間に、高収率で製造する方法を提供することにある。
本発明者らは上記課題を解決するため鋭意検討を重ねた結果、アルデヒドを原料とし、特定のフルオロアミン、及びトリエチルアミンと無水フッ化水素の錯体(EtN−nHF)を用いて、熱的に、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下で反応させることにより、目的とするα,α−ジフルオロメチル化合物が高い収率で生成することを見出し、本発明を完成するに到った。
本発明の反応によれば、特定のフルオロアミンと無水フッ化水素の錯体を併せて使用することによりフルオロアミン単独で使用した場合より高い活性が得られ、原料アルデヒドのカルボニル酸素の代わりに2個のフッ素原子が導入された構造のα,α−ジフルオロメチル化合物が高収率で得られる。
即ち本発明は、アルデヒドを一般式1に示すフルオロアミン、及び一般式2に示すトリエチルアミンと無水フッ化水素との錯体で反応させる(1)から(4)に示すα,α−ジフルオロメチル化合物の製造方法に関する。
(1)一般式1で表されるフルオロアミン、及び一般式2で表されるトリエチルアミンと無水フッ化水素の錯体を、一般式3で表されるアルデヒドと反応させることを特徴とする、一般式4で表されるα,α−ジフルオロメチル化合物の製造方法。
Figure 0004518247
Figure 0004518247
Figure 0004518247
Figure 0004518247
(但し、一般式1におけるR、R及びRは水素原子、若しくは置換基を有することのあるアルキル基又はアリール基であり、それぞれが同一でも異なっていてもよい。また、R、R、Rの二つ以上が結合して環を形成していてもよい。一般式2におけるnは1以上の整数を示す。一般式3及び4におけるRはアルキル基又はアリール基である。)
(2)一般式1で表されるフルオロアミンのRが3−メチルフェニル基であり、R及びRがエチル基である、(1)に記載のα,α−ジフルオロメチル化合物の製造方法。
(3)一般式2で表されるトリエチルアミンと無水フッ化水素の錯体のnが3である、(1)に記載のα,α−ジフルオロメチル化合物の製造方法。
(4)反応を熱的に、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下で行う、(1)から(3)の何れかに記載のα,α−ジフルオロメチル化合物の製造方法。
本発明に示す、アルデヒドと特定のフルオロアミン、及びトリエチルアミンと無水フッ化水素の錯体とを反応させる方法により、医薬、農薬の他、機能化学品の原料として有用なα,α−ジフルオロメチル化合物を短時間かつ高収率でしかも安全に製造することができる。
以下に本発明を詳しく説明する。本反応には原料として、一般式3で表される、置換基を有することのあるアルキルアルデヒド又はアリールアルデヒドを用いる。置換基は一般的なものであれば特に限定はされないが、一般式1及び一般式2で表される含フッ素化合物と反応しない、若しくは反応してもホルミル基のフッ素化反応を妨げないようなものが望ましい。これらに見合う具体的な化合物としては、ベンズアルデヒド、4−tert−ブチルベンズアルデヒド、4−ホルミル安息香酸メチル、3,4−ジメトキシベンズアルデヒド、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンズアルデヒド、4−メトキシ−ナフトアルデヒド、10−ウンデセナール、5−オキソ−吉草酸ブチル、ウンデカナール、trans−桂皮アルデヒド、(R)−(+)−シトロネラール、(S)−(−)−ペリラアルデヒド等が挙げられる。
本発明では一般式1で示されるフルオロアミンを用いてフッ素化を行う。具体的な化合物としては、N,N−ジメチル−α,α−ジフルオロメチルアミン、N,N−ジエチル−α,α−ジフルオロメチルアミン、N,N−ジ(n−プロピル)−α,α−ジフルオロメチルアミン、N,N−ジ(i−プロピル)−α,α−ジフルオロメチルアミン、N,N−ジ(n−ブチル)−α,α−ジフルオロメチルアミン、N,N−ジメチル−α,α−ジフルオロエチルアミン、N,N−ジメチル−α,α−ジフルオロプロピルアミン、N,N−ジメチルペンタフルオロエチルアミン、N,N−ジメチルシアノ−α,α−ジフルオロエチルアミン、N,N−ジメチル−α,α−ジフルオロ−α−シクロプロピルアミン、N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミン、及びN,N−ジエチル−α,α−ジフルオロ(2−メトキシ)ベンジルアミン等を挙げることができる。これらの化合物は、例えば特開2003−64034号公報(特許文献2参照)に記載の方法で合成することができる。
本発明では一般式2で示されるトリエチルアミンと無水フッ化水素との錯体も使用する。トリエチルアミンと無水フッ化水素とのモル比が1:nである錯体をEtN−nHFと表すと(nは1以上の整数)、具体的な化合物としては、EtN−1HF、EtN−2HF、EtN−3HF、EtN−4HF、EtN−5HF、EtN−6HFを挙げることができる。
反応は、回分式、半回分式、或いは連続方式での実施が可能であり、通常の熱反応、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下に反応を行うことが出来る。反応温度は、通常200℃以下で実施することが好ましく、100℃から180℃の温度範囲が特に好ましい。また振動数が0.3から300GHzの範囲のマイクロ波、或いは1GHz以下又は30から300GHzのマイクロ波近傍の電磁波を照射して反応を行うことができる。該電磁波は、連続的、或いは断続的に温度を制御しながら行うなどして照射することができる。
フルオロアミンの使用量は、対象となる基質のホルミル基1モルに対して2モル以上用いる事が好ましいが、過剰、或いは化学量論的に不足のまま反応させても良い。トリエチルアミンと無水フッ化水素との錯体の使用量は、対象となる基質のホルミル基1モルに対して1モル用いる事が好ましいが、過剰、或いは化学量論的に不足のまま反応させても良い。反応時間は、熱反応では10分から360分の範囲が好ましい。マイクロ波及び/又はマイクロ波近傍の電磁波の照射下に反応を行う場合は、0.1分から180分の範囲が好ましいが、更に長時間照射することも出来る。該フッ素化反応を進行させる上で溶媒を用いる必要は無いが、撹拌を充分行うためや温度上昇を防ぐために溶媒を用いても良い。好ましい溶媒は、基質、フルオロアミンや生成物に対して不活性な脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、芳香族ハロゲン化炭化水素、ニトリル類、エーテル類等であり、適宜これらから選択し、必要に応じてこれらを組み合わせて用いることも出来る。
以下に実施例及び参考例をあげて本発明の方法を更に詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。
参考例1
N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミンの合成
a)N,N−ジエチル−α−クロロメタトルイルアミジウムクロリドの合成
三ツ口フラスコ(300mL)に、窒素雰囲気下、オキサリルクロリド25g(0.197mol)を含む四塩化炭素溶液125gを仕込む。フラスコを氷冷し、攪拌しながらN,N−ジメチルメタトルアミド45g(0.236mol)を20分かけて滴下した。滴下終了後、同温度で10分保持し、内容物温度を50℃とした後、一時間反応を行った。反応時にガス発生が観察され、その後白色の固体が析出した。得られた析出物を濾別し四塩化炭素、n−ヘキサンで洗浄後乾燥し、N,N−ジエチル−α−クロロメタトルイルアミジウムクロリド47.5gを得た(収率98%)。
b)N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミンの合成
三ツ口フラスコ(500mL)に、先に合成したN,N−ジエチル−α−クロロメタトルイルアミジウムクロリド25g(0.1mol)とスプレードライしたフッ化カリウム23.5g(0.4mol:森田化学品)、アセトニトリル250gを仕込み、窒素雰囲気下にアセトニトリルの還流温度で18時間反応を行った。反応終了後、室温まで冷却して濾過を行った。この濾液をエバポレーターで濃縮後蒸留によりN,N−ジエチル−α,α−ジフルオロ−3−メチルベンジルアミン13gを得た(収率60%)。以下の記述においてN,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミンを「フッ素化剤A」と略すことがある。
参考例2
N,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミンの合成
a)o−メトキシ−N,N−ジエチルベンズアミドの合成
200mLの4ツ口ナスフラスコにジエチルアミン 25.8g(0.3517mol)のトルエン溶液(トルエン30.8g)を入れ、氷冷下で急激な発熱が起きないように2−メトキシ安息香酸クロリド20g(0.1172mol)のトルエン溶液(トルエン10.04g)をゆっくり滴下した。全液加えた後、水でアミンの塩酸塩を除去した。得られたトルエン層をMgSOで乾燥し、溶媒留去によりo−メトキシ−N,N−ジエチルベンズアミド22.8gを得た(収率94%)。
b)N,N−ジエチル−α−クロロ−オルソメトキシフェニルアミジウムクロリドの合成
200mLの4ツ口フラスコを窒素で置換し、オキサリルクロライドの45%四塩化炭素溶液(オキサリルクロライド:24.5g,0.193mol)を加え、室温、窒素微加圧下、先に合成したo−メトキシ−N,N−ジエチルベンズアミド20.05g(0.0965mol)を滴下した(内温が5℃上昇)。滴下終了後53℃で5時間加熱攪拌すると、反応液は2層分離した。反応停止後溶媒を留去し、粘性液体を得た。グローブボックス中放置すると茶色固体が析出した(収量26.6g)。ヘキサン及び四塩化炭素で洗浄後乾燥し、N,N−ジエチル−α−クロロ−オルソメトキシフェニルアミジウムクロリド21.4gを得た(収率80%)。
c)N,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミンの合成
グローブボックス中、100mLの三ツ口フラスコに先に合成したN,N−ジエチル−α−クロロ−オルソメトキシフェニルアミジウムクロリド塩素化物5.0g(0.0181mol)、アセトニトリル50g、スプレードライしたフッ化カリウム4.43g(0.076mol:森田化学品)を仕込み、電磁攪拌棒、コンデンサーを付け、窒素微加圧下、80℃、600rpmで20時間反応させた。反応停止後、室温に戻し、グローブボックス中で濾過、洗浄した。得られた溶液を溶媒留去しN,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミン3.51gを得た(収率67%)。以下の記述においてN,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミンを「フッ素化剤B」と略すことがある。
参考例3
本発明のフルオロアミンの熱安定性を、示差走査熱量計(DSC)及び暴走反応測定試験(ARC)により評価した。フッ素化剤A及びフッ素化剤Bの測定結果とジエチルアミノ三フッ化硫黄(DAST)及び2,2,−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI)の文献値(非特許文献3参照)を併せて表1に記載する。表1より、本発明で使用するフルオロアミン(フッ素化剤A,B)は従来のフッ素化剤と比較してDSC測定での発熱量が低く、ARC測定での発熱開始温度が高い等、熱的に格段に安定であることがわかる。
Figure 0004518247
実施例1
4−tert−ブチルベンズアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に4−tert−ブチルベンズアルデヒド(16g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である1−tert−ブチル−4−ジフルオロメチル−ベンゼンが収率80%で得られた。
比較例1
4−tert−ブチルベンズアルデヒドのフッ素化
実施例1においてフッ素化剤Aのかわりに2,2−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI;0.20モル)を加えてマイクロ波照射器(シャープ製、2.45GHz、500W)に入れマイクロ波の照射を始めたところ、暴走反応がおこり、反応液が容器外に飛散したため反応を完結することは出来なかった。
実施例2
4−tert−ブチルベンズアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に4−tert−ブチルベンズアルデヒド(16g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。滴下終了後、攪拌しながら180℃、20分間反応させた。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮し19F−NMRで分析した。その結果、目的物である1−tert−ブチル−4−ジフルオロメチル−ベンゼンが収率93%で生成していた。
比較例2
4−tert−ブチルベンズアルデヒドのフッ素化
実施例2においてEtN−3HFを加えずに180℃、20分間反応させた。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮し19F−NMRで分析した。その結果、目的物である1−tert−ブチル−4−ジフルオロメチル−ベンゼンが収率73%で生成していた。
実施例3
4−ホルミル安息香酸メチルのフッ素化
テフロン(登録商標)PFA容器(200mL)に4−ホルミル安息香酸メチル(16g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である4−ジフルオロメチル安息香酸メチルが収率85%で得られた。
実施例4
3,4−ジメトキシベンズアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に3,4−ジメトキシベンズアルデヒド(17g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である4−ジフルオロメチル−1,2−ジメトキシベンゼンが収率88%で得られた。
実施例5
3,4−ジメトキシベンズアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に3,4−ジメトキシベンズアルデヒド(17g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤B(47g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。滴下終了後、攪拌しながら150℃、60分間反応させた。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である4−ジフルオロメチル−1,2−ジメトキシベンゼンが収率85%で得られた。
実施例6
3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンズアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンズアルデヒド(23g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である2,6―ジ―tert−ブチル−4−ジフルオロメチルフェノールが収率61%で得られた。
実施例7
4−メトキシ−ナフトアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に4−メトキシ−ナフトアルデヒド(19g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である1−ジフルオロメチル−4−メトキシナフタレンが収率84%で得られた。
実施例8
10−ウンデセナールのフッ素化
テフロン(登録商標)PFA容器(200mL)に10−ウンデセナール(17g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である11,11−ジフルオロ−1−ウンデセンが収率71%で得られた。
実施例9
5−オキソ−吉草酸ブチルのフッ素化
テフロン(登録商標)PFA容器(200mL)に5−オキソ−吉草酸ブチル(17g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である5,5−ジフルオロ−吉草酸ブチルが収率60%で得られた。
実施例10
ウンデカナールのフッ素化
テフロン(登録商標)PFA容器(200mL)にウンデカナール(17g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である1,1−ジフルオロウンデカンが収率75%で得られた。
実施例11
trans−桂皮アルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)にtrans−桂皮アルデヒド(13g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である(3,3−ジフルオロ−プロペニル)ベンゼンが収率77%で得られた。
実施例12
trans−桂皮アルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)にtrans−桂皮アルデヒド(13g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤B(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。滴下終了後、攪拌しながら180℃、60分間反応させた。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製したところ、目的物である(3,3−ジフルオロ−プロペニル)ベンゼンが収率75%で得られた。
実施例13
(R)−(+)−シトロネラールのフッ素化
テフロン(登録商標)PFA容器(200mL)に(R)−(+)−シトロネラール((R)−3,7−ジメチル−6−オクテナール;15g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮し19F−NMRで分析した。その結果、目的物である(R)−8,8−ジフルオロ−2,6−ジメチル−2−オクテンが収率70%で生成していた。
実施例14
(S)−(−)−ペリラアルデヒドのフッ素化
テフロン(登録商標)PFA容器(200mL)に、(S)−(−)−ペリラアルデヒド((S)−4−イソプロペニル−1−シクロヘキセン−1−カルバルデヒド;15g、0.10モル)を仕込み、窒素雰囲気下、フッ素化剤A(43g、0.20モル)、EtN−3HF(16g、0.10モル)を徐々に加えた。良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ20分間マイクロ波を照射した。反応終了後室温まで冷却し、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(100g、3回)。硫酸マグネシウムで乾燥した後、濃縮し19F−NMRで分析した。その結果、目的物である(S)−1−ジフルオロメチル−4−イソプロペニルシクロヘキセンが収率42%で生成していた。

Claims (4)

  1. 一般式1で表されるフルオロアミン、及び一般式2で表されるトリエチルアミンと無水フッ化水素の錯体を、一般式3で表されるアルデヒドと反応させることを特徴とする、一般式4で表されるα,α−ジフルオロメチル化合物の製造方法。
    Figure 0004518247
    Figure 0004518247
    Figure 0004518247
    Figure 0004518247
    (但し、一般式1におけるR が3−メチルフェニル基又は2−メトキシフェニル基であり、及びRはアルキル基である。一般式2におけるnは1以上の整数を示す。一般式3及び4におけるRは置換基を有することのあるアルキル基又はアリール基である。)
  2. 一般式1で表されるフルオロアミンのR及びRがエチル基である、請求項1に記載のα,α−ジフルオロメチル化合物の製造方法。
  3. 一般式2で表されるトリエチルアミンと無水フッ化水素の錯体のnが3である、請求項1に記載のα,α−ジフルオロメチル化合物の製造方法。
  4. 反応を熱的に、若しくは振動数が0.3から300GHzの範囲のマイクロ波照射下で行う、請求項1からの何れかに記載のα,α−ジフルオロメチル化合物の製造方法。
JP2004113302A 2004-04-07 2004-04-07 α,α−ジフルオロメチル化合物の製造方法 Expired - Fee Related JP4518247B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113302A JP4518247B2 (ja) 2004-04-07 2004-04-07 α,α−ジフルオロメチル化合物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113302A JP4518247B2 (ja) 2004-04-07 2004-04-07 α,α−ジフルオロメチル化合物の製造方法

Publications (2)

Publication Number Publication Date
JP2005298363A JP2005298363A (ja) 2005-10-27
JP4518247B2 true JP4518247B2 (ja) 2010-08-04

Family

ID=35330346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113302A Expired - Fee Related JP4518247B2 (ja) 2004-04-07 2004-04-07 α,α−ジフルオロメチル化合物の製造方法

Country Status (1)

Country Link
JP (1) JP4518247B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378688B2 (ja) * 2008-02-22 2013-12-25 東ソ−・エフテック株式会社 フッ素化試薬組成物およびgem−ジフルオロ化合物の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064034A (ja) * 2001-08-28 2003-03-05 Mitsubishi Gas Chem Co Inc フッ素化合物及び該フッ素化合物からなるフッ素化剤

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064034A (ja) * 2001-08-28 2003-03-05 Mitsubishi Gas Chem Co Inc フッ素化合物及び該フッ素化合物からなるフッ素化剤

Also Published As

Publication number Publication date
JP2005298363A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
JP3357608B2 (ja) アミノスルファートリフルオリドによるフッ素化方法
JP4280030B2 (ja) 核フッ素化芳香族の改良製法
JPH11292807A (ja) フッ素化不飽和炭化水素の製造方法
JP4518247B2 (ja) α,α−ジフルオロメチル化合物の製造方法
JP3459892B2 (ja) フッ素系界面活性化合物及びその製造方法
Hajipour et al. A simple and effective protocol for one-pot diazotization-iodination of aromatic amines by acidic ionic liquid [H-NMP] HSO4 at room temperature
JPH11507938A (ja) エステルの製造方法
JP4752759B2 (ja) 光学活性フルオロ化合物の製造方法
JP6074670B2 (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JP2017530997A (ja) ハロ置換トリフルオロアセトフェノンを調製する方法
JPWO2007139182A1 (ja) パーフルオロアルキル基を有するフルオロアミン、その製造方法及びそれを用いるフッ素化方法、並びにパーフルオロアルキル基を有するアミドの回収方法
JPS5839135B2 (ja) ポリフルオロアルコ−ル類の製法
JP4058142B2 (ja) 弗化沃化エタンの製造方法
JP3711388B2 (ja) 含フッ素エーテルの製造方法
JP2004210792A (ja) α、α−ジフルオロアミンの製造方法、ジフルオロメチレン−α、α−ジアゾ化合物、その製造方法およびフッ素化化合物の製造方法
JP2004161703A (ja) 2−フルオロ−4−(トリフルオロメチル)ベンゾニトリルの製造方法
JP2862130B2 (ja) ポリフルオロ第3級アミンの製造方法
JPH05988A (ja) トリフルオロアニソール類の製造方法
JP5378688B2 (ja) フッ素化試薬組成物およびgem−ジフルオロ化合物の製造方法
JP3722362B2 (ja) 新規な含フッ素ケトン化合物及びその製造方法
JP4268882B2 (ja) ジカルボニル化合物のフッ素化
JP5591494B2 (ja) 高純度の含フッ素エチリデン−2−メチルプロパンスルフィンアミド、その製造方法及びそれを用いた光学活性含フッ素アミン誘導体の製造方法
JP4369614B2 (ja) パーフルオロジカルボニル化合物
JPWO2008007696A1 (ja) フルオロアミンの製造方法
JPWO2008149841A1 (ja) β−フルオロ−α,β−不飽和カルボニル化合物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

LAPS Cancellation because of no payment of annual fees