JP4482306B2 - ブースト電圧制御回路 - Google Patents

ブースト電圧制御回路 Download PDF

Info

Publication number
JP4482306B2
JP4482306B2 JP2003348701A JP2003348701A JP4482306B2 JP 4482306 B2 JP4482306 B2 JP 4482306B2 JP 2003348701 A JP2003348701 A JP 2003348701A JP 2003348701 A JP2003348701 A JP 2003348701A JP 4482306 B2 JP4482306 B2 JP 4482306B2
Authority
JP
Japan
Prior art keywords
node
voltage
driven
signal
pmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003348701A
Other languages
English (en)
Other versions
JP2004134074A (ja
Inventor
聖▲金完▼ 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of JP2004134074A publication Critical patent/JP2004134074A/ja
Application granted granted Critical
Publication of JP4482306B2 publication Critical patent/JP4482306B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/077Charge pumps of the Schenkel-type with parallel connected charge pump stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)
  • Dram (AREA)
  • Logic Circuits (AREA)
  • Dc-Dc Converters (AREA)

Description

この発明は、ブースト電圧制御回路に係り、特に、フラッシュメモリの読出し動作の際にワードラインに一定の電圧を供給することが可能な半導体装置のブースト電圧制御回路に関する。
低い電源電圧のフラッシュメモリ装置では、セルの読出し動作時ごとにセルのワードラインゲート電圧を上昇させるための電圧ブースト(Boosting)を行う。すなわち、ブーストは、低い電源電圧VCCを、読出し動作に使用することが可能な電圧レベルに上昇させることを意味する。一般に、ブースト動作は、外部から読出し命令が入力されると、0Vの電圧を5.3Vまで上昇させる。ところが、0Vから5.3Vへの電圧上昇には、ブースト回路内部のRC遅延など様々な遅延要素によって多くの時間がかかる。
したがって、この発明は、そのような問題点を解決するためのもので、その目的は、読出し動作だけでなく待機状態でも常時一定のレベルの電圧を維持して読出し動作の速度を向上させるとともに、待機状態で流れる電流を最小化することが可能なブースト電圧制御回路を提供することにある。
上記目的を達成するために、この発明は、読出しイネーブル信号及びクロック信号に応答してブスート電圧を生成して出力端子に出力するための第1ポンプと、待機の時及び読出しの時前記クロック信号に応答してブスート電圧を生成して前記出力端子に出力するための第2ポンプと、前記出力端子の電圧によって第1及び第2クロック制御信号を生成するレギュレーション回路と、前記第1及び第2クロック制御信号によって前記クロック信号を生成するクロック生成器とを備えてなるブースト電圧制御回路を提供する。
また、上記目的を達成するために、この発明は、上記のブースト電圧制御回路において、前記レギュレーションブロックは、前記出力端子の電圧を一定のレベルに分圧するためのブースト電圧分割手段と、外部のトリムビットに応じて様々な電圧レベルのパッケージ電圧信号を生成するパッケージ電圧生成手段と、前記パッケージ電圧信号に応じて基準電圧と制御電圧とを生成する比較基準電圧生成手段と、前記制御電圧に応じて前記電圧分割手段の出力と前記基準電圧とを比較して前記クロック生成器を制御するための
前記第1及び第2クロック制御信号を発生する比較手段とを備えてなるブースト電圧制御回路を提供する。
この発明は、トリムビットを用いてPVT電圧のレベルを調整して比較基準電圧生成部を制御し、電圧降下したブースト電圧と比較基準電圧生成部の基準電圧とを比較してブースト電圧を制御することにより、低電力で安定にブースト電圧を制御することができる。
また、安定したブースト電圧を平常時にも維持することができるため、素子の読取り動作の速度を向上させることができる。
以下、添付図面に基づいてこの発明の好適な実施例をより詳細に説明する。なお、この発明は、下記の実施例に限定されるものではなく、様々な変形実現が可能である。これらの実施例は、この発明の開示を完全にし、当該技術分野で通常の知識を有する者にこの発明の範疇を知らせるために提供されるものである。また、図面において、同一の符号は、同一の要素を示す。
図1は、この発明に係るブースト電圧制御回路の全体的な構成及び動作を説明するためのブロック図である。
図1を参照すると、レギュレーションブロック100がブースト電圧出力端OBvtとクロック生成器200との間に接続される。第1ポンプ300及び第2ポンプ310は、クロック生成器200とブースト電圧出力端OBvtとの間に並列に連結され、第1ポンプ300は、外部の読出しイネーブル信号EReadに応じて駆動される。
次に、上述した構成を有するこの発明のブースト電圧制御回路の動作を説明する。
第2ポンプ310は、読出し状態だけでなく、待機状態でも、クロック生成器200のクロック信号CLK0〜CLK4によって一定レベルのブースト電圧BOOSTを生成し、第1ポンプ300は、外部の読出しイネーブル信号EReadとクロック生成器200のクロック信号CLK0〜CLK4によって一定レベルのブースト電圧BOOSTを生成する。レギュレーションブロック100は、ブースト電圧BOOSTを内部トリムビットによって生成された基準電圧と比較して、第1ポンプ300及び第2ポンプ310から出力されたブースト電圧BOOSTを一定のレベルに維持するための第1クロック制御信号PBIAS及び第2クロック制御信号NBIASを出力する。クロック生成器200は、第1クロック制御信号PBIAS及び第2クロック制御信号NBIASに応じてクロック信号CLK0〜CLK4の周期を変化させることにより、第1ポンプ300及び第2ポンプ310を制御する。
この発明では、出力帰還方式で出力端のブースト電圧BOOSTをレギュレーションブロック100で感知し、ブースト電圧BOOSTに異常が発生した場合、レギュレーションブロック100の出力である第1クロック制御信号PBIAS及び第2クロック制御信号NBIASによって、クロック生成器200の出力であるクロック信号CLK0〜CLK4を制御することにより、第1ポンプ300及び第2ポンプ310を制御して出力されるブースト電圧BOOSTを制御する。
第1ポンプ300は、素子の読出し動作が行われる場合にワードラインゲート電圧をブーストするための第1ブースト手段であり、第2ポンプ310は、ワードラインゲート電圧をブーストするための時間を短縮するように平常の際にブースト電圧を生成する第2ブースト手段である。これは、待機状態より読出し状態の場合にさらに多くの電流を消耗するため、第1ポンプ300及び第2ポンプ310の二つのポンプ手段を備えた。すなわち、待機状態では、第2ポンプ310のみ動作して低電流と一定レベルのブースト電圧を生成し、読出し命令が入力されると、第1ポンプ300及び第2ポンプ310の両者が作動して高電流と一定レベルのブースト電圧が供給される。これにより、素子の読出し時間を減らすことができ、待機状態の電力消費を減らすことができる。
次に、ブースト電圧BOOSTのレベルを比較判断して第1クロック制御信号PBIAS及び第2クロック制御信号NBIASを出力するレギュレーションブロック100について説明する。
図2は、この発明に係るレギュレーションブロックの構成及び動作を説明するための回路図である。
図2を参照すると、レギュレーションブロック100は、ブースト電圧分割部110、比較部120、基準電圧生成部130、クロック制御信号出力部140及びパッケージ電圧生成部150を含んでなる。ブースト電圧分割部110は、入力端が図1のブースト電圧出力端OBvtに接続され、出力端が比較部120の第1比較信号VBDIV入力端に接続される。基準電圧生成部130の入力端は、パッケージ電圧生成部150の出力端に接続される。基準電圧生成部130の第1出力端及び第2出力端は、それぞれ比較部120の第2比較信号REFCRV入力端と制御信号NGATE入力端に接続される。比較部120の出力端は、クロック制御信号出力部140の入力端に接続される。クロック制御信号出力部140は、入力端が比較部120の出力端に接続され、第1出力端及び第2出力端がクロック生成器200の入力端に接続される。パッケージ電圧生成部150は、第1入力端〜第3入力端がそれぞれ外部のトリムビットTE1〜TE3に接続され、出力端が基準電圧生成部130の入力端に接続される。
上述した接続関係を有するレギュレーションブロックの動作及び構成を、図2の回路図を参照して、具体的に説明する。なお、説明中でいう「ダイオード接続されたトランジスタ」とは、トランジスタのゲート端子とソース又はドレイン端子のいずれか一方とが接続されてトランジスタが2端子素子のダイオードとして動作することをいう。
ブースト電圧分割部110は、ダイオード接続された第10〜第15PMOSトランジスタP10〜P15を含んでなる。具体的には、ゲート端子がソース端子に接続された第10〜第15PMOSトランジスタP10〜P15のそれぞれは、ブースト電圧出力端OBvtと接地電源VSS(図中、下向き三角▽の接地記号)との間に順次直列接続されている。すなわち、第10PMOSトランジスタP10のドレイン端子は、ブースト電圧出力端OBvtに接続され、第10PMOSトランジスタP10のソース端子は、第11PMOSトランジスタP11のドレイン端子に接続される。第11PMOSトランジスタP11のソース端子は、第12PMOSトランジスタP12のドレイン端子に接続される。第12PMOSトランジスタP12のソース端子は、第13PMOSトランジスタP13のドレイン端子に接続される。第13PMOSトランジスタP13のソース端子は、第14PMOSトランジスタP14のドレイン端子に接続される。第14PMOSトランジスタP14のソース端子は、第10ノードQ10に接続され、第15PMOSトランジスタP15のドレイン端子も、第10ノードQ10に接続される。第15PMOSトランジスタP15のソース端子は、接地電源VSSに接続される。
基準電圧生成部130は、第16PMOSトランジスタP16、ダイオード接続された第10及び第11NMOSトランジスタN10及びN11を含んでなる。具体的には、パッケージ電圧生成部150の出力であるパッケージ電圧PVTによって駆動される第16PMOSトランジスタP16は、電源電圧VCC(図中、短い横線―の電源線記号)と第11ノードQ11との間に接続される。ドレイン端子とゲート端子とが接続された第10NMOSトランジスタN10は、第11ノードQ11と第12ノードQ12との間に接続される。ドレイン端子とゲート端子とが接続された第11NMOSトランジスタN11は、第12ノードQ12と接地電源VSSとの間に接続される。
比較部120は、第17及び第18PMOSトランジスタP17及びP18と、第12及び第13NMOSトランジスタN12及びN13からなる差動増幅器と、これを駆動するための第14NMOSトランジスタN14とを含んでなる。具体的には、第17PMOSトランジスタP17は、電源電圧VCCと第13ノードQ13に接続され、第13ノードQ13の電位によって駆動される。第18PMOSトランジスタP18は、電源電圧VCCと第14ノードQ14に接続され、第13ノードQ13の電位によって駆動される。第12NMOSトランジスタN12は、第13ノードQ13及び第15ノードQ15との間に接続され、第10ノードQ10(ブースト電圧分割手段の出力VBDIV)によって駆動される。第13NMOSトランジスタN13は、第14ノードQ14と第15ノードQ15との間に接続され、第11ノードQ11(比較基準電圧生成手段の出力REFCRV)によって駆動される。第14NMOSトランジスタN14は、第15ノードQ15と接地電源VSSとの間に接続され、第12ノードQ12の電位によって駆動される。
クロック制御信号出力部140は、第19PMOSトランジスタP19及び第15NMOSトランジスタN15を含んでなる。ダイオード接続された第19PMOSトランジスタP19と第15NMOSトランジスタN15が電源電圧VCCと接地電源VSSとの間に直列に接続される。具体的には、ゲート端子がソース端子に接続された第19PMOSトランジスタP19は、電源電圧VCCと第2クロック制御信号NBIASの出力端に接続される。第15NMOSトランジスタN15は、第1クロック制御信号PBIASの出力端と接地電源VSSとの間に接続され、第14ノードQ14の電位によって駆動される。
次に、上述した構成を有するこの発明のレギュレーションブロック100の動作を説明する。
ブースト電圧分割部110は、ダイオード接続された第10〜第15PMOSトランジスタP10〜P15を介して入力されたブースト電圧BOOSTを分圧して電圧降下させ、電圧降下したブースト電圧の第1比較信号VBDIVを比較部120の第1比較信号VBDIV入力端へ出力する。例えば、ブースト電圧BOOSTが9Vであれば、第10〜第15PMOSトランジスタP10〜P15それぞれの両端にかかった電圧は、それぞれ1.5Vとなる。第15PMOSトランジスタP15の両端にかかった電圧はブースト電圧BOOSTを6等分した電圧、すなわち1.5Vとなる。
基準電圧生成部130は、第16PMOSトランジスタP16、第10及び第11NMOSトランジスタN10及びN11を介して電源電圧VCCを分圧し、ブースト電圧のレベルを比較する第2比較信号REFCRVと比較部120の動作を制御する制御信号NGATEとを生成する。具体的には、パッケージ電圧生成部150の出力であるパッケージ電圧PVTによって第16PMOSトランジスタP16の両端にかかる電圧が変化し、これにより基準電圧生成部130の出力である第2比較信号REFCRVと制御信号NGATEの電圧レベルが変化する。これは、パッケージ電圧信号PVTに応じて第16PMOSトランジスタP16のチャネル幅が調節され、第16PMOSトランジスタP16にかかる電圧が変化する。電源電圧から、第16PMOSトランジスタP16の両端にかかった電圧を差し引いた残り電圧が、ダイオード接続された第10及び第11NMOSトランジスタN10及びN11によって二分される。これにより、第16PMOSトランジスタP16の両端にかかる電圧を調節することにより、第11及び第12ノードQ11及びQ12の電圧を変化させる。例えば、電源電圧VCCが5Vとし、パッケージ電圧信号PVTによって第16PMOSトランジスタP16にかかる電圧が1Vであると仮定すれば、第10及び第11NMOSトランジスタN10及びN11によって第11ノードQ11及び第12ノードQ12にそれぞれ4V及び2Vが印加される。
比較部120は、ブースト電圧分割部110の出力である第1比較信号VBDIVと、基準電圧生成部130の出力である第2比較信号REFCRVとの差によって、比較結果信号を生成する。具体的には、基準電圧生成部130の制御信号NGATEによって第14NMOSトランジスタN14がターンオンされて、差動増幅器が動作する。この際、差動増幅器の特性に基づいて2つの入力の差によって出力が決定される。すなわち、第12NMOSトランジスタN12のゲート端子に入力される第1比較信号VBDIVと、第13NMOSトランジスタN13のゲート端子に入力される第2比較信号REFCRVとの電圧差によって第14ノードQ14のロジック状態が変わる。例えば、第10ノードQ10の電圧が第11ノードQ11より低い場合には、第14ノードQ14がロジックロー状態の信号を出力する。第10ノードQ10の電圧が第11ノードQ11より高い場合には、第14ノードQ14がロジックハイ状態の信号を出力する。
クロック制御信号出力部140は、比較部120の出力である比較結果信号によって第1及び第2クロック制御信号PBIAS及びNBIAS出力端のロジック状態を変化させる。すなわち、比較部120の出力である比較結果信号は、第1クロック制御信号PBIASとなり、第15NMOSトランジスタN15を制御する。第2クロック制御信号NBIASの出力端には、ダイオード接続された第19PMOSトランジスタP19によってロジック状態がハイである電源電圧VCCが印加されていて、第15NMOSトランジスタN15の動作有無に応じてその値が変化する。具体的には、第14ノードQ14の出力である比較結果信号がロジックハイになると、第15NMOSトランジスタN15がターンオンされて、第2クロック制御信号NBIASのロジック状態がロジックローに変化する。また、第14ノードQ14の出力である比較結果信号がロジックローになると、第15NMOSトランジスタN15がターンオフされて、第2クロック制御信号NBIASのロジック状態がロジックハイになる。レギュレーションブロック100に入力されるブースト電圧に異常がない場合には、第1及び第2クロック制御信号PBIAS及びNBIASのロジック状態は、それぞれローとハイになる。
上述したように、第1比較信号と第2比較信号との差によって第1及び第2クロック制御信号のロジック状態が決定される。したがって、ブースト電圧の制御のために一定レベルの第2比較信号の生成を必要とする。このため、パッケージ電圧生成部150は、パッケージ電圧信号PVTによって基準電圧生成部内の第16PMOSトランジスタP16のチャネル幅を調節することにより、第2比較信号のレベルを制御する。このパッケージ電圧生成部150について説明すると、次のとおりである。
図3a〜図3cは、組み合わせて1枚の回路図を形成し、この発明に係るパッケージ電圧生成部の構成及び動作を説明するための回路図である。
図3a〜図3cを参照すると、パッケージ電圧生成部150は、トリムビット入力部152(図3a)、電圧レベル変換部154(図3b)及びパッケージ電圧出力部156(図3c)を含んでなる。トリムビット入力部152、電圧レベル変換部154及びパッケージ電圧出力部156は、この順に縦続接続されている。図3aの○印内のA、B、C、D、E、Fは、それぞ図3bの○印内のA、B、C、D、E、Fにそれぞれ対応する。また、図3bの○印内のGは、図3cの○印内のGに対応する。
トリムビット入力部152は、外部のトリムビットの状態に応じて多数のレベル制御信号を出力して電圧レベル変換部154を制御し、電圧レベル変換部154は、トリムビット入力部の出力であるレベル制御信号によって様々なレベルの電圧を出力する。パッケージ電圧出力部156は、電圧レベル変換部154の出力電圧の漏洩を防ぎ、パッケージ電圧信号PVTを基準電圧生成部130に出力する。
この発明のパッケージ電圧生成部150は、トリムビット入力部152、電圧レベル変換部154及びパッケージ電圧出力部156を含んでなる。トリムビット入力部152は、第10〜第13インバータI10〜I13と、第10〜第13NANDゲートND10〜ND13とを含んでなり、電圧レベル変換部154は、第30〜第63PMOSトランジスタP30〜P63を含んでなり、パッケージ電圧出力部156は、第30〜第35NMOSトランジスタN30〜N35を含んでなる。
以下、トリムビット入力部152(図3a)、電圧レベル変換部154(図3b)及びパッケージ電圧出力部156(図3c)を添付図面に基づいて詳細に説明する。
第1トリムビット入力端TE1は、第10インバータI10を経由して第10NANDゲートND10の第1入力端子に接続されるとともに、第12NANDゲートND12の第1入力端子に接続される。また、第1トリムビット入力端TE1は、第11NANDゲートND11の第2入力端子と第13NANDゲートND13の第1入力端子に接続される。
第2トリムビット入力端TE2は、第11インバータI11を経由して第10NANDゲートND10の第2入力端子に接続されるとともに、第11NANDゲートND11の第1入力端子に接続される。また、第2トリムビット入力端子TE2は、第12及び第13NANDゲートND12及びND13の第2入力端子に接続される。
第3トリムビット入力端TE3は、第12インバータI12を経由して第53PMOSトランジスタP53のゲート端子に接続される。また、第3トリムビット入力端TE3は、第12及び第13インバータI12及びI13を経由して第33PMOSトランジスタP33のゲート端子に接続される。
第10NANDゲートND10の出力端子は、第30及び第38PMOSトランジスタP30及びP38のゲート端子に接続される。第11NANDゲートND11の出力端子は、第31及び第41PMOSトランジスタP31及びP41のゲート端子に接続される。第12NANDゲートND12の出力端子は、第32及び第46PMOSトランジスタP32及びP46のゲート端子に接続される。第13NANDゲートND13の出力端子は、第54PMOSトランジスタP54のゲート端子に接続される。
第33PMOSトランジスタP33は、電源電圧VCCと第20ノードQ20との間に接続される。第53PMOSトランジスタP53は、電源電圧VCCと第25ノードQ25との間に接続される。第30PMOSトランジスタP30は、第20ノードQ20と第23ノードQ23との間に接続される。第31PMOSトランジスタP31は、第20ノードQ20と第22ノードQ22との間に接続される。第32PMOSトランジスタP32は、第20ノードQ20と第21ノードQ21との間に接続される。
第34PMOSトランジスタP34は、第20ノードQ20と第21ノードQ21との間に接続され、第35PMOSトランジスタP35は、第21ノードQ21と第22ノードQ22との間に接続され、第36PMOSトランジスタP36は、第22ノードQ22と第23ノードQ23との間に接続され、第37PMOSトランジスタP37は、第23ノードQ23と第24ノードQ24との間に接続される。これは、第34〜第37PMOSトランジスタP34〜P37が第20ノードQ20と第24ノードQ24との間に直列に接続されることを意味する。また、第34〜第37PMOSトランジスタP34〜P37のゲート端子は、第24ノードQ24にそれぞれ接続される。
第38〜第40PMOSトランジスタP38〜P40は、第24ノードQ24と第25ノードQ25との間に直列に接続される。第39及び第40PMOSトランジスタP39及びP40のゲート端子は、第24ノードQ24にそれぞれ接続される。
第41PMOSトランジスタP41は、第25ノードQ25と第26ノードQ26との間に接続される。第42及び第43PMOSトランジスタP42及びP43は、第24ノードQ24と第26ノードQ26との間に直列に接続され、第42及び第43PMOSトランジスタP42及びP43のゲート端子は、第24ノードQ24によって駆動される。また、第44及び第45PMOSトランジスタP44及びP45は、第24ノードQ24と第26ノードQ26との間に直列に接続され、第44及び第45PMOSトランジスタP44及びP45のゲート端子は、第24ノードQ24によって駆動される。すなわち、直列接続された第42及び第43PMOSトランジスタP42及びP43と第44及び第45PMOSトランジスタP44及びP45は、第24ノードQ24と第26ノードQ26との間に並列に接続される。
第46PMOSトランジスタP46は、第25ノードQ25及び第27ノードQ27との間に接続される。第47PMOSトランジスタP47と第48PMOSトランジスタP48、第49PMOSトランジスタP49と第50PMOSトランジスタP50、及び第51PMOSトランジスタP51と第52PMOSトランジスタP52のそれぞれは、第24ノードQ24と第27ノードQ27との間に直列に接続され、第47〜第52PMOSトランジスタP47〜P52のそれぞれは第24ノードQ24によって駆動される。直列接続された第47と第48PMOSトランジスタP47とP48、第49と第50PMOSトランジスタP49とP50、及び第51と第52PMOSトランジスタP51とP52は、第24ノードQ24と第27ノードQ27との間に並列に接続される。
第54PMOSトランジスタP54は、第25ノードQ25と第28ノードQ28との間に接続される。第55と第56PMOSトランジスタP55とP56、第57と第58PMOSトランジスタP57とP58、第59と第60PMOSトランジスタP59とP60、及び第61と第62PMOSトランジスタP61とP62のそれぞれは、第24ノードQ24と第28ノードQ28との間に並列に接続される。第63PMOSトランジスタP63は、第24ノードQ24と第25ノードQ25との間に接続され、ゲート端子が第24ノードQ24に接続される。
第30〜第35NMOSトランジスタN30〜N35は、第24ノードQ24(図3cの○印内のG)と接地電源VSSとの間に直列に接続される。第30〜第35NMOSトランジスタN30〜N35のゲート端子は、それぞれ接地電源VSSに接続される。
次に、上述した構成を有し、外部のトリムビットの入力を受けて様々なレベルのパッケージ電圧を出力するこの発明のパッケージ電圧生成部150の動作を説明する。
第1トリムビット入力端TE1の第1トリムビット信号STE1は、第11及び第13NANDゲートND11及びND13の入力端子に印加され、第10インバータI10によって反転されて、第10及び第12NANDゲートND10及びND12の入力端子に印加される。
第2トリムビット入力端TE2の第2トリムビット信号STE2は、第12及び第13NANDゲートND12及ND13の入力端子に印加され、第11インバータI11によって反転されて、第10及び第11NANDゲートND10及びND11の入力端子に印加される。
第10NANDゲートND10は、反転された第1及び第2トリムビット信号STE1及びSTE2を入力として、これらの論理演算によって第1電圧レベル制御信号VLC1を第30及び第38PMOSトランジスタP30及びP38のゲート端子に出力する。第11NANDゲートND11は、反転された第2トリムビット信号STE2と第1トリムビット信号STE1を入力として論理演算によって第2電圧レベル制御信号VLC2を第31及び第41PMOSトランジスタP31及びP41のゲート端子に出力する。第12NANDゲートND12は、反転された第1トリムビット信号STE1と第2トリムビット信号STE2を入力としてこれらの論理演算によって第3電圧レベル制御信号VLC3を第32及び第46PMOSトランジスタP32及びP46のゲート端子に出力する。第13NANDゲートND13は、第1及び第2トリムビット信号STE1及びSE2を入力としてこれらの論理演算によって第4電圧レベル制御信号VLC4を第54PMOSトランジスタP54のゲート端子に出力する。
例えば、第1及び第2トリムビット信号STE1及びSTE2のロジック状態が全てローの場合、第10NANDゲートND10は、ロジック状態がローの第1電圧レベル制御信号VLC1を出力し、第11〜第13NANDゲートND11〜ND13のそれぞれは、ロジック状態がハイの第2〜第4電圧レベル制御信号VLC2〜VLC4を出力する。また、第1及び第2トリムビット信号STE1及びSTE2のロジック状態がそれぞれハイとローの場合、第11NANDゲートND11は、ロジック状態がローの第2電圧レベル制御信号VLC2を出力し、第1及び第2トリムビット信号STE1及びSTE2のロジック状態がそれぞれローとハイの場合、第12NANDゲートND12は、ロジック状態がローの第3電圧レベル制御信号VLC3を出力し、第1及び第2トリムビット信号STE1及びSTE2のロジック状態が全てローの場合、第13NANDゲートND13は、ロジック状態がローの第4電圧レベル制御信号VLC4を出力する。
第3トリムビット入力端TE3の第3トリムビット信号STE3は、第12インバータI12によって反転されて(第1経路制御信号RTE)、第53PMOSトランジスタP53に印加される。また、第12インバータによって反転された第3トリムビット信号STE3は、第13インバータI13によって反転されて(第2経路制御信号IRTE)、第33PMOSトランジスタP33に印加される。第3トリムビット信号STE3によって電圧レベル変換部154内の第33及び第53PMOSトランジスタP33及びP53を制御して、電源電圧VCCの経路を調節する。
具体的には、ロジック状態がハイの第3トリムビット信号STE3が入力される場合、第12インバータI12によって反転されたロジックローの第1経路制御信号RTEが出力され、第13インバータI13によってロジックハイの第2経路制御信号IRTEが出力される。したがって、第1経路制御信号RTEによって第53PMOSトランジスタP53が駆動されて、第25ノードQ25に電源電圧VCCが印加される。また、ロジック状態がローの第3トリムビット信号TE3が入力される場合、第12インバータI12によってロジックハイの第1経路制御信号RTEが出力され、第13インバータI13によってロジックローの第2経路制御信号IRTEが出力される。したがって、第2経路制御信号IRTEによって第33PMOSトランジスタP33が駆動されて、第20ノードQ20に電源電圧VCCが印加される。
上述した第1〜第4電圧レベル制御信号VLC1〜VLC4と第1及び第2経路制御信号RTE及びIRTEによって、電圧レベル変換部154では、第1〜第7電圧レベルのパッケージ電圧信号PVTを出力する。
まず、第2経路制御信号IRTEによって第53PMOSトランジスタP53がターンオフされ、第33PMOSトランジスタP33がターンオンされた際を考察すると、第1〜第3電圧レベル制御信号VLC1〜VLC3によって第1〜第3電圧レベルの電圧が出力端(Q24)に現れる。
具体的には、第1電圧レベル制御信号VLC1によって第30PMOSトランジスタP30がターンオンされる。第33、第30及び第37PMOSトランジスタP33、P30及びP37によって電圧降下及びパッケージ電圧出力部156(図3c)との間で電圧分割されて出力端に第1電圧レベルの電圧PVTが現れれる。第2電圧レベル制御信号VLC2によって第31PMOSトランジスタP31がターンオンされ、第33及び第31PMOSトランジスタP33及びP31と、第36及び第37PMOSトランジスタP36及びP37によって電圧降下及び電圧分割されて出力端に第2電圧レベルの電圧PVTが現れる。第3電圧レベル制御信号VLC3によって第32PMOSトランジスタP32がターンオンされ、第33及び第32PMOSトランジスタP33及びP32と第35〜第37PMOSトランジスタP35〜P37によって電圧降下及び電圧分割されて出力端に第3電圧レベルの電圧PVTが現れる。
まず、第1経路制御信号RTEによって第33PMOSトランジスタP33がターンオフされ、第53PMOSトランジスタP53がターンオンされた際を考察すると、第1〜第4電圧レベル制御信号VLC1〜VLC4によって第4〜第7電圧レベルの電圧が出力端に現れる。
具体的には、第1電圧レベル制御信号VLC1によって第38PMOSトランジスタP38がターンオンされ、第53及び第38PMOSトランジスタP53及びP38、第39及び第40PMOSトランジスタP39及びP40、第63PMOSトランジスタP63によって電圧降下及び電圧分割されて、出力端に第4電圧レベルの電圧が現れる。第2電圧レベル制御信号VLC2によって第41PMOSトランジスタP41がターンオンされ、第53及び第41PMOSトランジスタP53及びP41、第42及び第43PMOSトランジスタP42及びP43、第44及び第45PMOSトランジスタP44及びP45、第63PMOSトランジスタP63によって電圧降下及び電圧分割されて、出力端に第5電圧レベルの電圧が現れる。第3電圧レベル制御信号VLC3によって第46PMOSトランジスタP46がターンオンされ、第53及び第46PMOSトランジスタP53及びP46、第47及び第48PMOSトランジスタP47及びP48、第49及び第50PMOSトランジスタP49及びP50、第51及び第52PMOSトランジスタP51及びP52、第63PMOSトランジスタP63によって電圧降下及び電圧分割されて、出力端に第6電圧レベルの電圧が現れる。第4電圧レベル制御信号VLC4によって第54PMOSトランジスタP54がターンオンされ、第53及び第54PMOSトランジスタP53及びP54、第55及び第56PMOSトランジスタP55及びP56、第57及び第58PMOSトランジスタP57及びP58、第59及び第60PMOSトランジスタP55及びP56、第61及び第62PMOSトランジスタP61及びP62、第63PMOSトランジスタP63によって電圧降下及び電圧分割されて、出力端に第7電圧レベルの電圧が現れる。すなわち、第38、第41、第46及び第54PMOSトランジスタP38、P41、P46及びP54のターンオン状態に応じて並列連結されたPMOSトランジスタの個数が増加し、これにより様々なレベルの電圧及び電流を出力することになる。
パッケージ電圧出力部156は、第30〜第35NMOSトランジスタN30〜N35を用いたシャント通路を設けてなり、電圧レベル変換部154内の各作動トランジスタとの間で電圧分割作用を行い、電圧レベル変換部154の出力である第1〜第7電圧レベルの信号PVTを基準電圧生成部130へ出力する。
上述したように構成され動作するパッケージ電圧生成部150から出力されたパッケージ電圧PVT(第1〜第7電圧レベル)によって、基準電圧生成部130の出力である第2比較基準信号REFCRVと制御信号NGATEが変化する。これにより、ブースト電圧を一定のレベルに制御するための基準電圧(第2比較基準信号REFCRV)を可変的に設定することができる。
上述したように、レギュレーションブロック100は、内部で基準電圧を生成し、これと入力されたブースト電圧とを比較することにより、入力されたブースト電圧のレベルが基準電圧に比べて高いか低いかによって、クロック生成器200を制御する第1クロック制御信号PBIAS及び第2クロック制御信号NBIASのロジック状態を変化させる。レギュレーションブロック100は、このようにクロック生成器200を制御して、ブースト電圧のレベルを制御する。
以下、レギュレーションブロック100の第1クロック制御信号PBIAS及び第2クロック制御信号NBIASによって制御されるクロック生成器200について説明する。
図4は、この発明に係るクロック生成器200の構成及び動作を説明するための回路図である。
図4を参照すると、クロック生成器200は、第1〜第5クロック発生部210〜250を含んでなる。第1〜第5クロック発生部210〜250は、いずれも外部から第1クロック制御信号PBIAS及び第2クロック制御信号NBIASが供給される。第1〜第5クロック発生部210〜250の各出力端(P2のソースとN2のドレインの接続ノード)は、各後段の入力端(P2のゲートとN2のゲートの接続ノード)に連結されてループを形成する。
上述した第1〜第5クロック発生部210〜250の回路は、それぞれが同一であるので、第1クロック発生部210について説明する。
第1クロック発生部210は、外部の第1クロック制御信号PBIASによって駆動される第1PMOSトランジスタP1と、第5クロック出力端CLK4によって駆動される第2PMOSトランジスタP2とが電源電圧VCCと第1クロック信号CLK0の出力端との間に直列に接続される。第2クロック制御信号NBIASによって駆動される第1NMOSトランジスタN1と第5クロック出力端CLK4によって駆動される第2NMOSトランジスタN2とが第1クロック出力端CLK0と接地電源VSSとの間に直列に接続される。
すなわち、第1PMOSトランジスタP1、第2PMOSトランジスタP2、第2NMOSトランジスタN2及び第1NMOSトランジスタN1が電源電圧VCCと接地電圧VSSとの間に順次直列に接続されているが、第1PMOSトランジスタP1と第1NMOSトランジスタN1は、それぞれ外部からの第1クロック制御信号PBIAS及び第2クロック制御信号NBIASによって駆動され、第2PMOSトランジスタP2と第2NMOSとランジスタN2は、第5クロック発生部250の出力である第5クロック信号CLK4出力端の出力信号によって駆動される。
次に、上述したクロック生成器200の動作を説明する。
第1クロック制御信号PBIASによって第1PMOSトランジスタP1がターンオン又はターンオフされ、ロジック状態のハイに相当する電源電圧VCCを第2PMOSトランジスタP2のドレイン端子に印加することを制御し、第2クロック制御信号NBIASによって第1NMOSトランジスタN1がターンオン又はターンオフされ、ロジック状態のローに相当する接地電源VSSを第2NMOSトランジスタN2のドレイン端子に印加することを制御する。
この際、第5クロック発生部250の出力である第5クロック信号CLK4のロジック状態によって第2PMOSトランジスタP2と第2NMOSトランジスタN2のいずれか一つがターンオンされ、第5クロック信号CLK4とはロジック状態が反対である第1クロック信号CLK0を第1クロック発生部210の出力端に出力する。すなわち、第1〜第5クロック発生部210〜250は、前段の出力信号のロジック状態とは反対のロジック信号を出力する。
具体的には、第1〜第5クロック信号CLK0〜CLK4の初期ロジック状態がそれぞれハイ、ロー、ハイ、ロー及びハイであり、第1及び第2クロック制御信号PBIAS及びNBIASのロジック状態がそれぞれローとハイであるときを考察すると、次のとおりである。
第1クロック発生部210の第1PMOSトランジスタP1及び第1NMOSトランジスタN1は、第1クロック制御信号PBIAS及び第2クロック制御信号NBIASによってターンオンされ、ハイのロジック状態を有する第5クロック信号CLK4によって第2NMOSトランジスタN2がターンオンされる。これにより、第1クロック発生部210は、ロジック状態がハイの第5クロック信号CLK4を入力として、ロジック状態がローの第1クロック信号CLK0を出力する。第2クロック発生部220は、ローのロジック状態を有する第1クロック信号CLK0を入力として、ハイのロジック状態を有する第2クロック信号CLK1を出力する。第3クロック発生部230は、ハイのロジック状態を有する第2クロック信号CLK1を入力として、ローのロジック状態を有する第3クロック信号CLK2を出力する。第4クロック発生部240は、ローのロジック状態を有する第3クロック信号CLK2を入力として、ハイのロジック状態を有する第4クロック信号CLK3を出力する。第5クロック発生部250は、ハイのロジック状態を有する第4クロック信号CLK3を入力として、ローのロジック状態を有する第5クロック信号CLK4を出力する。第1クロック発生部210は、ローのロジック状態を有する第5クロック信号CLK4を入力として、ハイのロジック状態を有する第1クロック信号CLK0を出力する。
第1クロック信号CLK0のロジック状態を考察すると、ハイからローに、さらにローからハイに変化し続ける。第1〜第5クロック発生部210〜250は、一定の周期を有する第1〜第5クロック信号CLK0〜CLK4を出力して、第1及び第2ポンプ300〜310を制御する。
この際、第1クロック制御信号PBIASに、ハイのロジック状態を有する信号が入力されるか、あるいは第1クロックNBISAにローのロジック状態を有する信号が入力された場合には、第1PMOSトランジスタP1がターンオフされ、あるいは第1NMOSトランジスタN1がターンオフされる。これにより、第1〜第5クロック発生部210〜250のクロック信号が所定のロジック状態を一定の時間維持することになり、クロック周期を制御することができる。
この発明に係るブースト電圧制御回路の全体的な構成及び動作を説明するためのブロック図である。 この発明に係るレギュレーションブロックの構成及び動作を説明するための回路図である。 この発明に係るパッケージ電圧生成部の構成及び動作を説明するための回路図である。 この発明に係るパッケージ電圧生成部の構成及び動作を説明するための回路図である。 この発明に係るパッケージ電圧生成部の構成及び動作を説明するための回路図である。 この発明に係るクロック生成器の構成及び動作を説明するための回路図である。
符号の説明
100 レギュレーションブロック
200 クロック生成器
300、310 ポンプ手段
110 ブースト電圧分割部
120 比較部
130 基準電圧生成部
140 クロック制御信号出力部
150 パケージ電圧生成部
152 トリムビット入力部
154 電圧レベル変換部
155 パッケージ電圧出力部
210、220、230、240、250 クロック発生部

Claims (6)

  1. ポンプ手段によってブーストされた電圧のレベルを維持するために、
    読出しイネーブル信号及びクロック信号に応答してブースト電圧を生成して出力端子に出力するための第1ポンプと、
    待機の時及び読出しの時前記クロック信号に応答してブースト電圧を生成して前記出力端子に出力するための第2ポンプと、
    前記出力端子の電圧によって第1及び第2クロック制御信号を生成するレギュレーションブロックと、
    前記第1及び第2クロック制御信号によって前記クロック信号を生成するクロック生成器とを備えてなり、
    前記レギュレーションブロックは、
    前記ブースト電圧を降下するためのブースト電圧分割手段と、
    外部から入力されるトリムビットに応じて異なる電圧レベルのパッケージ電圧信号を生成するパッケージ電圧生成手段と、
    前記パッケージ電圧生成手段の前記パッケージ電圧信号に応じて電圧レベルが可変的に設定される基準電圧と制御電圧を生成する比較基準電圧生成手段と、
    前記制御電圧によって動作し、前記電圧降下されたブースト電圧と前記基準電圧とを比較し、比較結果信号を出力する比較手段と、
    前記比較手段の比較結果信号を用いて第1及び第2クロック制御信号を出力する出力手段とを含んでな
    ことを特徴とするブースト電圧制御回路。
  2. 請求項に記載のブースト電圧制御回路において、
    前記パッケージ電圧生成手段は、
    第1〜第3トリムビット信号を入力として第1〜第4電圧レベル制御信号と第1及び第2経路制御信号を生成するトリムビット入力部と、
    前記第1〜第4電圧レベル制御信号と第1及び第2経路制御信号によって、第1〜第7電圧レベルを有するパッケージ電圧信号を生成する電圧レベル変換部と、
    前記パッケージ電圧信号を前記比較基準電圧生成手段へ出力するパッケージ電圧出力部とを含んでなる
    ことを特徴とするブースト電圧制御回路。
  3. 請求項に記載のブースト電圧制御回路において、
    前記トリムビット入力部は、
    第1トリムビット入力端に接続され、第1トリムビット信号を反転する第1インバータと、
    第2トリムビット入力端に接続され、第2トリムビット信号を反転する第2インバータと、
    前記第1及び第2インバータに接続され、前記反転された第1及び第2トリムビット信号の論理組合せによって第1電圧レベル制御信号を生成する第1NANDゲートと、
    前記第2インバータ及び第1トリムビット入力端に接続され、前記反転された第2トリムビット信号及び第1トリムビット信号の論理組合せによって第2電圧レベル制御信号を生成する第2NANDゲートと、
    前記第1インバータ及び第2トリムビット入力端に接続され、前記反転された第1トリムビット信号及び前記第2トリムビット信号の論理組合せによって第3電圧レベル制御信号を生成する第3NANDゲートと、
    前記第1及び第2トリムビット入力端に接続され、前記第1及び第2トリムビット信号の論理組合せによって第4電圧レベル制御信号を生成する第4NANDゲートと、
    第3トリムビット入力端に接続され、前記第3トリムビット信号を反転して前記第1経路制御信号を生成する第3インバータと、
    前記第3インバータに接続され、前記第1経路制御信号を反転して前記第2経路制御信号を生成する第4インバータとを含んでなる
    ことを特徴とするブースト電圧制御回路。
  4. 請求項に記載のブースト電圧制御回路において、
    前記電圧レベル変換部は、
    電源電圧と第1ノードとの間に接続され、前記第2経路制御信号によって駆動される第1PMOSトランジスタと、
    電源電圧と第2ノードとの間に接続され、前記第1経路制御信号によって駆動される第2PMOSトランジスタと、
    前記第2ノードと第3ノードとの間に接続され、前記第3電圧レベル制御信号によって駆動される第3PMOSトランジスタと、
    前記第2ノードと第4ノードとの間に接続され、前記第2電圧レベル制御信号によって駆動される第4PMOSトランジスタと、
    前記第2ノードと第5ノードとの間に接続され、前記第1電圧レベル制御信号によって駆動される第5PMOSトランジスタと、
    前記第2ノードと前記第3ノードとの間に接続され、第6ノードによって駆動される第6PMOSトランジスタと、
    前記第3ノードと前記第4ノードとの間に接続され、前記第6ノードによって駆動される第7PMOSトランジスタと、
    前記第4ノードと前記第5ノードとの間に接続され、前記第6ノードによって駆動される第8PMOSトランジスタと、
    前記第5ノードと前記第6ノードとの間に接続され、前記第6ノードによって駆動される第9PMOSトランジスタと、
    前記第1ノードと前記第6ノードとの間に直列接続され、前記第1電圧レベル制御信号によって駆動される第10PMOSトランジスタと、前記第6ノードによって駆動される第11及び第12PMOSトランジスタと、
    前記第1ノードと第7ノードとの間に直列接続され、前記第2電圧レベル制御信号によって駆動される第13PMOSトランジスタと、
    前記第6ノードと第7ノードとの間に直列接続され、前記第6ノードによって駆動される第14及び第15PMOSトランジスタと、
    前記第6ノードと第7ノードとの間に直列接続され、前記第6ノードによって駆動される第16及び第17PMOSトランジスタと、
    前記第1ノードと第8ノードとの間に接続され、前記第3電圧レベル制御信号によって駆動される第18PMOSトランジスタと、
    前記第6ノードと前記第8ノードとの間に直列接続され、前記第6ノードによって駆動される第19及び第20PMOSトランジスタと、
    前記第6ノードと前記第8ノードとの間に直列接続され、前記第6ノードによって駆動される第21及び第22PMOSトランジスタと、
    前記第6ノードと前記第8ノードとの間に直列接続され、前記第6ノードによって駆動される第23及び第24PMOSトランジスタと、
    前記第1ノードと第9ノードとの間に接続され、前記第4電圧レベル制御信号によって駆動される第25PMOSトランジスタと、
    前記第6ノードと前記第9ノードとの間に接続され、前記第6ノードによって駆動される第26及び第27PMOSトランジスタと、
    前記第6ノードと前記第9ノードとの間に接続され、前記第6ノードによって駆動される第28及び第29PMOSトランジスタと、
    前記第6ノードと前記第9ノードとの間に接続され、前記第6ノードによって駆動される第30及び第31PMOSトランジスタと、
    前記第6ノードと前記9ノードとの間に接続され、前記第6ノードによって駆動される第32及び第33PMOSトランジスタと、
    前記第1ノードと第6ノードとの間に接続され、前記第6ノードによって駆動される第34PMOSトランジスタとを含んでなる
    ことを特徴とするブースト電圧制御回路。
  5. 請求項に記載のブースト電圧制御回路において、
    前記ブースト電圧分割手段は、
    前記ブースト電圧の入力端と接地電源との間に直列接続され、それぞれソース端子とゲート端子が接続されている第1〜第6PMOSトランジスタを含んでなる
    ことを特徴とするブースト電圧制御回路。
  6. 請求項に記載のブースト電圧制御回路において、
    前記比較基準電圧生成部は、
    電源電圧と第1ノードとの間に接続され、前記パッケージ電圧信号によって駆動されるPMOSトランジスタと、
    前記第1ノードと第2ノードとの間に接続され、前記第1ノードによって駆動される第1NMOSトランジスタと、
    前記第2ノードと接地電源との間に接続され、前記第2ノードによって駆動される第2NMOSトランジスタとを含んでなる
    ことを特徴とするブースト電圧制御回路。
JP2003348701A 2002-10-07 2003-10-07 ブースト電圧制御回路 Expired - Lifetime JP4482306B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020060998A KR100543318B1 (ko) 2002-10-07 2002-10-07 부스팅 전압 제어회로

Publications (2)

Publication Number Publication Date
JP2004134074A JP2004134074A (ja) 2004-04-30
JP4482306B2 true JP4482306B2 (ja) 2010-06-16

Family

ID=32040987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348701A Expired - Lifetime JP4482306B2 (ja) 2002-10-07 2003-10-07 ブースト電圧制御回路

Country Status (3)

Country Link
US (2) US6812775B2 (ja)
JP (1) JP4482306B2 (ja)
KR (1) KR100543318B1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307720C (zh) 2003-06-27 2007-03-28 富士通株式会社 半导体集成电路
US7719343B2 (en) 2003-09-08 2010-05-18 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
ITRM20030512A1 (it) * 2003-11-05 2005-05-06 St Microelectronics Srl Circuito a pompa di carica a basso tempo di assestamento
JP4257196B2 (ja) * 2003-12-25 2009-04-22 株式会社東芝 半導体装置および半導体装置の駆動方法
US20050225376A1 (en) * 2004-04-08 2005-10-13 Ati Technologies, Inc. Adaptive supply voltage body bias apparatus and method thereof
JP4077429B2 (ja) * 2004-06-09 2008-04-16 株式会社東芝 昇圧回路
KR100680441B1 (ko) * 2005-06-07 2007-02-08 주식회사 하이닉스반도체 안정적인 승압 전압을 발생하는 승압 전압 발생기
JP2008005374A (ja) * 2006-06-26 2008-01-10 Mitsubishi Electric Corp マルチストリーム対応マルチプレクサ及びデマルチプレクサシステム
JP2008112507A (ja) * 2006-10-30 2008-05-15 Toshiba Corp 半導体記憶装置
KR101435164B1 (ko) 2008-05-14 2014-09-02 삼성전자주식회사 고전압 발생회로 및 이를 포함하는 플래시 메모리 장치
US8816659B2 (en) * 2010-08-06 2014-08-26 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9660590B2 (en) 2008-07-18 2017-05-23 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
EP2311184A4 (en) * 2008-07-18 2014-02-26 Peregrine Semiconductor Corp SOFTENER HIGH PERFORMANCE VOLTAGE GENERATION CIRCUITS AND METHOD
KR100944322B1 (ko) * 2008-08-04 2010-03-03 주식회사 하이닉스반도체 상 변화 메모리 장치
WO2010018068A1 (en) * 2008-08-13 2010-02-18 Audioasics A/S Temperature compensated voltage pump
JP5554910B2 (ja) * 2008-09-08 2014-07-23 ローム株式会社 チャージポンプ回路の制御回路およびそれらを利用した電源回路
CN101674011B (zh) * 2008-12-16 2012-05-30 昆山锐芯微电子有限公司 电荷泵
KR20100098954A (ko) * 2009-03-02 2010-09-10 삼성전자주식회사 레벨 검출기 및 이를 구비하는 전압 발생기
US8339185B2 (en) 2010-12-20 2012-12-25 Sandisk 3D Llc Charge pump system that dynamically selects number of active stages
KR101196911B1 (ko) 2010-12-30 2012-11-05 에스케이하이닉스 주식회사 반도체 장치 및 이를 이용한 전압 생성 방법
US8686787B2 (en) 2011-05-11 2014-04-01 Peregrine Semiconductor Corporation High voltage ring pump with inverter stages and voltage boosting stages
US9413362B2 (en) 2011-01-18 2016-08-09 Peregrine Semiconductor Corporation Differential charge pump
US8836412B2 (en) 2013-02-11 2014-09-16 Sandisk 3D Llc Charge pump with a power-controlled clock buffer to reduce power consumption and output voltage ripple
US8981835B2 (en) 2013-06-18 2015-03-17 Sandisk Technologies Inc. Efficient voltage doubler
US9024680B2 (en) 2013-06-24 2015-05-05 Sandisk Technologies Inc. Efficiency for charge pumps with low supply voltages
US9077238B2 (en) 2013-06-25 2015-07-07 SanDisk Technologies, Inc. Capacitive regulation of charge pumps without refresh operation interruption
US9007046B2 (en) 2013-06-27 2015-04-14 Sandisk Technologies Inc. Efficient high voltage bias regulation circuit
JP5894565B2 (ja) * 2013-08-13 2016-03-30 株式会社東芝 レギュレータ、および、スイッチ装置
US9083231B2 (en) 2013-09-30 2015-07-14 Sandisk Technologies Inc. Amplitude modulation for pass gate to improve charge pump efficiency
US20150109500A1 (en) * 2013-10-18 2015-04-23 Omnivision Technologies, Inc. Image sensor including spread spectrum charge pump
US9154027B2 (en) * 2013-12-09 2015-10-06 Sandisk Technologies Inc. Dynamic load matching charge pump for reduced current consumption
US9917507B2 (en) 2015-05-28 2018-03-13 Sandisk Technologies Llc Dynamic clock period modulation scheme for variable charge pump load currents
KR20170003025A (ko) * 2015-06-30 2017-01-09 에스케이하이닉스 주식회사 내부전압 생성회로
US9647536B2 (en) 2015-07-28 2017-05-09 Sandisk Technologies Llc High voltage generation using low voltage devices
KR102374228B1 (ko) * 2015-08-27 2022-03-15 삼성전자주식회사 저항성 메모리 장치의 부스트 전압 생성기, 이를 포함하는 전압 생성기 및 이를 포함하는 저항성 메모리 장치
US9520776B1 (en) 2015-09-18 2016-12-13 Sandisk Technologies Llc Selective body bias for charge pump transfer switches
US10365833B2 (en) 2016-01-22 2019-07-30 Micron Technology, Inc. Apparatuses and methods for encoding and decoding of signal lines for multi-level communication architectures
KR102504615B1 (ko) * 2016-09-09 2023-03-02 에스케이하이닉스 주식회사 대기전류 감소를 위한 펌프 스위칭 제어장치 및 이를 이용한 펌핑 장치
US10283187B2 (en) 2017-07-19 2019-05-07 Micron Technology, Inc. Apparatuses and methods for providing additional drive to multilevel signals representing data
CN108170021B (zh) * 2018-02-12 2023-05-23 宗仁科技(平潭)有限公司 一种电子表驱动电路和电子表
WO2020033597A1 (en) 2018-08-07 2020-02-13 Battery Savers Inc. Method and system to boost battery voltage
US11489441B2 (en) * 2020-06-02 2022-11-01 Texas Instruments Incorporated Reference voltage generation circuits and related methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006974A (en) * 1987-12-24 1991-04-09 Waferscale Integration Inc. On-chip high voltage generator and regulator in an integrated circuit
US5553030A (en) * 1993-09-10 1996-09-03 Intel Corporation Method and apparatus for controlling the output voltage provided by a charge pump circuit
JP2917877B2 (ja) * 1995-10-11 1999-07-12 日本電気株式会社 基準電流発生回路
KR100225851B1 (ko) * 1996-12-16 1999-10-15 윤종용 불휘발성 반도체 메모리 장치의 독출전압 부스팅회로
KR19990047008A (ko) * 1997-12-02 1999-07-05 구본준 외부조건 변화에 둔감한 기준전압 발생회로
JP2000173266A (ja) * 1998-12-07 2000-06-23 Mitsubishi Electric Corp 昇圧回路
JP3583703B2 (ja) * 2000-09-22 2004-11-04 株式会社東芝 半導体装置
US6891426B2 (en) * 2001-10-19 2005-05-10 Intel Corporation Circuit for providing multiple voltage signals

Also Published As

Publication number Publication date
KR100543318B1 (ko) 2006-01-20
JP2004134074A (ja) 2004-04-30
US20050062518A1 (en) 2005-03-24
US20040066225A1 (en) 2004-04-08
US7123078B2 (en) 2006-10-17
US6812775B2 (en) 2004-11-02
KR20040031865A (ko) 2004-04-14

Similar Documents

Publication Publication Date Title
JP4482306B2 (ja) ブースト電圧制御回路
US5991221A (en) Microcomputer and microprocessor having flash memory operable from single external power supply
US6188590B1 (en) Regulator system for charge pump circuits
US9614439B2 (en) Semiconductor device
US5969988A (en) Voltage multiplier circuit and nonvolatile semiconductor memory device having voltage multiplier
KR100339023B1 (ko) 문턱전압을조절할수있는플래쉬메모리장치의센싱회로
US20110221514A1 (en) Variable stage charge pump and method for providing boosted output voltage
US20080136500A1 (en) Charge pump for generation of multiple output-voltage levels
JPH114575A (ja) 昇圧回路
JP2003308126A (ja) 電位発生回路
JPS61112426A (ja) Cmos駆動回路
JP3207768B2 (ja) 半導体装置
US5875146A (en) Semiconductor integrated circuit device with burst length invariant internal circuit
US5638013A (en) Charge redistribution circuit and method
US5663911A (en) Semiconductor device having a booster circuit
JP3940293B2 (ja) ブートストラップ回路
JPH1127138A (ja) 差動増幅回路
US7800958B2 (en) Voltage generating unit of semiconductor memory device
WO2023115889A1 (zh) 基于主从电荷泵结构的反熔丝编程控制电路
JPH11214978A (ja) 半導体装置
US7098727B2 (en) Boosting circuit
JP2848796B2 (ja) 信号伝送方法
JP2972723B2 (ja) 半導体集積回路
US20240013841A1 (en) Clock-generating circuit
US20230343382A1 (en) Multi stage charge pump circuits and semiconductor memory devices including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150