JP4466231B2 - 圧力波発生素子およびその製造方法 - Google Patents

圧力波発生素子およびその製造方法 Download PDF

Info

Publication number
JP4466231B2
JP4466231B2 JP2004188785A JP2004188785A JP4466231B2 JP 4466231 B2 JP4466231 B2 JP 4466231B2 JP 2004188785 A JP2004188785 A JP 2004188785A JP 2004188785 A JP2004188785 A JP 2004188785A JP 4466231 B2 JP4466231 B2 JP 4466231B2
Authority
JP
Japan
Prior art keywords
layer
porosity
pressure wave
insulating layer
wave generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004188785A
Other languages
English (en)
Other versions
JP2006013961A (ja
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004188785A priority Critical patent/JP4466231B2/ja
Priority to KR1020067025008A priority patent/KR100855788B1/ko
Priority to CN2005800158353A priority patent/CN1954640B/zh
Priority to PCT/JP2005/008252 priority patent/WO2005107318A1/ja
Priority to US11/568,419 priority patent/US7474590B2/en
Priority to EP05737154A priority patent/EP1761105A4/en
Publication of JP2006013961A publication Critical patent/JP2006013961A/ja
Application granted granted Critical
Publication of JP4466231B2 publication Critical patent/JP4466231B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生素子およびその製造方法に関するものである。
従来から、圧電効果による機械的振動を利用した超音波発生素子が広く知られている。この種の超音波発生素子としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生素子では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気などの媒体を振動させて超音波を発生させることができる。
上述のような機械的振動を利用した超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。
一方、近年、機械的振動を伴わずに超音波を発生させることができる素子として、媒体に熱を与える熱励起により空気の粗密を形成する方法を利用した圧力波発生素子が提案されている(例えば、特許文献1、2)。
この種の圧力波発生素子は、図9に示すように、単結晶のシリコン基板からなる半導体基板1と、半導体基板1の厚み方向の一表面から所定深さまで形成された多孔質シリコン層からなり半導体基板1に比べて熱伝導率および熱容量が十分に小さな熱絶縁層2’と、熱絶縁層2’上に形成された金属薄膜(例えば、Al薄膜など)からなる発熱体3と、発熱体3の両端部それぞれの上に形成されたパッド4,4とを備え、発熱体3への交流電流の通電に伴う発熱体3と媒体(例えば、空気)との熱交換により圧力波を発生するものである。すなわち、図9に示した構成の圧力波発生素子では、交流電源から一対のパッド4,4を介して発熱体3へ交流電流を通電することにより発熱体3が発熱する一方で、発熱体3の直下には熱絶縁層2’が形成されて発熱体3が半導体基板1から熱的に絶縁されているので、発熱体3近傍の空気との間で効率的な熱交換が起こり、空気の膨張・圧縮の結果、超音波などの圧力波が発生する。ここにおいて、熱絶縁層2’は、半導体基板1の一部を陽極酸化処理にて多孔質化することにより形成されている。
なお、図9に示した構成の圧力波発生素子は、発熱体3に印加する交流電圧(駆動電圧)の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、例えば、超音波音源やスピーカの音源として用いることができる。
特開平11−300274号公報 特開2002−186097号公報
ところで、本願発明者らは、図9に示した構成の圧力波発生素子に関して、圧力波発生素子のサイズを広く活用されている機械的振動を利用した超音波発生素子の一般的なサイズである15mm□程度とし、上記超音波発生素子と同等の音圧(例えば、周波数が40kHzで30cm離れた位置において20Pa程度)を発生させるように駆動した場合、発熱体3が破断されてしまうことがあるという実験結果を得た。
そこで、本願発明者らは、図9に示した構成の圧力波発生素子に関して鋭意研究した結果、例えば周波数が40kHzの超音波を発生させるために発熱体3へ周波数が20kHzの矩形波電圧を印加した場合、発熱体3の温度が300度を超える非常に高い温度となるという知見を得るとともに、高速での発熱体3の温度上昇・下降に伴う発熱体3の膨張収縮により、発熱体3とは異種材料により形成された多孔質シリコン層からなる熱絶縁層2’に非常に大きな熱応力が発生するという知見を得た。
上述の2つの知見は、本願発明者らが図9に示した構成の圧力波発生素子に関して種々のシミュレーションを行った中で、熱絶縁層として全体にわたって均一な物性値(熱伝導率、熱容量)を有する多孔度が60%の多孔質シリコン層を想定して、発熱体3へ周波数が40kHzの矩形波電圧を印加した場合の発熱体3の温度、熱絶縁層2’の深さ方向の温度分布を、有限要素法を利用してシミュレーションした結果に基づいて導き出したものである。ここにおいて、熱絶縁層2’の深さ方向の温度分布に関しては、発熱体3の温度が最高温度に到達した時点で図10に示すような温度分布になるという結果が得られた。なお、図10の横軸は熱絶縁層2’と発熱体層3との界面からの深さであり、縦軸は熱絶縁層の温度を上記界面での温度により正規化した正規化温度である。
図10の結果から、図9に示した構成の圧力波発生素子の発熱体3へ周波数が40kHzの矩形波電圧を印加した場合、熱絶縁層2’の表面から2μmの深さまでの領域に急激な温度分布が生じていることが分かり、本願発明者らは、この急激な温度分布により熱絶縁層2の厚み方向における発熱体3側の部分に熱応力が集中して、この熱応力が熱絶縁層2のクラックの原因となり、熱絶縁層2’に発生したクラックが発熱体3の破断の一因となっていることを見出した。また、図9に示した構成の圧力波発生素子では熱絶縁層2’が半導体基板1により支持されているので、上述の熱応力に起因して熱絶縁層2’における半導体基板1との境界近傍にかかる負荷が大きく、熱絶縁層2’の剥離を招きやすいという知見を得た。
また、本願発明者らは、図9に示した構成の圧力波発生素子では、多孔質シリコン層からなる熱絶縁層2の形成にあたって、電解液中で半導体基板の一部を陽極酸化処理工程にて多孔質化することにより熱絶縁層2’を形成し、その後、洗浄工程、乾燥工程を順次行っているが、発生させる圧力波の振幅を高めるために熱絶縁層2’の多孔度を高くして熱絶縁層2’の熱絶縁性を向上させるように設計した場合、つまり、熱絶縁層2’の多孔度を比較的高い値に設計した場合、上述の乾燥工程において、直前の洗浄工程で用いた液体の表面張力の影響により熱絶縁層2’にクラックが発生したり熱絶縁層2’が半導体基板1から剥離してしまうことがあるという実験結果を得て、製造工程の途中で熱絶縁層2’に発生したクラックも発熱体3の破断の一因となっていることを見出した。なお、このような製造工程途中での熱絶縁層2’へのクラックの発生や半導体基板1からの熱絶縁層2’の剥離は熱絶縁層2’の厚み寸法が大きくなるほど起こりやすいという傾向があった。
本発明は上記事由に鑑みて為されたものであり、その目的は、製造時や駆動時における熱絶縁層へのクラックの発生を防止することにより発熱体の破断を防止することができる圧力波発生素子およびその製造方法を提供することにある。
請求項1の発明は、基板と、基板の厚み方向の一表面側に形成された薄膜からなる発熱体と、基板と発熱体との間に介在する熱絶縁層とを備え、発熱体への通電に伴う発熱体と媒体との熱交換により圧力波を発生する圧力波発生素子であって、熱絶縁層は、前記厚み方向において基板側の部分の多孔度が発熱体側の部分の多孔度よりも小さいことを特徴とする。
この発明によれば、熱絶縁層における発熱体側の部分での熱絶縁性能の低下を抑制しつつ、熱絶縁層における基板の境界近傍の機械的強度を高めることができ、しかも、熱絶縁層における基板との境界近傍で発生する応力を緩和することができ、製造時や駆動時における熱絶縁層へのクラックの発生を防止することができて発熱体の破断を防止することができる。その結果、製造歩留まりの向上および信頼性の向上を図れる。
請求項2の発明は、請求項1の発明において、前記熱絶縁層は、前記厚み方向において前記発熱体側に形成された高多孔度層と、前記基板側に形成された低多孔度層とからなることを特徴とする。
この発明によれば、前記熱絶縁層の熱絶縁性能を高多孔度層の多孔度および厚み寸法により決定することが可能となり、前記熱絶縁層における前記基板側の部分の機械的強度を低多孔度層の多孔度および厚み寸法により設計することが可能となるから、前記熱絶縁層の熱絶縁性能の設計が容易になるとともに、前記熱絶縁層の形成が容易になる。
請求項3の発明は、請求項1の発明において、前記熱絶縁層は、前記厚み方向において前記発熱体側に形成された高多孔度層と、前記基板側に形成され前記基板に近づくほど多孔度が小さくなった低多孔度傾斜層とからなることを特徴とする。
この発明によれば、請求項2の発明のように前記基板の厚み方向において多孔度がステップ状に変化している場合に比べて、前記熱絶縁層における前記基板との境界近傍および前記発熱体側の部分の機械的強度を高めることができるとともに、前記境界近傍で発生する応力を緩和することができ、製造時や駆動時における前記基板からの前記熱絶縁層の剥離をより確実に防止することができる。
請求項4の発明は、請求項3の発明において、前記熱絶縁層は、前記厚み方向における前記高多孔度層と前記低多孔度傾斜層との境界で多孔度が連続していることを特徴とする。
この発明によれば、前記高多孔度層と前記低多孔度傾斜層との境界近傍で発生する応力を分散して小さくでき、前記熱絶縁層の機械的強度を高めることができる。
請求項5の発明は、請求項2ないし請求項4の発明において、前記高多孔度層の厚み寸法を熱拡散長以上の値に設定してなることを特徴とする。
この発明によれば、前記発熱体への通電時に発生する圧力波の振幅の大幅な低下を防止することができる。
請求項6の発明は、請求項1の発明において、前記熱絶縁層は、前記厚み方向において前記発熱体側から前記基板側に近づくにつれて多孔度が連続的に小さくなっていることを特徴とする。
この発明によれば、請求項2の発明に比べて、前記熱絶縁層の機械的強度をより高めることができるとともに、前記熱絶縁層における前記基板との境界近傍で発生する応力を緩和することができ、製造時や駆動時における熱絶縁層へのクラックの発生、熱絶縁層のクラックに起因した発熱体の破断や前記基板からの前記熱絶縁層の剥離をより確実に防止することができる。
請求項7の発明は、請求項3または請求項6の発明において、前記低多孔度傾斜層は、前記厚み方向において前記基板との境界近傍で多孔度が零になるように形成されてなることを特徴とする。
この発明によれば、前記熱絶縁層における前記基板との境界近傍の機械的強度をより高めることができるとともに、前記境界近傍で発生する応力をより緩和することができ、製造時や駆動時における熱絶縁層へのクラックの発生、熱絶縁層のクラックに起因した発熱体の破断や前記基板からの前記熱絶縁層の剥離をより確実に防止することができる。
請求項8の発明は、請求項2記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理による高多孔度層の形成用に規定した第1の電流密度で第1の所定時間の陽極酸化処理を行った後、陽極酸化処理による低多孔度層の形成用に規定した第2の電流密度で第2の所定時間の陽極酸化処理を行うことを特徴とする。
この発明によれば、製造時に、高多孔度層と低多孔度層とからなる熱絶縁層を連続的に形成することができ、高多孔度層と低多孔度層との両方を形成した後に洗浄工程、乾燥工程を順次行えばよいから、製造時に熱絶縁層にクラックが発生したり熱絶縁層が基板から剥離するのを防止することができて製造歩留まりを向上でき、また、駆動時における熱絶縁層へのクラックの発生を防止できて発熱体の破断を防止することができる圧力波発生素子を提供することができる。
請求項9の発明は、請求項3記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理による高多孔度層の形成用に規定した第1の電流密度で第1の所定時間の陽極酸化処理を行った後、陽極酸化処理による低多孔度傾斜層の形成用に規定した電流密度の減少パターンで第2の所定時間の陽極酸化処理を行うことを特徴とする。
この発明によれば、製造時に、高多孔度層と低多孔度傾斜層とからなる熱絶縁層を連続的に形成することができ、高多孔度層と低多孔度傾斜層との両方を形成した後に洗浄工程、乾燥工程を順次行えばよいから、製造時に熱絶縁層にクラックが発生したり熱絶縁層が基板から剥離するのを防止することができて製造歩留まりを向上でき、また、駆動時における熱絶縁層へのクラックの発生を防止できて発熱体の破断を防止することができる圧力波発生素子を提供することができる。
請求項10の発明は、請求項6記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理時の電流密度を時間経過とともに連続的に低下させることを特徴とする。
この発明によれば、多孔度が連続的に変化した多孔質層からなる熱絶縁層を1回の陽極酸化処理にて形成することができ、基板に近づくにつれて多孔度が連続的に小さくなる多孔質層からなる熱絶縁層を形成した後に洗浄工程、乾燥工程を行えばよいから、製造時に熱絶縁層にクラックが発生したり熱絶縁層が基板から剥離するのを防止することができて製造歩留まりを向上でき、また、駆動時における熱絶縁層へのクラックの発生を防止できて発熱体の破断を防止することができる圧力波発生素子を提供することができる。
請求項1の発明では、熱絶縁層における発熱体側の部分での熱絶縁性能の低下を抑制しつつ、熱絶縁層における基板の境界近傍の機械的強度を高めることができ、しかも、熱絶縁層における基板との境界近傍で発生する応力を緩和することができ、製造時や駆動時における製造時や駆動時における熱絶縁層へのクラックの発生を防止することができて発熱体の破断を防止することができるという効果がある。
請求項8,9,10の発明は、製造時に熱絶縁層にクラックが発生したり熱絶縁層が基板から剥離するのを防止することができて製造歩留まりを向上でき、また、駆動時における熱絶縁層へのクラックの発生を防止できて発熱体の破断を防止することができる圧力波発生素子を提供することができるという効果がある。
(実施形態1)
本実施形態の圧力波発生素子は、図1に示すように、単結晶のp形シリコン基板からなる半導体基板1と、半導体基板1の厚み方向の一表面(図1における上面)側に形成された多孔質層からなる熱絶縁層2と、熱絶縁層2上に形成された薄膜(例えば、アルミニウム薄膜のような金属薄膜など)からなる発熱体3と、発熱体3の両端部それぞれの上に形成されたパッド4,4とを備えており、一対のパッド4,4を介した発熱体3への通電(電気エネルギの供給)に伴う発熱体3と媒体(例えば、空気)との熱交換により圧力波(例えば、超音波など)を発生する。ここに、半導体基板1の平面形状は長方形状であって、熱絶縁層2および発熱体3の平面形状も長方形状に形成してある。なお、発熱体3は、熱絶縁層2よりも平面サイズが小さく(熱絶縁層2は発熱体3の外周よりも内側に形成されている)、長辺の長さ寸法を12mm、短辺の長さ寸法を10mmに設定してあるが、これらの寸法は特に限定するものではない。また、本実施形態では、半導体基板1が基板を構成している。
熱絶縁層2を構成する多孔質層は、半導体基板1としてのp形シリコン基板の一部を電解液中で陽極酸化処理することにより形成されており、発熱体3側の高多孔度層(例えば、多孔度が70%の多孔質シリコン層)21と基板1側の低多孔度層(例えば、多孔度が40%の多孔質シリコン層)22とにより構成されている。ここに、多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、多孔度を適宜設定することにより熱伝導率を単結晶シリコンに比べて十分に小さくすることができる。なお、上記特許文献1には、熱伝導率が168W/(m・K)、熱容量が1.67×10J/(m・K)の単結晶のシリコン基板を陽極酸化処理して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)となることが報告されている。また、本実施形態の圧力波発生素子では、半導体基板1の厚さを525μm、熱絶縁層2の高多孔度層21の厚さを5μm、熱絶縁層2の低多孔度層22の厚さを5μm、発熱体3の厚さを50nmとしてあるが、これらの厚さは一例であって特に限定するものではない。ただし、発熱体3直下の高多孔度層21の熱伝導率をα〔W/(m・K)〕、熱容量をC〔J/(m・K)〕とするとともに、発熱体3への電気的な入力の波形(電圧波形または電流波形)を周波数がf’〔Hz〕の交流の正弦波として、発熱体3の温度変化の波形の周波数をf(=2f’)、発熱体3の温度変化の波形の角周波数をω(=2πf)とし、発熱体3の温度をT(ω)とした(つまり、温度Tがωの関数とした)ときに、高多孔度層21の表面から深さ方向への距離に関して高多孔度層21の表面の温度の1/e倍(eは自然対数の底)になる距離を熱拡散長Lと定義すると、
L≒√(2α/ωC)
となり、高多孔度層21の厚みは熱拡散長L以上の値に設定することが望ましい。ここで、発熱体3から発生する圧力波の周波数は上記周波数fに等しい。なお、本実施形態の圧力波発生素子は、一使用例として、発熱体3への電気的な入力の波形の周波数f’を20kHzとし、圧力波として周波数が40kHzの超音波を発生させる超音波発生素子として使用することを想定しており、熱絶縁層2を多孔度が60%の多孔質シリコン層と仮定し、熱伝導率を1W/(m・K)、熱容量を0.7×10J/(m・K)、周波数fを40kHzとして求めた熱拡散長L=3.37μmに基づいて高多孔度層21の厚さを設定してある。
以下、本実施形態の圧力波発生素子の製造方法について簡単に説明する。
まず、半導体基板1の他表面(図1における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、半導体基板1の上記一表面側における高多孔度層21の形成予定部位および低多孔度層22の形成予定部位を陽極酸化処理にて多孔質化することで高多孔度層21と低多孔度層22とからなる熱絶縁層を形成する陽極酸化処理工程を行う。ここにおいて、陽極酸化処理工程では、電解液として55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用い、半導体基板1を主構成とする被処理物を処理槽に入れられた電解液に浸漬し、通電用電極を陽極、半導体基板1の上記一表面側に対向配置された白金電極を陰極として、電源から陽極と陰極との間に所定の電流密度の電流を流すことにより高多孔度層21と低多孔度層22とを連続的に形成している。ただし、熱絶縁層2の形成時には、図2に示すように、高多孔度層21の形成用に規定した第1の電流密度J1(例えば、100mA/cm)で第1の所定時間T1(例えば、2分)の陽極酸化処理を行い、低多孔度層22の形成時は低多孔度層22の形成用に規定した第2の電流密度J2(例えば、10mA/cm)で第2の所定時間T2(例えば、15分)の陽極酸化処理を行っている。
上述の陽極酸化処理工程の通電終了後、電解液から被処理物を取り出し、洗浄工程、乾燥工程を順次行ってから、発熱体3を形成する発熱体形成工程、パッド4,4を形成するパッド形成工程を順次行うことによって、圧力波発生素子が完成する。なお、乾燥工程では、窒素ガスによる乾燥、遠心乾燥機による乾燥など各種の乾燥方法を適宜採用すればよい。また、発熱体形成工程では、メタルマスクなどを利用して蒸着法などによって発熱体3を形成すればよく、パッド形成工程でも、メタルマスクなどを利用して蒸着法などによってパッド4,4を形成すればよい。
以上説明した本実施形態の圧力波発生素子における熱絶縁層2は、熱絶縁層2が半導体基板1の厚み方向において発熱体3側に形成された高多孔度層21と半導体基板1側に形成された低多孔度層22とで構成されており、上記厚み方向において半導体基板1側の部分の多孔度が発熱体3側の部分の多孔度よりも小さくなっているので、熱絶縁層2における発熱体3側の部分での熱絶縁性能の低下を抑制しつつ、熱絶縁層2における半導体基板1の境界近傍の機械的強度を高めることができ、しかも、熱絶縁層2における半導体基板1との境界近傍で発生する応力を緩和することができ、製造時や駆動時における熱絶縁層2へのクラックの発生を防止できて発熱体3の破断を防止することができ、また、半導体基板1からの熱絶縁層2の剥離を防止することができる。その結果、製造歩留まりの向上および信頼性の向上を図れる。
ここで、本実施形態の圧力波発生素子では、上述のように熱絶縁層2が半導体基板1の厚み方向において発熱体3側に形成された高多孔度層21と、半導体基板1側に形成された低多孔度層22とで構成されているので、熱絶縁層2の熱絶縁性能を高多孔度層21の多孔度および厚み寸法により決定することが可能となり、熱絶縁層2における半導体基板1側の部分の機械的強度を低多孔度層22の多孔度および厚み寸法により設計することが可能となるから、熱絶縁層2の熱絶縁性能の設計が容易になるとともに、熱絶縁層2の形成が容易になる。ここにおいて、上述のように熱絶縁層2の高多孔度層21の厚さを上記熱拡散長L以上の値に設定することにより、半導体基板1側への熱伝導に起因した圧力波の振幅の大幅な低下を防止することができるから、高多孔度層21により熱絶縁性能を決めることができる一方で、低多孔度層21により熱絶縁層2の機械的強度を決めることができるのである。言い換えれば、本実施形態の圧力波発生素子では、熱絶縁層2の深さ方向において多孔度を一様とするときよりも、熱絶縁性能を低下させることなく、製造時および駆動時の機械的強度を高めることができるのである。
したがって、本実施形態の圧力波発生素子では、従来に比べて耐熱性が向上するので、通電時に発熱体3へ与える電力を増加させることによる圧力波の振幅の増大を図れる。
ところで、本実施形態では、半導体基板1として単結晶のp形シリコン基板を採用しているが、半導体基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよいし、また、p形に限らず、n形あるいはノンドープであってもよく、半導体基板1の種類に応じて陽極酸化処理の条件を適宜変更すればよい。したがって、熱絶縁層2を構成する多孔質層も多孔質シリコン層に限らず、例えば、多結晶シリコンを陽極酸化処理することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層でもよい。また、発熱体3の材料もAlに限定するものではなく、Alに比べて耐熱性の高い金属材料(例えば、W,Mo,Pt,Irなど)を採用するのが好ましい。
(実施形態2)
本実施形態の圧力波発生素子の基本構成は実施形態1と略同じであり、図3に示すように、熱絶縁層2が半導体基板1の厚み方向において発熱体3側に形成された高多孔度層21と、半導体基板1側に形成され半導体基板1に近づくにつれて多孔度が連続的に小さくなった低多孔度傾斜層23とで構成されている点が相違する。ここにおいて、低多孔度傾斜層23は、高多孔度層21との境界で多孔度が連続し、半導体基板1との境界近傍で多孔度が零となるように多孔度の深さプロファイルを設定してある。他の構成は実施形態1と同じなので、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の圧力波発生素子の製造方法は実施形態1にて説明した製造方法と略同じであって、熱絶縁層2の形成時には、図4に示すように、高多孔度層21の形成用に規定した第1の電流密度J1(例えば、100mA/cm)で第1の所定時間T1(例えば、2分)の陽極酸化処理を行い、低多孔度傾斜層23の形成時は低多孔度傾斜層23の形成用に規定した電流密度の減少パターンで第2の所定時間T3(例えば、10分)の陽極酸化処理を行っている点が相違するだけである。ここにおける減少パターンは、電流密度を第2の所定時間T3かけて第1の電流密度J1から第2の電流密度J3(例えば、0mA/cm)まで連続的に小さくする単調減少パターンに規定されている。なお、図4における単調減少パターンは傾きが一定となっているが、単調減少パターンは、例えば図5(a)に示すように時間経過とともに傾きが大きくなるような単調減少パターンでもよいし、図5(b)に示すように時間経過とともに傾きが小さくなるような単調減少パターンでもよい。
しかして、本実施形態の圧力波発生素子においても、実施形態1と同様に、半導体基板1の厚み方向において半導体基板1側の部分の多孔度が発熱体3側の部分の多孔度よりも小さくなっているので、熱絶縁層2における発熱体3側の部分での熱絶縁性能の低下を抑制しつつ熱絶縁層2における半導体基板1側の部分の機械的強度を高めることができ、製造時や駆動時における熱絶縁層2へのクラックの発生を防止できて発熱体3の破断を防止することができ、また、半導体基板1からの熱絶縁層2の剥離を防止することができる。その結果、製造歩留まりの向上および信頼性の向上を図れる。
また、本実施形態の圧力波発生素子では、実施形態1のように熱絶縁層2の多孔度が深さ方向(半導体基板1の厚み方向)においてステップ状に変化している場合に比べて、熱絶縁層2における半導体基板1との境界近傍および発熱体3側の部分の機械的強度を高めることができるとともに、境界近傍で発生する応力を緩和することができ、製造時や駆動時における半導体基板1からの熱絶縁層2の剥離をより確実に防止することができる。
また、本実施形態の圧力波発生素子では、半導体基板1の厚み方向において熱絶縁層2は高多孔度層21と低多孔度傾斜層23との境界で多孔度が連続しているので、高多孔度層21と低多孔度傾斜層23との境界近傍で発生する応力を分散して小さくでき、熱絶縁層2の機械的強度を高めることができ、しかも、低多孔度傾斜層23は半導体基板1との境界近傍で多孔度が零になるように形成されているので、熱絶縁層2における半導体基板1との境界近傍の機械的強度をより高めることができるとともに、境界近傍で発生する応力をより緩和することができ、製造時や駆動時における熱絶縁層2へのクラックの発生、熱絶縁層2のクラックに起因した発熱体3の破断や半導体基板1からの熱絶縁層2の剥離をより一層確実に防止することができる。
(実施形態3)
本実施形態の圧力波発生素子の構成構成は実施形態1と略同じであり、図6に示すように、熱絶縁層2が半導体基板1の厚み方向において発熱体3側から半導体基板1側に近づくにつれて多孔度が連続的に小さくなっている点が相違する。要するに、熱絶縁層2は、半導体基板1の厚み方向において発熱体3に近い部位ほど多孔度が高く、半導体基板1に近い部位ほど多孔度が低くなっている。ここにおいて、熱絶縁層2は、半導体基板1との境界近傍で多孔度が零となるように多孔度の深さプロファイルを設定してある。他の構成は実施形態1と同じなので説明を省略する。
本実施形態の圧力波発生素子の製造方法は実施形態1にて説明した製造方法と略同じであって、熱絶縁層2の形成時には、図7に示すように、熱絶縁層2の形成用に規定した電流密度の減少パターンで所定時間T4(例えば、10分)の陽極酸化処理を行っている点が相違するだけである。ここにおける減少パターンは、電流密度を所定時間T4かけて第1の電流密度J4(例えば、100mA/cm)から第2の電流密度J5(例えば、0mA/cm)まで連続的に小さくする単調減少パターンに規定されている。なお、図7における単調減少パターンは傾きが一定となっているが、単調減少パターンは、例えば図8(a)に示すように時間経過とともに傾きが大きくなるような単調減少パターンでもよいし、図8(b)に示すように時間経過とともに傾きが小さくなるような単調減少パターンでもよい。
しかして、本実施形態の圧力波発生素子では、半導体基板1の厚み方向において発熱体3側から半導体基板1側に近づくにつれて多孔度が連続的に小さくなっているので、実施形態1に比べて熱絶縁層2の機械的強度をより高めることができるとともに、熱絶縁層2における半導体基板1との境界近傍で発生する応力を緩和することができ、製造時や駆動時における熱絶縁層2へのクラックの発生、熱絶縁層2のクラックに起因した発熱体3の破断や半導体基板1からの熱絶縁層2の剥離をより確実に防止することができる。しかも、本実施形態の圧力波発生素子では、熱絶縁層2は半導体基板1との境界近傍で多孔度が零になるように形成されているので、熱絶縁層2における半導体基板1との境界近傍の機械的強度をより高めることができるとともに、境界近傍で発生する応力をより緩和することができ、製造時や駆動時における熱絶縁層2へのクラックの発生、熱絶縁層2のクラックに起因した発熱体3の破断や半導体基板1からの熱絶縁層2の剥離をより一層確実に防止することができる。
ところで、上記各実施形態では、半導体基板1の材料としてSiを採用しているが、半導体基板1の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。
実施形態1における圧力波発生素子の概略断面図である。 同上の製造方法の説明図である。 実施形態2における圧力波発生素子の概略断面図である。 同上の製造方法の説明図である。 同上の製造方法の説明図である。 実施形態3における圧力波発生素子の概略断面図である。 同上の製造方法の説明図である。 同上の製造方法の説明図である。 従来例を示す圧力波発生素子の概略断面図である。 同上における熱絶縁層の深さ方向の温度分布の一例を示すグラフである。
符号の説明
1 半導体基板
2 熱絶縁層
3 発熱体
4 パッド
21 高多孔度層
22 低多孔度層

Claims (10)

  1. 基板と、基板の厚み方向の一表面側に形成された薄膜からなる発熱体と、基板と発熱体との間に介在する熱絶縁層とを備え、発熱体への通電に伴う発熱体と媒体との熱交換により圧力波を発生する圧力波発生素子であって、熱絶縁層は、前記厚み方向において基板側の部分の多孔度が発熱体側の部分の多孔度よりも小さいことを特徴とする圧力波発生素子。
  2. 前記熱絶縁層は、前記厚み方向において前記発熱体側に形成された高多孔度層と、前記基板側に形成された低多孔度層とからなることを特徴とする請求項1記載の圧力波発生素子。
  3. 前記熱絶縁層は、前記厚み方向において前記発熱体側に形成された高多孔度層と、前記基板側に形成され前記基板に近づくほど多孔度が小さくなった低多孔度傾斜層とからなることを特徴とする請求項1記載の圧力波発生素子。
  4. 前記熱絶縁層は、前記厚み方向における前記高多孔度層と前記低多孔度傾斜層との境界で多孔度が連続していることを特徴とする請求項3記載の圧力波発生素子。
  5. 前記高多孔度層の厚み寸法を熱拡散長以上の値に設定してなることを特徴とする請求項2ないし請求項4のいずれかに記載の圧力波発生素子。
  6. 前記熱絶縁層は、前記厚み方向において前記発熱体側から前記基板側に近づくにつれて多孔度が連続的に小さくなっていることを特徴とする請求項1記載の圧力波発生素子。
  7. 前記熱絶縁層は、前記厚み方向において前記基板との境界近傍で多孔度が零になるように形成されてなることを特徴とする請求項3または請求項6記載の圧力波発生素子。
  8. 請求項2記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理による高多孔度層の形成用に規定した第1の電流密度で第1の所定時間の陽極酸化処理を行った後、陽極酸化処理による低多孔度層の形成用に規定した第2の電流密度で第2の所定時間の陽極酸化処理を行うことを特徴とする圧力波発生素子の製造方法。
  9. 請求項3記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理による高多孔度層の形成用に規定した第1の電流密度で第1の所定時間の陽極酸化処理を行った後、陽極酸化処理による低多孔度傾斜層の形成用に規定した電流密度の減少パターンで第2の所定時間の陽極酸化処理を行うことを特徴とする圧力波発生素子の製造方法。
  10. 請求項6記載の圧力波発生素子の製造方法であって、基板の前記一表面側の一部を陽極酸化処理にて多孔質化することにより熱絶縁層を形成するようにし、熱絶縁層の形成にあたっては、陽極酸化処理時の電流密度を時間経過とともに連続的に低下させることを特徴とする圧力波発生素子の製造方法。
JP2004188785A 2004-04-28 2004-06-25 圧力波発生素子およびその製造方法 Expired - Fee Related JP4466231B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004188785A JP4466231B2 (ja) 2004-06-25 2004-06-25 圧力波発生素子およびその製造方法
KR1020067025008A KR100855788B1 (ko) 2004-04-28 2005-04-28 압력파 발생장치 및 그 제조방법
CN2005800158353A CN1954640B (zh) 2004-04-28 2005-04-28 压力波产生装置及其制造方法
PCT/JP2005/008252 WO2005107318A1 (ja) 2004-04-28 2005-04-28 圧力波発生装置及びその製造方法
US11/568,419 US7474590B2 (en) 2004-04-28 2005-04-28 Pressure wave generator and process for manufacturing the same
EP05737154A EP1761105A4 (en) 2004-04-28 2005-04-28 PRESSURE GENERATOR AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188785A JP4466231B2 (ja) 2004-06-25 2004-06-25 圧力波発生素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006013961A JP2006013961A (ja) 2006-01-12
JP4466231B2 true JP4466231B2 (ja) 2010-05-26

Family

ID=35780647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188785A Expired - Fee Related JP4466231B2 (ja) 2004-04-28 2004-06-25 圧力波発生素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4466231B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649929B2 (ja) * 2004-09-27 2011-03-16 パナソニック電工株式会社 圧力波発生素子
JP4649889B2 (ja) * 2004-06-25 2011-03-16 パナソニック電工株式会社 圧力波発生素子
JP4534625B2 (ja) * 2004-06-25 2010-09-01 パナソニック電工株式会社 圧力波発生素子
JP4974672B2 (ja) * 2006-12-28 2012-07-11 東京エレクトロン株式会社 圧力波発生装置
ITMI20100407A1 (it) * 2010-03-12 2011-09-13 Rise Technology S R L Cella foto-voltaica con regioni di semiconduttore poroso per ancorare terminali di contatto
DE112020004059T5 (de) 2019-08-30 2022-05-19 Murata Manufacturing Co., Ltd. Druckwellenerzeugungsvorrichtung und verfahren zur herstellung derselben

Also Published As

Publication number Publication date
JP2006013961A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4505672B2 (ja) 圧力波発生装置及びその製造方法
KR100685684B1 (ko) 열 여기음파 발생장치
JP2006217059A (ja) 圧力波発生装置
JP4513546B2 (ja) 圧力波発生素子およびその製造方法
JP2007054831A (ja) 超音波音源および超音波センサ
JP3845077B2 (ja) 音波発生装置の製造方法
JP4466231B2 (ja) 圧力波発生素子およびその製造方法
JP3865736B2 (ja) 超音波音源および超音波センサ
JP4617710B2 (ja) 圧力波発生素子
TWI401122B (zh) Pressure wave generating device and temperature adjusting method thereof
JP4617803B2 (ja) 圧力波発生素子
JP4682573B2 (ja) 圧力波発生素子
JP4385990B2 (ja) 圧力波発生装置及びその製造方法
TW200841940A (en) Pressure wave generator and heat dissipation method thereof
JP4396513B2 (ja) 圧力波発生装置
JP4525273B2 (ja) 圧力波発生装置
JP2008293967A (ja) 電子源及び電子源の製造方法
JP4534625B2 (ja) 圧力波発生素子
JP4649889B2 (ja) 圧力波発生素子
JP4534620B2 (ja) 赤外線放射素子
JP4649929B2 (ja) 圧力波発生素子
JP4534645B2 (ja) 赤外線放射素子
JP2006120592A (ja) 赤外線放射素子
JP2005339908A (ja) 赤外線放射素子
JP2004107739A (ja) 耐熱性多孔質アルミナ皮膜の表面層を備える金属基板、およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees