JP4513546B2 - 圧力波発生素子およびその製造方法 - Google Patents

圧力波発生素子およびその製造方法 Download PDF

Info

Publication number
JP4513546B2
JP4513546B2 JP2004369627A JP2004369627A JP4513546B2 JP 4513546 B2 JP4513546 B2 JP 4513546B2 JP 2004369627 A JP2004369627 A JP 2004369627A JP 2004369627 A JP2004369627 A JP 2004369627A JP 4513546 B2 JP4513546 B2 JP 4513546B2
Authority
JP
Japan
Prior art keywords
heating element
pressure wave
layer
element layer
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004369627A
Other languages
English (en)
Other versions
JP2006180082A (ja
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004369627A priority Critical patent/JP4513546B2/ja
Publication of JP2006180082A publication Critical patent/JP2006180082A/ja
Application granted granted Critical
Publication of JP4513546B2 publication Critical patent/JP4513546B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生素子およびその製造方法に関するものである。
従来から、圧電効果による機械的振動を利用した超音波発生素子が広く知られている。この種の超音波発生素子としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生素子では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気を振動させて超音波を発生させることができる。
上述のような機械的振動を利用した超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。
これに対して、近年、機械的振動を伴わずに熱励起により超音波などの圧力波を発生させることができる圧力波発生素子として、単結晶のシリコン基板からなる支持基板の一表面側に多孔質シリコン層からなる熱絶縁層が形成され、熱絶縁層上に金属薄膜(例えば、アルミニウム薄膜)からなる発熱体層が形成され、支持基板の上記一表面側に発熱体層と電気的に接続された一対のパッドが形成され、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体である空気との熱交換により超音波などの圧力波を発生するものが提案されている(例えば、特許文献1参照)。上記特許文献1には、熱絶縁層の熱伝導度および熱容量を支持基板の熱伝導度および熱容量に比べて小さくすることが望ましく、熱絶縁層の熱伝導度と熱容量との積を支持基板の熱伝導度と熱容量との積に比べて十分に小さくすることが好ましいことが記載されている。
なお、上述のような構成を有する圧力波発生素子の製造にあたっては、例えば、シリコン基板の一表面側を陽極酸化処理により多孔質化することで多孔質シリコン層からなる熱絶縁層を形成した後、金属薄膜からなる発熱体層を蒸着法やスパッタ法などにより形成し、その後、一対のパッドをスパッタ法や蒸着法などにより形成すればよい。
上述の圧力波発生素子では、例えば、発熱体層へ交流電圧もしくは交流電流を通電することにより発熱体層が発熱する一方で、発熱体層の直下には熱絶縁層が形成されて発熱体層が支持基板から熱的に絶縁されているので、発熱体層近傍の空気との間で効率的な熱交換が起こり、空気の膨張・圧縮の結果、超音波などの圧力波が発生する。
特開平11−300274号公報
ところで、上述の圧力波発生素子では、例えば、発熱体層へ通電する交流電圧からなる駆動電圧もしくは交流電流からなる駆動電流の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、発熱体層へ与える電力を変化させることにより音圧を変化させることができる。図3に、本願発明者らが、従来と同様の圧力波発生素子を試作して特性を評価するにあたって、駆動電圧を周波数が60kHzの正弦波電圧とし、正弦波電圧のピーク値を変化させることで発熱体層への入力電力を変化させた場合に、発生する音圧の変化および発熱体層の温度を調べた結果を示す。なお、図3の横軸は、周波数が60kHzの正弦波電圧からなる駆動電圧のピーク値を種々変化させた場合の入力電力、左側の縦軸は、発熱体層の表面から30cmだけ離れた位置で測定した音圧、右側の縦軸は、発熱体層の表面の温度(最高温度)となっており、図3中の「イ」が音圧の測定値、「ロ」が温度の測定値を示している。
しかしながら、上述の圧力波発生素子では、入力電力が高いほど、駆動毎に発熱体層の温度が広い温度範囲にわたって上昇・下降するので、発熱体層の抵抗値が経時変化し、発生する圧力波の波形や音圧が変化してしまうという不具合があった。なお、上述の圧力波発生素子を駆動する駆動回路としては、カメラのストロボ回路などに用いられる充放電回路が考えられるが、このような充放電回路では、放電時の応答波形の時定数が負荷側のインピーダンス(圧力波発生素子では、発熱体層の抵抗値)によって決まるので、発熱体層の抵抗値が経時変化すると、応答波形が変化し圧力波の周波数や音圧レベルが変化してしまう。このような特性変化は、例えば圧力波発生素子を超音波の送波から受波までの時間を用いて物体までの距離を求める超音波センサの送波装置(超音波発生素子)として利用した場合など、圧力波発生素子を組み込んだ装置の誤動作の原因となってしまう。
本発明は上記事由に鑑みて為されたものであり、その目的は、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子およびその製造方法を提供することにある。
請求項1の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、
発熱体層は、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でのアニール処理が施された金属薄膜からなることを特徴とする。
この発明によれば、発熱体層が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理を施された金属薄膜からなるので、従来に比べて、発熱体層の抵抗値の経時変化を抑制することができ、発生する圧力波の波形や音圧の経時的な変化が起こりにくくなる。
請求項2の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子の製造方法であって、支持基板の前記一表面側に熱絶縁層を形成する熱絶縁層形成工程と、熱絶縁層上に金属薄膜からなる発熱体層を形成する発熱体層形成工程と、発熱体層の両端部それぞれに接する一対のパッドを形成するパッド形成工程とを備え、さらに、パッド電極形成工程よりも後で発熱体層を圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理するアニール処理工程を備えることを特徴とする。
この発明によれば、発熱体層が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理を施された金属薄膜により構成されることとなり、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子を提供できる。
請求項3の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子の製造方法であって、支持基板の前記一表面側に熱絶縁層を形成する熱絶縁層形成工程と、熱絶縁層上に金属薄膜からなる発熱体層を形成する発熱体層形成工程と、発熱体層の両端部それぞれに接する一対のパッドを形成するパッド形成工程とを備え、発熱体層形成工程とパッド形成工程との間に、発熱体層を圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理するアニール処理工程を備えることを特徴とする。
この発明によれば、発熱体層が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理を施された金属薄膜により構成されることとなり、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子を提供できる。また、パッド形成工程よりも前にアニール処理を行うので、パッドの材料に関係なくアニール処理の温度を設定でき、請求項2の発明に比べてパッドの材料の選択肢が多くなるという利点がある。
請求項1の発明では、従来に比べて、発熱体層の抵抗値の経時変化を抑制することができ、発生する圧力波の波形や音圧の経時的な変化が起こりにくくなるという効果がある。
請求項2、3の発明では、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子を提供できるという効果がある。
(実施形態1)
本実施形態の圧力波発生素子は、図1(a),(b)に示すように、単結晶のp形のシリコン基板からなる支持基板1の一表面(図1(b)における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)2が形成され、熱絶縁層2上に発熱体層3が形成され、支持基板1の上記一表面側に発熱体層3と電気的に接続された一対のパッド4,4が形成されている。ここにおいて、本実施形態の圧力波発生素子は、発熱体層3へ与える駆動電圧波形もしくは駆動電流波形に応じた発熱体層3の温度変化に伴って発熱体層3と媒体である空気との熱交換により圧力波を発生する。なお、支持基板1の平面形状は長方形状であって、熱絶縁層2、発熱体層3それぞれの平面形状も長方形状に形成してある。
本実施形態では、上述のように支持基板1としてp形のシリコン基板を用いており、熱絶縁層2を多孔度が略70%の多孔質シリコン層により構成しているので、支持基板1として用いるシリコン基板の一部をフッ化水素水溶液中で陽極酸化処理することにより熱絶縁層2となる多孔質シリコン層を形成することができる。ここに、陽極酸化処理の条件(例えば、電流密度、通電時間など)を適宜設定することにより、熱絶縁層2となる多孔質シリコン層の多孔度や厚みそれぞれを所望の値とすることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、上述のように熱絶縁層2を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層2の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。また、パッド4,4の材料としてはアルミニウムを採用しているが、アルミニウムに限定するものではなく、アルミニウム以外の材料を採用してもよい。なお、本実施形態の圧力波発生素子では、支持基板1の厚さを525μm、熱絶縁層2の厚さを10μm、発熱体層3の厚さを50nm、各パッド4の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。
ところで、発熱体層3は、動作温度(発熱体層3へ駆動用の電力を与えたときの発熱体層3の表面のピーク温度)である圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層3の表面の最高温度よりも高温でのアニール処理が施された金属薄膜により構成されている。例えば、図3に示した特性を参照すれば、圧力波発生素子を、6Paの音圧の超音波を発生させる超音波発生素子として用いる場合には、発熱体層3へ800Wの電力を与える必要があり、発熱体層3へ800Wの電力を与えたときの発熱体層3のピーク温度は200℃程度となるので、アニール処理は200℃よりも高温(例えば、300℃)で行われていればよい。なお、発熱体層3の材料としては、高融点金属の一種であるタングステンを採用しており、熱伝導率が174W/(m・K)、熱容量が2.5×10J/(m・K)となっている。発熱体層3の材料はタングステンに限らず、例えば、タンタル、モリブデン、イリジウムなどを採用してもよい。
しかして、本実施形態の圧力波発生素子では、発熱体層3が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層3の表面の最高温度よりも高温でアニール処理を施された金属薄膜からなるので、従来に比べて、発熱体層3の抵抗値の経時変化を抑制することができ、発生する圧力波の波形や音圧の経時的な変化が起こりにくくなる。
以下、本実施形態の圧力波発生素子の製造方法について説明する。
まず、支持基板1として用いるシリコン基板の他表面(図1(b)における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、シリコン基板の一表面側における熱絶縁層2の形成予定部位を陽極酸化処理にて多孔質化することで多孔質シリコンからなる熱絶縁層2を形成する熱絶縁層形成工程を行う。ここにおいて、熱絶縁層形成工程では、例えば、図2に示すように、シリコン基板を主構成とする被処理物Cを処理槽Aに入れられた電解液(例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液)Bに浸漬し、その後、電流源20のマイナス側に配線を介して接続された白金電極21を電解液B中において支持基板1の上記一表面側に対向するように配置する。続いて、通電用電極を陽極、白金電極21を陰極として、電流源20から陽極と陰極21との間に所定の電流密度(ここでは、20mA/cm)の電流を所定時間(ここでは、8分)だけ流す陽極酸化処理を行うことにより支持基板1の上記一表面側に所定厚さ(ここでは、10μm)となる熱絶縁層2を形成する。なお、陽極酸化処理時の条件は特に限定するものではなく、電流密度は例えば1〜500mA/cm程度の範囲内で適宜設定すればよいし、上記所定時間も熱絶縁層2の上記所定厚さに応じて適宜設定すればよい。
上述の熱絶縁層形成工程の後、発熱体3を形成する発熱体形成工程を行い、その後、パッド4,4を形成するパッド形成工程を行う。なお、発熱体層形成工程では、メタルマスクなどを利用してスパッタ法や蒸着法などによって発熱体層3を形成すればよく、パッド形成工程でも、メタルマスクなどを利用してスパッタ法や蒸着法などによってパッド4,4を形成すればよい。
パッド形成工程の後、さらに、発熱体層3を真空中あるいは不活性ガス中において、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層3の表面の最高温度よりも高温の所定のアニール温度、所定のアニール時間の条件でアニール処理するアニール処理工程を行い、その後、ダイシング工程を行えばよい。ここで、アニール処理の条件は、圧力波発生素子から設計音圧の圧力波を発生させる際の発熱体層3の動作温度に基づいて適宜設定すればよく、例えば、動作温度よりも100℃高い温度に設定するとすれば、動作温度が200℃の時には、アニール温度を300℃に設定すればよいが、これらの数値は特に限定するものではない。また、アニール時間は例えば、30分程度でよいが、アニール時間も特に限定するものではない。
以上説明した本実施形態の圧力波発生素子の製造方法によれば、発熱体層3が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理を施された金属薄膜により構成されることとなり、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子を提供でき、本実施形態の圧力波発生素子を、例えば、超音波の送波から受波までの時間を用いて物体までの距離を求める超音波センサの送波装置(超音波発生素子)として利用した場合の超音波センサの信頼性を向上できる。
ここにおいて、上述の製造方法からアニール処理工程を省いて製造した比較例の圧力波発生素子では、駆動開始時に6Paの音圧が発生するような単パルスの入力電圧波形(駆動電圧波形)を発熱体層3へ1秒間に60回与えるペースで連続駆動し合計で3000万回与えた場合、発熱体層3の抵抗値が約30Ωから約12Ωに低下した。このため、充放電回路による駆動した場合には、抵抗値の減少による放電の時定数が減少し、発生する圧力波の周波数が40kHzから71kHzまで上昇し、音圧レベルが6Paから4.5Paまで減少した。
これに対して、上述の製造方法により製造した実施例の圧力波発生素子では、単パルスの入力電圧波形(駆動電圧波形)を3000万回与えても、発熱体層3の抵抗値はほとんど変化せず、充放電回路により駆動した場合に、発生する圧力波の周波数および音圧レベルいずれもほとんど変化しなかった。なお、実施例の圧力波発生素子は、その製造途中において、アニール処理前の抵抗値が約30Ωであり、アニール処理後の抵抗値が約8Ωまで低下していた。
(実施形態2)
本実施形態の圧力波発生素子の基本構成は実施形態1と同じであり、製造方法が相違するだけなので、以下、製造方法についてのみ説明する。ただし、実施形態1にて説明した製造方法と同様の工程についての説明は適宜省略する。
本実施形態の圧力波発生素子の製造方法は実施形態1にて説明した製造方法と略同じであって、実施形態1ではパッド形成工程の後でアニール処理工程を行っていたのに対して、発熱体層形成工程とパッド形成工程との間に、アニール処理工程を行っている点が相違するだけである。
本実施形態では、発熱体層形成工程において、金属薄膜であるタングステン薄膜からなる発熱体層3を、基板温度が制御可能なRFスパッタ装置によって成膜している。RFスパッタ装置では、成膜対象のウェハ(熱絶縁層2が形成された支持基板1)をチャンバ内へ導入してチャンバ内の真空度を所定の真空度まで回復させた後で、基板ホルダに印加する高周波電圧の周波数を13.56MHz、基板温度を300℃、スパッタガスをアルゴンガス、ターゲット材料をタングステンとしてタングステン薄膜を成膜しており、アニール処理工程では、上述のRFスパッタ装置を利用してアニール処理を行う。ただし、アニール処理工程では、RFスパッタ装置のチャンバ内へのスパッタガスの導入を停止してからチャンバ内の真空度を所定の真空度まで回復させた後で、基板ホルダへ高周波電圧を印加せずに、基板温度を上記アニール温度(例えば、300℃)にアニール時間だけ維持してから基板温度を下降させる。
しかして、本実施形態の圧力波発生素子の製造方法によれば、実施形態1と同様に、発熱体層3が、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理を施された金属薄膜により構成されることとなり、従来に比べて、発生する圧力波の波形や音圧の経時的な変化が起こりにくい圧力波発生素子を提供できる。また、本実施形態の製造方法では、パッド形成工程よりも前にアニール処理を行うので、パッド4,4の材料に関係なくアニール処理の温度を設定でき、実施形態1の製造方法に比べてパッド4,4の材料の選択肢が多くなるという利点がある。また、本実施形態では、発熱体層形成工程で用いるスパッタ装置のチャンバ内でアニール処理を行っているので、アニール処理工程のために専用のアニール装置を別途に用意する必要がなく、製造コストを低減できる。
ところで、上記各実施形態では、支持基板1として単結晶のp形シリコン基板を採用しているが、支持基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよいし、また、p形に限らず、n形あるいはノンドープであってもよく、支持基板1の種類に応じて陽極酸化処理の条件を適宜変更すればよい。また、上記各実施形態では、支持基板1の材料としてSiを採用しているが、支持基板1の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。したがって、熱絶縁層2を構成する多孔質層も多孔質シリコン層に限らず、例えば、多結晶シリコンを陽極酸化処理することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層でもよい。
実施形態1における圧力波発生素子を示し、(a)は概略平面図、(b)は(a)のD−D’概略断面図である。 同上の製造方法の説明図である。 従来例の入出力特性図である。
符号の説明
1 支持基板
2 熱絶縁層
3 発熱体層
4 パッド

Claims (3)

  1. 支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層は、圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でのアニール処理が施された金属薄膜からなることを特徴とする圧力波発生素子。
  2. 支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子の製造方法であって、支持基板の前記一表面側に熱絶縁層を形成する熱絶縁層形成工程と、熱絶縁層上に金属薄膜からなる発熱体層を形成する発熱体層形成工程と、発熱体層の両端部それぞれに接する一対のパッドを形成するパッド形成工程とを備え、さらに、パッド電極形成工程よりも後で発熱体層を圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理するアニール処理工程を備えることを特徴とする圧力波発生素子の製造方法。
  3. 支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子の製造方法であって、支持基板の前記一表面側に熱絶縁層を形成する熱絶縁層形成工程と、熱絶縁層上に金属薄膜からなる発熱体層を形成する発熱体層形成工程と、発熱体層の両端部それぞれに接する一対のパッドを形成するパッド形成工程とを備え、発熱体層形成工程とパッド形成工程との間に、発熱体層を圧力波発生素子から設計音圧の圧力波を発生させる際に必要な動作時における発熱体層の表面の最高温度よりも高温でアニール処理するアニール処理工程を備えることを特徴とする圧力波発生素子の製造方法。
JP2004369627A 2004-12-21 2004-12-21 圧力波発生素子およびその製造方法 Expired - Fee Related JP4513546B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369627A JP4513546B2 (ja) 2004-12-21 2004-12-21 圧力波発生素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369627A JP4513546B2 (ja) 2004-12-21 2004-12-21 圧力波発生素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006180082A JP2006180082A (ja) 2006-07-06
JP4513546B2 true JP4513546B2 (ja) 2010-07-28

Family

ID=36733782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369627A Expired - Fee Related JP4513546B2 (ja) 2004-12-21 2004-12-21 圧力波発生素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4513546B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101751916B (zh) * 2008-12-12 2012-12-19 清华大学 超声发声器
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8249279B2 (en) 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
CN101715160B (zh) 2008-10-08 2013-02-13 清华大学 柔性发声装置及发声旗帜
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
CN101922755A (zh) 2009-06-09 2010-12-22 清华大学 取暖墙
CN101943850B (zh) 2009-07-03 2013-04-24 清华大学 发声银幕及使用该发声银幕的放映系统
CN101990152B (zh) 2009-08-07 2013-08-28 清华大学 热致发声装置及其制备方法
CN102006542B (zh) 2009-08-28 2014-03-26 清华大学 发声装置
CN102023297B (zh) 2009-09-11 2015-01-21 清华大学 声纳系统
CN102034467B (zh) 2009-09-25 2013-01-30 北京富纳特创新科技有限公司 发声装置
CN102056064B (zh) 2009-11-06 2013-11-06 清华大学 扬声器
CN102056065B (zh) 2009-11-10 2014-11-12 北京富纳特创新科技有限公司 发声装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242473A (ja) * 1997-03-03 1998-09-11 Sanyo Electric Co Ltd 金属薄膜及び薄膜トランジスタの製造方法及び金属薄膜を用いた半導体装置
JPH10321621A (ja) * 1997-05-19 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> 金属薄膜形成方法
JP2004216360A (ja) * 2002-11-20 2004-08-05 Yamatake Corp 圧力波発生装置とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242473A (ja) * 1997-03-03 1998-09-11 Sanyo Electric Co Ltd 金属薄膜及び薄膜トランジスタの製造方法及び金属薄膜を用いた半導体装置
JPH10321621A (ja) * 1997-05-19 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> 金属薄膜形成方法
JP2004216360A (ja) * 2002-11-20 2004-08-05 Yamatake Corp 圧力波発生装置とその製造方法

Also Published As

Publication number Publication date
JP2006180082A (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4513546B2 (ja) 圧力波発生素子およびその製造方法
KR100685684B1 (ko) 열 여기음파 발생장치
JP4505672B2 (ja) 圧力波発生装置及びその製造方法
JP2006217059A (ja) 圧力波発生装置
EP1761105A1 (en) Pressure wave generator and method for fabricating the same
JP2007054831A (ja) 超音波音源および超音波センサ
JP3845077B2 (ja) 音波発生装置の製造方法
JP3865736B2 (ja) 超音波音源および超音波センサ
TWI401122B (zh) Pressure wave generating device and temperature adjusting method thereof
JP4466231B2 (ja) 圧力波発生素子およびその製造方法
JP4396513B2 (ja) 圧力波発生装置
JP4525273B2 (ja) 圧力波発生装置
JP4682573B2 (ja) 圧力波発生素子
JP4617803B2 (ja) 圧力波発生素子
JP4617710B2 (ja) 圧力波発生素子
JP4534751B2 (ja) 圧力波発生装置
JP4321009B2 (ja) 電界放射型電子源の製造方法
JP4534625B2 (ja) 圧力波発生素子
JP4649929B2 (ja) 圧力波発生素子
JP4649889B2 (ja) 圧力波発生素子
JP4385990B2 (ja) 圧力波発生装置及びその製造方法
JP2001118498A (ja) 電界放射型電子源およびその製造方法
JP2003162959A (ja) 電界放射型電子源の製造方法
JP2002150933A (ja) 電界放射型電子源の製造方法、電界放射型電子源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees