JP4682573B2 - 圧力波発生素子 - Google Patents

圧力波発生素子 Download PDF

Info

Publication number
JP4682573B2
JP4682573B2 JP2004280413A JP2004280413A JP4682573B2 JP 4682573 B2 JP4682573 B2 JP 4682573B2 JP 2004280413 A JP2004280413 A JP 2004280413A JP 2004280413 A JP2004280413 A JP 2004280413A JP 4682573 B2 JP4682573 B2 JP 4682573B2
Authority
JP
Japan
Prior art keywords
heating element
layer
element layer
pad
pressure wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280413A
Other languages
English (en)
Other versions
JP2006088126A (ja
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004280413A priority Critical patent/JP4682573B2/ja
Publication of JP2006088126A publication Critical patent/JP2006088126A/ja
Application granted granted Critical
Publication of JP4682573B2 publication Critical patent/JP4682573B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生素子に関するものである。
従来から、圧電効果による機械的振動を利用した超音波発生素子が広く知られている。この種の超音波発生素子としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生素子では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気などの媒体を振動させて超音波を発生させることができる。
上述のような機械的振動を利用した超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。
一方、近年、機械的振動を伴わずに超音波を発生させることができる素子として、媒体に熱を与える熱励起により空気の粗密を形成する方法を利用した圧力波発生素子が提案されている(例えば、特許文献1)。
この種の圧力波発生素子は、図4に示すように、単結晶のシリコン基板からなる半導体基板1と、半導体基板1の厚み方向の一表面から所定深さまで形成された多孔質シリコン層からなり半導体基板1に比べて熱伝導率および熱容量が十分に小さな熱絶縁層2と、熱絶縁層2上に形成されたアルミニウム薄膜からなる発熱体層3とを備え、発熱体層3への交流電流の通電に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波を発生するものである。
ところで、上述の圧力波発生素子では、発熱体層3の膜厚が30nm程度に設定されており、発熱体層3への通電を行うためには、図5に示すように、発熱体層3の両端部それぞれに接する一対のパッド4,4を設け、各パッド4,4へ金属細線(ボンディングワイヤ)をワイヤボンディングすればよい。
なお、図5に示した構成の圧力波発生素子は、発熱体層3に印加する交流電圧(駆動電圧)の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、例えば、超音波音源やスピーカの音源として期待されている。
特開平11−300274号公報
しかしながら、本願発明者らは鋭意研究の結果、上述の圧力波発生素子を強力な超音波が必要な用途に用いる場合には、発熱体層3への通電時に発熱体層3の温度が1000℃を超える非常に高い温度になるという知見を得た。その知見の一例を図6に示す。図6のグラフの横軸は、周波数が60kHzの正弦波電圧を一対のパッド4,4間に印加するにあたって正弦波電圧のピーク値を種々変化させた場合の入力電力の最大値、左側の縦軸は、発熱体層3の表面から30cmだけ離れた位置で測定した出力音圧、右側の縦軸は、発熱体層3の表面の温度となっており、図6中の「イ」が音圧、「ロ」が温度を示している。
そこで、本願発明者らは、発熱体層3の材料としてタングステンなどの高融点金属を採用した圧力波発生素子について検討したが、上述の圧力波発生素子を強力な超音波が必要な用途に用いる場合には、タングステンを構成材料とする発熱体層3とアルミニウムを構成材料とするパッド4とが反応して部分的な凝集による欠落部が発生したり高抵抗部が発生したりして、電流集中により発熱体層3が断線してしまう問題があるという知見を得た。さらに、発熱体層3と反応したパッド4の材料が熱絶縁層2と反応して熱絶縁層2の一部が破壊されやすくなるという知見を得た。
本発明は上記事由に鑑みて為されたものであり、その目的は、発熱体層における各パッド近傍部位の破壊を防止でき、長期間にわたって超音波域の圧力波を安定して発生可能な圧力波発生素子を提供することにある。
請求項1の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層と各パッドそれぞれとの間に介在し発熱体層と各パッドそれぞれとの反応を防止する一対のバリア層を介して発熱体層と各パッドそれぞれとが電気的に接続されてなり、各バリア層は、発熱体層における両パッドの形成部位間の表面の一部であって各パッドそれぞれの近傍の表面を覆う形で延設されてなることを特徴とする。
この発明によれば、発熱体層と各パッドそれぞれとの間にバリア層が設けられているので、発熱体層の温度上昇時に発熱体層と各パッドそれぞれとの反応を抑制できて、発熱体層における各パッド近傍部位の破壊を防止でき、長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層へ与える電力を増加させることによる圧力波の振幅の増大(高出力化)を図れる。
また、この発明によれば、各バリア層は、発熱体層における両パッドの形成部位間の表面の一部であって各パッドそれぞれの近傍の表面を覆う形で延設されているので、発熱体層の温度上昇時に発熱体層と各パッドそれぞれとの反応をより確実に抑制することができ、より一層の長寿命化および信頼性の向上を図れる。
請求項の発明は、請求項1の発明において、前記各パッドの材料が、Alであり、前記発熱体層の材料が、W、Ta、Mo、Irの群から選択される材料であり、前記各バリア層の材料が、TaN若しくはTiNであることを特徴とする。
この発明によれば、前記各パッドの材料として一般的なAlを採用するとともに前記発熱体層の材料として高融点の金属を採用しながらも、前記各バリア層の材料が、TaN若しくはTiNであることにより、前記各バリア層と前記各パッドとの反応が起こりにくく且つ前記バリア層の耐熱性が高いという利点がある。
請求項の発明は、請求項1の発明において、前記支持基板がシリコン基板からなるとともに前記熱絶縁層が多孔質シリコン層からなり、前記各パッドの材料が、Alであり、前記発熱体層の材料が、W、Ta、Mo、Irの群から選択される材料であり、前記各バリア層の材料が、WSi、TaSi、TiSiの群から選択される材料であることを特徴とする。
この発明によれば、前記熱絶縁層の熱伝導率と熱容量との積が前記支持基板の熱伝導率と熱容量との積に比べて十分に小さく且つ前記熱絶縁層の耐熱性が高いので、発生させる圧力波の高出力化を図れ、その一方で、前記各パッドの材料として一般的なAlを採用するとともに前記発熱体層の材料として高融点の金属を採用しながらも、前記各バリア層の材料が、WSi、TaSi、TiSiの群から選択される材料であることにより、前記発熱体層の両端部それぞれへ前記熱絶縁層からSiが拡散しても前記各バリア層により前記各パッドへのSiの拡散が抑制されるので、前記発熱体層における前記各パッド近傍部位の破壊を防止することができる。
請求項1の発明では、発熱体層の温度上昇時に発熱体層と各パッドそれぞれとの反応を抑制できて、発熱体層における各パッド近傍部位の破壊を防止でき、長期間にわたって超音波域の圧力波を安定して発生可能になるという効果がある。
(参考例)
本参考例の圧力波発生素子は、図1(a),(b)に示すように、半導体基板1と、半導体基板1の一表面(図1(b)における上面)側に形成された熱絶縁層2と、熱絶縁層2上に形成された発熱体層3と、半導体基板1の上記一表面側で発熱体層3の両端部(図1(a)における左右両端部)それぞれに沿って形成されバリア層5,5を介して発熱体層3と電気的に接続された一対のパッド4,4とを備えている。すなわち、本参考例の圧力波発生素子は、発熱体層3と各パッド4,4それぞれとの間に介在し発熱体層3と各パッド4,4それぞれとの反応を防止する一対のバリア層5,5を備えている。本参考例では、半導体基板1が支持基板を構成している。なお、半導体基板1、熱絶縁層2、発熱体層3それぞれの外周形状は矩形状としてあり、各パッド4,4の外周形状は、両パッド4,4の並設方向(図1(b)における左右方向)に直交する方向を長手方向とする細長の矩形状としてある。
ここにおいて、本参考例の圧力波発生素子は、発熱体層3への通電(電気エネルギの供給)に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波(例えば、超音波など)を発生する。例えば、交流電源から一対のパッド4,4を介して発熱体層3へ正弦波状の交流電圧を印加した場合には、発熱体層3の温度がジュール熱の発生によって変化し、発熱体層3の温度変化に伴って圧力波(音波)が発生する。
本参考例の圧力波発生素子では、半導体基板1としてp形のシリコン基板を用いており、熱絶縁層2を多孔質シリコン層により構成している。ここで、熱絶縁層2を構成する多孔質シリコン層は、半導体基板1としてのp形シリコン基板の一部を電解液中で陽極酸化処理することにより形成されており、陽極酸化処理の条件を適宜変化させることにより、多孔度を変化させることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、多孔度を適宜設定することにより熱伝導率を単結晶シリコンに比べて十分に小さくすることができる。上記特許文献1には、熱伝導率が168W/(m・K)、熱容量が1.67×10J/(m・K)の単結晶のシリコン基板を陽極酸化処理して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)となることが報告されている。なお、熱絶縁層2は、多孔質シリコン層に限らず、例えば、SiO膜やSi膜などにより構成してもよい。
ここに、半導体基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよいし、また、p形に限らず、n形あるいはノンドープであってもよく、半導体基板1の種類に応じて陽極酸化処理の条件を適宜変更すればよい。したがって、熱絶縁層2を構成する多孔質半導体層も多孔質シリコン層に限らず、例えば、多結晶シリコンを陽極酸化処理することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層でもよい。
また、発熱体層3の材料としては、高融点金属の一種であるWを採用しているが、発熱体層3の材料は、Wに限らず、融点が1000℃よりも比較的高い高融点の金属であればよく(Siの融点である1410℃よりも融点が高い金属であることが望ましい)、例えば、Ta、Moなどの高融点金属や、Irなどの貴金属を採用してもよい。
また、各バリア層5,5は、発熱体層3の端部上と半導体基板1の上記一表面上とに跨るように形成され、各パッド4,4は、各バリア層5,5に積層されている。ここにおいて、各パッド4,4の材料としては、半導体素子のパッド材料として一般的に用いられているAlを採用している。
また、各バリア層5,5の材料としては、窒化物の一種であるTaNを採用している。ただし、バリア層5の材料は、Taの窒化物であるTaNに限らず、発熱体層3とパッド4との反応を抑制できる材料であればよく、例えば、Tiの窒化物であるTiNや、WSi、TaSi、TiSiなどのシリサイドを採用してもよい。
なお、本参考例の圧力波発生素子では、熱絶縁層2の厚さを10μm、発熱体層3の厚さを50nm、パッド4の厚さを1μm、バリア層5の厚さを0.01μm〜0.3μmとしてあるが、これらの厚さは一例であって特に限定するものではない。
以下、本参考例の圧力波発生素子の製造方法について簡単に説明する。
まず、単結晶のp形シリコン基板からなる半導体基板1の他表面(図1(b)における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、図2に示すような陽極酸化処理装置にて陽極酸化処理を行うことで多孔質シリコン層からなる熱絶縁層2を形成する。ここにおいて、陽極酸化処理の工程が熱絶縁層形成工程となっており、陽極酸化処理にあたっては、図2に示すように、半導体基板1を主構成とする被処理物Cを処理槽Aに入れられた電解液(例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液)Bに浸漬し、その後、電流源20のマイナス側に配線を介して接続された白金電極21を電解液B中において半導体基板1の上記一表面側に対向するように配置する。続いて、通電用電極を陽極、白金電極21を陰極として、電流源20から陽極と陰極21との間に所定の電流密度(ここでは、20mA/cm)の電流を所定時間(ここでは、8分)だけ流す陽極酸化処理を行うことにより半導体基板1の上記一表面側に周部以外の部位の厚さが一定の所定厚さ(ここでは、10μm)となる熱絶縁層2を形成する。なお、陽極酸化処理時の条件は特に限定するものではなく、電流密度は例えば1〜500mA/cm程度の範囲内で適宜設定すればよいし、上記所定時間も熱絶縁層2の上記所定厚さに応じて適宜設定すればよい。
上述の熱絶縁層形成工程の後、発熱体層3を形成する発熱体層形成工程、バリア層5,5を形成するバリア層形成工程、パッド4,4を形成するパッド形成工程を順次行うことによって、圧力波発生素子が完成する。なお、発熱体層形成工程およびパッド形成工程では、例えば、各種のスパッタ法、各種の蒸着法、各種のCVD法などによって膜形成を行えばよく、バリア層形成工程では、スパッタ法、電子ビーム蒸着法などによって膜形成を行えばよい。
以上説明した本参考例の圧力波発生素子では、発熱体層3と各パッド4,4それぞれとの間に、発熱体層3への通電に伴う発熱体層3の温度上昇時に発熱体層3と各パッド4,4それぞれとの反応を防止するバリア層5,5が設けられているので、発熱体層3の温度上昇時に発熱体層3と各パッド4,4それぞれとの反応を抑制できて、発熱体層3における各パッド4,4近傍部位の破壊を防止でき、長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層3へ与える電力を増加させることによる圧力波の振幅の増大(高出力化)を図れる。また、各パッド4,4の材料が、ワイヤボンディングが容易なAlであり、発熱体層3の材料として、W、Ta、Mo、Irのいずれかを採用する場合に、バリア層5,5の材料として、例えば、TaN若しくはTiNを採用すれば、各パッド4,4の材料として一般的なAlを採用するとともに発熱体層3の材料として高融点の金属を採用しながらも、各バリア層5,5と各パッド4,4との反応が起こりにくく且つバリア層5,5の耐熱性が高いという利点がある。
ところで、本参考例では、支持基板としての半導体基板1がシリコン基板により構成され、熱絶縁層2が多孔質シリコン層により構成されており、熱絶縁層2の熱伝導率と熱容量との積が支持基板の熱伝導率と熱容量との積に比べて十分に小さく(約1/400)且つ熱絶縁層2の耐熱性が高いので、発生させる圧力波の高出力化を図れるが、上述のバリア層5,5を設けていることで高出力の超音波を長期間にわたって安定して出力させることができる。ここにおいて、各バリア層5,5の材料として、例えば、WSi、TaSi、TiSiなどのシリサイドを採用すれば、発熱体層3の両端部それぞれへ熱絶縁層2からSiが拡散しても各バリア層5,5により各パッド4,4へのSiの拡散が抑制されるので、発熱体層3における各パッド4,4近傍部位の破壊を防止することができる。
(実施形態)
本実施形態の圧力波発生素子の基本構成は参考例と略同じであり、図3(a),(b)に示すように、各バリア層5,5が、発熱体層3における両パッド4,4の形成部位間の表面の一部であって各パッド4,4それぞれの近傍の表面を覆う形で延設されている点が相違する。ここにおいて、各バリア層5,5の延長距離(各バリア層5,5のうちパッド4,4が重複していない部分に関して、一対のパッド4,4の並設方向における長さ)は、50μmに設定してあるが、この数値は特に限定するものではない。なお、参考例と同様の構成要素には同一の符号を付して説明を省略する。
しかして、本実施形態の圧力波発生素子では、発熱体層3の温度上昇時に発熱体層3と各パッド4,4それぞれとの反応を参考例に比べて、より確実に抑制することができ、より一層の長寿命化および信頼性の向上を図れる。
参考例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。 同上の製造方法の説明図である。 実施形態を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。 従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。 他の従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。 同上の特性説明図である。
1 半導体基板
2 熱絶縁層
3 発熱体層
4 パッド
5 バリア層

Claims (3)

  1. 支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、発熱体層の両端部それぞれに電気的に接続された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層と各パッドそれぞれとの間に介在し発熱体層と各パッドそれぞれとの反応を防止する一対のバリア層を介して発熱体層と各パッドそれぞれとが電気的に接続されてなり、各バリア層は、発熱体層における両パッドの形成部位間の表面の一部であって各パッドそれぞれの近傍の表面を覆う形で延設されてなることを特徴とする圧力波発生素子。
  2. 前記各パッドの材料が、Alであり、前記発熱体層の材料が、W、Ta、Mo、Irの群から選択される材料であり、前記各バリア層の材料が、TaN若しくはTiNであることを特徴とする請求項1記載の圧力波発生素子。
  3. 前記支持基板がシリコン基板からなるとともに前記熱絶縁層が多孔質シリコン層からなり、前記各パッドの材料が、Alであり、前記発熱体層の材料が、W、Ta、Mo、Irの群から選択される材料であり、前記各バリア層の材料が、WSi、TaSi、TiSiの群から選択される材料であることを特徴とする請求項1記載の圧力波発生素子。
JP2004280413A 2004-09-27 2004-09-27 圧力波発生素子 Expired - Fee Related JP4682573B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280413A JP4682573B2 (ja) 2004-09-27 2004-09-27 圧力波発生素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280413A JP4682573B2 (ja) 2004-09-27 2004-09-27 圧力波発生素子

Publications (2)

Publication Number Publication Date
JP2006088126A JP2006088126A (ja) 2006-04-06
JP4682573B2 true JP4682573B2 (ja) 2011-05-11

Family

ID=36229601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280413A Expired - Fee Related JP4682573B2 (ja) 2004-09-27 2004-09-27 圧力波発生素子

Country Status (1)

Country Link
JP (1) JP4682573B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186097A (ja) * 2000-12-15 2002-06-28 Pioneer Electronic Corp スピーカ
JP2004216360A (ja) * 2002-11-20 2004-08-05 Yamatake Corp 圧力波発生装置とその製造方法
WO2004077881A1 (ja) * 2003-02-28 2004-09-10 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. 熱励起音波発生装置
JP2004259777A (ja) * 2003-02-24 2004-09-16 Tokyo Electron Ltd 半導体装置の製造方法、成膜装置及び真空処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705926B2 (ja) * 1998-04-23 2005-10-12 独立行政法人科学技術振興機構 圧力波発生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186097A (ja) * 2000-12-15 2002-06-28 Pioneer Electronic Corp スピーカ
JP2004216360A (ja) * 2002-11-20 2004-08-05 Yamatake Corp 圧力波発生装置とその製造方法
JP2004259777A (ja) * 2003-02-24 2004-09-16 Tokyo Electron Ltd 半導体装置の製造方法、成膜装置及び真空処理システム
WO2004077881A1 (ja) * 2003-02-28 2004-09-10 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. 熱励起音波発生装置

Also Published As

Publication number Publication date
JP2006088126A (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
JP3808493B2 (ja) 熱励起音波発生装置
KR100855788B1 (ko) 압력파 발생장치 및 그 제조방법
JP2006217059A (ja) 圧力波発生装置
WO2007049496A1 (ja) 圧力波発生装置およびその製造方法
JP4513546B2 (ja) 圧力波発生素子およびその製造方法
JP2007054831A (ja) 超音波音源および超音波センサ
JP3845077B2 (ja) 音波発生装置の製造方法
JP3865736B2 (ja) 超音波音源および超音波センサ
JP5221864B2 (ja) 圧力波発生装置およびその製造方法
JP4682573B2 (ja) 圧力波発生素子
JP4617803B2 (ja) 圧力波発生素子
JP4466231B2 (ja) 圧力波発生素子およびその製造方法
JP4525273B2 (ja) 圧力波発生装置
TWI401122B (zh) Pressure wave generating device and temperature adjusting method thereof
JP4396513B2 (ja) 圧力波発生装置
JP4617710B2 (ja) 圧力波発生素子
JP4534625B2 (ja) 圧力波発生素子
JP4649889B2 (ja) 圧力波発生素子
JP4534620B2 (ja) 赤外線放射素子
JP4649929B2 (ja) 圧力波発生素子
JP4385990B2 (ja) 圧力波発生装置及びその製造方法
JP4534751B2 (ja) 圧力波発生装置
JP2024013984A (ja) 電気音響変換器
JP2006040672A (ja) 赤外線放射素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees