JP4428440B2 - ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法 - Google Patents

ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法 Download PDF

Info

Publication number
JP4428440B2
JP4428440B2 JP2007289855A JP2007289855A JP4428440B2 JP 4428440 B2 JP4428440 B2 JP 4428440B2 JP 2007289855 A JP2007289855 A JP 2007289855A JP 2007289855 A JP2007289855 A JP 2007289855A JP 4428440 B2 JP4428440 B2 JP 4428440B2
Authority
JP
Japan
Prior art keywords
signal
rotational position
motor
correction
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007289855A
Other languages
English (en)
Other versions
JP2009011143A (ja
Inventor
淳 金森
聡史 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007289855A priority Critical patent/JP4428440B2/ja
Priority to US12/153,030 priority patent/US7956561B2/en
Priority to CN2008101093351A priority patent/CN101316088B/zh
Priority to DE102008025442A priority patent/DE102008025442A1/de
Publication of JP2009011143A publication Critical patent/JP2009011143A/ja
Application granted granted Critical
Publication of JP4428440B2 publication Critical patent/JP4428440B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ブラシレスDCモータを位置センサレス方式により駆動するためにステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する回路,モータ駆動装置及びロータ位置検出方法に関する。
ブラシレスDCモータの駆動を制御する場合、例えば特許文献1〜3に開示されているように、ホール素子のような位置センサを使用することなく、ロータの回転時にステータコイルに発生する相電圧を検出してロータの位置情報を得る、所謂位置センサレス駆動方式を採用する場合がある。
図11には、特許文献1に開示されている技術(アナログフィルタ方式)を、例えば車両に搭載されるラジエータのファンモータを駆動する装置に適用した場合の概略構成を示す。モータ駆動装置1は、車両のバッテリ2より駆動用電源が供給されており、ブラシレスDCモータ3は、インバータ部4を介して駆動される。インバータ部4は、例えば6個のパワーMOSFET5a〜5fを三相ブリッジ接続して構成されており、インバータ部4の各相出力端子は、夫々モータ3の各相ステータコイル6U,6V,6Wに接続されている。
インバータ部4は、マイクロコンピュータ又は論理回路で構成される制御部7により制御され、各FET5のゲートにはゲートドライバ8を介して駆動信号が出力される。モータ3のロータ回転位置は位置検出回路9により検出され、その位置検出信号は制御部7に与えられる。位置検出回路9は、コンデンサC,抵抗Rで構成されるローパスフィルタ10U,10V,10Wと、バッファアンプ(ボルテージフォロワ)11U,11V,11Wと、バッファアンプ11の出力信号を仮想中性点電位と比較するコンパレータ12U,12V,12Wとで構成されている。ローパスフィルタ10U,10V,10Wの入力端子は、インバータ部4の各相出力電圧を分圧する抵抗R1,R2の共通接続点に接続されている。
図12は、インバータ部4を介してモータ3に通電を行う場合における各部の電圧波形(U相のみ)を示す。モータ3の起動時には、制御部7は所定のパターンを与えて通電を行い、モータ3を起動する。モータ3が回転した場合、ステータコイル6U,6V,6Wに発生する誘起電圧がコイル6の端子電圧に現れる(a)。コイル6の端子電圧にはPWM制御によるスイッチング波形が重畳されているため、それらをローパスフィルタ10により除去すると、略正弦波状の電圧波形が得られる(b)。そして、コンパレータ12が、フィルタ10の出力信号を仮想中性点電位と比較することで、矩形波状の各相位置信号が得られる(c)。
制御部7は、外部の図示しないECU(Electronic Control Unit)より与えられる制御信号に応じて、モータ3の回転速度を決定するPWMデューティを設定する。それと共に、制御部7は、位置検出回路9より与えられる位置信号により転流タイミングを決定し、駆動信号を生成するとゲートドライバ8に出力する。
また、図13には、特許文献2に開示されている技術(基準電圧比較方式)を適用した場合を示す。このモータ駆動装置13は、モータ駆動装置1よりローパスフィルタ10を除去し、制御部7を制御部14に置き換えたもので構成される。そして、制御部14は、120度通電方式の無通電区間に発生する誘起電圧を基準電圧と比較することでゼロクロス点を検出し、そのゼロクロス点から、カウンタなどを用いて位相を30度遅らせた時点を求めて通電タイミングを設定する(図14参照)。
また、特許文献3に開示されている技術は所謂中性点比較方式であり、モータの物理的な中性点と、抵抗回路により生成される仮想中性点と電位差に基づいて誘起電圧の3次高調波成分を抽出し、その高調波信号から位置検出信号を生成するものである。
特開昭62−123979号公報 特開平9−266690号公報 特開平7−288992号公報
特許文献1のアナログフィルタ方式では、フィルタ10により誘起電圧信号に含まれているスイッチングノイズを除去することで、フィルタ10を通過した誘起電圧信号の位相に遅れが発生する(図15(b)参照)。この位相遅れを、通過信号の周波数全域に亘って略90度とするには、CRフィルタによる信号の減衰が許容できる範囲でCR時定数を大きくし、カットオフ周波数を低くするのが好ましい。しかし、CR時定数を大きくすると、それに応じてフィルタ10の出力信号レベルが低下することも問題となるため(図15(a)参照)、駆動回転数範囲が広い場合は、全回転数範囲で位相遅れを90度とすることは困難である。
ところで、車両用のファンモータを駆動する装置は、エンジンルーム内に搭載されるため、動作環境温度が極めて広範囲となる。そして、フィルタ10のCR時定数は、素子自体が公差を有することに加えて温度の影響を受け易く、結果としてばらつきが大きくなってしまう。従って、各相のフィルタ10の時定数にずれが生じる可能性が高い。
特許文献2の基準電圧方式は、高速回転時や高負荷時に、通電相を切り替える際にフライホイールダイオードを介して還流電流が流れる区間が広がるため、ゼロクロス点が検出できなくなってしまう(図16(a)参照)。また、30度以上の進み角通電を行う場合もゼロクロス点が検出できない(図16(b)参照)。上記還流区間の長さは、モータの電気的時定数(L/R)及びモータ電流におおよそ比例することから、時定数が小さいモータを選択すれば回転数範囲を拡げることは可能である。ところが、そのようなモータは概して同一出力で比較すると大型となる傾向にある。また、グレードの高いマグネットを用いて小型化を図ることも可能だが、コストが上昇するという問題がある。
特許文献3の中性点比較方式では、Δ結線を採用するモータや、構造上中性点との接続をとることが困難なモータには使用することができない。たとえ中性点との接続がとれる場合でも、配線数が増加するという問題がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、従来の位置センサレス駆動方式が擁する欠点を解消できるロータ位置検出回路,その位置検出回路を備えてなるモータ駆動装置及びロータ位置検出方法を提供することにある。
請求項1記載のロータ位置検出回路によれば、第1位置推定手段は、相電圧の検出信号を低域濾波するローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力し、第2位置推定手段は、相電圧を基準電圧と直接比較するコンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する。そして、補正手段は、第1回転位置信号によって示される回転位置を、第2回転位置信号によって補正する。
すなわち、アナログ的な信号処理を行う第1位置推定手段が出力する第1回転位置信号にはばらつきが含まれている可能性が高いが、モータ回転数の広い範囲に亘って前記回転位置信号を出力できるので、基本的には第1回転位置信号を使用するのが好ましい。一方、第2位置推定手段は、より精度の高い位置信号を出力できるが、モータの駆動条件によっては位置推定が不能となる場合がある。そこで、両者を組み合わせ、第1回転位置信号で示される回転位置を第2回転位置信号で補正すれば、総合的に、精度の高い位置信号を広い回転数範囲に亘って出力することができる。
そして、モータをPWM制御により回転数制御する場合、補正手段は、モータの回転数が第2位置推定手段の信号処理によってPWM信号のオンパルスの全てが所定期間によりマスクされない下限を下回る領域では第2回転位置信号に基づく補正を行わず、モータの回転数に対応した補正位置量を付与するマップを使用して補正を行う。すなわち、低速回転領域ではPWM信号のパルス幅が狭くなるため、第2位置推定手段によってはロータの位置推定ができなくなる。したがって、そのような領域では、補正位置量を付与するマップを使用することで、第1回転位置信号を補正することができる。
請求項2記載のロータ位置検出回路によれば、第1位置推定手段は、相電圧の検出信号を低域濾波するローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力し、第2位置推定手段は、相電圧を基準電圧と直接比較するコンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する。そして、補正手段は、第1回転位置信号によって示される回転位置を、第2回転位置信号によって補正する。
すなわち、アナログ的な信号処理を行う第1位置推定手段が出力する第1回転位置信号にはばらつきが含まれている可能性が高いが、モータ回転数の広い範囲に亘って前記回転位置信号を出力できるので、基本的には第1回転位置信号を使用するのが好ましい。一方、第2位置推定手段は、より精度の高い位置信号を出力できるが、モータの駆動条件によっては位置推定が不能となる場合がある。そこで、両者を組み合わせ、第1回転位置信号で示される回転位置を第2回転位置信号で補正すれば、総合的に、精度の高い位置信号を広い回転数範囲に亘って出力することができる。
そして、補正手段は、モータの回転数が第2位置推定手段の信号処理によって相電圧のゼロクロス点がマスクされない上限を上回る領域でも、第2回転位置信号に基づく補正を行わず、モータの回転数に対応した補正位置量を付与するマップを使用して補正を行う。前述したように、インバータを介してモータを駆動する場合、負荷状況によっては高速回転領域で還流区間が広がる場合があり、相電圧のゼロクロス点が検出できなくなくなるため、第2位置推定手段によってはロータの位置推定ができなくなる。したがって、そのような領域でも、補正位置量を付与するマップを使用すれば、第1回転位置信号を補正することができる。
請求項3記載のロータ位置検出回路によれば、第1位置推定手段は、相電圧の検出信号を低域濾波するローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力し、第2位置推定手段は、相電圧を基準電圧と直接比較するコンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する。そして、補正手段は、第1回転位置信号によって示される回転位置を、第2回転位置信号によって補正する。
すなわち、アナログ的な信号処理を行う第1位置推定手段が出力する第1回転位置信号にはばらつきが含まれている可能性が高いが、モータ回転数の広い範囲に亘って前記回転位置信号を出力できるので、基本的には第1回転位置信号を使用するのが好ましい。一方、第2位置推定手段は、より精度の高い位置信号を出力できるが、モータの駆動条件によっては位置推定が不能となる場合がある。そこで、両者を組み合わせ、第1回転位置信号で示される回転位置を第2回転位置信号で補正すれば、総合的に、精度の高い位置信号を広い回転数範囲に亘って出力することができる。
そして、補正手段は、モータの回転数が第2位置推定手段の信号処理によって相電圧のゼロクロス点がマスクされない上限を上回る領域では、第2回転位置信号に基づく補正を行わず、前記上限以下の領域において第2回転位置信号に基づいて得られた補正位置量から近似式を求め、その近似式を使用して補正を行う。斯様に構成すれば、請求項のようにマップを使用して補正を行う場合に比較して、より実際の駆動状態に適合した補正を行うことができる。
請求項記載のロータ位置検出回路によれば、補正手段は、第2回転位置信号に基づく補正が可能な領域を、電流検出手段によって検出される電源電流若しくはステータコイルに流れる電流の値に基づいて決定する。すなわち、第2回転位置信号に基づく補正が可能な領域は還流区間の広狭に応じて決まり、電流の増加に伴い同区間が広がる。したがって、補正が可能な領域を電流値に基づいて適切に決定することができる。
請求項記載のロータ位置検出回路によれば、第2位置推定手段を1相分だけ配置する。すなわち、第2位置推定手段は、補正用として少なくとも1相分があれば、モータの極数がある程度多い場合や回転速度が等速の場合に補正を行うことを前提にすると、第1回転位置信号の補正を十分に行うことができる。したがって、回路構成を簡略化してコストを削減できる。
請求項記載のモータ駆動装置によれば、請求項1ないしの何れかに記載のロータ位置検出回路を備え、当該回路により得られる回転位置信号に基づいて、駆動回路における通電タイミングを決定してブラシレスDCモータを駆動するので、モータの駆動を低振動,低騒音で行うことができると共に、駆動効率を向上させることができる。
請求項記載のモータ駆動装置によれば、請求項1と同様に構成される第1,第2位置推定手段を備え、位相ずれ量算出手段が第1回転位置信号と第2回転位置信号の位相ずれ量を算出すると、通電タイミング決定手段は、第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくはその位相ずれ量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定する。したがって、請求項1と同様の効果が得られると共に、例えば進角通電を行なう必要がある場合には、電気角60度のn倍相当の位相量を加えた時点から必要な進角量を付与することで容易に実現できる。
そして、モータをPWM制御により回転数制御する場合、通電タイミング決定手段は、モータの回転数が第2位置推定手段の信号処理によってPWM信号のオンパルスの全てが所定期間によりマスクされない下限を下回る領域では、モータの回転数に対応した補正位置量を付与するマップから得た補正量により,若しくはその補正量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定するので、請求項と同様の効果が得られる。
請求項記載のモータ駆動装置によれば、請求項1と同様に構成される第1,第2位置推定手段を備え、位相ずれ量算出手段が第1回転位置信号と第2回転位置信号の位相ずれ量を算出すると、通電タイミング決定手段は、第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくはその位相ずれ量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定する。したがって、請求項1と同様の効果が得られると共に、例えば進角通電を行なう必要がある場合には、電気角60度のn倍相当の位相量を加えた時点から必要な進角量を付与することで容易に実現できる。
そして、通電タイミング決定手段は、モータの回転数が第2位置推定手段の信号処理によって相電圧のゼロクロス点がマスクされない上限を上回る領域では、モータの回転数に対応した補正位置量を付与するマップから得た補正量により,若しくはその補正量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定するので、請求項と同様の効果が得られる。
請求項記載のモータ駆動装置によれば、請求項1と同様に構成される第1,第2位置推定手段を備え、位相ずれ量算出手段が第1回転位置信号と第2回転位置信号の位相ずれ量を算出すると、通電タイミング決定手段は、第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくはその位相ずれ量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定する。したがって、請求項1と同様の効果が得られると共に、例えば進角通電を行なう必要がある場合には、電気角60度のn倍相当の位相量を加えた時点から必要な進角量を付与することで容易に実現できる。
そして、通電タイミング決定手段は、モータの回転数が第2位置推定手段の信号処理によって相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記上限以下の領域において得られる第2回転位置信号と第1回転位置信号の位相ずれ量から近似式を求め、その近似式を使用して得られた補正量により,若しくは前記補正量に電気角60度のn倍相当の位相量を加え通電タイミングを決定するので、請求項と同様の効果が得られる。
請求項1記載のモータ駆動装置によれば、通電タイミング決定手段は、前記第2回転位置信号に基づく補正が可能な領域を、前記電流検出手段により検出される電源線若しくはステータコイルに流れる電流の値に基づいて決定するので、請求項と同様の効果が得られる。
請求項1記載のモータ駆動装置によれば、モータの負荷を、車両に搭載されるファンとする。すなわち、負荷がファンである場合は、回転数の2乗に比例してトルクが増え、駆動回路を介してモータに通電される電流が増加するので、第1回転位置信号に生じる検出位置のずれ量が大きくなる傾向にある。したがって、本発明を有効に適用することができる。
(第1実施例)
以下、本発明の第1実施例について図1ないし図7を参照して説明する。尚、図11と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。本実施例のモータ駆動装置21は、モータ駆動装置1における制御部7及び位置検出回路9を、制御部(第2位置推定手段,補正手段,位相ずれ量算出手段,通電タイミング決定手段)22及び位置検出回路23に置き換えて構成されている。更に、インバータ部4における下アーム側FET5d〜5fのソースとグランドとの間には、シャント抵抗24が挿入されている。シャント抵抗(電流検出手段)24の端子電圧は、電流検出回路(電流検出手段)25により検出され、その検出出力は、制御部22に与えられている。また、分圧抵抗R1,R2は図示を省略している。
位置検出回路23は、ローパスフィルタ10,バッファアンプ11,コンパレータ12を第1位置推定回路(第1位置推定手段)27として、コンパレータ28U,28V,28Wよりなる第2位置推定回路(第2位置推定手段)29を備えている。コンパレータ28U,28V,28Wは、第1位置推定回路27とは異なり、ローパスフィルタを介すことなく、モータ3のU,V,Wの各相電圧を、仮想中性点電圧と直接比較する。そして、制御部22は、コンパレータ28U,28V,28Wの出力信号を受けて内部でデジタル処理を行い、(第2回転)位置信号を生成する。
尚、モータ3の負荷はファン41であり、このファン41は車両に搭載されるエアコンのラジエータ(熱交換器)42やコンデンサ(凝縮器)43に送風を行うものである。
ここで、制御部22が行う上記デジタル処理の詳細について図2を参照して説明する。コンパレータ28に入力される相電圧波形は、図2(a)に示すようにPWM信号によってスイッチングされた波形となっている、そして、コンパレータ28は、入力される相電圧を図中に破線で示す基準電圧(仮想中性点電圧)と比較するが、インバータ部4を構成するFET5のダイオードを介して還流電流が流れる区間は比較対象外であるから、コンパレータ28の出力信号をマスクする必要がある(図2(b)参照)。
また、実際の相電圧が基準電圧より低い期間でも、波形の立上がりで発生するオーバーシュートにより基準電圧を一時的に超えてしまう場合があるため、波形の立上がりに係る期間についてもマスクする必要がある(図2(b)参照)。そこで、制御部22は、PWM信号(図2(c)参照)のロジックに同期して、還流区間と、スイッチングのOFF期間と、OFFからONに遷移する立ち上がり期間とをマスクする。尚、図2(d)は、図2(b)の一部を拡大して示すものである。
この時、モータ3が低速領域で運転される場合、PWM信号のデューティは小さくなりオンパルス幅が狭くなるため、パルスの全てがマスクされてしまい検出(位置推定)が不能となってしまう。例えば搬送波周波数が20kHzであり、マスク時間が5μsであるとすると、検出が可能なデューティは10%超の範囲となる。
一方、モータ3が高速領域で運転されると、誘起電圧のゼロクロス点間(120度通電の場合は、電気角60度区間)が短くなり、検出が行い難くなる。また、負荷がファン41のような場合は、回転数が上昇するのに応じて負荷が重くなり電源電流が増加するため還流区間が伸長し、その結果ゼロクロス点がマスクされる状態になる。例えば進み角0度で120度通電を行うと、ゼロクロス点は電気角60度区間の中心に位置するため、還流区間が電気角30度を超えるとマスクされてしまう。
以上のことから、第2位置推定回路29による位置推定が可能な回転領域には下限と上限とが存在する。
次に、第1位置推定回路27によって行われる位置推定に含まれる位相ずれについて図3を参照して説明する。図3は、第1位置推定回路27が採用するアナログフィルタ方式について、モータ3の回転数変化に応じた位相ずれ特性を、無負荷の場合と、ファンを負荷とする場合とについて示すものである。無負荷の場合には、専らローパスフィルタ10自体の特性に基づき、回転数が上昇するのに応じて位相ずれが90度に近付く曲線を示す。そして、位相ずれが丁度90度に達した場合に、進み角0度の通電タイミングに一致する。
一方、ファンが負荷の場合は、回転数が上昇するのに応じて通電電流が増加するので、還流電流が流れる区間が伸長し、ローパスフィルタ10のコンデンサがより早く充電されるようになり、その結果位相ずれ量が途中から減少に転じる。
そこで、本実施例では、第1位置推定回路27,第2位置推定回路28を組み合わせて使用し、前者によって出力される第1回転位置信号を、後者によって出力される第2回転位置信号に基づき補正する。ただし、上述したように、第2位置推定回路28による位置推定は、回転数が所定範囲内の場合に有効であるから、前記範囲外となる低速,高速領域では、図4に示す特性(ファンが負荷の場合)をマッピングしたデータテーブル(補正マップと称す)を使用して補正を行うようにする。
次に、本実施例の作用について図5ないし図7も参照して説明する。図5は、U相の回転位置信号の立上りエッジに基づいて通電信号を生成する場合の、制御部22の処理内容を示すフローチャートである。制御部22は、第2位置推定回路28より出力されるU相の第2回転位置信号について、マスク処理された信号の立上りエッジを検出すると(ステップS1)、カウンタAuをスタートさせる(ステップS2)。尚、マスク処理の概要には図6(a)〜(c)に示しており、前述した図2のように処理を行う結果、図6(c)に示すように立上り,立下りエッジが誘起電圧のゼロクロス点に一致した矩形波信号が得られる。また、上記のステップS1,S2の処理は、以降に説明する処理とは独立して実行される。
そして、制御部22は、第1位置推定回路27より出力されるU相の第1回転位置信号の立上りエッジを検出すると(ステップS3,図6(e)参照)、カウンタAuをストップさせると共に、上記エッジ間隔を検出するためのカウンタBをストップさせる(ステップS4)。カウンタAuは、第1,第2回転位置信号の立上りエッジ間隔を検出するためのカウンタである。また、カウンタBは、U,V,W相の何れのエッジを検出した場合でもストップする。
続いて、制御部22は、カウンタBの値から電気角60度相当の区間長とモータ3の回転数とを算出し、カウンタBをリセットスタートさせると(ステップS5)、カウンタAuの値とモータ3の回転数から第1回転位置信号の位相ずれ量を算出し、カウンタAuをリセットする(ステップS6)。
次に、制御部22は、上記回転数が500rpm〜2000rpmの範囲内にあるか(ステップS7)、インバータ部4より出力しているPWM信号のデューティが10%以上あるか(ステップS8)、ステップS6で算出した位相ずれ量が50度〜90度の範囲内にあるか(ステップS9)否かを判断する。すなわち、ステップS7では、第2位置推定回路28による位置推定が有効な回転数範囲か否かを判断し、ステップS8も前記有効回転数範囲の下限を下回ったか否かを判断する。また、ステップS9では、第1回転位置信号の位相ずれ量が通常の範囲内で検出されているか否かを判断する。
そして、これらのステップS7〜S9の全てにおいて(YES)と判断すると、ステップS6で算出した位相ずれ量に応じて補正量を算出する(ステップS10)。一方、ステップS7〜S9の何れか1つにおいて(NO)と判断すると、第2回転位置信号を利用して行う補正は無効と判定して、補正マップより位相ずれ量を取得し、補正量を算出する(ステップS11)。ここで、
(補正量)=90度−(位相ずれ量)
である(図6(f)参照)。
ステップS10,S11の実行後は、ステップS12において通電タイミングの補正を行う。すなわち、第1回転位置信号の立上りエッジを起点として、電気角60度(若しくは、電気角60度のn倍(nは自然数))に上記補正量を加えたタイミングが、U相上アームのOFFタイミング,V相上アームのONタイミングとなる(図6(g)参照)。尚、進角通電を行う場合は、図6(g)に示すように、上記補正後のタイミングより進角分を差し引けば良い。
上記のケースに対応するタイミングチャートを図7に示す。尚、図7(b)は図6(c)に対応し、図7(c)は図6(e)に対応している。
また、120度通電方式の場合、各エッジを基準とした場合に補正する通電タイミングは、以下のように対応する(進角通電を行う場合)。
U相:立上り → U相上アームOFF,V相上アームON
:立下り → V相下アームON, U相下アームOFF
V相:立上り → W相上アームON, V相上アームOFF
:立下り → W相下アームON, V相下アームOFF
W相:立上り → W相上アームOFF,U相上アームON
:立下り → W相下アームOFF,U相下アームON
また、ステップS11で求めた補正量が正であり、その値が当該補正量を算出するまでの演算時間以下で、且つ進角通電を行わない場合は、ステップS12の処理において電気角60度を加える必要はない。すなわち、図6(f)に示す通電信号をそのまま使用すれば良い。この時、第1回転位置信号の立上りエッジを基点として上記補正量を加えたタイミングが、W相下アームのONタイミング,V相下アームのOFFタイミングとなる。通常、電流の増加等による位相ずれは電気角90度に対して進み側となるため、進角通電を行わない場合は電気角60度を加えなくても制御することが可能である。そしてこの場合、より精度良く通電を行うことができる。
進角通電を行わない場合、各エッジを基準とした場合に補正する通電タイミングは、以下のように対応する。
U相:立上り → W相下アームON, V相下アームOFF
:立下り → W相上アームON, V相上アームOFF
V相:立上り → U相下アームON, W相下アームOFF
:立下り → U相上アームON, W相上アームOFF
W相:立上り → V相下アームON, U相下アームOFF
:立下り → V相上アームON, U相上アームOFF
更に、電気角60度を加えない場合でも、上記演算時間も考慮して、上記補正量より、進角量及び演算時間を減じたタイミングにより通電を行うことで進角側に制御することもできる。また、位相ずれ量に進角量も考慮した結果に応じて、電気角60度を加える制御を行うか否かを決定しても良い。
以上のように本実施例によれば、モータ3を位置センサレス方式によりPWM制御する場合、モータ駆動装置21の位置検出回路23は、第1位置推定回路27が相電圧の検出信号をローパスフィルタ10の出力信号を基準電圧と比較して第1回転位置信号を出力し、制御部22は、相電圧を基準電圧と直接比較する第2位置推定回路29におけるコンパレータ12の出力信号をデジタル的に信号処理することで第2回転位置信号を生成し、第1回転位置信号によって示される回転位置を、第2回転位置信号によって補正するようにした。
すなわち、アナログ的な信号処理を行う第1位置推定回路27が出力する第1回転位置信号にはばらつきが含まれている可能性が高く、また、回転数に応じて位相ずれ量が変化するが、モータ回転数の広い範囲に亘って前記回転位置信号を出力できる。一方、第2位置推定回路29及び制御部22は、より精度の高い位置信号を得ることができるが、モータ3の駆動条件によっては位置推定が不能となる場合がある。そこで、両者を組み合わせ、第1回転位置信号で示される回転位置を第2回転位置信号で補正すれば、総合的に、精度の高い位置信号を広い回転数範囲に亘って出力することができる。
また、制御部22は、モータ3の回転数が下限を下回る領域,並びに上限を上回る領域では、第2回転位置信号に基づく補正を行わず、モータ3の回転数に対応した補正マップを使用して補正を行うので、PWM信号のパルス幅が狭くなる低速回転領域や、負荷状況によっては還流区間が広がる高速回転領域で第2位置推定回路29によるロータの位置推定が困難となる場合でも、補正マップを使用して第1回転位置信号を補正することができる。
更に、制御部22は、第2回転位置信号に基づく補正が可能な領域を、電流検出回路25によって検出される電源電流値に基づいて決定するので、インバータ部4における還流区間の広狭を反映する電源電流に基づいて、補正が可能な領域を適切に決定することができる。
加えて、モータ3の負荷を、車両に搭載されるファン41とするので、回転数が上昇するとモータ3の負荷が重くなり、インバータ部4を介してモータ3に通電される電流が増加することで、第1回転位置信号に生じる検出位置のずれ量が大きくなる場合に、有効に適用することができる。
また、制御部22は、第1回転位置信号が示すレベル変化エッジを起点として、第1回転位置信号と第2回転位置信号との位相ずれ量により,若しくは必要に応じて、前記位相ずれ量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定するので、進角通電を行なう必要がある場合には、電気角60度のn倍相当の位相量を加えた時点から必要な進角量を付与することで容易に実現できる。
(第2実施例)
図8は本発明の第2実施例を示すものであり、第1実施例と異なる部分のみ説明する。第1実施例の図5に示すフローチャートのステップS7では、回転数範囲の上限を2000rpmに固定しているが、第2実施例では、電流検出回路25によって検出される電源電流値に応じて回転数の上限(Nmax)を可変する場合を説明する。
図8は、上記の原理を説明するものである。3相モータ3の極数が「10」であり、還流区間のマスク時間をtmaskとすると、上限回転数Nmaxは以下のように決まる。
Nmax=(60/tmask)×(2/10)×(30度/360度)
そして、図8(a)に示すように、還流区間は、電源電流値に略比例して伸長する。この場合、マスク時間tmaskを一定とすれば、上限回転数Nmaxも一定となる(図8(b)参照)。
一方、図8(c)に示すように、電源電流値が増加(還流区間が伸長)するのに応じてマスク時間tmaskを変化させると、上限回転数Nmaxは、上式に従い、電流値が小さくなるのに応じてより高い値に設定することができる(図8(d)参照)。
以上のことから、制御部22は、電流検出回路25によって検出される電流値に応じて、ステップS7における上限回転数Nmaxを図8(d)に示す曲線に基づき設定すれば、モータ3の回転数範囲をより広く設定することができる。
(第3実施例)
図9は本発明の第3実施例を示すものである。図9は、第1実施例の図5相当図である。第3実施例の構成は、第1実施例と同様であり、制御部22における処理内容が相違している。図5のステップS7は、回転数範囲が500rpm以上かを判断するステップS7Lと、回転数範囲が2000rpm以下かを判断するステップS7Hとの2つに分かれており、何れも(YES)と判断すると、第1実施例と同様にステップS8〜S12を実行する。また、ステップS7L,S8,S9の何れかで(NO)と判断した場合も、第1実施例と同様にステップS11,S12を実行する。
そして、ステップS10の実行後は、並列的にステップS13〜S16の処理を実行する。尚、これらの処理は、ステップS12を実行するまでの間に実行しても良い。まず、モータ3の回転数が、900rpm〜1000rpmの範囲内にあるか否かを判断し(ステップS13)、上記範囲内であれば(YES)、回転数と補正量とをそれぞれN1,R1として記憶する(ステップS14)。
一方、ステップS13において(NO)と判断すると、回転数が1800rpm〜2000rpmの範囲内にあるか否かを判断し(ステップS15)、上記範囲内であれば(YES)、回転数と補正量とをそれぞれN2,R2として記憶する(ステップS16)。ステップS13,S16の何れにおいても(NO)判断した場合、回転数,補正量は記憶されない。
そして、ステップS7Hにおいて、回転数が上限の2000rpmを超えており(NO)と判断すると、その時点で、ステップS14,S16で記憶させる回転数,補正量のデータN1,R1,N,R2が既に記憶されているか否かを判断し(ステップS17)、それらのデータが揃っていなければ(NO)ステップS11に移行して、第1実施例と同様にマップを利用した補正を行う。
一方、ステップS17において(YES)と判断すると、制御部22は、データN1,R1,N,R2を二次元座標上にマッピングした場合の直線式を算出する(ステップS18)。そして、その直線式を利用して、回転数が2000rpmを超えた場合の補正量を近似的に算出すると(ステップS19)、ステップS12に移行する。
以上のように第3実施例によれば、制御部22は、モータ3の回転数が上限を上回る領域では、第2回転位置信号に基づく補正を行わず、上限以下の領域において第2回転位置信号に基づいて得られた補正位置量から直線近似式を求め、その近似式を使用して補正を行うので、第1実施例のように補正マップを使用して補正を行う場合に比較して、より実際の駆動状態に適合した補正を行うことができる。なお、この近似式は、直線近似に限らず、負荷やモータの特性などにより曲線の近似式を使用して補正しても良い。
(第4実施例)
図10は本発明の第4実施例を示すものである。第4実施例のモータ駆動装置31は、位置検出回路23を位置検出回路32に置き換えたものである。位置検出回路32は、第2位置推定回路(第2位置推定手段)33は、コンパレータ28を、U相に対応した28U一相分だけを有している。そして、制御部22aは、コンパレータ28Uの出力信号より第2回転位置信号を生成し、補正を行う。
すなわち、第2位置推定回路33は、補正用として少なくとも1相分があれば、モータ3の極数がある程度多い場合や回転速度が等速の場合に補正を行うことを前提にすると、第1回転位置信号の補正を十分に行うことができる。したがって、以上のように構成した第4実施例によれば、回路構成を簡略化してコストを削減できる。
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、以下のような変形または拡張が可能である。
ステップS8,S9は、個別の設計に応じて少なくとも一方を削除しても良い。
ステップS12に示す通電処理の一例は120度通電方式に対応したものであり、通電角を広げる場合には適宜変更して実施すれば良い。
電流検出は、例えばカレントトランスなどの電流センサを用いて、モータ3のステータコイル6に流れる電流を検出しても良い。
3相モータに限ることなく、4相以上の多相モータに適用しても良い。
バッファアンプ11は削除しても良い。
第2回転位置推定回路29の比較基準電圧である仮想中性点電圧を、電源電圧の1/2に置き換えても良い。
モータの負荷は、ファン41に限ることはない。
本発明の第1実施例であり、モータ駆動装置の構成を示す図 制御部が行うデジタル処理の詳細を説明する図 アナログフィルタ方式について、モータの回転数変化に応じた位相ずれ特性を、無負荷の場合とファンを負荷とする場合とについて示す図 ファンを負荷とする場合に位相ずれの補正を行う回転数領域を示す図 U相の回転位置信号の立上りエッジに基づき通電信号を生成する場合の処理内容を示すフローチャート 第2回転位置信号を生成するためのマスク処理の概要並びに補正量の算出を示す図 図5の処理に対応するタイミングチャート 本発明の第2実施例であり、電流検出回路により検出される電源電流値に応じて回転数の上限(Nmax)を可変する場合を説明する図 本発明の第3実施例を示す図5相当図 本発明の第4実施例を示す図1相当図 従来技術(その1)を示す図1相当図 各部の電圧波形(U相のみ)を示す図 従来技術(その2)を示す図1相当図 図12相当図 図11の構成の問題を説明する図 図13の構成の問題を説明する図
符号の説明
図面中、3はブラシレスDCモータ、10はローパスフィルタ、21はモータ駆動装置、22は制御部(第2位置推定手段,補正手段,位相ずれ量算出手段,通電タイミング決定手段,ロータ位置検出回路)、23は位置検出回路(ロータ位置検出回路)、24はシャント抵抗(電流検出手段)、25は電流検出回路(電流検出手段)、27は第1位置推定回路(第1位置推定手段)、29は第2位置推定回路(第2位置推定手段)、31はモータ駆動装置、32は位置検出回路(ロータ位置検出回路)、33は第2位置推定回路(第2位置推定手段)、41はファンを示す。

Claims (15)

  1. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する回路において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正する補正手段とを備え
    前記モータをPWM(Pulse Width Modulation)制御によって回転数制御する場合、
    前記第2位置推定手段は、前記コンパレータの出力信号を、PWM信号波形の立上りに係る所定期間はマスクするように前記信号処理を行い、
    前記補正手段は、前記モータの回転数が前記信号処理によってPWM信号のオンパルスの全てが前記所定期間によりマスクされない下限を下回る領域では、前記第2回転位置信号に基づく補正を行わず、前記モータの回転数に対応した補正位置量を付与するマップを使用して補正を行うことを特徴とするロータ位置検出回路。
  2. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する回路において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正する補正手段とを備え、
    前記第2位置推定手段は、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするように前記信号処理を行い、
    前記補正手段は、前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記第2回転位置信号に基づく補正を行わず、前記モータの回転数に対応した補正位置量を付与するマップを使用して補正を行うことを特徴とするロータ位置検出回路。
  3. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する回路において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正する補正手段とを備え、
    前記第2位置推定手段は、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするように前記信号処理を行い、
    前記補正手段は、前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記第2回転位置信号に基づく補正を行わず、前記上限以下の領域において前記第2回転位置信号に基づいて得られた補正位置量から近似式を求め、前記近似式を使用して補正を行うことを特徴とするロータ位置検出回路。
  4. 電源線若しくは前記ステータコイルに流れる電流を検出する電流検出手段を備え、
    前記補正手段は、前記第2回転位置信号に基づく補正が可能な領域を、前記電流検出手段によって検出される電流値に基づいて決定する請求項1乃至3の何れかに記載のロータ位置検出回路。
  5. 前記第2位置推定手段を、1相分だけ配置したことを特徴とする請求項1乃至4の何れかに記載のロータ位置検出回路。
  6. ブラシレスDCモータを位置センサレス方式により駆動する駆動回路と、
    請求項1乃至5の何れかに記載のロータ位置検出回路とを備え、
    このロータ位置検出回路により得られる回転位置信号に基づいて、前記駆動回路における通電タイミングを決定することを特徴とするモータ駆動装置。
  7. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出するロータ位置検出回路を備えたモータ駆動装置において、
    前記ロータ位置検出回路は、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号と前記第2回転位置信号の位相ずれ量を算出する位相ずれ量算出手段と、
    前記第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくは前記位相ずれ量に電気角60度のn倍相当(nは自然数)の位相量を加えて通電タイミングを決定する通電タイミング決定手段とを備え、
    前記モータをPWM(Pulse Width Modulation)制御によって回転数制御する場合、
    前記第2位置推定手段は、前記コンパレータの出力信号を、PWM信号波形の立上りに係る所定期間はマスクするように前記信号処理を行い、
    前記通電タイミング決定手段は、前記モータの回転数が前記信号処理によってPWM信号のオンパルスの全てが前記所定期間によりマスクされない下限を下回る領域では、前記モータの回転数に対応した補正位置量を付与するマップから得た補正量により,若しくは前記補正量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定することを特徴とするモータ駆動装置。
  8. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出するロータ位置検出回路を備えたモータ駆動装置において、
    前記ロータ位置検出回路は、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号と前記第2回転位置信号の位相ずれ量を算出する位相ずれ量算出手段と、
    前記第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくは前記位相ずれ量に電気角60度のn倍相当(nは自然数)の位相量を加えて通電タイミングを決定する通電タイミング決定手段とを備え
    前記第2位置推定手段は、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするように前記信号処理を行い、
    前記通電タイミング決定手段は、前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記モータの回転数に対応した補正位置量を付与するマップから得た補正量により,若しくは前記補正量に電気角60度のn倍相当の位相量を加えて通電タイミングを決定することを特徴とするモータ駆動装置。
  9. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出するロータ位置検出回路を備えたモータ駆動装置において、
    前記ロータ位置検出回路は、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力するコンパレータとを備えてなる第1位置推定手段と、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号をデジタル的に信号処理することで第2回転位置信号を生成して出力する第2位置推定手段と、
    前記第1回転位置信号と前記第2回転位置信号の位相ずれ量を算出する位相ずれ量算出手段と、
    前記第1回転位置信号が示すレベル変化エッジを起点として、前記位相ずれ量により,若しくは前記位相ずれ量に電気角60度のn倍相当(nは自然数)の位相量を加えて通電タイミングを決定する通電タイミング決定手段とを備え、
    前記第2位置推定手段は、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするように前記信号処理を行い、
    前記通電タイミング決定手段は、前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記上限以下の領域において得られる前記第2回転位置信号と前記第1回転位置信号の位相ずれ量から近似式を求め、前記近似式を使用して得られた補正量により,若しくは前記補正量に電気角60度のn倍相当の位相量を加え通電タイミングを決定することを特徴とするモータ駆動装置。
  10. 前記ロータ位置検出回路は、電源線若しくは前記ステータコイルに流れる電流を検出する電流検出手段を備え、
    前記通電タイミング決定手段は、前記第2回転位置信号に基づく補正が可能な領域を、前記電流検出手段により検出される電流値に基づいて決定する請求項7乃至9の何れかに記載のモータ駆動装置。
  11. 前記モータの負荷は、車両に搭載されるファンであることを特徴とする請求項6乃至10の何れかに記載のモータ駆動装置。
  12. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する方法において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力すると共に、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記モータをPWM(Pulse Width Modulation)制御によって駆動する場合、前記コンパレータの出力信号をPWM信号波形の立上りに係る所定期間はマスクするようにデジタル的に信号処理することで第2回転位置信号を生成して出力し、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正し、
    前記モータの回転数が前記信号処理によってPWM信号のオンパルスの全てが前記所定期間によりマスクされない下限を下回る領域では、前記第2回転位置信号に基づく補正を行わず、前記モータの回転数に対応した補正位置量を付与するマップを使用して補正を行うことを特徴とするロータ位置検出方法
  13. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する方法において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力すると共に、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするようデジタル的に信号処理することで第2回転位置信号を生成して出力し、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正し、
    前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記第2回転位置信号に基づく補正を行わず、前記モータの回転数に対応した補正位置量を付与するマップを使用して補正を行うことを特徴とするロータ位置検出方法
  14. ブラシレスDCモータを位置センサレス方式により駆動するため、ステータコイルに発生する相電圧を検出し、その検出結果に基づいてロータの回転位置を検出する方法において、
    前記相電圧の検出信号を低域濾波するローパスフィルタ、及びこのローパスフィルタの出力信号を基準電圧と比較して第1回転位置信号を出力すると共に、
    前記相電圧を基準電圧と直接比較するコンパレータを備え、前記コンパレータの出力信号を、前記モータのステータコイルに通電を行うトランジスタに接続されているダイオードに還流電流が流れる区間はマスクするようデジタル的に信号処理することで第2回転位置信号を生成して出力し、
    前記第1回転位置信号によって示される回転位置を、前記第2回転位置信号によって補正し、
    前記モータの回転数が前記信号処理によって前記相電圧のゼロクロス点がマスクされない上限を上回る領域では、前記第2回転位置信号に基づく補正を行わず、前記上限以下の領域において前記第2回転位置信号に基づいて得られた補正位置量から近似式を求め、前記近似式を使用して補正を行うことを特徴とするロータ位置検出方法。
  15. 前記第2回転位置信号に基づく補正が可能な領域を、電源線若しくは前記ステータコイルに流れる電流に基づいて決定する請求項12乃至14の何れかに記載のロータ位置検出方法。
JP2007289855A 2007-05-28 2007-11-07 ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法 Expired - Fee Related JP4428440B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007289855A JP4428440B2 (ja) 2007-05-28 2007-11-07 ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法
US12/153,030 US7956561B2 (en) 2007-05-28 2008-05-13 Rotor position sensing system of brushless motor
CN2008101093351A CN101316088B (zh) 2007-05-28 2008-05-28 无刷电动机的旋转位置感测系统
DE102008025442A DE102008025442A1 (de) 2007-05-28 2008-05-28 Drehpositionsbestimmungssystem für bürstenlosen Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007140366 2007-05-28
JP2007289855A JP4428440B2 (ja) 2007-05-28 2007-11-07 ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法

Publications (2)

Publication Number Publication Date
JP2009011143A JP2009011143A (ja) 2009-01-15
JP4428440B2 true JP4428440B2 (ja) 2010-03-10

Family

ID=40106961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289855A Expired - Fee Related JP4428440B2 (ja) 2007-05-28 2007-11-07 ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法

Country Status (2)

Country Link
JP (1) JP4428440B2 (ja)
CN (1) CN101316088B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397822B1 (ko) 2012-12-21 2014-06-27 삼성전기주식회사 모터 구동 제어 장치, 모터 구동 제어 방법 및 그를 이용한 모터

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219931B2 (ja) * 2009-06-05 2013-06-26 Hoya株式会社 電子内視鏡のレンズ位置制御装置
CN105339671B (zh) * 2013-06-28 2017-04-05 松下知识产权经营株式会社 换气装置
US9374021B2 (en) * 2013-12-16 2016-06-21 Rockwell Automation Technologies, Inc. PWM output voltage measurement apparatus and method
JP5858058B2 (ja) * 2014-01-10 2016-02-10 ダイキン工業株式会社 モータ制御装置
KR102270421B1 (ko) * 2014-01-29 2021-06-29 엘지이노텍 주식회사 브러쉬리스 직류 모터의 전류 센싱 보정 장치 및 방법
JP6979568B2 (ja) * 2017-10-27 2021-12-15 パナソニックIpマネジメント株式会社 モータ駆動装置および、これを用いた冷蔵庫
KR102440689B1 (ko) * 2017-11-28 2022-09-05 현대자동차주식회사 홀 센서를 이용한 모터 위치 계산 방법
CN113014157B (zh) * 2019-12-18 2023-03-14 珠海格力电器股份有限公司 一种电机励磁电压换相控制方法、装置及电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743815A (en) * 1987-09-01 1988-05-10 Emerson Electric Co. Brushless permanent magnet motor system
JPH10174484A (ja) * 1996-12-10 1998-06-26 Zexel Corp 直流ブラシレスモータ駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397822B1 (ko) 2012-12-21 2014-06-27 삼성전기주식회사 모터 구동 제어 장치, 모터 구동 제어 방법 및 그를 이용한 모터

Also Published As

Publication number Publication date
CN101316088A (zh) 2008-12-03
JP2009011143A (ja) 2009-01-15
CN101316088B (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
JP4428440B2 (ja) ロータ位置検出回路,モータ駆動装置及びロータ位置検出方法
US7956561B2 (en) Rotor position sensing system of brushless motor
US9444377B2 (en) Motor drive control device
US8159162B2 (en) Motor control apparatus, vehicle fan drive apparatus, and motor control method
JP4807165B2 (ja) ロータ位置検出回路及びモータ駆動装置
JP4065441B2 (ja) モータ駆動装置及びモータ駆動方法
JP6217554B2 (ja) インバータ装置
JP4735681B2 (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP5144337B2 (ja) ブラシレスモータ制御装置及びブラシレスモータ
JP6929460B2 (ja) 永久磁石式同期モータおよび換気送風機
JP2003111469A (ja) モータの制御方法および制御装置
JP2003219683A (ja) 永久磁石電動機の制御方法
JP2014007916A (ja) モータ制御装置
JP2014171293A (ja) 冷却ファンの制御装置、及び制御方法
JP4367555B2 (ja) 通電タイミング決定回路及びモータの通電タイミング決定方法
WO2021200389A1 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP4435635B2 (ja) ブラシレスモータの制御装置
JP6408403B2 (ja) 車両用モータの駆動装置
JP7290434B2 (ja) モータ駆動制御装置及びモータの駆動制御方法
JP2000253690A (ja) 圧縮機用電動機の制御方法とその装置
JP2021164377A (ja) 電動機の制御装置
JP2004088838A (ja) モータ制御装置
JP3285717B2 (ja) ブラシレスモータ及びその駆動装置並びにエアコンディショナのコンプレッサ
JP4003700B2 (ja) 6線式3相ブラシレスモータ制御装置
JP2005027391A (ja) ブラシレスモータの駆動装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4428440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees