JP4372419B2 - マルチカラム・クロマトグラフ装置 - Google Patents

マルチカラム・クロマトグラフ装置 Download PDF

Info

Publication number
JP4372419B2
JP4372419B2 JP2002554200A JP2002554200A JP4372419B2 JP 4372419 B2 JP4372419 B2 JP 4372419B2 JP 2002554200 A JP2002554200 A JP 2002554200A JP 2002554200 A JP2002554200 A JP 2002554200A JP 4372419 B2 JP4372419 B2 JP 4372419B2
Authority
JP
Japan
Prior art keywords
detector
column
sample
columns
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002554200A
Other languages
English (en)
Other versions
JP2004524518A5 (ja
JP2004524518A (ja
Inventor
ジョン・ブラン
Original Assignee
コヒーシブ・テクノロジーズ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コヒーシブ・テクノロジーズ・インコーポレイテッド filed Critical コヒーシブ・テクノロジーズ・インコーポレイテッド
Publication of JP2004524518A publication Critical patent/JP2004524518A/ja
Publication of JP2004524518A5 publication Critical patent/JP2004524518A5/ja
Application granted granted Critical
Publication of JP4372419B2 publication Critical patent/JP4372419B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/466Flow patterns using more than one column with separation columns in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1864Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • G01N2030/562Packing methods or coating methods packing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • G01N2030/567Packing methods or coating methods coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N2030/628Multiplexing, i.e. several columns sharing a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

この発明は、特に高速液体クロマトグラフィー(HPLC)に適したマルチカラム・クロマトグラフ装置に関する。本装置は、収集されたデータの質又は量を犠牲にすることなく、質量分析計(MS)のような検出器のデータ収集能力を最適化する。本装置は、スタガードHPLC−MS操作シーケンス(staggered HPLC−MS operation sequence)を使用することで、プログラムされたコンピュータプロトコルによって命令されるような複数の個々のクロマトグラフを稼動するものであり、乱流型装置及び層流型装置両方に適している。
本明細書で譲受人によって所有されている米国特許第5,919,368号明細書は、高速液体クロマトグラフィーによる分離の有用性に関して優れた報告を提供している。前記明細書で触れられているように、分離プロセスは、固定相として知られている粒子の固定層を介して濾過された流体の流動流内の多くの構成溶質分子は、互いに効率的に隔離され得るという事実を当てにしている。個々の構成要素は、各構成要素が固定相に対して異なる親和性を有するために分離されており、このために各構成要素に対する移動速度は異なるものとなり、カラムから抜け出す各構成要素に対する流出時間は異なるものとなる。分離効率は、溶質層が床又はカラムを横断するときの溶質層の分散量によって決定される。
最終的には前記‘368号明細書は、クロマトグラフィー的に活性な(クロマトグラフ吸着し得る)表面を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子をチューブコンテナに詰め込み、30μmよりも小さくない平均直径の各前記粒子間に隙間体積を有するクロマトグラフィーカラムを形成する段階と、溶質を含む液体混合物を、前記カラムを介して、約5,000よりも大きな換算速度で前記隙間体積の少なくとも実質的な部分内に前記混合物の流れを誘起するのに十分な速度で流す、ことによって前記表面とよく反応する少なくとも一つの前記溶質を前記表面に装填する段階と、を備えた液体クロマトグラフィーを実施する改善された方法について述べている。前記方法は、1.生物学的なもの及びそれと同様のもののような大小両方の分子に対して、分析的かつ予備的なクロマトグラフィーの速度及び容量を劇的に増大させ;2.著しく改善された結果を用いて以前に費やされたいかなる速度よりもかなり大きな移動相速度で稼動し;3.粒子が当技術で以前用いられていた粒子よりも実質的に大きい固定粒子層を使用し;4.乱流のクロマトグラフィーに対して従来技術で教えられた圧力よりもかなり低い圧力で稼動する。この点に関しては、本明細書で譲受人によって所有されている、高速液体クロマトグラフィーで使用するための他の関連する方法及び装置について述べた米国特許第5,772,874号明細書、米国特許第5,968,367号明細書、米国特許第6,110,362号明細書、及び米国特許第6,149,816号明細書にも留意されたい。
上述のことを念頭に置いた上で、今度はクロマトグラフィー技術によって複数の流体サンプルの組成を分析するための方法及び装置を提供すると言われている米国特許第6,066,848号明細書について留意されたい。より詳細には、‘848号明細書には、その発明によれば、平行な液体クロマトグラフィーカラムから質量分析計へ向けて同時にエレクトロスプレーされた複数の流体サンプルのそれぞれを識別して各流体サンプルに関した質量スペクトルを確実に測定できる、ということが記載されている。すなわち‘848号明細書は続けて、複数の流体サンプルが平行な液体クロマトグラフィーカラムによって同時に分離され、質量分析計の入口オリフィスへ向けて同時にエレクトロスプレーされることについて述べている。貫通孔を有した遮断装置が、複数の流体サンプルのうちの一つを除いて全てがいかなる瞬間でも質量分析計の入口オリフィス内へ通るのを妨げるよう配置されている。
しかしながら、様々な問題が、様々な形態で「MUX」(すなわち複合)液体クロマトグラフィー/質量分析計・装置と称されてきた上と関連する技術に結び付けられてきた。例えばそのような技術は一般的に、4つのサンプル流を駆動するために1つのポンプを使用する。結果として、全ての流れに対して最適な圧力を達成するのは困難であり、背圧はカラムのパッキンによって変化する可能性があり、背圧は使用方法によって変化する可能性があり、各流れの間の再現性は乏しい可能性があり、かつ「ドリフト(drift)」という未解決の問題が生じる。これを拡張すると、背圧のモニタリングはなく、サンプルを特定のカラムへ結び付ける方法はなく、例えば4カラムシステムにおいて唯一の流れが閉鎖されたとき、データの25%がサンプルの25%と一緒に失われる。
加えて、閉塞ディスク(blocking disk)を使用するMUX技術は、ディスク上に衝突する各しぶきが相互汚染されるようなキャリオーバ(飛沫同伴)を生ずる可能性がある。その上、複合化されるおかげで、解析データの読み出しは、エレクトロスプレーのそれぞれが順次何度も何度も分析されるという特徴へ導く。したがって、変化する質量スペクトルの読み取りは、複数の流体サンプルエレクトロスプレーのそれぞれに対して所定の時間生成される。MUX解析データの読み出しは、データ点の数が全ての場合においてそのような複合システムのサンプリングレートによって制限されるということを明らかにした図1及び図2に示されているように出現することは事実である。より詳細には、図1に示すように、データ点はサンプリングレートの関数であり、スプレー1〜4対所要時間について示されている。それから図2は、そのような複合化の結果、そのように収集された複合化されたデータ点に対して異なるピークが描かれる(点線対実線)ように、報告されたピークの実現性がエラーとなる傾向にあることを図示したものである。
他の方法を述べると、MUXシステムは、より速い速度で作動されたときに正確さ及び感度が犠牲にされると同時に、ピークのデータ点が辿るのに不十分となる可能性がある。その上、そのような問題は複合分析の場合に形成される。
したがって、従来技術の欠点を克服し、かつ検出器のデータ収集能力を最大限に使用すると同時により信頼できかつ正確なクロマトグラフ分離を提供する、マルチカラム・クロマトグラフ装置を開発する必要が残っている。
複数のサンプルのそれぞれを検出器でクロマトグラフ分析する方法及び装置は、クロマトグラフ分析のための複数のサンプルを収容するオートサンプラーと、複数のクロマトグラフィーカラムと、前記複数のカラムのそれぞれから溶離剤の流れを確立するための、前記複数のカラムに結び付けられた複数のポンプと、前記カラムのそれぞれから前記溶離剤内の化合物を検出するための検出器と、を備える。本装置はさらに、溶離剤の流れのそれぞれが順次前記検出器に到達することのできる、前記検出器と前記カラムからの前記溶離剤の流れとの間に配置されたバルブを含む。前記溶離剤を前記検出器へ順次搬送するために、オートサンプラーから前記複数のカラムへのサンプルの導入と、前記バルブの位置とを自動的に調整するコンピュータ制御装置が含まれる。
他の実施形態では、この発明は、クロマトグラフ分析用の複数のサンプルを収容するためのオートサンプラーと複数のクロマトグラフとを備え、各装置が一つ又は複数のポンプと一つ又は複数のクロマトグラフィーカラムとを備えている、複数のサンプルのそれぞれを検出器でクロマトグラフ分析する装置及び方法に関する。前記クロマトグラフのそれぞれから前記サンプル内の化合物を検出するための検出器が、前記検出器と前記クロマトグラフとの間に配置されたバルブと、コンピュータ制御装置とと共に設けられている。バルブは、各サンプルを検出器へ順次到達させることができるものである。コンピュータ制御装置は、前記サンプル内の前記化合物を前記検出器へ連続的に分離して搬送するために、前記オートサンプラーから前記クロマトグラフへのサンプルの導入と、前記バルブの位置とを調整するものである。各クロマトグラフは互いに独立しており、それぞれはポンプ、カラム、バルブ、及びヒータを含む多くの構成要素からなることができる。
なおさらなる実施形態では、この発明は、カラムと、移動相を溶離するためのポンプと、前記カラムから流出する化合物を検出するための検出器とを含むクロマトグラフであって、(i)軌跡を与えるために所定時間前記ポンプから圧力読み取りを収集し、(ii)前記ポンプに対して内蔵圧力対時間の軌跡とそのような軌跡を比較し、(iii)前記軌跡が前記内蔵軌跡から外れたときに前記ポンプを停止するよう選択する、コンピュータ制御装置を含む改良された装置に関する。
この発明のマルチカラム・クロマトグラフ装置10の一概略図が図3に示されている。図3からわかるように、装置10は、複数の注入バルブ14と、複数のポンプ16と、複数のカラム18と、切換バルブ20と、検出器22とを含むオートサンプラーを含む。カラム18は、流体サンプルを所定の検出器の入口オリフィスへ向けるよう用いることができるクロマトグラフ分析に役立つ広範囲の種類のカラムを含むことができる。例えば、カラム18は、高性能HPLCカラムと、細管電気泳動カラム(capillary electrophoresis column)と、ガスクロマトグラフィーカラムと、フローインジェクション移送ライン(flow injection transfer line)と、等を含むことができる。加えて、図示しないが、装置はまた好ましくは、単一カラム装置(一つ又は複数のポンプ及び一つ又は複数のカラム)の場合に一方向にサンプルを供給するとともに反対方向に溶離するよう作用する、カラムの前に配置されたポートバルブを含んでもよい。2カラム装置の場合には、ポートバルブは同様の機能をもたらし、かつまた溶媒を溶離するためのループを提供する。
しかしながら、上で触れたように、この発明はまた、クロマトグラフ分析のための複数のサンプルと、複数のクロマトグラフとを含むオートサンプラー(好ましくは2つのサンプリングアームを備えた)を備え、各装置が一つ又は複数のポンプと一つ又は複数のクロマトグラフィーカラムとを備えた、複数のサンプルのそれぞれを検出器でクロマトグラフ分析する装置及び方法としても述べられ得る。この点、各クロマトグラフは、検出器の端部における重複を回避するためにサンプルがオートサンプラーによって導入されることを保証し、かつ検出器同様、検出器の時間を最大限に使用することを保証するように、コンピュータ制御装置によって制御されるということを理解されたい。この点、本発明は好ましくは、例えば各装置が一つ(1)又は複数のポンプと一つ(1)又は複数のカラムとを含む、4つ(4)の独立したクロマトグラフを使用することに関する。あるいは、より好ましい実施形態では、本発明は、各装置が2つ(2)のポンプと一つ(1)のカラムとを含み、一つのポンプはカラムにサンプルを供給するためのものであり、一つのポンプは溶離のためのものである、4つ(4)の独立したクロマトグラフを使用することに関する。そのようなものとして、そのように規定されたクロマトグラフのうちの少なくとも2つ(2)がこの発明の配列決定クロマトグラフ分析装置(sequencing chromatography apparatus)へ組み入れられるのであれば、本発明は好ましくは、以前述べたような機能のいずれかを使用することに関する。
次に、図4に見られるように、この発明によれば、この発明で利用できるデータ点24の数は、標準的なシングルカラム/単一検出器・構成から入手できるデータ点の数と一致する。すなわちカラム・クロマトグラフ法で得られるデータ点24の数及び性質はこの発明で邪魔となることはない。この発明が、調子の合った所定の点でデータの質及び量が犠牲にならないように複数のクロマトグラフを独自に連続的に操作することに関するものであるからである。図4に見られるように、この発明によれば、本来的により少ないデータ点を有するとともにあまり正確でない曲線26を報告する可能性のある従来技術の複合装置によって得られるであろう曲線よりも、より正確な曲線フィッティングを表す曲線28が生成される。この点、いかに速く複合装置がサンプリングするかは重要ではなく、本発明は、例えば分析すべきサンプルが4つ(4)の場合には、あらゆる所定のピークに対して4倍もの多くの情報(データ点)を報告することになる。
上のことを拡張すると次に、制御されたスタガード/連続・注入(controlled staggered/sequenced injection)の手続き上の利点のために、本願で得られるような曲線30,32,34,及び36を図示した図5に注意が向けられる。図からわかるように、検出器はそれぞれの曲線を順次分析する。そのような点で、本願の検出器は検出して曲線30を報告するように機能し、他方で曲線32,34,及び36の原因であるこれらのサンプルは、カラム内で溶離される過程にあっても、なおカラムから排出されなかった。このようにプログラムされたクロマトグラフィー配列決定(chromatography sequencing)は、標的サンプルがカラムから出そうになるときを考慮して、連続検出用の溶離剤含有サンプルを連続的に搬送するためにオートサンプラーからカラムへサンプルを導入するのを調節するコンピュータ制御装置によって与えられている。言い換えると、本願のコンピュータ制御装置は、オートサンプラー内のサンプルと、検出器に予め設定されたデータ収集窓に関連する情報入力とを考慮すると同時に、オートサンプラーから、検出器を最大限に利用するためにシステムへ導入するサンプルを選択する。
したがってこの発明のコンピュータ制御装置は、オートサンプラーからのサンプルの導入と、溶離剤を検出器へ順に搬送するためにバルブ20(図3)の位置とを調節する。しかしながら、本願のコンピュータ制御装置は好ましくは、ユーザーへ他の重要な情報単位を提供するよう機能する。この様子は、オートサンプラーに適用されるようなこの発明のコンピュータ制御装置内のソフトウェアシステム・プロトコルの機能の概略を提供する図6に、より詳細に示されている。図に示すように、制御装置はまず、オートサンプラー/プローブがサンプルを開始する準備ができているか、及び最後のサンプルが開始して以来十分な時間が経過したかを調べる。次いで制御装置は、本明細書で定義されたようなクロマトグラフがサンプルを受け取る準備ができているかを調べる。これは、現在作動している溶離プロトコルに残っている時間よって決定され、この予報は装置全体の効率を最適化する。対照的に、クロマトグラフがサンプルを開始する前に「準備できている」ことを示すのを待つことで、サンプルの開始とサンプルが注入のために準備できている時との間の時間だけ循環時間が延長される。
次いで制御装置はどのサンプルが「準備のできた」クロマトグラフに一致するかを決定する。サンプルの情報が入力されたとき、ユーザーは特定のクロマトグラフを指定するという選択、又は複数の利用できる装置のうちのいずれかがサンプルに対して使用することができるという選択を有する。次いでサンプルは開始され、サンプルが注入準備のできているときには、制御装置はクロマトグラフが準備のできていること及び注入が新しいデータ窓(すなわちクロマトグラフピークのその後の報告)を以前に注入されたサンプルデータ窓に重複させないこと、を確認する。
図7はこの発明の検出器及び選別器バルブ制御を示す。図に示すように、制御装置は、クロマトグラフの溶離プロトコル(「方法」)が現在の方法によって指定されるように開始「データ窓時間(data window time)」へ推移したかを調べる。次いで選別器バルブは、サンプルを検出器へ搬送するためにクロマトグラフの流体流を搬送するよう動かされ、検出器はデータ収集を始めるために信号を送られる。
図8はコンピュータ制御装置によって提供されるような本発明の圧力制御を示す。より詳細には、制御装置は、各クロマトグラフにおける各ポンプ14について、1秒当たり10データ点の平均速度で背圧の読み取りを収集する。上で触れたように、ここでのクロマトグラフとは、開示されたクロマトグラフ装置内の一つ又は複数のポンプと一つ又は複数のクロマトグラフィーカラムとのことをいう。
したがってコンピュータ制御装置は各装置の各ポンプに対して圧力の稼働平均を維持する。次いで制御装置は、稼働平均を各装置のポンプに対する歴史と比較し、停止を許可する偏差が存在するか否かを決定する。関連する方法では、制御装置は装置の各種類のポンプ、すなわち装填ポンプ(loading pump)又は溶離ポンプ(eluting pump)の圧力に対する稼働平均を維持する。制御装置は再び、稼働平均を各装置のポンプに対する歴史と比較し、停止を許可する偏差が存在するか否かを再び決定する。
ここでの制御装置はまた、新しく収集されたサンプルのそれぞれを以前の稼動に対するポンプの圧力平均と比較する。次いで制御装置は、新しく収集されたサンプルに対してオフセットと相関データとを生成する。言い換えると、制御装置は、一つ又は複数の以前の運転で生成された、平均圧力対時間の軌跡からデータ点の強度及び位置(すなわち丁度良い時の点)が変化したか否かを確認する。次いで制御装置は、生成されたオフセット及び相関値又は軌跡が許容し得る限界内にあるか否かを決定する。好ましい実施形態では、生成された圧力対時間の軌跡が例えば少なくとも2つの圧力読み取りの間の軌跡の傾き又は形状の分内蔵の軌跡から外れているとき、装置は停止され得る。
加えて、及び関連する状況から、制御装置はまた、所定のポンプに対する新しく収集したサンプルの背圧データ点のそれぞれをポンプの種類に基づく移動平均と比較する。もう一度、制御装置はオフセット及び相関データを生成し、生成されたオフセット及び相関値が許容し得る限界内にあるか否かを決定する。もしポンプに対するオフセット及び相関値がユーザーの選択した範囲の外にある場合には、装置へのサンプルの導入は保留される。
最後に、もし他のクロマトグラフと比較したときに(そのような他の装置が同一のサンプル及び溶離プロトコルを走らせているとき)所定の装置に対するオフセット及び相関値がユーザーの選択した範囲外にある場合には、装置へのサンプルの導入はまた自動的に保留される。
一つの特に好ましいカラムは、限定する意味ではなく、クロマトグラフィー的に活性な表面を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子であって、約30μmよりも大きな平均直径を有し、前記粒子間の隙間体積が前記カラムの全体積の約45%よりも小さくはない粒子と;前記表面を前記表面と良く反応する少なくとも一つの溶質で装填する手段であって、約5,000よりも大きな換算速度で前記隙間体積の少なくとも実質的な部分内に溶質を含む液体混合物の流れを誘起するのに十分な速度で前記本体を介して前記液体混合物を流すことによって、前記表面を前記表面と良く反応する少なくとも一つの溶質で装填する手段と;を含むカラムである。
これらの目的のために、この発明は、約30μmよりも小さくなく、典型的には50μm又は後述されるようにある場合には限定することなく1000μmまで大きい実質的に均一な平均断面寸法又は直径を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子として形成された配列決定クロマトグラフ内でクロマトグラフィーカラムすなわちクロマトグラフィー本体を使用することに向けられている。ここで用いられている「粒子」という用語は、対称性又は対称性の欠如、アスペクト比、均整、及び同様のものにかかわらず、どんな粒子形態又は形状に限定されるよう解釈されるべきではない。ここで用いられている「固体状」という用語は、物質の物理的な状態のことを言うよう意図されており、多孔質粒子を除外するよう解釈されるべきではない。粒子は様々な寸法及び形状の範囲から選択され、カラムの全体積の約45%よりも小さくない全隙間体積を有する隙間チャンネルが各粒子間に形成されるように、圧力、焼結及び同様のものによって本体すなわちカラム内に一緒に保持される。粒子内に細孔の内部表面を有する粒子の表面は、クロマトグラフ固定相層でコートされることによって、クロマトグラフィー的に活性とすることができる。この方法は、カラムを装填するために粒子の表面と相互作用する少なくとも一つの溶質又は懸濁相を含む流体混合物をカラムに流通させる段階を含む。カラム内の粒子及び充填材の性質のために、カラムを介した流体混合物の流れは、高い流量、好ましくは、後述されるべくある場合には70,000と同じか又はそれよりも速い換算速度値を含む、約5000よりも大きな平均換算速度(すなわちud[p]/D、ここで「u」は移動相速度、「d[p]」は充填粒子の直径、及び「D」は移動相の拡散係数である)とすることができる。そのような条件下では、混合物の乱流が隙間体積の少なくとも主要部内に誘起されるということが信じられており、そのような乱流は実際質量移送の速度を増大させ、かくしてカラムの動的容量(dynamic capacity)を増加させるということが主張されている。
上述の粒子は好ましくは、非圧縮性の材料から形成されている。非圧縮性の材料からなる粒子とは、少なくとも約5×103psi(出口カラムフリット保持器を含む)の圧力下で粒子の密度及び体積の変化の時間速度が実質液にゼロのままであり、したがって粒子はそのような高圧でさえもプラスチックのひずみに実質的に抵抗するということを意味すると理解されたい。粒子は、各粒子の間に隙間チャンネルが形成されることを特徴とするカラムを形成するのに十分な圧力で装填されるように形成され寸法及び形状の範囲が選択される。粒子の不規則性のために、そのようなチャンネルの内壁は構成がやむを得ずかなり粗いということを認められたい。チャンネルの少なくとも大部分は、実質的に約4μmよりも小さくない平均断面直径を有すると信じられている一方で、隙間体積の割合(すなわち各粒子間の隙間チャンネルの全体積)はカラムの全体積の約45%よりも小さくないはずである。通常のカラムは約45%よりも小さな、より詳細には約35%から42%の範囲の隙間体積比を有する。粒子の表面は、当技術でよく知られているようにそれ自体、又はこれも当技術でよく知られているように、多くの公知のクロマトグラフィー的に活性なもののいくつかを用いて固定相層をコーティングするような処理をすることによって、クロマトグラフ的に活性である。
触れたように、好ましい隙間比で所望の均一な密度のカラムを形成することを保証し、かつ作動圧力下での崩壊を妨げるために、連続的なクロマトグラフ分析のこの発明で使用するためのカラムを詰めるために使用された粒子は、少なくとも約5×103psiの充填圧力で、好ましくは約1×104psiと同じ位高い圧力まで、やむを得ず非圧縮性であらねばならない堅い固体を含むことができる。この目的のために、好ましい粒子は、アルミナ、チタニア、シリカ、ジルコニア、バナジア(vanadia)、炭素、様々な比較的不活性な金属、及びこれらの組み合わせのような材料から形成される。
この点、ここで用いられたクロマトグラフィーカラムは、従来の層流型(laminar flow regime)の下で使用されたカラムを含むことができる。したがってカラムは、必要な剛性の欠如のために低い流量及び圧力降下で作動する粒子から構成され得る。そのような粒子は、約30ミクロンよりも小さく、約1ミクロンと同じ位小さい平均粒子サイズを有する可能性がある。これらの作動条件下では、分析時間が比較的長く、換算速度が1と同程度に小さい可能性があるということに留意されたい。
加えて、本発明は、クロマトグラフィー的に良く反応する表面を有する実質的に一様で、延長されたクロマトグラフィーカラムと、前記カラムを装填するように前記表面と良く反応する少なくとも一つの溶質を含む液体混合物の離散体積を前記カラムへ注入する手段と、前記装填されたカラムを介して溶離剤の流体を流す手段と、を使用することを含むことができる。前記溶離剤の流体を流す手段は、前記充填物及び体積がカラムを横断するときに前記充填物と液体混合物の前記離散体積との間の空間段階分離が最小化されたままとなるように、前記溶離剤流体の少なくとも一つの離散充填物を前記カラムの入力付近の前記カラムへ注入する手段を含み、前記カラムと前記流すための手段とは、前記溶離剤の体積の流れが約5000よりも大きな換算速度で前記カラムを横断するように構成されている。
本発明はまた、前記カラムを介して前記表面と良く反応する少なくとも一つの溶質を含む流体混合物の離散体積を流し、前記カラムを介して溶離剤流体を流すことによって前記表面に束縛された前記溶質を前記表面から溶離する段階を含み、流動流が約5,000よりも大きな換算速度で前記カラムを横断するときに各前記離散体積間で最小化された空間分離を維持するように、溶離剤流体の少なくとも一つの離散体積を前記カラムの流動流へ注入する段階を含む、クロマトグラフィー的に良く反応する表面を有するクロマトグラフィーカラムに応用できる。
本発明はまた、比較的低い分子量の化合物を比較的高い分子量を有する化合物から分離するのに応用できる。前記高い分子量を有する化合物は、該化合物の液体混合物内にある前記低分子量の化合物よりも分子量が大きいか、又は実質的に分子量のオーダーが大きい化合物である。また本発明は、約30μmよりも小さくない平均直径を有する実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子から形成されたクロマトグラフ本体を含む。平均細孔直径は、比較的高い分子量の前記化合物を前記細孔へ導入することを実質的に除くのに十分に小さく、前記粒子及び細孔の表面は疎水性であるとともにクロマトグラフィー的に活性である。また本発明は、各前記粒子間の隙間体積の少なくとも実質的な部分内における前記混合物の流れが、前記高分子量化合物が前記本体を出るまで約5,000よりも大きな換算速度となるのに十分な速度で前記混合物を流すための手段と、前記高分子量化合物が前記本体から出た後、約5,000よりも小さな換算速度の溶離剤液体を用いて前記本体から前記比較的低い分子量の化合物を溶離する手段と、を含む。
ここで考えを検出器22へ移すと、そのようなものは好ましくは、カラムを介して溶離されたサンプルを検出するためにクロマトグラフで使用されるあらゆる種類の検出器である。したがって当業者は、検出器22は紫外線検出器、又はより好ましくは質量分析計を含むことができるということを認められたい。したがって検出器は、所望の組成の化合物がカラムの出口端部から溶離されるときを正確に決定することによって、サンプルの所望の組成の化合物を確認することを提供する。
本発明は複数のカラム構成を使用したあらゆる種類のクロマトグラフ型構成に適している。この点、本発明は、分析クロマトグラフィー及び予備クロマトグラフィー装置に適している。この点、本発明は、従来のプログラムされた液体流速を経るとともに従来型の傾斜装置(gradient system)を使用する、質量分析計検出器を頼りにする従来のHPLC装置に適している。しかしながら、そのような従来のクロマトグラフを使用することは適切であるが、本発明は、収集されたデータの質又は量を犠牲にすることなく検出器のデータ収集能力を最適化するために、複数のそのような装置を単一の検出器に独自の方法で連結することによって、そのような公知の装置の効率を改善する。
複合(MUX)HPLC装置に対する従来技術の解析読み出しを示す図である。 複合(MUX)HPLC装置に対する従来技術のピーク測定の可能性を示す図である。 この発明のマルチカラム・クロマトグラフ装置の概略図である。 この発明のマルチカラム・クロマトグラフ装置によるサンプリング点及びピーク形状を示す図である。 この発明のマルチカラム・クロマトグラフ装置の典型的な結果を示す図である。 オートサンプラーの制御のために一部利用されるようなコンピュータ制御装置内で作動する、この発明のソフトウェアシステム・プロトコルの機能を示すブロック図である。 検出器でデータ収集を初期化するために一部利用されるようなコンピュータ制御装置内で作動する、この発明のソフトウェアシステム・プロトコルの機能をさらに示すブロック図である。 装置圧力を監視するために利用されるような、この発明のソフトウェアシステム・プロトコルの機能を示すブロック図である。
符号の説明
10 クロマトグラフ
14 注入バルブ
16 ポンプ
18 カラム
20 切換バルブ
22 検出器

Claims (15)

  1. 複数のサンプルのそれぞれを検出器でクロマトグラフ分析する装置であって、
    (a)クロマトグラフ分析のための複数のサンプルを収容するオートサンプラーと、
    (b)それぞれが一つ又は複数のポンプ及び一つ又は複数のクロマトグラフィーカラムを含む複数のクロマトグラフと、
    (c)前記クロマトグラフのそれぞれから前記サンプル内の化合物を検出する検出器と、
    (d)各サンプルが順に前記検出器へ到達することを可能とする、前記検出器と前記クロマトグラフとの間に配置されたバルブと、
    (e)前記サンプル内の前記化合物を前記検出器へ順に搬送するために、前記オートサンプラーから前記クロマトグラフへのサンプルの導入と前記バルブの位置とを調整するコンピュータ制御装置とを備え、
    前記コンピュータ制御装置は、入力情報に基づいて前記複数のサンプルのそれぞれを前記カラムへ導入する時点を選択するものであり、前記入力情報は前記カラムから溶離している前記サンプルが前記検出器による検出のために前記カラムを出発する時点を示すものであり、前記コンピュータ制御装置は、サンプルが検出器に導入される前に、その導入サンプルの新しいデータ窓がその前に導入されていたサンプルのデータ窓に重複しないことを確認することができることを特徴とする装置。
  2. 請求項1記載の装置において、
    各クロマトグラフは、4つのポンプと8つのカラムとを有することを特徴とする装置。
  3. 請求項1記載の装置において、
    各クロマトグラフは、8つのポンプと4つのカラムとを有することを特徴とする装置。
  4. 請求項3記載の装置において、
    各カラムは、サンプルを装填するための1つのポンプと溶離するための1つのポンプとを有することを特徴とする装置。
  5. 請求項1記載の装置において、
    前記クロマトグラフィーカラムは、
    クロマトグラフ吸着し得る表面を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子であって、30μmよりも大きな平均直径を有し、各前記粒子間の隙間体積が、前記カラムの全体積の45%よりも小さくない複数の粒子と、
    前記表面と反応する少なくとも一つの溶質を前記表面に装填する手段であって、前記溶質を含む液体混合物を、前記クロマトグラフィーカラムを介して、5,000よりも大きな換算速度で前記隙間体積の少なくとも実質的な部分内に前記混合物の流れを誘起するのに十分な速度で流す、ことによって装填する手段と、
    を含むことを特徴とする装置。
  6. 請求項1記載の装置において、
    前記検出器は、質量分析計であることを特徴とする装置。
  7. 請求項1記載の装置において、
    前記コンピュータ制御装置は、前記ポンプのそれぞれからの圧力読み取りを収集し、そのような読み取りを内蔵の圧力読み取りと比較し、前記読み取りが前記内蔵の圧力読み取りから外れているときに、前記ポンプのうちの一つ又は複数を停止することを決定することを特徴とする装置。
  8. 請求項7記載の装置において、
    前記圧力読み取りは、前記ポンプのそれぞれに対する所定期間の圧力データ点の読み取りをさらに含むことを特徴とする装置。
  9. 複数のサンプルのそれぞれを検出器でクロマトグラフ分析する装置であって、
    (a)クロマトグラフ分析のための複数のサンプルを収容するオートサンプラーと、
    (b)複数のクロマトグラフィーカラムと、
    (c)前記複数のカラムのそれぞれから溶離剤の流れを確立するために、前記複数のカラムと関連付けられた複数のポンプと、
    (d)前記複数のカラムのそれぞれからの前記溶離剤内の化合物を検出する検出器と、
    (e)各溶離剤の流れが順に前記検出器へ到達することを可能とする、前記検出器と前記カラムからの前記溶離剤の流れとの間に配置されたバルブと、
    (f)前記溶離剤を前記検出器へ順に搬送するために、前記オートサンプラーから前記複数のカラムへのサンプルの導入と前記バルブの位置とを調整するコンピュータ制御装置と、
    を備え、
    前記コンピュータ制御装置は、入力情報に基づいて前記複数のサンプルのそれぞれを前記カラムへ導入する時点を選択するものであり、前記入力情報は前記カラムから溶離している前記サンプルが前記検出器による検出のために前記カラムを出発する時点を示すものであり、前記コンピュータ制御装置は、サンプルが検出器に導入される前に、その導入サンプルの新しいデータ窓がその前に導入されていたサンプルのデータ窓に重複しないことを確認することができることを特徴とする装置。
  10. 請求項9記載の装置において、
    前記検出器は、質量分析計であることを特徴とする装置。
  11. 請求項9記載の装置において、
    前記複数のカラムは、少なくとも4つのカラムを備えることを特徴とする装置。
  12. 請求項9記載の装置において、
    前記検出器と前記カラムからの前記溶離剤の流れとの間に配置された前記バルブは、前記複数のカラムのうちの一つから溶離剤を前記検出器へ選択的に流すとともに、同時に前記複数のカラムのうちの他のカラムから溶離剤をコレクターへ流すことを特徴とする装置。
  13. 請求項9記載の装置において、
    前記カラムは、
    クロマトグラフ吸着し得る表面を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子であって、30μmよりも大きな平均直径を有し、各前記粒子間の隙間体積が、前記カラムの全体積の45%よりも小さくない複数の粒子と、
    前記表面と反応する少なくとも一つの溶質を前記表面に装填する手段であって、前記溶質を含む液体混合物を、前記クロマトグラフィーカラムを介して、5,000よりも大きな換算速度で前記隙間体積の少なくとも実質的な部分内に前記混合物の流れを誘起するのに十分な速度で流すことによって装填する手段と、
    を備えることを特徴とする装置。
  14. (a)クロマトグラフ分析のための複数のサンプルを収容するオートサンプラーと、
    (b)複数のクロマトグラフィーカラムと、
    (c)前記複数のカラムのそれぞれから検出器への溶離剤の流れを確立するために、前記複数のカラムと関連付けられた複数のポンプと、
    (d)各溶離剤の流れが順に前記検出器へ到達することを可能とする、前記検出器と前記カラムからの前記溶離剤の流れとの間に配置されたバルブとを用いて複数のサンプルのそれぞれを検出器でクロマトグラフ分析する方法において、
    (e)コンピュータ制御装置を用いて前記オートサンプラーから前記複数のカラムへのサンプルの導入と前記バルブの位置とを調整して前記溶離剤を前記検出器へ順に搬送し、
    前記コンピュータ制御装置は、入力情報に基づいて前記複数のサンプルのそれぞれを前記カラムへ導入する時点を選択するものであり、前記入力情報は前記カラムから溶離している前記サンプルが前記検出器による検出のために前記カラムを出発する時点を示すものであり、前記コンピュータ制御装置は、サンプルが検出器に導入される前に、その導入サンプルの新しいデータ窓がその前に導入されていたサンプルのデータ窓に重複しないことを確認することができることを特徴とする方法。
  15. 請求項14記載の方法において、
    前記カラムは、30μmよりも小さくない平均直径を有しクロマトグラフ吸着し得る表面を有する、実質的に均一に分散された複数の堅く、固体状で、多孔質の粒子を用いて詰め込まれ、その結果各前記粒子間に隙間体積を有するクロマトグラフィーカラムを形成しており、
    前記溶質を含む液体混合物を、前記クロマトグラフィーカラムを介して、5,000よりも大きな換算速度で前記隙間体積の少なくとも実質的な部分内に前記混合物の流れを誘起するのに十分な速度で流すことによって、前記表面と反応する少なくとも一つの溶質を前記表面に装填している
    ことを特徴とする方法。
JP2002554200A 2000-12-28 2001-12-27 マルチカラム・クロマトグラフ装置 Expired - Lifetime JP4372419B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/750,438 US6635173B2 (en) 2000-12-28 2000-12-28 Multi column chromatography system
PCT/US2001/049876 WO2002053255A1 (en) 2000-12-28 2001-12-27 Multi column chromatography system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006113556A Division JP4358201B2 (ja) 2000-12-28 2006-04-17 マルチカラム・クロマトグラフ装置

Publications (3)

Publication Number Publication Date
JP2004524518A JP2004524518A (ja) 2004-08-12
JP2004524518A5 JP2004524518A5 (ja) 2006-06-22
JP4372419B2 true JP4372419B2 (ja) 2009-11-25

Family

ID=25017875

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002554200A Expired - Lifetime JP4372419B2 (ja) 2000-12-28 2001-12-27 マルチカラム・クロマトグラフ装置
JP2006113556A Expired - Lifetime JP4358201B2 (ja) 2000-12-28 2006-04-17 マルチカラム・クロマトグラフ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006113556A Expired - Lifetime JP4358201B2 (ja) 2000-12-28 2006-04-17 マルチカラム・クロマトグラフ装置

Country Status (5)

Country Link
US (7) US6635173B2 (ja)
EP (2) EP2362215B1 (ja)
JP (2) JP4372419B2 (ja)
CA (1) CA2433669C (ja)
WO (1) WO2002053255A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359941B1 (ko) * 2013-07-10 2014-02-10 주식회사 위드텍 신속측정을 위한 액체 크로마토그래피 장치
WO2019138725A1 (ja) 2018-01-11 2019-07-18 株式会社日立ハイテクノロジーズ 複数のクロマトグラフを有する分析装置
WO2020105661A1 (ja) 2018-11-20 2020-05-28 株式会社日立ハイテク 複数のクロマトグラフを有する分析装置及びその制御方法
WO2020105624A1 (ja) 2018-11-20 2020-05-28 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841774B1 (en) * 2000-11-28 2005-01-11 Mds Inc. Sample introduction device for mass spectrometry using a fast fluidic system to synchronize multiple parallel liquid sample streams
US6635173B2 (en) * 2000-12-28 2003-10-21 Cohesive Technologies, Inc. Multi column chromatography system
FR2823133B1 (fr) * 2001-04-06 2003-08-29 Bionisis Sa Installation de traitement d'echantillons en continu, par separation sur une phase stationnaire, sous flux force
WO2005011832A2 (en) * 2003-07-29 2005-02-10 Sullivan James J A simultaneous multi-colum liquid chromatograph for direct sampling of an array of liquid samples
DE602004024249D1 (ja) * 2004-05-22 2009-12-31 Agilent Technologies Inc
US7468164B2 (en) * 2004-07-28 2008-12-23 Expert Services Group, Inc. Automated fluid handling cartridge and fluid processing system
US20060169640A1 (en) * 2005-02-01 2006-08-03 Hubert Quinn High throughput screening, purification and recovery system for large and small molecules
JP4622602B2 (ja) * 2005-03-17 2011-02-02 株式会社島津製作所 糖鎖解析装置
US7588687B2 (en) * 2005-07-01 2009-09-15 Purolite International, Ltd. Method for separating electrolytes
US7935921B2 (en) * 2006-05-26 2011-05-03 Laboratory Corporation Of America Holdings Methods and systems for the quantitative analysis of biomarkers
US9476847B2 (en) 2006-10-03 2016-10-25 Invensys Systems, Inc. Spectroscopic crude oil analysis
US8497683B2 (en) * 2006-10-03 2013-07-30 Invensys Systems, Inc. Spectroscopic sample analyzer and sample handling system
US7667461B2 (en) * 2006-10-03 2010-02-23 Invensys Systems, Inc. Sample analyzer and sampling system
US8017015B2 (en) * 2006-10-20 2011-09-13 Quest Diagnostics Investments Incorporated Monolithic column chromatography
WO2008150488A1 (en) * 2007-06-01 2008-12-11 Laboratory Corporation Of America Holdings Methods and systems for quantification of peptides and other analytes
US7823439B2 (en) * 2007-11-15 2010-11-02 Midwest Research Institute Method for identifying the composition of a sample
US20090134325A1 (en) * 2007-11-27 2009-05-28 Goldman Mildred M Methods for detecting estradiol by mass spectrometry
US8293101B2 (en) * 2009-03-13 2012-10-23 Terrasep, Llc Methods and apparatus for centrifugal liquid chromatography
AU2010223943A1 (en) * 2009-03-13 2011-10-06 Terrasep, Llc Methods and apparatus for centrifugal liquid chromatography
US10006891B2 (en) 2009-11-25 2018-06-26 Flir Detection, Inc. Analytical instrumentation, analytical instrument assemblies, and analytical methods
US20110290731A1 (en) * 2010-06-01 2011-12-01 Ozbal Can C Cartridge changers and methods for utilizing the same
CN203577372U (zh) * 2010-10-29 2014-05-07 赛默菲尼根有限责任公司 模块式多柱色谱盒
DE202011111053U1 (de) 2010-10-29 2018-11-21 Thermo Fisher Scientific Oy Automatisiertes System zur Probenaufbereitung und -analyse
AU2015261711B2 (en) * 2010-10-29 2017-11-09 Thermo Fisher Scientific Oy Automated system for sample preparation and analysis
CN103328970B (zh) * 2011-01-23 2015-06-17 萨沃瑞恩公司 用于固态传感器的电设备油采样器和调节器
CN102258885B (zh) * 2011-05-18 2013-08-21 中国地质大学(武汉) 整体柱层析自动分离系统
US8800352B2 (en) 2011-07-15 2014-08-12 Thermo Finnigan Llc Method for automatic optimization of liquid chromatography autosampler
WO2015011522A1 (en) 2013-07-23 2015-01-29 Tubitak Ume Multi-task sample preparation system with reconfigurable modules for on-line dilution, enzymatic digestion and fractionation
US10184920B2 (en) 2014-03-04 2019-01-22 Tofwerk Ag Method and apparatus for determining a chromatogram
CN104297491B (zh) * 2014-10-11 2017-02-15 南京山诺生物科技有限公司 蛋白质层析电泳及其原位化学印迹和免疫成像装置和方法
JP6694509B2 (ja) 2015-12-18 2020-05-13 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 自動化された臨床診断システムおよび方法
DE112016006847T5 (de) 2016-06-16 2019-02-07 Hitachi High-Technologies Corporation Chromatographie-Massenanalysevorrichtung und Steuerverfahren
CN107066788B (zh) * 2016-12-07 2020-11-24 辽宁科技大学 一种用制备色谱分离复杂物中目标物的优化方法
GB201710279D0 (en) 2017-06-28 2017-08-09 Ge Healthcare Bio Sciences Ab Improvements in and relating to bioprocessing equipment and fluid couplings therefor
ES2766200T5 (es) * 2017-11-16 2022-11-02 Chromacon Ag Procedimiento para monitorizar, evaluar y controlar un procedimiento de purificación cromatográfica cíclica
CN111239310A (zh) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 一种交替进样分析的高效液相色谱分离系统及操作方法
JP7448344B2 (ja) * 2018-12-07 2024-03-12 旭化成エレクトロニクス株式会社 ガスセンサ
US12000807B2 (en) 2018-12-17 2024-06-04 Shimadzu Corporation Gas chromatograph, maintenance switch mode setting method and non-transitory computer readable medium storing maintenance switch mode setting program
CN109738550B (zh) * 2019-02-25 2024-04-16 青岛众瑞智能仪器股份有限公司 连续纯化实验装置
WO2020179001A1 (ja) * 2019-03-06 2020-09-10 株式会社島津製作所 液体クロマトグラフ
JP7226525B2 (ja) 2019-03-13 2023-02-21 株式会社島津製作所 液体クロマトグラフ用送液システム
JP7226524B2 (ja) 2019-03-13 2023-02-21 株式会社島津製作所 液体クロマトグラフ用送液システム
WO2020183638A1 (ja) * 2019-03-13 2020-09-17 株式会社島津製作所 液体クロマトグラフ分析システム
CN113544503B (zh) 2019-03-13 2024-02-06 株式会社岛津制作所 液相色谱仪
EP3742159A1 (en) * 2019-05-24 2020-11-25 Sartorius Stedim Biotech GmbH Chromatography method, method of determining the influence of the interdependency of at least two parameters in a chromatography method and method of obtaining at least one chromatography method parameter
KR20220069053A (ko) * 2019-09-23 2022-05-26 젠자임 코포레이션 제품 품질 특성 측정
WO2021103658A1 (zh) * 2019-11-25 2021-06-03 清华大学 多样品进行自动进样分析装置
EP3839499A1 (en) * 2019-12-19 2021-06-23 Roche Diagnostics GmbH Techniques for monitoring an analyzer including multiple liquid chromatography streams
EP3992627A1 (en) * 2020-10-28 2022-05-04 Roche Diagnostics GmbH Liquid chromatography - stream equivalence by single stream calibration

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598205B1 (de) * 1964-04-13 1971-05-19 Ceskoslovenska Akademie Ved Einrichtung zur chromatographie von aminosaeuren und derglei chen enthaltenden gemischen
SE326056B (ja) * 1966-01-07 1970-07-13 Ceskoslovenska Akademie Ved
US3458437A (en) * 1966-05-27 1969-07-29 Dart Ind Inc Method and apparatus for chromatographic analysis
US3504799A (en) * 1968-04-02 1970-04-07 Beckman Instruments Inc Sample injector
US3676649A (en) * 1970-05-08 1972-07-11 Phillips Petroleum Co Signal analysis and recording
JPS5338957B2 (ja) * 1972-12-11 1978-10-18
US3926559A (en) * 1973-08-06 1975-12-16 Dow Chemical Co Method and apparatus for quantitative chromatographic analysis of cationic species
FR2279104A1 (fr) * 1974-07-18 1976-02-13 Aquitaine Petrole Procede d'analyse par chromatographie en phase liquide
US3923460A (en) * 1974-11-12 1975-12-02 Dow Chemical Co Dual ion chromatograph using parallel columns for ionic analysis
FR2308932A1 (fr) * 1975-04-24 1976-11-19 Aquitaine Petrole Dispositif d'introduction d'echantillons dans un chromatographe
FR2461126A1 (fr) * 1978-12-15 1981-01-30 Gilson Medical Electronic Fran Pompe a piston a debit reglable precisement
US4225290A (en) * 1979-02-22 1980-09-30 Instrumentation Specialties Company Pumping system
US4271697A (en) * 1979-10-17 1981-06-09 Phillips Petroleum Company Chromatographic analysis
US4364263A (en) * 1980-09-15 1982-12-21 Burroughs Wellcome Co. High pressure liquid chromatographic system
US4444066A (en) * 1981-06-29 1984-04-24 Beckman Instruments, Inc. High pressure sample injector valve
US5040126A (en) * 1981-09-09 1991-08-13 Isco, Inc. Method for predicting steady-state conditions
US4775481A (en) * 1981-09-09 1988-10-04 Isco, Inc. Apparatus and method for liquid chromatography
US4781824A (en) * 1981-09-09 1988-11-01 Isco, Inc. Apparatus for liquid chromatography
US4711764A (en) * 1982-10-08 1987-12-08 Analytichem International, Inc. Automatic sample injector and disposable sample cassette
JPS59114238A (ja) 1982-12-20 1984-07-02 Deyupuro Seizo Kk 給紙装置における紙捌き機構
JPS6011690A (ja) 1983-06-30 1985-01-21 Shimadzu Corp 液体クロマトグラフ
US4631687A (en) * 1983-11-03 1986-12-23 Rohrback Technology Corporation Method and apparatus for analysis employing multiple separation processes
JPS60115854A (ja) 1983-11-28 1985-06-22 Shimadzu Corp 多項目分析用液体クロマトグラフ
JPS62138753A (ja) * 1985-12-12 1987-06-22 Hitachi Ltd 液体クロマトグラフイによる分画・分取方法および装置
US4981597A (en) * 1986-03-10 1991-01-01 Isco, Inc. Gradient system
US4797207A (en) * 1986-09-30 1989-01-10 Spectra Physics, Inc. Apparatus for controlling a pump to account for compressibility of liquids in obtaining steady flow
US4919595A (en) * 1987-03-03 1990-04-24 Beckman Instruments, Inc. Fluid delivery system with deficit flow compensation
JP2787682B2 (ja) 1987-11-17 1998-08-20 株式会社島津製作所 液体クロマトグラフ用オートサンプラによる試料注入方法
EP0359320A3 (en) * 1988-09-14 1991-10-23 Philips Electronics Uk Limited Chromatography apparatus
DE3842315A1 (de) * 1988-12-16 1990-06-21 Bodenseewerk Perkin Elmer Co Anordnung zur anreicherung von probensubstanz fuer spektroskopische zwecke
DE3917840A1 (de) * 1989-06-01 1990-12-06 Bodenseewerk Perkin Elmer Co Anordnung zur anreicherung von probensubstanz fuer spektroskopische zwecke bei der fliessinjektions-analyse
US5071547A (en) * 1990-03-23 1991-12-10 Separations Technology, Inc. Column chromatographic column apparatus with switching capability
JP2864696B2 (ja) 1990-08-30 1999-03-03 株式会社島津製作所 液体クロマトグラフ用送液装置
US5242586A (en) * 1990-12-17 1993-09-07 Biotage Inc. Column protection system for liquid chromatography system
AU661349B2 (en) * 1991-09-30 1995-07-20 Perseptive Biosystems, Inc. Protein chromatography system
JPH05302915A (ja) 1992-04-24 1993-11-16 Shimadzu Corp プロセス用分子量分布測定装置
US5543315A (en) * 1992-06-30 1996-08-06 Kyoto Daiichi Kagaku Co., Ltd. Method for stabilizing measurement values by high speed liquid chromatography
US5750029A (en) * 1992-10-16 1998-05-12 Suprex Corporation Method and apparatus for determination of analyte concentration
DE69430625D1 (de) * 1993-12-30 2002-06-20 Toto Ltd Verfahren und vorrichtung zur entnahme von urinproben
DE19509275A1 (de) 1994-06-16 1995-12-21 Hewlett Packard Co Hochgeschwindigkeits-Drehinjektionsventil
FR2721510B1 (fr) * 1994-06-22 1996-07-26 Rhone Poulenc Rorer Sa Nanoparticules filtrables dans des conditions stériles.
US5492947A (en) * 1994-06-23 1996-02-20 Aspen Research Corporation Barrier material comprising a thermoplastic and a compatible cyclodextrin derivative
US5457626A (en) * 1994-09-01 1995-10-10 Dionex Corporation Bimodal liquid chromatography pump employing artificial intelligence logic feedback control
JP3035460B2 (ja) 1994-11-30 2000-04-24 日本分光株式会社 オートサンプラーの制御装置、及びその制御方法
US6485625B1 (en) * 1995-05-09 2002-11-26 Curagen Corporation Apparatus and method for the generation, separation, detection, and recognition of biopolymer fragments
JPH0915221A (ja) 1995-06-29 1997-01-17 Shimadzu Corp 液体クロマトグラフ装置
DE19625648A1 (de) * 1995-07-28 1997-01-30 Hewlett Packard Co Pumpsystem
US5772874A (en) 1995-11-02 1998-06-30 Cohesive Technologies, Inc. High performance liquid chromatography method and apparatus
US5630943A (en) * 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
DE69700523T2 (de) 1996-01-19 2000-04-27 Cohesive Technologies Inc., Acton Hochleistungsflüssigchromatographieverfahren und vorrichtung
DE69732693T2 (de) 1996-04-04 2006-02-02 Mine Safety Appliances Co. Tragbarer ionenbeweglichkeitsspektrometer mit rückführender filtervorrichtung
US5723861A (en) * 1996-04-04 1998-03-03 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer
DE19641210A1 (de) 1996-09-25 1998-04-02 Analyticon Ag Biotechnologie P Vorrichtung und Verfahren auf HPLC-Basis zur Trennung hochkomplexer Substanzgemische
ATE217536T1 (de) 1996-09-25 2002-06-15 Sepiatec Gmbh Vorrichtung und verfahren auf hplc-basis zur trennung hochkomplexer substanzgemische
US6720186B1 (en) 1998-04-03 2004-04-13 Symyx Technologies, Inc. Method of research for creating and testing novel catalysts, reactions and polymers
US6673316B1 (en) * 1996-10-30 2004-01-06 Sumitomo Chemical Co., Ltd. Synthesis experiment automating system, liquid separating treating apparatus and reaction vessel
DE19704477A1 (de) 1997-02-06 1998-08-13 Solvay Pharm Gmbh Vorrichtung und Verfahren zur Parallel-Chromatographie
US5947689A (en) * 1997-05-07 1999-09-07 Scilog, Inc. Automated, quantitative, system for filtration of liquids having a pump controller
JPH11133011A (ja) 1997-10-28 1999-05-21 Hitachi Ltd 液体クロマトグラフ
US6110362A (en) 1997-11-19 2000-08-29 Cohesive Technologies, Inc. Chemical analysis
US6054047A (en) * 1998-03-27 2000-04-25 Synsorb Biotech, Inc. Apparatus for screening compound libraries
US6294388B1 (en) * 1998-04-03 2001-09-25 Symyx Technologies, Inc. Indirect calibration of polymer characterization systems
US6260407B1 (en) * 1998-04-03 2001-07-17 Symyx Technologies, Inc. High-temperature characterization of polymers
US6175409B1 (en) * 1999-04-02 2001-01-16 Symyx Technologies, Inc. Flow-injection analysis and variable-flow light-scattering methods and apparatus for characterizing polymers
EP1308722A3 (en) 1998-04-03 2004-08-04 Symyx Technologies, Inc. Rapid characterization of polymers with heated injection probe
US6265226B1 (en) * 1998-04-03 2001-07-24 Symyx Technologies, Inc. Automated sampling methods for rapid characterization of polymers
US6406632B1 (en) * 1998-04-03 2002-06-18 Symyx Technologies, Inc. Rapid characterization of polymers
US6416663B1 (en) 1998-04-03 2002-07-09 Symyx Technologies, Inc. Chromatographic column for rapid characterizations of polymers
US6830729B1 (en) * 1998-05-18 2004-12-14 University Of Washington Sample analysis instrument
CA2320296A1 (en) * 1998-05-18 1999-11-25 University Of Washington Liquid analysis cartridge
JPH11326300A (ja) 1998-05-20 1999-11-26 Shimadzu Corp 液体クロマトグラフ
US6287765B1 (en) * 1998-05-20 2001-09-11 Molecular Machines, Inc. Methods for detecting and identifying single molecules
US6066848A (en) 1998-06-09 2000-05-23 Combichem, Inc. Parallel fluid electrospray mass spectrometer
US6019897A (en) * 1998-08-20 2000-02-01 Dyax Corporation System for simultaneously pumping solvent for a plurality of chromatography columns
US6458273B1 (en) * 1999-10-29 2002-10-01 Ontogen Corporation Sample separation apparatus and method for multiple channel high throughput purification
US6309541B1 (en) * 1999-10-29 2001-10-30 Ontogen Corporation Apparatus and method for multiple channel high throughput purification
WO2000031528A1 (de) * 1998-11-20 2000-06-02 Sepiatec Gmbh Vorrichtung und verfahren zur parallelen flüssigchromatographischen trennung von substanzen
US6077438A (en) * 1998-12-22 2000-06-20 Combichem, Inc. Automated on-line evaporation light scattering detection to quantify isolated fluid sample compounds in microtiter plate format
US6641783B1 (en) * 1999-02-08 2003-11-04 Charles Pidgeon Chromatographic systems with pre-detector eluent switching
JP2000266738A (ja) 1999-03-18 2000-09-29 Hitachi Ltd 液体クロマトグラフ質量分析装置
US6436292B1 (en) * 1999-04-02 2002-08-20 Symyx Technologies, Inc. Parallel high-performance liquid chromatography with post-separation treatment
US6296771B1 (en) * 1999-04-02 2001-10-02 Symyx Technologies, Inc. Parallel high-performance liquid chromatography with serial injection
EP1194200B1 (en) * 1999-04-23 2009-01-07 Advion BioSystems, Inc. High-throughput parallel liquid chromatography system
US6365105B1 (en) * 2000-03-17 2002-04-02 Serveron Corporation Fluid handling apparatus
US6635173B2 (en) * 2000-12-28 2003-10-21 Cohesive Technologies, Inc. Multi column chromatography system
EP1324033B1 (de) * 2001-12-21 2006-09-20 Agilent Technologies, Inc. (a Delaware corporation) Verfahren zur Bereitstellung von Volumenströmen von Fluiden

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359941B1 (ko) * 2013-07-10 2014-02-10 주식회사 위드텍 신속측정을 위한 액체 크로마토그래피 장치
WO2015005692A1 (en) * 2013-07-10 2015-01-15 Withtech Inc Liquid chromatography apparatus for fast measuring
CN105612424A (zh) * 2013-07-10 2016-05-25 伟德泰有限公司 用于快速测量的液相色谱设备
US10060885B2 (en) 2013-07-10 2018-08-28 Withtech Inc Liquid chromatography apparatus for fast measuring
WO2019138725A1 (ja) 2018-01-11 2019-07-18 株式会社日立ハイテクノロジーズ 複数のクロマトグラフを有する分析装置
US11959895B2 (en) 2018-01-11 2024-04-16 Hitachi High-Tech Corporation Analysis apparatus provided with a plurality of chromatographic apparatuses
WO2020105661A1 (ja) 2018-11-20 2020-05-28 株式会社日立ハイテク 複数のクロマトグラフを有する分析装置及びその制御方法
WO2020105624A1 (ja) 2018-11-20 2020-05-28 株式会社日立ハイテク 複数の液体クロマトグラフを有する分析装置およびその分析方法
US11982655B2 (en) 2018-11-20 2024-05-14 Hitachi High-Tech Corporation Analysis apparatus having a plurality of liquid chromatographs and its analysis method

Also Published As

Publication number Publication date
US20040055938A1 (en) 2004-03-25
JP4358201B2 (ja) 2009-11-04
WO2002053255A1 (en) 2002-07-11
US20060163133A1 (en) 2006-07-27
CA2433669C (en) 2009-02-24
US20090324447A1 (en) 2009-12-31
EP2362215A1 (en) 2011-08-31
CA2433669A1 (en) 2002-07-11
EP1355709A4 (en) 2008-12-24
US20020084222A1 (en) 2002-07-04
US20100307227A1 (en) 2010-12-09
US7790026B2 (en) 2010-09-07
US6808635B2 (en) 2004-10-26
US20070248491A1 (en) 2007-10-25
US7018540B2 (en) 2006-03-28
EP2362215B1 (en) 2017-11-22
US20050145547A1 (en) 2005-07-07
US6635173B2 (en) 2003-10-21
JP2006234830A (ja) 2006-09-07
JP2004524518A (ja) 2004-08-12
EP1355709A1 (en) 2003-10-29
US7217360B2 (en) 2007-05-15
US7594999B2 (en) 2009-09-29

Similar Documents

Publication Publication Date Title
JP4372419B2 (ja) マルチカラム・クロマトグラフ装置
AU661349B2 (en) Protein chromatography system
US20070183928A1 (en) Variable flow rate system for column chromatography
US8992778B2 (en) Methods and apparatus for generating solvent gradients in liquid chromatography
AU2012260982B2 (en) Method and apparatus for improved resolution chromatography
GB2448796A (en) Fluid Multiplexer For Capillary Column Gas Chromatography
US20200041467A1 (en) Chromatographic analysis with low pressure dual gradient refocusing
AU2012260982A1 (en) Method and apparatus for improved resolution chromatography
AU2012260981B2 (en) Method and apparatus for improved resolution chromatography
AU2012260981A1 (en) Method and apparatus for improved resolution chromatography
Poole et al. Recent advances in chromatography
US10092858B2 (en) Method and apparatus for improved resolution chromatography
Shalliker et al. Recent Advances in Column Technology
EP4314803A1 (en) Automated semi-preparative gradient recycling liquid chromatography
JPH06331613A (ja) ガスクロマトグラフ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090520

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term