JP4369599B2 - 光ファイバ体及びそれを備えた光モジュール - Google Patents

光ファイバ体及びそれを備えた光モジュール Download PDF

Info

Publication number
JP4369599B2
JP4369599B2 JP2000195093A JP2000195093A JP4369599B2 JP 4369599 B2 JP4369599 B2 JP 4369599B2 JP 2000195093 A JP2000195093 A JP 2000195093A JP 2000195093 A JP2000195093 A JP 2000195093A JP 4369599 B2 JP4369599 B2 JP 4369599B2
Authority
JP
Japan
Prior art keywords
fiber
optical
coreless
optical fiber
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195093A
Other languages
English (en)
Other versions
JP2002014253A (ja
Inventor
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000195093A priority Critical patent/JP4369599B2/ja
Publication of JP2002014253A publication Critical patent/JP2002014253A/ja
Application granted granted Critical
Publication of JP4369599B2 publication Critical patent/JP4369599B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信機器や光計測用センサ等に好適に使用され、光ファイバと他の光アイソレータや波長フィルタ等の光学素子とを光結合(光接続)させる光ファイバ体及びそれを備えた光モジュールに関する。
【0002】
【従来技術とその課題】
光技術の発達とともに、光通信や光計測等の分野において、光ファイバを用いた光信号や光エネルギの伝送手段が盛んに利用されている。このようなシステムでは、光源や受光器、フィルタやセンシングのための光学素子、及び光ファイバを光結合させる必要がある。そして、波長フィルタやセンシングのための光学素子を光ファイバの伝送路中に挿入する場合は結合損失を極小にしなければならない。
【0003】
図5に示すように、これまで伝送用のシングルモードファイバ1、レンズ8、波長フィルタなどの光学素子4、レンズ8、シングルモードファイバ1の順にアライメントして光学系を構成したものが最も多く利用されてきた。なお、9はレンズを保持するためのホルダ、10はパッケージである。
【0004】
上記光学系においては、光学素子4、レンズ8等は独立した部品として、それぞれが別々にホルダに固定された後にアライメントされるため、部品点数が多く調整も煩雑で、大型化してしまうといった問題があった。
【0005】
また、この問題に対応するため、図6に示すように、レンズを使用せずに2つのコア拡大ファイバ11を用い、これらで光学素子4を挟むようにアライメントするものが提案されている(例えば、特開平9−54283号公報を参照)。
【0006】
このようなコア拡大ファイバは、焦点ずれ(光軸と並行方向でコア拡大ファイバどうしの距離に相当)のトレランスが大きいため、光ファイバどうしを離して、その間に光学素子を設置しても結合損失が少ない。コア拡大ファイバの軸ずれ(光軸と垂直方向のずれ)の調整が重要であるが、外形上は通常の光ファイバと同じであるため、フェルール内に挿入可能で、通常の光ファイバと接続しても接続部に段差等が生じないため、なのでフェルール内やファイバ搭載用のV溝等が形成された基体に実装することにより、コア拡大ファイバの軸合わせは極めて高い精度で保証できる。また、レンズを使用しないので装置全体が小型化できるなどの利点を有する。
【0007】
このようなコア拡大ファイバは、一般的なシングルモードファイバを局所的に加熱して作られる。シングルモードファイバを加熱し、コアにドープされているGe等のドーパントを拡散させ、ドーパントの拡散領域を広くするとともに比屈折率差を小さくしている。
【0008】
光ファイバのコアとクラッドの比屈折率差が変らない状態でコア径が大きくなると、シングルモード条件が崩れマルチモードが励振されてしまう。コア拡大ファイバの場合は、熱によるドーパントの拡散のため、コアの拡大と比屈折率差の低下が同時に起こり、自動的にr×(D)1/2が一定に保たれる。ここで、rは光ファイバのコアの半径、Dはコアとクラッドの比屈折率差、r×(D)1/2は規格化周波数に比例する量であり、これが一定ならばシングルモード条件は保たれる。
【0009】
図7にコア拡大ファイバを用いた光結合の特性を示す。横軸にコア拡大ファイバの端面間距離(対向間距離)、縦軸に光の結合損失を示し、wはそれぞれのモードフィールド径を示す。なお、光の波長は光通信で一般に使われる1.31μmとし、溝(光ファイバ間)は空気(屈折率n=1)で満たされていることとした。モードフィールド径が10μmのコアを拡大していない場合は、光ファイバの対向間距離が120μmで3dB以上の損失があるのに対し、モードフィールド径が40μmの場合は、光ファイバの対向間距離が900μmでも損失が1dB以下であり、明らかに結合特性が改善されることがわかる。
【0010】
ただし、このようなコア拡大ファイバは、前述のように光ファイバを加熱して作製するため以下のような問題がある。コア径を40μmに拡大するためには、1000℃以上の温度で数時間から数十時間の加熱が必要であり、非常に手間を要する。また、コア径が10μmの部分と40μmに拡大された部分は、コア径が徐々に拡大していくテーパー状でなければならないが、加熱箇所と温度分布の制御が難しい。また、加熱中は光ファイバがたるまないように張力を付与しておく必要があるが、熱と張力で光ファイバがのび、その外径が僅かに小さくなるのでアライメント時の精度が低下する。
【0011】
また、グレイデッドインデックスファイバ(以下GIファイバ)をレンズとして用いる例が知られている(例えば、電子情報通信学会1995年総合大会C283を参照)。
【0012】
ここで、GIファイバとは、ファイバの中心軸から徐々に屈折率が下がるような軸対称の屈折率分布を持つ光ファイバであり、一般にはマルチモード伝送に用いられる。ほとんどのGIファイバはほぼ2乗の屈折率分布をもつ。この屈折率分布はグレイデッドインデックスレンズ(GRINレンズとも呼ばれる)と同様にレンズ効果を持つため、適当な屈折率分布のGIファイバを適切な長さで用いれば結合光学系を形成することができる。また、GIファイバの特性を示すパラメータとしては、クラッドとコア中心の屈折率差△、コア径D、収束パラメータAがある。
【0013】
さらに、GIファイバ中の光線は図9に示すようなサインカーブの挙動を示すため、その長さをその光線挙動の周期に対応させてピッチ(P)で表わす。図9の横軸はピッチを表わし、縦軸はGIファイバ内での光線の位置を示し、最も光が広がった箇所を1として相対的に図示したものである。なお、P=1は、サインカーブの1周期(2π)に相当する。点光源が平行光になるのはP=0.25であり、再度、点に収束するのはP=0.5である。
【0014】
図8にGIファイバを用いた光学系の一例を示す。シングルモードファイバ1の先端にP=0.25(点光源をコリメート光にする条件)の長さのGIファイバ2を接合しGIファイバコリメータ12とする。このGIファイバコリメータ12をファイバ整列用V溝と光学素子設置用溝をもつ基体の上でアライメントする。ここで、ファイバ整列用V溝の精度が良好であれば光軸と垂直方向のずれはほとんど生じない。即ち、GIファイバはシングルモードファイバと同じ外径を有しているため、光ファイバを固定する部材を工夫すれば(例えば高精度の内径を持つフェルールや前述のV溝を有する基体)、光軸に対し垂直方向のずれを抑えることが容易である。
【0015】
ただし、GIファイバはレンズであるため、焦点方向の調整が必要で手間がかかる。また、焦点方向の位置調節や光学素子搭載のためのクリアランスが必要であり、光がいったん光ファイバから空間に出射した光結合に成らざるを得ない。GIファイバ間に距離が必要になるとさらに調整が面倒になり、GIファイバから光が空間に出射すると光ファイバと空間とでは屈折率が異なるため出射端面で反射が生じてしまう等の問題点があった。
【0016】
これらの問題点を解決するため、安価なGIレンズを用いた簡便な構造で全ての軸のアライメントを不要にし、GIファイバ端面での反射の影響の少ない安定したレンズレスの光ファイバ体を提供することを本発明の目的とする。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本発明の光ファイバ体は、コアレスファイバの一端にグレイデッドインデックスファイバの一端を接続し、グレイデッドインデックスファイバの他端に、シングルモードファイバを接続するとともに、前記コアレスファイバの他端に、他のグレイデッドインデックスファイバの一端を接続し、該グレイデッドインデックスファイバの他端に、他のシングルモードファイバの一端を接続していることを特徴とする。
【0019】
また、コアレスファイバの長さが前記グレイデッドインデックスファイバの光出射端面からビームウエストまでの距離の2倍であることを特徴とする。
【0020】
さらに、グレイデッドインデックスファイバの長さを規定するピッチPが、0.25<P<0.5を満足することを特徴とする。
【0021】
また、上記光ファイバ体を基体に配設した本発明の光モジュールの製造方法は、コアレスファイバの両端にグレイデッドインデックスファイバとシングルモードファイバとを順次接続して光ファイバ体を作製する工程と、該光ファイバ体を基体に設置する工程と、該基体に前記光ファイバ体の前記コアレスファイバを2つに分断する溝を形成する工程と、該溝内に分断された前記コアレスファイバの間に光学素子を介在させる工程とを有することを特徴とする。
【0023】
ここで、コアレスファイバの端面と光学素子の間隙に屈折率がコアレスファイバとほぼ等しい物質を充填すると、屈折率差による界面反射がなくなるので、結合損失を極力小さくすることができる。
【0024】
また、光ファイバ体、光学素子を固定するための基体をフェルール、若しくはV溝を有する基板とすると、光ファイバの軸合わせが容易となるでよい。さらに、波長板やフィルタ等に比べ光アイソレータは厚いので従来の光学系では損失が多かったが本発明によれば損失を低減でき光アイソレータの実装にも適する。
【0025】
また、GIファイバ端面に点光源があった時のコリメート条件ではP=0.25だが、実際に結合効率が最も高い場合は、光ファイバ体どうしのビームウエストが一致する場合である。P=0.25ではビームウエストはちょうどGIファイバの出射端面に位置することになり、GIファイバの間に光学素子を挟むとビームウエストどうしは離れてしまう。
【0026】
従って、端面からビームウエストを離れた位置にするためには、ピッチPは0.25より大きくする必要がある。これにより、予めコアレスファイバの長さで焦点距離が調整されGIファイバ端面間の距離が固定されているため、光学素子をほぼアライメントフリーで実装可能で損失の少ない安定した光ファイバ体が得られる。
【0027】
【発明の実施の形態】
以下に本発明に係る実施形態について図面に基づき詳細に説明する。なお、各図において同一部材については、同一符号を付し説明を省略するものとする。
【0028】
図1に示すように、本発明の光ファイバ体F1は、モードフィールド径(以下、MFD)が例えば約10μmの伝送用の第1のシングルモードファイバ1A、P(ピッチ)>0.25の第1のGIファイバ2A、GIファイバ2Aから出射される光のビームウエストとGIファイバ2Aの光出射端面15の距離をdとして、長さ2dのコアレスファイバ3、第2のGIファイバ2B、伝送用のシングルモードファイバ1Bを縦列に接続し光ファイバ体F1を構成している。
【0029】
すなわち、シングルモードファイバ1Aの一端に、GIファイバ2Aの一端を接続し、GIファイバ2Aの他端に、焦点距離調節用のコアレスファイバ3の一端を接続している。そして、コアレスファイバ3の他端に、他のGIファイバ2Bの一端を接続し、このGIファイバ2Bの他端に、他のシングルモードファイバ1Bの一端を接続している。なお、これら光ファイバはいずれも石英ガラスや樹脂等で構成され、光ファイバどうしの接続は融着や透光性の接着材を用いることとする。
【0030】
ここで、コアレスファイバ3の長さがGIファイバ2Aの光出射端面15からビームウエストまでの距離dの2倍としたのは、光結合が最大となるからである。
【0031】
また、GIファイバ2A,2Bの長さを規定するピッチPが、0.25<P<0.5とするのは、GIファイバの外側(コアレスファイバ側)にビームウエストがある条件であるからである。P<0.25ではビームウエストはGIファイバ内にあり、出射光は発散光になる。
【0032】
次に、このような光ファイバ体F1を備えた光モジュールについて説明する。図2(a)に示すように、第1のシングルモードファイバ1Aの先端に第1のGIファイバ2Aを融着や透光性の接着材により接続する。次に、図2(b)に示すように、GIファイバ2Aにコアレスファイバ3を同様にして接続し、図2(c)に示すように、第2のGIファイバ2B、第2の伝送用のシングルモードファイバ1Bを同様にして接続する。次に、図2(d)に示すように、この光ファイバ体F1をファイバを固定するためのV溝13を異方性エッチング等で精度良く形成した基板5上に搭載し、接着材により固定する。そして、図2(e)に示すように、コアレスファイバ3の中間部にこれを分断する光学素子実装溝14をダイシングにより形成し、図2(f),(g)に示すように、波長フィルタや光アイソレータ等の光学素子4を配設し、コアレスファイバ3と光学素子4の間隙16に屈折率がコアレスファイバとほぼ等しい透光性の接着剤7を充填し固定する。
【0033】
かくして、光ファイバ体F1を基体5に配設し、基体5にコアレスファイバ3を2つに分断する溝14を形成し、溝14内に分断されたコアレスファイバ3間を光接続させる光学素子4を配設した、損失の少ない非常に優れた光モジュールM1が完成する。
【0035】
【実施例】
以下に、本発明のより具体的な実施例について説明する。
【0036】
〔例1〕
まず、図2(a)に示すように、MFDが約10μmの石英系シングルモードファイバ1Aの先端に、△=0.85%、コア径が105μm、収束パラメータA=3.37×10-6μm-2、P=0.258(653μm)のGIファイバ2Aを放電による融着加工で接続した。
【0037】
周囲の媒質がn=1.46(光ファイバの屈折率相当)であれば、GIファイバ2aの端面15から、このGIファイバで形成される出射光のビームウエストまでの距離は550μmとなる。
【0038】
図2(b)に示すように、n=1.46の屈折率をもつコアレスファイバ3をGIファイバ2Aに放電による融着加工により接続し、1100μmの長さでカットした。次いで、図2(c)に示すように、GIファイバ2Aと同じGIファイバ2B、シングルモードファイバ1Bをこの順に融着接続し光ファイバ体F1を作製した。
【0039】
次に、図2(d)に示すように、ミラー指数で(100)面を主面とする単結晶シリコンから成る基板にKOH水溶液による異方性エッチングを施し、幅140μmでミラー指数で{111}面を斜面とするファイバ搭載V溝13を形成し、この基体5(長さ5mm、幅3mm、厚さ1mm)に光ファイバ体F1を設置し、エポキシ系樹脂である熱硬化性接着剤でこれを固定した。
【0040】
次に、図2(e)に示すように、コアレスファイバ3を分断するべく、光学素子搭載用溝14(幅800μm)をダイサーにより切削加工で形成した。そして、図2(f)に示すように、厚さ700μmの光学素子4(光アイソレータ)を光学素子搭載用溝14に設置し、屈折率n=1.46に調整したエポキシ系樹脂である紫外線硬化型屈折率整合接着剤を、光学素子4とコアレスファイバ3の間隙および周辺に隙間なく充填し固定した。このときの挿入損失は光学素子とあわせ0.51dBであった。
【0041】
なお、本実施例では光ファイバと基板の固定にエポキシ系樹脂である熱硬化型接着剤を用いたが、より信頼性の高い低融点ガラスやハンダを用いても良い。
【0042】
〔例2〕
本発明の光ファイバ体F1を用い、基体にフェルールを用いた実施例を図3に示す。例1と同様に作製した光ファイバ体F1を、直径φ1.25mm、長さ10mmのジルコニア製フェルール6に挿入し固定した。光ファイバの固定には熱硬化型エポキシ接着剤を用いた。
【0043】
さらに、コアレスファイバ3を分断する位置でフェルール6に幅800μmの光学素子搭載用溝14をダイサーにより形成した。そして、この光学素子搭載用溝14に厚さ700μmの光学素子4(光アイソレータ)を挿入し、屈折率n=1.46の紫外線硬化型接着剤7を充填し固定した。このときの挿入損失は光学素子の損失も含め0.44dBであった。
【0044】
また、フェルール6の内径精度はサブミクロンオーダーで保証されており、なおかつファイバの全周方向から保持されるため、同軸度やファイバの光直進性はV溝付き基板より優れている。また、一体であったコアレスファイバ3を分断しているため軸ずれは原理的に発生しない。
【0045】
〔例3〕
例2のフェルール内に組み立てた光学系において、GIファイバコリメータを2つ用い光学素子を挟み込んで固定したものである。
【0046】
図4に示すように、シングルモードファイバ1Aの先端に、△=0.85%、コア径105μm、収束パラメータA=3.37×10-6μm-2、P=0.258(653μm)のGIファイバ2Aを放電による融着加工で接続した。
【0047】
周囲の媒質がn=1.46(光ファイバの屈折率相当)であれば、GIファイバ2Aの端面15から、このGIファイバで形成される出射光のビームウェストまでの距離は550μmとなる。
【0048】
厚さ700μmの光学素子を実装するので、200μm(550−700/2)の長さでn=1.46の屈折率をもつコアレスファイバ3Aを、GIファイバ2Aに放電による融着加工で接続して、GIファイバコリメータ12を作製した。
【0049】
φ1.25mm、長さ10mmのジルコニア製フェルール6に、φ120μmで厚さ700μmの円筒状に加工した超小型の光アイソレータ4を挿入し、フェルール6の両端からGIファイバコリメータ12に、屈折率n=1.46の熱硬化性エポキシ接着剤を塗布し、これを硬化させて、光アイソレータ4を固定した。
【0050】
光ファイバの端面は切断時においては劈開によるが、ダイサーによる切削面や研磨面より平滑性が高いため、面散乱による損失が低減できる。また、GIファイバコリメータ12を光学素子(光アイソレータ4)に突き当てる構造なので隙間を極少にすることができる。
【0051】
【発明の効果】
以上詳述したように、本発明の光ファイバ体によれば、以下の顕著な効果を奏することができる。
【0052】
・レンズを用いないので簡略な構成で安価に作製が可能である。
【0053】
・GIファイバの長さ調整のみで光学系が形成できるため、調整軸が少く、光学素子を容易に配設可能である(分断方式は軸合わせ不要)。
【0054】
・焦点距離が予め調整されたコアレスファイバで固定されているため安定性に優れる。
【0055】
・まず、光ファイバの長さで光学調整を行い、後から光学素子をアライメントフリーで搭載可能であるので、光学素子自体は耐熱性がなくとも、光ファイバをハンダや低融点ガラス等の高温固定方法で固定可能である。なお、通常は光学素子を設置した後にレンズや光ファイバの調整を行うため、光ファイバの固定に高温プロセスを使用できない。
【0056】
・コアレスファイバは空気(n=1)より屈折率が高いので、ビームの広がりが少なく、そのため結合効率とトレランスが大きい。
【0057】
・光学素子と光ファイバの間に屈折率整合整合剤を充填することにより、光ファイバ端面で光が反射しない。また、間隙が充填されているため、光学素子やファイバの端面での結露や汚れが発生しない。
【図面の簡単な説明】
【図1】本発明に係る光ファイバ体を模式的に説明する断面図である。
【図2】(a)〜(g)は本発明に係る光ファイバ体の作製工程を模式的に説明する図であり、(a)〜(f)は斜視図、(g)は断面図である。
【図3】本発明に係る光ファイバ体の実施形態を模式的に示す断面図である。
【図4】本発明に係る光ファイバ体の実施形態を模式的に示す断面図である。
【図5】従来の光学系を模式的に説明する断面図である。
【図6】従来の光学系を模式的に説明する断面図である。
【図7】コア拡大ファイバの対向間隔と結合損失の関係を示すグラフである。
【図8】従来の光学系を模式的に説明する断面図である。
【図9】GIファイバ内の光線の挙動を説明する模式図である。
【符号の説明】
1A、1B:シングルモードファイバ
2A、2B:GIファイバ
3:コアレスファイバ
4:光学素子
5:基体
6:フェルール
7:屈折率整合接着剤
8:レンズ
9:ホルダ
10:パッケージ
11:コア拡大ファイバ
12:GIファイバコリメータ
13:ファイバ固定用V溝
14:光学素子搭載用溝
15:端面
16:間隙
F1:光ファイバ体
M1:光モジュール

Claims (2)

  1. コアレスファイバの一端にグレイデッドインデックスファイバの一端を接続し、グレイデッドインデックスファイバの他端に、シングルモードファイバを接続するとともに、前記コアレスファイバの他端に、他のグレイデッドインデックスファイバの一端を接続し、該グレイデッドインデックスファイバの他端に、他のシングルモードファイバの一端を接続し、前記グレイデッドインデックスファイバの長さを規定するピッチPが0.25<P<0.5を満足するとともに、前記コアレスファイバの長さは前記グレイデッドインデックスファイバの光出射端面からビームウェストまでの距離の2倍であることを特徴とする光ファイバ体。
  2. 請求項1記載の光ファイバ体を基体に配設した光モジュールの製造方法であって、コアレスファイバの両端にグレイデッドインデックスファイバとシングルモードファイバとをそれぞれ接続して光ファイバ体を作製する工程と、該光ファイバ体を基体に設置する工程と、該基体に前記光ファイバ体の前記コアレスファイバを2つに分断する溝を形成する工程と、該溝内に分断された前記コアレスファイバ間に光学素子を介在させる工程とを有することを特徴とする光モジュールの製造方法。
JP2000195093A 2000-06-28 2000-06-28 光ファイバ体及びそれを備えた光モジュール Expired - Fee Related JP4369599B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195093A JP4369599B2 (ja) 2000-06-28 2000-06-28 光ファイバ体及びそれを備えた光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195093A JP4369599B2 (ja) 2000-06-28 2000-06-28 光ファイバ体及びそれを備えた光モジュール

Publications (2)

Publication Number Publication Date
JP2002014253A JP2002014253A (ja) 2002-01-18
JP4369599B2 true JP4369599B2 (ja) 2009-11-25

Family

ID=18693816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195093A Expired - Fee Related JP4369599B2 (ja) 2000-06-28 2000-06-28 光ファイバ体及びそれを備えた光モジュール

Country Status (1)

Country Link
JP (1) JP4369599B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991193A (zh) * 2019-04-22 2019-07-09 重庆理工大学 无芯多模光纤硫化氢气体传感器的制作方法及其传感器和硫化氢气体浓度的检测方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933967B2 (ja) * 2002-03-18 2007-06-20 株式会社 オプトクエスト カートリッジ型光機能モジュール
JP3906104B2 (ja) * 2002-03-26 2007-04-18 京セラ株式会社 光デバイス
FR2842915B1 (fr) * 2002-07-26 2004-10-08 Atmel Grenoble Sa Procede et dispositif de positionnement d'un composant optique entre deux fibres optiques
JP2004061871A (ja) * 2002-07-29 2004-02-26 Kyocera Corp 光デバイス
JP4025598B2 (ja) * 2002-07-29 2007-12-19 京セラ株式会社 ファイバーレンズ
JP3914124B2 (ja) * 2002-09-18 2007-05-16 沖電気工業株式会社 光モジュール
JP2004117915A (ja) * 2002-09-26 2004-04-15 Kyocera Corp ファイバスタブとこれを用いた光レセプタクル及び光モジュール
JP4061161B2 (ja) * 2002-09-26 2008-03-12 京セラ株式会社 光デバイスの製造方法
JP2005017702A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 光コネクタおよびその接続構造
JP3902619B2 (ja) 2003-10-30 2007-04-11 Tdk株式会社 光合分波器及びその製造方法
JP2005173195A (ja) * 2003-12-11 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> 光モジュール及びその製造方法
JP4222953B2 (ja) * 2004-01-21 2009-02-12 株式会社フジクラ 光通信線路用光部品
JP2006047951A (ja) * 2004-06-29 2006-02-16 Kyocera Corp 光アイソレータ
WO2006090846A1 (ja) * 2005-02-24 2006-08-31 Kyocera Corporation ファラデー回転ミラーおよびその製造方法
JP4836534B2 (ja) * 2005-02-24 2011-12-14 京セラ株式会社 ファラデー回転ミラーの製造方法
JP2007101653A (ja) * 2005-09-30 2007-04-19 Kyocera Corp 多芯光モジュール
WO2007074805A1 (ja) * 2005-12-26 2007-07-05 Kyocera Corporation 光合分波器およびその製造方法ならびにこれを用いた光送受信器
JP2006154868A (ja) * 2006-03-09 2006-06-15 Nippon Sheet Glass Co Ltd レンズ機能付き光ファイバおよびその製造方法
JP2008098316A (ja) * 2006-10-11 2008-04-24 Tecdia Kk 半導体レーザモジュール
JP2007086819A (ja) * 2007-01-05 2007-04-05 Oki Electric Ind Co Ltd 光モジュール
JP2008209520A (ja) * 2007-02-23 2008-09-11 Kyocera Corp 光フィルタモジュール
JP2009053459A (ja) * 2007-08-28 2009-03-12 Ntt Electornics Corp 波長フィルタ
WO2011083781A1 (ja) * 2010-01-06 2011-07-14 日本電気株式会社 光スイッチ機構およびその製造方法
JP6810076B2 (ja) 2018-03-13 2021-01-06 日本電信電話株式会社 ファイバモジュール
WO2021039572A1 (ja) * 2019-08-28 2021-03-04 京セラ株式会社 光モジュールおよび光ユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991193A (zh) * 2019-04-22 2019-07-09 重庆理工大学 无芯多模光纤硫化氢气体传感器的制作方法及其传感器和硫化氢气体浓度的检测方法

Also Published As

Publication number Publication date
JP2002014253A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
JP4369599B2 (ja) 光ファイバ体及びそれを備えた光モジュール
US7228033B2 (en) Optical waveguide lens and method of fabrication
US6904197B2 (en) Beam bending apparatus and method of manufacture
US6767139B2 (en) Six-port optical package and method of manufacturing
US6582135B2 (en) Method of matching optical elements and fiber ferrules
US6963682B2 (en) Beam altering fiber lens device and method of manufacture
US7187826B2 (en) Multiple-port optical package and DWDM module
JP4215635B2 (ja) アレー構造の光ファイバコリメータの構成部品を調整する方法
US7155096B2 (en) Optical collimator for monomode fibers; monomode fiber with integrated collimator and method for making same
US20030063832A1 (en) Multiple polarization combiner-splitter-isolator and method of manufacturing the same
KR20080033039A (ko) 반도체 레이저 모듈
US6729770B2 (en) Methods of making a multiple-port optical package
US6960026B2 (en) Precision fiber ferrules
JP2005157302A (ja) 光合分波器及びその製造方法
JP4446596B2 (ja) 光モジュールの製造方法
JP2006047951A (ja) 光アイソレータ
KR20010022335A (ko) 평면 광학장치 커넥터 및 이의 제조방법
JPH09159882A (ja) 光素子と光ファイバの結合構造及び結合方法
JP2003114335A (ja) 光フィルタモジュールおよびその製造方法
JP2001044553A (ja) ファイバスタブ型光デバイス及びそれを用いた光モジュール
JP4446614B2 (ja) 光デバイスおよび光モジュール
US6775436B1 (en) Optical fiber U-turn apparatus and method
US20020176644A1 (en) Polarization combiner/splitter
JP2002328255A (ja) ファイバ光学系
US20060239611A1 (en) Optical collimator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees