JP4355356B2 - 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 - Google Patents

電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 Download PDF

Info

Publication number
JP4355356B2
JP4355356B2 JP2008187431A JP2008187431A JP4355356B2 JP 4355356 B2 JP4355356 B2 JP 4355356B2 JP 2008187431 A JP2008187431 A JP 2008187431A JP 2008187431 A JP2008187431 A JP 2008187431A JP 4355356 B2 JP4355356 B2 JP 4355356B2
Authority
JP
Japan
Prior art keywords
electrode plate
groove
active material
protective film
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008187431A
Other languages
English (en)
Other versions
JP2009049006A (ja
Inventor
正春 宮久
善樹 大澤
英幸 熊切
努 西岡
周作 後藤
武司 笠松
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008187431A priority Critical patent/JP4355356B2/ja
Priority to CNA2008800011901A priority patent/CN101569034A/zh
Priority to KR1020097010684A priority patent/KR20090111801A/ko
Priority to US12/515,482 priority patent/US7695864B2/en
Priority to PCT/JP2008/001945 priority patent/WO2009013890A1/ja
Publication of JP2009049006A publication Critical patent/JP2009049006A/ja
Application granted granted Critical
Publication of JP4355356B2 publication Critical patent/JP4355356B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、主としてリチウム二次電池用の電極板及びその製造方法、並びに、この電極板により構成した極板群及びこの極板群を用いたリチウム二次電池に関するものである。
近年、携帯用電子機器や通信機器などの駆動電源として利用が広がっているリチウム二次電池は、一般に、負極板には、リチウムの吸蔵・放出が可能な炭素質材料を用い、正極板には、LiCoO2などの遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量の二次電池になっている。そして、電子機器および通信機器の多機能化に伴って、さらなる高容量化が望まれている。
高容量のリチウム二次電池を実現するために、例えば、正極板と負極板の電池ケース内での占有体積を増やして、電池ケース内における電極板のスペース以外の空間を減らすことによって、一層の高容量化を図ることができる。
また、正極板および負極板の構成材料を塗料化した合剤ペーストを集電用芯材上に塗布乾燥して活物質層を形成した後、この活物質層をロールプレスで高加圧して規定厚みまで圧縮して、活物質の充填密度を高くすることによって、一層の高容量化が可能となる。
ところで、電極板の活物質の充填密度が高くなると、電池ケース内に注液した比較的粘性の高い非水電解液を、正,負極板の間にセパレータを介して高密度に積層または渦巻状に巻回されてなる極板群の小さな隙間に浸透させることが難しくなるため、所定量の非水電解液を含浸させるまでに長い時間を要するという問題がある。しかも、電極板の活物質の充填密度を高くしたことによって、電極板中の多孔度が小さくなって電解液が浸透し難くなるため、極板群への非水電解液の含浸性が格段に悪くなり、その結果、極板群中での非水電解液の分布が不均一となるという問題がある。
そこで、負極活物質層の表面に、非水電解液の浸透方向に、電解液案内溝部を形成することによって、負極全体に非水電解液を浸透させる方法が特許文献1に記載されている。なお、溝部の幅や深さを大きくすれば、含浸時間を短縮することができるが、逆に、活物質の量が減るため、充放電容量が低下したり、極板間の反応が不均一になって電池特性が低下するため、これらを考慮して、溝部の幅や深さは所定の値に設定される。
ところで、負極活物質層の表面に形成された溝部は、極板を巻回して電極群を形成する際、極板を破断させる要因となり得る。そこで、含浸性を向上しつつ、極板の破断を防止する方法が、特許文献2に記載されている。
すなわち、極板の表面に、極板の長手方向に対して傾斜角をなすように溝部を形成することによって、極板を巻回して電極群を形成する際に、極板の長手方向に働く張力を分散させることができ、これにより極板の破断を防止することができる。
なお、電解液の含浸性を向上させる目的ではないが、過充電による過熱を抑制するために、正極または負極に対向する面に、表面が部分的に凸部を有する多孔膜を設ける方法が、特許文献3に記載されている。すなわち、多孔膜の凸部と電極板との間に生じる隙間に、他の部位よりも多くの非水電解液を保持することによって、この部位において過充電反応を集中的に進行させることによって、電池全体として過充電の進行を抑制し、過充電による過熱を抑制することができる。
一方、上記のような手段により高容量化を図ったリチウム二次電池においては、例えば、何らかの原因で異物が電池内部に混入することによってセパレータが損傷し、これにより、正極板と負極板とが内部短絡を起こした場合、短絡部位に集中して電流が流れることによって急激な発熱が生じ、これに起因して、正極及び負極材料の分解や、電解液の沸騰又は分解によるガス発生等が起きるおそれがある。
このような内部短絡に起因する問題に対して、負極活物質層又は正極活物質層の表面に多孔性保護膜を被覆することによって、内部短絡の発生を抑制する方法が、特許文献4、5等に記載されている。
特開平9−298057号公報 特開平11−154508号公報 特開2006−12788号公報 特開平7−220759号公報 国際公開第2005/029614号パンフレット
正極板と負極板とをセパレータを介して巻回して極板群を構成する際、集電リードを取り付けた集電用芯材(集電体)の露出部を巻き始端として渦巻状に巻回されるため、極板群を構成したときの中心部の最内周側に位置する活物質層は、電池反応に寄与しない無駄な部分となる。そのため、芯材の端部(巻き始端)においては、芯材の片面にだけ活物質層を形成(その他の部分は、芯材の両面に活物質層を形成)することによって、電池反応に寄与しない無駄な活物質層を排除し、これにより、電池ケース内の空間体積を有効に活用でき、その分だけ電池の高容量化を図ることができる。
ところで、極板の両面に形成された活物質層の両面に溝部を形成する方法として、表面に複数の突条部が形成された一対のローラを極板の上下にそれぞれ配置し、この一対のローラを極板の両面に押圧しながら回転・移動させて溝部加工を行う方法(以下、「ロールプレス加工」という。)は、極板の両面に複数の溝部を同時に形成することができるため、量産性に優れる。
一方、活物質層の表面に溝部を形成した後、内部短絡の発生を抑制する目的で、活物質層の表面に多孔性保護膜を形成した場合、活物質層の表面に形成した溝部が多孔性保護膜によって埋められてしまうと、電解液の含浸性を向上させる効果が十分に発揮し得なくなる。
しかしながら、このような場合でも、通常、多孔性保護膜の膜厚は活物質層に比べて非常に薄く(典型的には、活物質層の膜厚の1/20〜1/40程度)形成されるため、活物質層の表面に多孔性保護膜を形成した後、上記ロールプレス加工を用いて溝部を形成するようにすれば、多孔性保護膜の表面のみならず、多孔性保護膜下の活物質層にまで及ぶ溝部を形成することができ、これにより、電解液の含浸性を向上させる効果を維持させることが可能となる。
本願発明者等は、電解液の含浸性の向上、及び内部短絡の発生の抑制を目的として、ロールプレス加工を用いて、活物質層の両面に形成した多孔性保護膜の表面に溝部を形成した電極板を種々検討していたところ、以下のような課題があることを見出した。
図6(a)〜(d)は、極板103の製造工程を示した斜視図である。まず、図6(a)に示すように、帯状の集電用芯材112の両面に活物質層113が形成された両面塗工部114と、芯材112の片面にのみ活物質層113が形成された片面塗工部117と、活物質層113が形成されていない芯材露出部118とを有する極板フープ材111を形成する。その後、図6(b)に示すように、活物質層113の表面に多孔性保護膜128を被覆する。
次に、図6(c)に示すように、ロールプレス加工により、多孔性保護膜128及び活物質層113の表面に複数の溝部110を形成した後、図6(d)に示すように、両面塗工部114と芯材露出部118との境界に沿って極板フープ材111を切断し、然る後、芯材露出部118に集電リード120を接合することによって、極板103が製造される。
しかしながら、図7に示すように、両面塗工部114と芯材露出部118との境界に沿って極板フープ材111を切断したとき、芯材露出部118とこれに続く片面塗工部117とが大きく湾曲状に変形するという問題が生じた。
これは、ロールプレス加工が、極板フープ材111をローラ間の隙間を連続的に通過させながら行われるため、両面塗工部114における多孔性保護膜128及び活物質層113の両面に溝部110が形成されるのに引き続き、片面塗工部117における多孔性保護膜128及び活物質層113の表面にも溝部110が形成されたことに起因するものと考えられた。
すなわち、溝部110が形成されることによって活物質層113は延ばされるが(膜厚の厚い活物質層113の延びが支配的と考えられる)、両面塗工部114では、両面の活物質層113が同程度に延ばされるのに対して、片面塗工部117では、活物質層113は片面においてのみ延ばされるため、活物質層113の引っ張り応力により、片面塗工部117が、活物質層113の形成されていない側に大きく湾曲して変形したものと考えられる。
極板フープ材111の切断によって、極板103の端部(芯材露出部118とこれに続く片面塗工部117)が湾曲状に変形すると、極板103を巻回して極板群を構成する際、巻きずれを起こすおそれがある。また、極板103の搬送時に、極板103の端部を確実にチャックできずに、搬送に失敗したり、活物質の脱落が起きるおそれがある。そのため、生産性が低下するだけでなく、電池の信頼性の低下を招くおそれもある。また、電極板を積層して極板群を構成する際に折れ曲がりが発生する可能性があり、生産性や電池の信頼性の低下を招く。
本発明は、かかる課題に鑑みなされたもので、その主な目的は、電解液の含浸性に優れ、かつ内部短絡の発生を抑制した、生産性及び信頼性の高い電池用電極板、及びこれを用いたにリチウム二次電池を提供することにある。
上記の課題を解決するために、本発明は、両面塗工部の表面に溝部が形成された電池用電極板において、片面塗工部の表面には溝部を形成しない構成を採用する。これにより、片面塗工部に形成された活物質層による引っ張り応力が緩和されるため、芯材露出部とこれに続く片面塗工部とが大きく湾曲状に変形するのを防止することができる。
すなわち、本発明に係わる電池用電極板は、集電用芯材の表面に形成された活物質層を多孔性保護膜で被覆した非水系電池用電極板であって、電極板は、集電用芯材の両面に前記活物質層及び多孔性保護膜が形成された両面塗工部と、集電用芯材の端部であって、活物質層
及び多孔性保護膜が形成されていない芯材露出部と、両面塗工部と芯材露出部との間であって、集電用芯材の片面にのみ活物質層及び多孔性保護膜が形成された片面塗工部とを有し、両面塗工部の両面に複数の溝部が形成され、かつ、片面塗工部には溝部が形成されていなく、溝部は、多孔性保護膜の表面から活物質層の表面に及んで該活物質層表面にも形成され、かつ、多孔性保護膜の膜厚は、溝部の深さよりも小さいことを特徴とする。
このような構成によれば、両面塗工部の表面に溝部を形成することによって、電解液の含浸性が向上するとともに、片面塗工部の表面には溝部を形成しないようにすることによって、電極板の芯材露出部とこれに続く片面塗工部とが大きく湾曲状に変形するのを防止することができる。これにより、電極板を巻回して極板群を構成する際の巻きずれや電極板を積層して極板群を構成する際の折れ曲がりを防止するとともに、電極板の搬送時における搬送トラブルや活物質の脱落を防止するができる。その結果、電解液の含浸性に優れ、かつ内部短絡の発生を抑制した、生産性及び信頼性の高い電池用電極板を実現することが可能となる。
なお、上記電極板は、負極板であることが好ましい。また、上記多孔性保護膜は、無機酸化物を主成分とする材料からなることが好ましく、例えば、アルミナまたはシリカを主成分とする材料からなることが好ましい。
ある好適な実施形態において、上記溝部の深さは、4μm〜20μmの範囲にあることが好ましい。また、溝部は、電極板の長手方向に沿って、100μm〜200μmのピッチで形成されていることが好ましい。さらに、両面塗工部の両面に形成された溝部は、電極板の長手方向に対して、互いに異なる方向に45°の角度に傾斜した形成され、かつ、互いに直角に立体交差していることが好ましい。
本発明に係わる電池用極板群は、正極板および負極板がセパレータを介して構成する非水系電池用極板群であって、正極板および負極板の少なくとも一方の電極板は、上記記載の構成を有し、極板群は、電極板の芯材露出部を巻き始端として巻回、または芯材露出部を積層始端として積層されていることを特徴とする。
本発明に係わるリチウム二次電池は、電池ケース内に、上記記載の極板群が収容されるとともに、所定量の非水電解液が注液され、かつ、電池ケースの開口部が密閉状態に封口されていることを特徴とする。
本発明に係わる電池用電極板の製造方法は、上記記載の非水系電池用電極板の製造方法であって、集電用芯材の両面に活物質層及び多孔性保護膜が形成された両面塗工部と、集電用芯材の片面にのみ活物質層及び多孔性保護膜が形成された片面塗工部と、活物質層及び多孔性保護膜が形成されていない芯材露出部とが、この順序で連続的に形成された電極板フープ材を用意する工程(a)と、電極板フープ材の上下に、表面に複数の突条部が形成された一対のローラを配置し、該一対のローラを電極板フープ材の両面に押圧しながら回転させて、電極板フープ材を一対のローラの隙間を通過させながら、両面塗工部の両面に複数の溝部を同時に形成する工程(b)と、両面塗工部が一対のローラの隙間を通過した後、片面塗工部が一対のローラの隙間を通過する間、一対のローラを前記片面塗工部に対して非押圧状態に保持する工程(c)と、電極板フープ材を、両面塗工部と芯材露出部との境界に沿って切断して、電池用電極板に分離する工程(d)とを含み、工程(b)において、溝部は、多孔性保護膜の表面から活物質層の表面に及んで該活物質層表面にも形成され、かつ、多孔性保護膜の膜厚は、溝部の深さよりも小さいことを特徴とする。
本発明によれば、両面塗工部の表面に溝部が形成された電池用電極板において、片面塗工部の表面には溝部を形成しない構成にすることによって、電解液の含浸性を向上させることができるとともに、電極板の芯材露出部とこれに続く片面塗工部とが大きく湾曲状に変形するのを防止することができる。これにより、電極板を巻回して極板群を構成する際の巻きずれや電極板を積層して極板群を構成する際の折れ曲がりを防止するとともに、電極板の搬送時における搬送トラブルや活物質の脱落を防止するができる。その結果、電解液の含浸性に優れ、かつ内部短絡の発生を抑制した、生産性及び信頼性の高い電池用電極板を実現することが可能となる。
以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
図1は、本発明の一実施形態におけるリチウム二次電池を模式的に示した縦断面図である。このリチウム二次電池は、複合リチウム酸化物を活物質とする正極板2と、リチウムを保持できる材料を活物質とする負極板3とを、これらの間にセパレータ4を介在させて渦巻状に巻回することにより極板群1が構成されている。この極板群1は、有底円筒状の電池ケース7内に収容され、電池ケース7内に所定量の非水溶媒からなる電解液(図示せず)が注液されて極板群1に含浸されている。電池ケース7の開口部は、ガスケット8を周縁に取り付けた封口板9を挿入した状態で、電池ケース7の開口部を径方向内方に折り曲げてかしめ加工することにより、密閉状態に封口されている。このリチウム二次電池では、負極板3の両面に、多数の溝部10が互いに立体交差するように形成されており、この溝部10を通して電解液を浸透させることにより、電解液の極板群1への含浸性の向上を図っている。加えて、活物質層の表面に多孔性保護膜を被覆することによって、内部短絡の発生の抑制を図っている。
図2(a)〜(d)は、負極板3の製造工程を示した斜視図である。図2(a)は、個々の負極板3に分割する前の負極板フープ材11を示しており、10μmの厚みを有する長尺帯状の銅箔からなる集電用芯材12の両面に、負極合剤ペーストを塗布・乾燥した後、総厚が200μmとなるようにロールプレスして圧縮することにより負極活物質層13を形成し、これを約60mmの幅になるようにスリッタ加工したものである。ここで、負極合剤ペーストは、例えば、人造黒鉛を活物質とし、スチレン−ブタジェン共重合体ゴム粒子分散体を結着材とし、カルボキシメチルセルロースを増粘剤として、これらを適量の水でペースト化したものが用いられる。
この負極板フープ材11は、集電用芯材(以下、単に「芯材」という。)12の両面に負極活物質層13が形成された両面塗工部14と、芯材12の片面のみに負極活物質層13が形成された片面塗工部17と、芯材12に負極活物質層13が形成されていない芯材露出部18とで一つの極板構成部19が構成されており、この極板構成部19が長手方向に連続して形成されている。なお、このような負極活物質層13を部分的を設ける極板構成部19は、周知の間欠塗工法により負極活物質層13を塗着形成することによって容易に形成することができる。
図2(b)は、活物質層13の表面に、無機添加剤に少量の水溶性高分子の結着剤材を加えて混練した塗布剤を塗布した後、乾燥して、多孔性保護膜28を形成した状態を示した図である。なお、電池反応に寄与しない芯材露出部18には、多孔性保護膜28は形成しない。これにより、多孔性保護膜28が存在しない分だけ電池容量が増大し、また、後述する工程(図2(d)を参照)で、集電リード20を芯材露出部18に溶接により取り付ける際、芯材露出部18の集電リード20を溶接する箇所から多孔性保護膜28を剥離する工程を省くことができ、生産性が向上する。
この多孔性保護膜28は、図1に示した構成の電池において、内部短絡の発生を抑制する保護機能を発揮するとともに、多孔性を備えているため、電池本来の機能、すなわち、電解液中の電解質イオンとの電極反応を妨げることがない。ここで、無機添加剤としては、シリカ材および/またはアルミナ材を用いるのが好ましい。これは、シリカ材およびアルミナ材が、耐熱性、リチウム二次電池の使用範囲内における電気化学的安定性や電解液への耐溶解性に優れ、かつ塗料化に適した材料であり、これ用いることにより信頼性の高い電気絶縁性を有する多孔性保護膜28を得ることができる。また、結着材としては、ポロフッ化ビニリデンを用いるのが好ましい。
ここで、多孔性保護膜28の膜厚は特に制限されないが、後述する溝部10の深さよりも小さい方が好ましい。例えば、溝部10の深さ(多孔性保護膜28及び活物質層13の両方を含む溝部の深さ)を4〜10μmとした場合、多孔性保護膜28の膜厚は、2〜4μmとすることが好ましい。なお、膜厚が2μm未満とすると、内部短絡を防止する保護機能が不足するため好ましくない。
この溝部10を形成した負極板フープ材11を、図2(d)に示すように、両面塗工部14と片面塗工部との中間にある芯材露出部18をカッターで切断して極板構成部19毎に分離した後、芯材露出部18の芯材12に集電リード20を溶接により取り付けて、集電リード20を絶縁テープ21で被覆して、リチウム二次電池の負極板3が出来上がる。
なお、芯材12の両面塗工部14に活物質層13を形成した後、活物質層13の表面に溝部10を形成し、然る後、溝部10が形成された活物質層13の表面に多孔性保護膜28を形成する工程も考えられるが、この場合、活物質層13の表面に形成された溝部10が、多孔性保護膜28によって埋もれてしまい、溝部10の実質的な深さが小さくなってしまうため、電解液の含浸性の向上を十分に図ることができない。
なお、本実施形態では、負極板3の両面塗工部14に溝部10を形成する場合を例示したが、正極板2の両面塗工部における多孔性保護膜及び正極活物質層の表面に溝部10を形成するようにしてもよい。一般的に、正極板2に比べて柔らかい負極板3に溝部10を形成した場合、小さな加圧力で溝部10を形成することができるとともに、負極活物質層13に厚みの増加や延びが殆ど生じないので、大幅な仕様変更を必要としない利点がある。また、正極板2の両面塗工部における多孔性保護膜及び正極活物質層に溝部10を形成した場合、両面塗工部の両面側の比較的硬い正極活物質層に大きな力を加えて溝部を形成しても、片面塗工部には溝部を形成しないので、湾曲状に変形することを効果的に抑制できる。
負極板3を上記のように構成することによって、以下のような効果が得られる。
すなわち、この負極板3と正極板2とをセパレータ4を介して渦巻状に巻回して極板群1を構成する際、集電リード20を取り付けた芯材露出部18を巻き始端として巻回されるが、巻回された極板群1の中心部では、負極板3の片面塗工部17における負極活物質層13が存在しない面が内側面として配置される。この片面塗工部17の内側面は、電池として機能したときに電池反応に寄与しない箇所であるため、かかる部位に負極活物質層13を形成する無駄を排除することによって、電池ケース7内の空間体積を有効に活用することができ、その分だけ電池としての高容量化を図ることができる。
また、片面塗工部17の表面には溝部10を形成していないため、図2(d)で示した負極板フープ材11の切断工程において、負極板3の芯材露出部18とこれに続く片面塗工部17とが大きく湾曲状に変形するのを防止することができる。これにより、正極板2及び負極板3を巻回して極板群を構成する際の巻きずれを防止することができる。また、負極板3を巻回機で巻き取る際に、負極板3の端部(芯材露出部)のチャックに失敗して搬送ができなくなるトラブルや、負極活物質の脱落を防止するができる。その結果、電解液の含浸性に優れ、かつ、生産性及び信頼性に優れた電池用電極板を実現することが可能となる。
図3は、本実施形態における負極板3の部分拡大平面図である。両面塗工部14の両面側の多孔性保護膜28及び負極活物質層13に形成される溝部10は、負極板3の長手方向に対して両面側で互いに異なる方向に45°の傾斜角度αで形成され、互いに直角に立体交差している。また、両面側の双方の溝部10は、共に同一のピッチで互い平行の配置で形成されており、何れの溝部10も多孔性保護膜28及び負極活物質層13の幅方向(長手方向に対し直交方向)の一端面から他端面に通じるように貫通している。この負極板3の溝部10の配置による効果については後述する。
図4は、図3のA−A線に沿って切断した拡大断面図で、溝部10の断面形状および配置パターンを示したものである。溝部10は、両面塗工部14の何れの面においても、170μmのピッチPで形成されている。また、溝部10は、断面形状がほぼ逆台形状に形成されている。本実施形態における溝部10は、深さDが8μmで、両側の溝部壁は、120°の角度βをもって傾斜し、底面と両側の溝部壁との境界である溝部底隅部は、30μmの曲率Rを有する円弧状の断面形状をなしている。溝部10をこのような形状にすることにより、多孔性保護膜28及び活物質層13の物質が溝部10から脱落するのを抑制することができる。
本実施形態では、溝部10のピッチPを170μmで、溝部10の深さDを8μmに設定した場合を例示しているが、ピッチPは100μm以上で200μm以下の範囲内に設定すればよい。また、溝部10の深さDは4μm以上で20μm以下の範囲内に設定すればよく、より好ましくは5〜15μmの範囲内、一層好ましくは6〜10μmの範囲内である。これらの根拠についての詳細は後述する。
次に、両面塗工部14の表面に溝部10を形成する方法について、図5を参照しながら説明する。
図5に示すように、一対の溝加工ローラ22,23を所定の間隙で配置し、この溝加工ローラ22,23間の間隙に、図2(a)に示した負極板フープ材11を通過させることにより、負極板フープ材11における両面塗工部14の両面側の多孔性保護膜28及び負極活物質層13に、所定形状の溝部10を形成することができる。
溝加工ローラ22,23は、共に同一のものであって、軸芯方向に対し45°の捩じれ角となる方向に多数の溝加工用突条(以下、単に「突条」という。)22a,23aを形成したものである。突条22a,23aは、鉄製のローラ母体の表面全周に酸化クロムを溶射してコーティングしてセラミック層を形成した後、セラミック層にレーザを照射して所定のパターンになるように部分的に溶かすことにより、容易に、且つ高精度に形成することができる。この溝加工ローラ22,23は、一般に印刷で使用されるセラミック製レーザ彫刻ロールと呼称されるものとほぼ同様のものである。このように溝加工ローラ22,23を酸化クロム製としたことにより、硬さはHV1150以上あり、かなり硬い材質であることから、摺動や磨耗に強く、鉄製ローラに比較して、数10倍以上の寿命を確保できる。
このように、多数の突条22a,23aが形成された溝加工ローラ22,23の間隙に負極板フープ材11を通過させれば、図3に示したように、負極板フープ材11の両面塗工部14の両面側の多孔性保護膜28及び負極活物質層13に、互いに直角に立体交差する溝部10を形成することができる。
なお、突条22a,23aは、図4に示した断面形状を有する溝部10を形成することのできる断面形状、つまり先端部の角度βが120°で、曲率Rが30μmの円弧状となった断面形状を有している。先端部の角度βを120°に設定しているのは、120°未満の小さな角度に設定すると、セラミック層が破損し易くなるためである。また、突条22a,23aの先端部の曲率Rを30μmに設定しているのは、突条22a,23aを多孔性保護膜28及び負極活物質層13に押し付けて溝部10を形成する際に、多孔性保護膜28及び負極活物質層13にクラックが発生するのを防止するためである。また、突条22a,23aの高さは、形成すべき溝部10の最も好ましい深さDが6〜10μmの範囲内であるから、20〜30μm程度に設定される。これは、突条22a,23aの高さが低過ぎると、溝加工ローラ22,23の突条22a,23aの周面が多孔性保護膜28に接触して、多孔性保護膜28及び負極活物質層13から剥がれた物質が溝加工ローラ22,23の周面に付着するので、形成すべき溝部10の深さDよりも大きな高さに設定する必要があるためである。
溝加工ローラ22,23の回転駆動は、サーボモータなどによる回転力が一方の溝加工ローラ22に伝達され、この溝加工ローラ23の回転が、溝加工ローラ22,23の各々のローラ軸にそれぞれ軸着されて互いに噛合する一対のギヤー24,27を介して他方の溝加工ローラ23に伝達され、溝加工ローラ22,23が同一の回転速度で回転するようになっている。
ところで、多孔性保護膜28及び負極活物質層13に溝加工ローラ22,23の突条22a,23aを食い込ませて溝部10を形成する方法として、溝加工ローラ22,23間のギャップによって形成すべき溝部10の深さDを設定する定寸方式と、突条22a,23aに対する加圧力と形成される溝部10の深さDとに相関があることを利用して、回転駆動力が伝達される溝加工ローラ(以下、単に「固定ローラ」という。)23を固定とし、且つ上下動可能に設けた溝加工ローラ(以下、単に「可動ローラ」という。)22に付与する加圧力を調整して形成すべき溝部10の深さDを設定する定圧方式とがあるが、本発明における溝部形成には、定圧方式を用いることが好ましい。
その理由は、定寸方式の場合、溝部10の深さDを決定するための溝加工ローラ22,23間の隙間を1μm単位で精密に設定するのが困難であるのに加えて、溝加工ローラ22,23の芯振れがそのまま溝部10の深さDに現れてしまう。これに対し、定圧方式の場合は、負極活物質層13における活物質の充填密度に若干左右されるものの、両面塗工部14の厚みのバラツキに対して可動ローラ22を押圧する圧力(例えば、エアーシリンダのエアー圧力)を常に一定となるように自動的に可変調節することで容易に対応でき、これにより、所定の深さDを有する溝部10を再現性よく形成することができるからである。
ただし、定圧方式で溝部10を形成する場合には、負極板フープ材11における片面塗工部17の多孔性保護膜28及び負極活物質層13に対し、溝部10を形成することなく負極板フープ材11が溝加工ローラ22,23の隙間を通過できるようにする必要がある。これに対しては、溝加工ローラ22,23間にストッパを設けて、可動ローラ22を片面塗工部17に対して非押圧状態に保持することで対応することができる。ここで、「非押圧状態」とは、片面塗工部に溝部を形成しない程度に当接した状態(非接触状態も含む)をいう。
また、薄い負極板3の場合には、両面塗工部14の厚みが200μm程度しかなく、このような薄い厚みの両面塗工部14に深さDが8μmの溝部10を形成するに際しては、溝部形成の加工精度を上げる必要がある。そこで、溝加工ローラ22,23の軸受け部は、ベアリングが回転するために必要な隙間だけとし、ローラ軸とベアリング間は、隙間が存在しない嵌め合い形態とし、そのベアリングとそのベアリングを保持するベアリングホルダとの間も隙間が存在しない嵌め合い形態に構成するのが好ましい。これにより、両溝加工ローラ22,23は、ガタツキを生じることなく各々の間隙に負極板フープ材11を通過させることができるから、負極板フープ材11を、両面塗工部14の両面に溝部10を高精度に形成しながらも、片面塗工部17には溝部10を形成することなく、各々の間隙をスムーズに通過させることができる。
次に、溝部10の深さDについて説明する。電解液の極板群1への注液性(含浸性)は、溝部10の深さDが大きくなるにしたがって向上する。これを検証するために、両面塗工部14の多孔性保護膜28及び負極活物質層13に、ピッチPを170μmとして、深さDがそれぞれ3μm、8μmおよび25μmの溝部10を形成した3種類の負極板3を形成して、これら負極板3及び正極板2をセパレータ4を介して巻回することにより3種類の極板群1を製作し、これら極板群1を電池ケース内に収容して電解液が極板群1に浸透していく注液時間を比較した。その結果、溝部10の深さDが3μmの負極板3では注液時間が約45分、溝部10の深さDが8μmの負極板3では注液時間が約23分、溝部10の深さDが25μmの負極板3では注液時間が約15分となった。これにより、溝部10の深さDが大きくなるに従って電解液の極板群1への注液性が向上し、溝部10の深さDが4μm未満に小さくなると、電解液の注液性向上の効果は殆ど得られないことが判明した。
一方、溝部10の深さDが大きくなると、電解液の注液性が向上するが、溝部10が形成された箇所の活物質が異常に圧縮されてしまうため、リチウムイオンが自由に移動できなくなって、リチウムイオンの受け入れ性か悪くなり、リチウム金属が析出し易くなるおそれが生じる。また、溝部10の深さDが大きくなれば、それに伴って負極板3の厚みが増加するとともに、負極板3の延びが増大するため、多孔性保護膜28及び活物質層13が芯材12から剥がれ易くなる。さらに、負極板3の厚みが増加すると、極板群1を形成する巻回工程において、多孔性保護膜28及び活物質層13が芯材12から剥離したり、極板群1を電池ケース7内に挿入する際に、負極板3の厚みの増加に伴って直径が大きくなった極板群1が電池ケース7の開口端面に擦れて挿入し難くなる等の生産トラブルが発生する。加えて、多孔性保護膜28及び活物質層13が芯材12から剥がれ易い状態になると、導電性が悪くなって電池特性が損なわれる。
ところで、多孔性保護膜28及び活物質層13の芯材12からの耐剥離強度は、溝部10の深さDが大きくなるに従って低下していくと考えられる。すなわち、溝部10の深さDが大きくなるのに伴って、負極活物質層13の厚みが増大していくが、この厚みが増大することは芯材12から活物質を剥がす方向に大きな力が作用するため、耐剥離強度が低下する。
これを検証するために、170μmのピッチPで、深さDが25μm、12μm、8μmおよび3μmの溝部10を形成した4種類の負極板3を形成して、これら負極板3の耐剥離試験を行ったところ、耐剥離強度は、深さDの大きい順に、約4(N/m)、約5(N/m)、約6(N/m)および約7(N/m)という結果となり、溝部10の深さDが大きくなるにしたがって耐剥離強度が低下していくことが実証された。
以上のことから、溝部10の深さDについて、次のことが言える。すなわち、溝部10の深さDを4μm未満に設定した場合、電解液の注液性(含浸性)が不十分となり、一方、溝部10の深さDを20μmを超える大きに設定した場合、活物質の芯材12からの耐剥離強度が低下するため、電池容量の低下や、脱落した活物質がセパレータ4を貫通して正極板2に接触して内部短絡が発生するおそれがある。従って、溝部10は、深さDを可及的に小さくして、形成数を多くすれば、不具合の発生を防止して良好な電解液の注液性が得られることになる。そのため、溝部10の深さDは、4μm以上で20μm以下の範囲内に設定する必要があり、好ましくは5〜15μmの範囲内、より好ましくは6〜10μmの範囲内に設定する。
次に、溝部10のピッチPについて説明する。溝部10のピッチPが小さい方が溝部10の形成数が多くなって溝部10の総断面積が大きくなり、電解液の注液性が向上する。これを検証するために、深さDが8μmで、ピッチPが80μm、170μmおよび260μmの溝部10を形成した3種類の負極板3を形成し、これらの負極板3を用いた3種類の極板群1を電池ケース7内に収容して電解液の注液時間を比較した。その結果、ピッチPが80μmの場合の注液時間は約20分、ピッチPが170μmの場合の注液時間は約23分、ピッチPが260μmの場合の注液時間は約30分となり、溝部10のピッチPが小さい程、電解液の極板群への注液性が向上することが判明した。
ところで、溝部10のピッチPを100μm未満に設定すると、電解液の注液性が向上する反面、多くの溝部10による負極活物質層13の圧縮箇所が多くなって、活物質の充填密度が高くなり過ぎるとともに、負極活物質層13の表面に溝部10の存在しない平面が少なくなり過ぎて、隣接する各二つの溝部10間が潰れ易い突条形状となってしまい、この突条形状の部分が搬送工程でのチャッキング時に潰れると、負極活物質層13の厚みが変化する不具合が生じる。
一方、溝部10のピッチPを200μmを超える大きに設定すると、芯材12に延びが発生して負極活物質層13に大きなストレスがかかるとともに、活物質の芯材12からの耐剥離強度が低下して活物質が脱落し易くなる。
以下、溝部10のピッチPが大きくなった場合の耐剥離強度の低下について詳述する。
同一の溝加工ローラ22,23間を負極板フープ材11が通過するときに、両面塗工部14の多孔性保護膜28及び負極活物質層13に溝加工ローラ22,23の突条22a,23aが食い込んで溝部10が同時に形成される際、突条22a,23aによる荷重が同一位置で同時に受けることによって相殺される箇所は、突条22a,23aが互いに立体交差する箇所、換言すれば、両面塗工部14の表面に形成される溝部10が互いに立体交差する部位のみであり、その他の箇所は、突条22a,23aによる荷重を芯材12のみで受けることになる。従って、両面塗工部14の溝部10を互いに直交するように形成する場合には、溝部10のピッチPが大きくなると、突条22a,23aによる荷重を受けるスパンが長くなって芯材12への負担が大きくなるため、芯材12が延ばされてしまい、その結果、負極活物質層13内において活物質が剥離したり、活物質が芯材12から剥離したりして、負極活物質層13の芯材12に対する耐剥離強度が低下する。
溝部10のピッチPが大きくなるのに伴って耐剥離強度が低下ことを検証するために、深さDが8μmの溝部10を、460μm、260μm、170μmおよび80μmのピッチPで形成した4種類の負極板3を形成して、これら負極板3の耐剥離試験を行ったところ、耐剥離強度は、ピッチPの大きい順に、約4(N/m)、約4.5(N/m)、約5(N/m)および約6(N/m)という結果となり、溝部10のピッチPが大きくなるに従って、耐剥離強度が低下して活物質が脱落し易くなることが実証された。
さらに、溝部10を形成した後に、負極板3の断面の観察を行ったところ、260μmの長いピッチPで溝部10を形成した負極板3では、芯材12の曲がりや活物質の一部が芯材12から僅かに剥がれて浮いた状態になっていることが確認できた。
以上のことから、溝部10のピッチPは、100μm以上で200μm以下の範囲内に設定するのが好ましい。
溝部10は、両面塗工部14において互いに立体交差するように形成しているため、突条22a,23aが多孔性保護膜28及び負極活物質層13に食い込むときに、多孔性保護膜28及び負極活物質層13に発生する歪みが互いに打ち消される利点がある。さらに、同一ピッチPで溝部10を形成する場合には、各溝部10の立体交差点における隣接する溝部10間の距離が最も短くなるため、芯材12にかかる負担が小さくて済み、活物質の芯材12からの耐剥離強度が高くなって活物質の脱落を効果的に防止することができる。
また、溝部10は、両面塗工部14において互いに位相が対称となるパターンで形成されているため、溝部10を形成することにより発生する負極活物質層13の伸びは、両面側の各負極活物質層13に同等に発生し、溝部10を形成した後に歪みが残らない。
さらに、両面塗工部14の両面に溝部10を形成したことにより、片面のみに溝部10を形成する場合に比較して、多くの電解液を均一に保持することができることから、長いサイクル寿命を確保することができる。
これを検証するために、深さDが8μmの溝部10を、170μmのピッチPで両面塗工部14の両面に形成した負極板3と、片面のみに形成した負極板3と、両面とも形成していない3種類の負極板3を形成して、これら負極板3を用いて構成した3種類の極板群1を電池ケース7内に収容した電池を複数個ずつ作製し、各電池に所定液量の電解液を注液して真空引きした状態で含浸させた後、各電池を分解して負極板3への電解液の含浸状態を観察した。
その結果、注液直後の時点において、溝部10を両面とも形成していない場合、負極板3に電解液が含浸していた面積は全体の60%に留まり、片面にのみ形成した場合、溝部10が形成された面では、電解液が含浸していた面積は全体の100%であったが、溝部10が形成されていない面では、電解液が含浸していた面積は全体の80%程度であった。これに対して、溝部10を両面に形成した場合には、両面とも電解液が含浸していた面積は全体の100%であった。
次に、注液完了後に、電解液が負極板3全体に含浸するまでの時間を把握するために、1時間経過毎に各電池を分解して観察した。その結果、両面に溝部10を形成した負極板3では、注液直後に電解液が両面共に100%含浸したのに対し、片面のみに溝部10を形成した負極板3では、溝部10が形成されていない面では2時間経過後に電解液が100%含浸された。また、両面とも溝部10を形成していない負極板3では、5時間経過後に電解液が両面共に100%含浸していたが、注液直後に含浸した箇所では電解液の含浸量が少なく、電解液が不均一な分布状態になっていた。このことから、溝部10の深さDが同じである場合、両面に溝部10を形成した負極板3は、片面のみに溝部を形成した負極板3に比較して、電解液の含浸が完了するまでの時間が1/2程度に短縮できるとともに、電池としてのサイクル寿命が長くなることが確認できた。
さらに、サイクル試験中の電池を分解し、片面のみに溝部10を形成した電極板に対して電解液の分布を調べて、非水電解液の主成分であるEC(エチレンカーボネイト)が極板の単位面積当たりどのくらい抽出されたかで、サイクル寿命の検証を行った。その結果、サンプリング部位に拘らず、何れも溝部10が形成された面の方が、溝部10が形成されていない面よりもECが0.1〜0.15mg程度多く存在していた。すなわち、両面に溝部10を形成した場合には、極板の表面に最も多くECが存在し、電解液の偏在がなく均一に含浸されるが、溝部10を形成しなかった面では、電解液の液量が少なくなるために、内部抵抗が上昇し、サイクル寿命が短くなる。
また、溝部10は、多孔性保護膜28及び負極活物質層13の幅方向の一端面から他端面に通じる貫通形状に形成することにより、電解液の極板群1への注液性が格段に向上して、注液時間を大幅に短縮することができる。これに加えて、電解液の極板群1への含浸性が格段に向上したことで、電池としての充放電時に液枯れ現象の発生を効果的に抑制することができるとともに、極板群1での電解液の分布が不均一になるのを抑制することができる。また、溝部10を負極板3の長手方向に対し傾斜した角度で形成したことにより、電解液の極板群1への含浸性が向上するとともに、極板群1を形成する巻回工程におけるストレスの発生を抑制することができ、負極板3の極板切れを効果的に防止することができる。
なお、上記実施形態では、電極板のうちの負極板3に溝部10を形成する場合を例示して説明したが、溝部10による電解液の極板群1への注液性や含浸性を向上させて高効率生産を達成する目的のためには、正極板2または負極板3の何れか一方に溝部10を形成すればよく、何れの電極板に溝部10を形成しても電解液の注液性や含浸性の向上を図ることができる。その場合、溝部10の深さDやピッチPが同じであれば、何れの電極板に溝部10を形成しても同等の注液性および含浸性の向上が得られる。リチウム二次電池の正極板2に溝部を形成する場合、正極板2は負極板3に比較して活物質層が硬いので、溝部の形成に際して大きな加圧力が必要となる。上記実施形態の負極板3に溝部10を形成した場合には、小さな加圧力で溝部10を形成することができる。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、本実施形態では、極板群1として、正極板2及び負極板3をセパレータを介して巻回された構成のものを用いたが、正極板2及び負極板3をセパレータを介して積層して構成した極板群についても、同様の効果を得ることができる。
以下、本発明の実施例を挙げて本発明の構成及び効果をさらに説明するが、本発明はこれら実施例に限定されるものではない。
(負極板フープ材の作製)
負極活物質として、人造黒鉛を100重量部、結着剤としてスチレンーブタジェン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに練合機で攪拌して、負極合剤ペーストを作製した。この負極合剤ペーストを、厚さが10μmの銅箔からなる集電用芯材12に塗布乾燥し、総厚が約200μmとなるようにロールプレスした。その後、粒子径が約1.2μm程度のアルミナ材に少量の結着材を加えて混練したものを、ローラ方式の間欠塗工装置を用いて、負極活物質層13の表面に約5μmの厚さに塗工したのち、乾燥することにより多孔性保護膜28を形成した。その後、スリッタ機で公称容量2550mAhの直径18mmで高さが65mmの円筒形リチウム二次電池の負極板3の幅である約60mm幅に切断して、負極板フープ材11を作製した。
次に、溝加工ローラ(固定ローラ及び可動ローラ)22,23として、ロール外径が100mmのロール本体のセラミック製の外周面に、先端角が120°で、高さが25μmの突条22a,23aを、軸芯方向に対する捩じれ角が45°となる配置で170μmのピッチで形成したものを用いた。この溝加工ローラ22,23間に負極板フープ材11を通過させて、負極板フープ材11の両面塗工部14の両面に溝部10を形成した。なお、両ローラ22,23のローラ軸に固着されたギヤー27,24を噛合させて、固定ローラ23をサーボモータで回転駆動することにより、両ローラ22,23を同一の回転速度で回転するようにした。
可動ローラ22は、エアーシリンダで加圧されており、このエアーシリンダのエアー圧力を調整して形成する溝部10の深さDを調整した。この際、溝加工ローラ22,23の最小隙間として設定した100μmを越えて可動ローラ22が固定ローラ23に近接するのをストッパで阻止して、片面塗工部17に溝部10が形成されないようにした。ストッパの調整は溝加工ローラ22,23間の隙間が100μmになるように設定した。
また、可動ローラ22への加圧力は、溝部10の深さDが8μmとなるように、エアーシリンダのエアー圧力を、極板幅1cm当たり30kgfになるように調整した。また、溝加工ローラ22,23間の隙間を負極板フープ材11が移送する速度を毎分5mとした。そして、溝部10の深さDを輪郭形状測定器で測定したところ、両面塗工部14の両面に形成された溝部10の深さDは、平均で約8μmであった。なお、レーザ顕微鏡を用いて負極活物質層13のクラックの発生の有無を確認したが、クラックは全く見られなかった。また、負極板3の厚みの増加は約0.5μmで、1セル当たりの長手方向の延びは約0.1%であった。
(正極板フープ材の作製)
正極活物質として、組成式LiNiCo0.1A10.052で代表されるリチウムニッケル複合酸化物を用いた。NiSO4水溶液に、所定比率のCoおよびAlの硫酸を加え、飽和水溶液を調製した。この飽和水溶液を攪拌しながら水酸化ナトリウムを溶解したアルカリ溶液をゆっくり滴下して、中和することによって3元系の水酸化ニッケルNi0.8Co0.15Al0.05(OH)2を沈殿により生成させた。この沈殿物を濾過・水洗し、80℃で乾燥を行った。得られた水酸化ニッケルは平均粒系が約10μmであった。
そして、Ni、Co、Alの原子数の和とLiの原子数の比が1:1.03になるように水酸化リチウム水和物を加え、800℃の酸素雰囲気中で10時間の熱処理を行うことにより、目的とするLiNi0.8Co0.15Al0.052を得た。得られたリチウムニッケル複合酸化物は、粉末X線回折により単一相の六方晶相状構造であるとともに、CoおよびAlが固溶していることを確認した。そして、粉砕、分級の処理を経て正極活物質粉末とした。
活物質100質量部に導電材としてのアセチレンブラックを5質量部を加えて、この混合部にN−メチルピロリドン(NMP)の溶剤に結着剤としてのポリフッ化ビニリデン(PVdF)を溶解した溶液を混練してペースト状とした。なお、加えたPVdF量は活物質100質量部に対して5質量部となるように調製した。このペーストを、15μmのアルミニウム箔からなる集電用芯材の両面に塗工して、乾燥後に圧延して厚みが約200μmで幅が約60mmの正極板フープ材を製作した。
(極板群の作製)
次に、両極板フープ材を乾燥して余分な水分を取り除いた後に、ドライエアールームで両極板フープ材を、厚さが約30μmのポリエチレン微多孔フィルムからなるセパレータ4と重ね合わせた状態で巻回して極板群1を構成した。両極板フープ材のうち負極板フープ材11は、両面塗工部14と片面塗工部の中間にある芯材露出部18を切断したが、溝加工ローラ22,23を片面塗工部17の負極活物質層13に溝部10が形成されないように設定したことにより、切断後の芯材露出部18および片面塗工部17には湾曲状の変形が発生せず、巻回機での稼働低下が生じなかった。なお、集電リード20は、巻回機に備えている溶接部を用いて負極板フープ材11の状態で巻回前に取り付けた。
(電解液の注液性の評価)
このようにして作製した極板群1を電池ケース7に収容したのちに、電解液を注液して注液性の検証を行った。
電解液の注液性の評価を行うに際して、約5gの電解液を電池ケースに供給し、真空に引いて含浸させる注液方式を採用した。なお、電解液を数回に分けて電池ケース内に供給しても構わない。
所定量の電解液を注液したのち、真空ブースに入れて真空引きすることにより極板群の中の空気を排出し、続いて真空ブース内を大気に導き、電池ケース内と大気との差圧によって電解液を極板群中に強制的に注液するようにした。真空引きは、真空度が−85kpaで、真空吸引を行った。この工程の注液時の注液時間を測定して、注液性を比較するための注液時間のデータとした。
その結果、多孔性保護膜28の上に約8μmの溝部10を形成した負極板3を用いた極板群1の場合には、注液時間が22分17秒であり、多孔性保護膜28のみで溝部が無い負極板を用いた極板群の場合には、注液時間が69分13秒となった。この結果から、溝部10を形成すれば、電解液の注液性が格段に向上して注液時間を大幅に短縮できることを確認できた。
(電池の安全性の評価)
多孔性保護膜28の表面に溝部10を設けた負極板3を用いて構成された極板群1を、電池ケースに収容し、EC(エチレンカーボネート)、DMC(ジメチルカーボネート、MEC(メチルエチルカーボネート)混合溶媒に、1MのLiPFと、3重量部のVC(ビニレンカーボネート)と溶解させた電解液を、約5g注液した後、電池ケースを封口して、公称容量2550mAh、公称電圧3.7V、電池直径18mm、高さ65mmの円筒形電池を作製した。
作製した電池に対して、クラッシュ試験、釘刺し試験および外部短絡試験を行ったところ、発熱や膨張が無いことを確認した。また、過充電試験では、漏空き、発熱および発煙が無いことを確認した。さらに、150℃加熱試験においても、膨張、発熱および発煙が無いことを確認した。これにより、多孔性保護膜28に溝加工を施したにもかかわらず、アルミナ材の多孔性保護膜28が有効に作用して熱暴走しないことが判明した。
本発明の電池用電極板は、電解液の含浸性に優れ、かつ、内部短絡の発生を抑制したm生産性及び信頼性の高いもので、この電極板を用いて構成された極板群を備えたリチウム二次電池は、携帯用電子機器や通信機器などの駆動電源等に有用である。
本発明の一実施形態におけるリチウム二次電池の構成を示した縦断面図である。 (a)〜(d)は、本発明の一実施形態における電池用電極板の製造工程を示した斜視図である。 本発明の一実施形態における電池用電極板の一部拡大平面図である。 図3のA−A線に沿った拡大断面図である。 本発明の一実施形態における両面塗工部の表面に溝部を形成する方法を示した斜視図である。 (a)〜(d)は、従来の電池用電極板の製造工程を示した斜視図である。 従来の電池用電極板における課題を説明した斜視図である。
符号の説明
1 極板群
2 正極板
3 負極板
4 セパレータ
7 電池ケース
8 ガスケット
9 封口板
10 溝部
11 負極板フープ材
12 集電用芯材
13 負極活物質層
14 両面塗工部
17 片面塗工部
18 芯材露出部
19 極板構成部
20 集電リード
21 絶縁テープ
22 溝加工ローラ(可動ローラ)
23 溝加工ローラ(固定ローラ)
22a、23a 溝加工用突条
24,27 ギヤー
28 多孔性保護膜

Claims (11)

  1. 集電用芯材の表面に形成された活物質層を多孔性保護膜で被覆した非水系電池用電極板であって、
    前記電極板は、
    前記集電用芯材の両面に前記活物質層及び多孔性保護膜が形成された両面塗工部と、
    前記集電用芯材の端部であって、前記活物質層及び多孔性保護膜が形成されていない芯材露出部と、
    前記両面塗工部と前記芯材露出部との間であって、前記集電用芯材の片面にのみ前記活物質層及び多孔性保護膜が形成された片面塗工部と
    を有し、
    前記両面塗工部の両面に複数の溝部が形成され、かつ、前記片面塗工部には溝部が形成されていなく、
    前記溝部は、前記多孔性保護膜の表面から前記活物質層の表面に及んで該活物質層表面にも形成され、かつ、前記多孔性保護膜の膜厚は、前記溝部の深さよりも小さい、電池用電極板。
  2. 前記電極板は、負極板である、請求項1に記載の電池用電極板。
  3. 前記多孔性保護膜は、無機酸化物を主成分とする材料からなる、請求項1に記載の電池用電極板。
  4. 前記多孔性保護膜は、アルミナおよび/またはシリカを主成分とする材料からなる、請求項3に記載の電池用電極板。
  5. 前記溝部の深さは、4μm〜20μmの範囲にある、請求項1に記載の電池用電極板。
  6. 前記溝部は、前記電極板の長手方向に沿って、100μm〜200μmのピッチで形成されている、請求項1に記載の電池用電極板。
  7. 前記両面塗工部の両面に形成された溝部は、前記電極板の長手方向に対して、互いに異なる方向に45°の角度に傾斜した形成され、かつ、互いに直角に立体交差している、請求項1に記載の電池用電極板。
  8. 正極板および負極板がセパレータを介して構成する非水系電池用極板群であって、
    前記正極板および負極板の少なくとも一方の電極板は、請求項1に記載の構成を有し、
    前記極板群は、前記電極板の前記芯材露出部を巻き始端として巻回、または前記芯材露出部を積層始端として積層されている、電池用極板群。
  9. 電池ケース内に、請求項に記載の極板群が収容されるとともに、所定量の非水電解液が注液され、かつ、前記電池ケースの開口部が密閉状態に封口されている、リチウム二次電池。
  10. 請求項1に記載の非水系電池用電極板の製造方法であって、
    集電用芯材の両面に活物質層及び多孔性保護膜が形成された両面塗工部と、前記集電用芯材の片面にのみ活物質層及び多孔性保護膜が形成された片面塗工部と、前記活物質層及び多孔性保護膜が形成されていない芯材露出部とが、この順序で連続的に形成された電極
    板フープ材を用意する工程(a)と、
    前記電極板フープ材の上下に、表面に複数の突条部が形成された一対のローラを配置し、該一対のローラを前記電極板フープ材の両面に押圧しながら回転させて、前記電極板フープ材を前記一対のローラの隙間を通過させながら、前記両面塗工部の両面に複数の溝部を同時に形成する工程(b)と、
    前記両面塗工部が前記一対のローラの隙間を通過した後、前記片面塗工部が前記一対のローラの隙間を通過する間、前記一対のローラを前記片面塗工部に対して非押圧状態に保持する工程(c)と、
    前記電極板フープ材を、前記両面塗工部片面塗工部との中間にある前記芯材露出部を切断して、前記電池用電極板に分離する工程(d)と
    を含み、
    前記工程(b)において、前記溝部は、前記多孔性保護膜の表面から前記活物質層の表面に及んで該活物質層表面にも形成され、かつ、前記多孔性保護膜の膜厚は、前記溝部の深さよりも小さい、電池用電極板の製造方法。
  11. 前記突条部の先端部は円弧状の断面形状を有し、かつ、前記突条部の高さは前記溝部の深さよりも大きい、請求項10に記載の電池用電極板の製造方法
JP2008187431A 2007-07-20 2008-07-18 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 Active JP4355356B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008187431A JP4355356B2 (ja) 2007-07-20 2008-07-18 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
CNA2008800011901A CN101569034A (zh) 2007-07-20 2008-07-22 电池用电极板、电池用极板组、锂二次电池、电池用电极板的制造方法
KR1020097010684A KR20090111801A (ko) 2007-07-20 2008-07-22 전지용 전극판, 전지용 극판군, 리튬 이차전지, 및 전지용 전극판의 제조 방법
US12/515,482 US7695864B2 (en) 2007-07-20 2008-07-22 Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
PCT/JP2008/001945 WO2009013890A1 (ja) 2007-07-20 2008-07-22 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007189335 2007-07-20
JP2008187431A JP4355356B2 (ja) 2007-07-20 2008-07-18 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法

Publications (2)

Publication Number Publication Date
JP2009049006A JP2009049006A (ja) 2009-03-05
JP4355356B2 true JP4355356B2 (ja) 2009-10-28

Family

ID=40281150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187431A Active JP4355356B2 (ja) 2007-07-20 2008-07-18 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法

Country Status (5)

Country Link
US (1) US7695864B2 (ja)
JP (1) JP4355356B2 (ja)
KR (1) KR20090111801A (ja)
CN (1) CN101569034A (ja)
WO (1) WO2009013890A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487219B1 (ja) * 2008-12-26 2010-06-23 トヨタ自動車株式会社 非水二次電池用電極の製造方法
JP2010186736A (ja) * 2009-01-13 2010-08-26 Panasonic Corp 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法
JP4527190B1 (ja) * 2009-01-14 2010-08-18 パナソニック株式会社 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4527189B1 (ja) * 2009-01-14 2010-08-18 パナソニック株式会社 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4672079B2 (ja) * 2009-01-14 2011-04-20 パナソニック株式会社 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法
JP4527191B1 (ja) * 2009-01-16 2010-08-18 パナソニック株式会社 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
JP2010186740A (ja) * 2009-01-16 2010-08-26 Panasonic Corp 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
JP2011134623A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
KR101252914B1 (ko) * 2010-08-25 2013-04-09 삼성에스디아이 주식회사 전극조립체 및 이를 포함한 이차전지와 그 제조방법
KR101326630B1 (ko) 2010-12-02 2013-11-07 주식회사 엘지화학 신규한 노칭 장치 및 이를 사용하여 생산되는 이차전지
JP5987336B2 (ja) * 2011-03-25 2016-09-07 日本電気株式会社 二次電池
TW201304245A (zh) * 2011-07-15 2013-01-16 Growin Automation Co Ltd 將極群組合於外殼的製程
US10276856B2 (en) * 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
JP6919572B2 (ja) * 2015-12-22 2021-08-18 日本電気株式会社 二次電池とその製造方法
WO2018048126A1 (ko) * 2016-09-08 2018-03-15 주식회사 엘지화학 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
US11764348B2 (en) 2017-03-31 2023-09-19 Aesc Japan Ltd. Battery electrode, and lithium ion secondary battery
CN112534606B (zh) * 2020-03-12 2022-05-20 宁德新能源科技有限公司 电极组件和电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (ja) 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
JPH09298057A (ja) 1996-04-30 1997-11-18 Sanyo Electric Co Ltd リチウムイオン電池
JP4149543B2 (ja) 1997-11-19 2008-09-10 株式会社東芝 非水電解液電池
JP2001176558A (ja) 1999-12-20 2001-06-29 Toshiba Corp 非水電解液二次電池
JP4454948B2 (ja) * 2002-04-12 2010-04-21 株式会社東芝 非水電解液二次電池
KR100732803B1 (ko) 2003-09-18 2007-06-27 마쯔시다덴기산교 가부시키가이샤 리튬이온 2차전지
WO2005067080A1 (ja) 2004-01-09 2005-07-21 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
JP2005285607A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 非水系二次電池およびその製造方法
JP4657001B2 (ja) 2004-05-25 2011-03-23 パナソニック株式会社 リチウムイオン二次電池およびその製造方法
KR100736520B1 (ko) * 2004-05-25 2007-07-06 마쯔시다덴기산교 가부시키가이샤 리튬이온 2차전지 및 그 제조방법
JP2006107853A (ja) * 2004-10-04 2006-04-20 Sony Corp 非水電解質二次電池及びその製造方法

Also Published As

Publication number Publication date
US7695864B2 (en) 2010-04-13
KR20090111801A (ko) 2009-10-27
JP2009049006A (ja) 2009-03-05
US20100035140A1 (en) 2010-02-11
CN101569034A (zh) 2009-10-28
WO2009013890A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4355356B2 (ja) 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
JP4527190B1 (ja) 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法
JP4672079B2 (ja) 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法
JP4527191B1 (ja) 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
JP4359331B2 (ja) 二次電池および二次電池の製造方法
JP4362539B2 (ja) 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置
WO2010082258A1 (ja) 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
WO2010082256A1 (ja) 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法
JP4043956B2 (ja) 電池用電極板の製造方法
JP5011632B2 (ja) スリッター装置及び電極の製造方法
CN114365306B (zh) 使用激光制造二次电池的电极的设备和方法及通过其制造的二次电池的电极
JP4527189B1 (ja) 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090316

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4355356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140807

Year of fee payment: 5