JP4316469B2 - 自動設計装置 - Google Patents

自動設計装置 Download PDF

Info

Publication number
JP4316469B2
JP4316469B2 JP2004301663A JP2004301663A JP4316469B2 JP 4316469 B2 JP4316469 B2 JP 4316469B2 JP 2004301663 A JP2004301663 A JP 2004301663A JP 2004301663 A JP2004301663 A JP 2004301663A JP 4316469 B2 JP4316469 B2 JP 4316469B2
Authority
JP
Japan
Prior art keywords
wiring
diagonal
layer
region
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004301663A
Other languages
English (en)
Other versions
JP2006114763A (ja
Inventor
渉二 瀬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004301663A priority Critical patent/JP4316469B2/ja
Priority to US11/249,388 priority patent/US7370307B2/en
Publication of JP2006114763A publication Critical patent/JP2006114763A/ja
Priority to US12/036,708 priority patent/US7719115B2/en
Application granted granted Critical
Publication of JP4316469B2 publication Critical patent/JP4316469B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、半導体集積回路に係り、特に斜め配線と直交配線とを有する多層配線構造の半導体集積回路を設計するための自動設計装置、自動設計方法、及び半導体集積回路に関する。
近年の集積回路の微細化に伴い、隣接する配線間のクロストークの問題が懸念されている。特に、配線ピッチが90nm以下になると、クロストークが発生する可能性が高くなるため、クロストークの抑制を行うための様々な技術が検討がされている。
配線間のクロストーク発生を抑制する技術として、斜め配線技術を用いた多層配線技術がある(例えば、特許文献1参照。)。斜め配線技術とは、配線を0度、90度方向に延伸させた「直交配線」に対し、配線を45度、135度方向に延伸させた「斜め配線」を利用する技術である。斜め配線技術の採用により、斜め配線を配置するための配線格子のピッチも、直交配線の配線格子のピッチに比べて√2倍になる。このため、デザインルールに違反することなく配線ピッチを広げることができ、クロストークも低減できる。
しかし、現在一般的に用いられる斜め配線技術を用いた多層配線技術では、直交配線の配線格子が配置される配線層の上層に、単純に斜め方向の配線格子を配置した配線層を配置している。このため、直交配線の配線格子の格子点と斜め配線の配線格子の格子点とがずれる傾向にある。格子点がずれると、配線の直交部分にビアホールを置く際に、隣接する直交配線の格子点と斜め配線の格子点とのいずれかにはビアホールが置くことができない。このため、別の位置にビアホールを配置しなければならない。格子点のズレの問題は、配線の微細化が進むにつれて顕在化するため、ビアホールの配置位置の制約により、設計工程が複雑化する。
特開2004−031830号公報
本発明は、斜め配線と直交配線とを有する多層配線構造の半導体集積回路においてクロストークの発生を抑制でき、ビアホールの配置制約の少ない半導体集積回路が設計可能な自動設計装置、自動設計方法、及び半導体集積回路を提供する。
本発明の第1の特徴は、(イ)第1線群及び第1線群に直交する第2線群により定義される第1格子領域、及び第1及び第2線群に接続され、第1線群に斜めに延伸する第3線群及び第3線群に直交する第4線群により定義される第1斜め格子領域を第1配線層にそれぞれ設定し、第1〜第4線群を基準として、第1格子領域に第1配線を配置すると共に、第1斜め格子領域に第1配線の長手方向に斜めに延伸する第1斜め配線を配置する第1層配線部と、(ロ)第1格子領域及び第1斜め格子領域上に重なる位置に、第1及び第2線群により定義される第2格子領域及び第3及び第4線群により定義される第2斜め格子領域をそれぞれ第2配線層に設定し、第1〜第4線群を基準として、第2格子領域に第2配線を配置すると共に、第2斜め格子領域に第2配線の長手方向に斜めに延伸する第2斜め配線を配置する第2層配線部と、(ハ)第2格子領域及び第2斜め配線格子領域に重なる位置に、第1及び第1線群により定義される上層格子領域及び第3及び第4線群により定義される上層斜め格子領域を、それぞれ第2層配線層上のすべての上層配線層上に設定する上層配線部とを含む自動設計装置であることを要旨とする。
本発明によれば、斜め配線と直交配線とを有する多層配線構造の半導体集積回路においてクロストークの発生を抑制でき、ビアホールの配置制約の少ない自動設計装置、自動設計方法、及び半導体集積回路が提供できる。
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、図面は模式的なものであり、厚みと平均寸法の関係、各層の厚みの比率等は、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
−自動設計装置−
本発明の第1の実施の形態に係る自動設計装置は、図1に示すように、操作者からのデータや命令などの入力を受け付ける入力装置4と、レイアウト設計等の種々の演算を実行する演算処理部(CPU)1と、レイアウト結果等を出力する出力装置5と、半導体集積回路のレイアウト設計に必要な所定のデータ等を記憶したデータ記憶装置2と、半導体集積回路のレイアウトプログラム等を記憶したプログラム記憶装置6とを備える。
CPU1は、自動設計装置のメモリ空間内に仮想的に設置された半導体集積回路のチップ領域上に、複数の配線を配置する。このため、CPU1は、情報抽出部10、第1層配線部14,第2層配線部15,・・・下(k−1)層配線部16、上(k)層配線部17・・・を備える。
情報抽出部10は、チップ領域上に配置されるセル、マクロセル、メガセル等の回路素子の配置情報や、電源配線、クロック配線、信号配線等の配線を各配線層に配置するために必要な情報をデータ記憶装置2から抽出する。
第1層配線部14は、チップ領域上に配置されたセルの配置情報に基づいて、第1層目の配線層に配線を配置する。第1層配線部14は、図2(a)に示すように、チップ領域情報抽出部141、第1格子領域設定部142、第1斜め格子領域設定部143、第1配線部144、第1置換領域設定部145、及び第1再配線部146を備える。
チップ領域情報抽出部141は、チップ領域に配置されるRAM、ROM等の回路素子(マクロセル)の配置情報を抽出する。第1格子領域設定部142は、チップ領域情報抽出部141が抽出した回路素子の配置情報及び予め設定された配線の優先方向、配線条件等を、データ記憶装置2から読み出して、例えば、図3(a)に示すように、優先方向(図3(a)においては紙面縦方向)に対してそれぞれ平行に延伸する第1グリッド(第1線群)X,X2,X3,・・・Xp-1,Xp,Xp+1,・・・及び第1グリッドX,X2,X3,・・・Xp-1,Xp,Xp+1,・・・に直交する第2グリッド(第2線群)Y,Y2,Y3,・・・Yp-1,Yp,Yp+1,・・・により定義された複数の矩形領域からなる第1格子領域401aを、第1配線層400aに設定する。
第1斜め格子領域設定部143は、チップ領域情報抽出部141が抽出したマクロセルの配置情報、配線情報等を読み出し、第1グリッドX,X2,X3,・・・Xp-1,Xp,Xp+1,・・・の延伸する優先方向に対し、時計回り又は反時計回りに45度回転させた方向(図3(a)においては右上方向)に延伸する第3グリッド(第3線群)Sp-1,Sp,Sp+1,・・・、及び第3グリッドSp-1,Sp,Sp+1,・・・に直交する第4グリッド(第4線群)Tp-1,Tp,Tp+1,・・・により定義された複数の矩形領域からなる第1斜め格子領域402a,402b,402cを、第1配線層400a上の、例えば下層にマクロセルが配置された領域に設定する。なお、第1斜め格子402a,402b,402cの配置位置は、マクロセルが配置される領域の上層に限られず、目的又は用途により適宜設定可能であることは勿論である。
図3(a)は、第1配線層400aの配線の優先方向が紙面に対して垂直方向であり、マクロセルが配置された領域の上層に第1斜め格子領域402a,402b,402cを配置した場合の一例を示す。一方、図3(b)は、第1配線層400aの配線の優先方向が斜め方向(紙面に対して右上方向)である場合の一例を示す。図3(a)及び図3(b)から分かるように、第1格子領域401aと第1斜め格子領域402a,402b,402cとの境界にある第1グリッドX,X2,X3,・・・Xp-1,Xp,Xp+1,・・・、第2グリッドY,Y2,Y3,・・・Yp-1,Yp,Yp+1,・・・の終端部分は、第3グリッドSp-1,Sp,Sp+1,・・・、及び第4グリッドTp-1,Tp,Tp+1,・・・の終端部分にそれぞれ接続されている。
図2(a)に示す第1配線部144は、第1格子領域設定部142及び第1斜め格子領域設定部143が設定した第1〜第4グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・を基準とし、優先方向に延伸する複数の第1配線と第1配線に対して斜めに延伸する複数の第1斜め配線を、第1配線層400aに配置する。なお、第1〜第4グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・により定義される矩形領域の幅は、ビア配置等を考慮した最小間隔に設定することができる。しかしながら、各グリッド上に配置する配線は、必ずしも第1〜第4グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・により定義された矩形領域のそれぞれに配置する必要はなく、必要に応じて必要な領域に配線可能である。
第1置換領域設定部145は、第1配線部144が配置した第1配線及び第1斜め配線の配線結果を読み出して、配線ピッチが狭く、クロストークの発生の可能性のある領域を、第1置換領域として設定する。例えば、隣接する複数のマクロセルの間の領域は、配線幅が狭く設定され、クロストークが発生しやすい。このため、第1置換領域設定部145は、入力装置4から入力される操作者の命令等に基づいて、例えば、図4(a)に示すように、第1斜め格子領域402aと第1斜め格子領域402bとの間に第1置換領域403aを設定する。第1斜め格子領域402aと第1斜め配線格子域402cとの間には、第1置換領域403bを設定する。第1斜め格子領域402bと第1斜め格子領域402cとの間には、第1置換領域403cを設定する。さらに、第1置換領域設定部145は、第1置換領域403a,403b,403cに既に存在する配線を引きはがし、引きはがした配線のグリッドの延伸する方向からみて時計回り又は反時計回りに45°方向に延伸する方向に、第5グリッド(第5線群)Up-1・・・、及び第5グリッドUp-1,・・・に直交する第6グリッド(第6線群)Vp-1・・・により定義された複数の格子領域を配置する。
第1置換領域403a,403b,403cの設定は、プログラム記憶装置6に格納されたレイアウトプログラム等により第1置換領域設定部145が配線の混雑度等を計算することで、自動的に行ってもよい。
例えば、図4(b)に示すように、第1置換領域設定部145は、第1配線層400aに設定された第1斜め格子領域402b上に、第1置換領域403d,403eを設定することができる。さらに、第1置換領域設定部145は、第1置換領域403d,403eに既に存在する配線を引きはがし、引きはがした配線のグリッドの延伸する方向からみて時計回り又は反時計回りに45°方向に延伸する方向に、第5グリッドUp-1,Up,Up+1,・・・、及び第5グリッドUp-1,Up,Up+1,・・・に直交する第6グリッドVp-1,Vp,Vp+1,・・・により定義された複数の格子領域を配置してもよい。第5グリッドUp-1,Up,Up+1,・・・及び第6グリッドVp-1,Vp,Vp+1,・・・の終端部は、第1斜め格子領域402bに配置された第3グリッドSp-1,Sp,Sp+1,・・・、及び第4グリッドTp-1,Tp,Tp+1,・・・の終端部分にそれぞれ接続されている。
図5(a)に示すように、第1置換領域設定部145は、図4(b)の第1斜め格子領域402a上の部分的な領域に対しても、第1置換領域403p,403q,403s,403tをそれぞれ設定することができる。第1置換領域403p,403q,403s,403tの設定は、入力装置4を介して操作者が任意に設定してもよいし、プログラム記憶装置6に格納されたレイアウトプログラム等により、第1置換領域設定部145が配線の混雑度等を計算することで、自動的に行ってもよい。
第1再配線部146は、第5及び第6グリッドUp-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・を基準として、図5(b)に示すように、第1配線層400aに、優先方向に延伸する複数の第1配線及び第1配線に対して斜めに延伸する複数の第1斜め配線のいずれかを再配線する。なお、再配線は、必ずしも第5及び第6グリッドUp-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・により定義された矩形領域各々に配置する必要はない。図5(b)から分かるように、必要に応じて、第5及び第6グリッドUp-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・上の必要な領域に配線可能である。
第2層配線部15は、例えば図6に示すように、第1配線層400の第1格子領域401a及び第1斜め格子領域402a,402b等の位置情報に基づいて、第2配線層に配線を配置する。第3層目、第4層目、第5層目の配線も同様に、下層の情報に基づいて配線を配置する。第2層目、第3層目、第4層目、第5層目・・・に配線を配置する動作はそれぞれ実質的に同様であるので、詳細については、最上層の配線を行う上(k+1)層配線部17により説明する。
図1に示す上(k+1)層配線部17は、図2(b)に示すように、下(k)層情報抽出部171、第k+1格子領域設定部172,第k+1斜め格子領域設定部173,及び第k+1配線部174を有する。
下(k)層情報抽出部171は、図6に示すように、第k配線層800aの第k格子領域801a及び第k斜め格子領域802a,802bの位置情報を抽出する。第k+1格子領域設定部172は、下(k)層情報抽出部171が抽出した第k配線層800aの格子領域の情報、配線の優先方向、配線条件等をデータ記憶装置2から読み出して、第k格子領域801aの直上に重なるように第k+1格子領域901aを設定する。同様に、第k+1斜め格子領域設定部143は、下(k)層情報抽出部171が抽出した第k配線層800aの格子領域の情報、配線の優先方向、配線条件等をデータ記憶装置2から読み出して、第k斜め格子領域802a,802bの直上に重なるように、第k+1斜め格子領域902a,902bを設定する。第k+1配線部174は、第k格子領域設定部172及び第k+1斜め格子領域設定部173が設定した格子領域情報を、データ記憶装置2から読み出して、第k配線層900a上に、優先方向に平行に延伸する複数の第k+1配線及び第k+1配線の延伸する方向から時計回り又は反時計回りに45°回転させた方向に延伸する複数の第k+1斜め配線を配置する。
図1に示すデータ記憶装置2は、セル情報記憶部21、配線情報記憶部22、第1層情報記憶部24、第2層情報記憶部25、・・・下(k)層情報記憶部26、上(k+1)層情報記憶部27、・・・を備える。セル情報記憶部21は、チップ領域上に配置されるセル、マクロセル、メガセルの形状、大きさ、位置、回路等の情報を記憶する。配線情報記憶部22は、多層配線を形成するのに必要な配線情報や回路の接続情報等を記憶する。第1層情報記憶部24は、チップ領域上に第1配線層400aを配置するために必要な各種情報を記憶する。上(k+1)層情報記憶部27は、下(k)配線層800aの上層に上(k+1)配線層900aを配置するために必要な各種情報を記憶する。
図1において入力装置4は、キーボード、マウス、ライトペン又はフレキシブルディスク装置等を含む。操作者は、入力装置4より入出力データを指定したり自動設計に必要な数値等の設定が可能である。入力装置4により、出力データの形態等のレイアウトパラメータの設定、或いは演算の実行及び中止等の指示も入力可能である。出力装置5は、それぞれディスプレイ及びプリンタ装置等を含み、入出力データやレイアウト結果等を表示する。プログラム記憶装置6は、入出力データやレイアウトパラメータ及びその履歴や、演算途中のデータ、プログラム等を記憶する。
後述する自動設計方法により更に明らかとなるが、実施の形態に係る自動設計装置によれば、配線ピッチが狭くクロストークの発生が懸念される領域に、斜め配線を配置するための矩形領域(第1斜め格子領域402a,第1置換領域403a等)が設定され、その他の領域には、直交配線を配置するための矩形領域(第1格子領域401a)が設定される。配線ピッチの狭い領域に、選択的に斜め配線を配置することにより、配線ピッチを拡大することができ、クロストークの発生を抑制できる。また、斜め配線の採用により、ゲート数を約30%増加させることができるので、半導体集積回路の高密度化も図れる。さらに、実施の形態に係る自動設計装置によれば、第1斜め格子設定部143により、チップ領域の情報に基づいて、クロストークの発生が懸念されるRAM、ROM、DSP等の回路素子が配置される領域上に予め第1斜め格子領域402a,402bを設定することが可能である。このため、クロストークの発生を更に抑制可能な半導体集積回路が設計できる。
実施の形態に係る自動設計装置を用いて自動配線を行った場合は、図6の概念図に示すように、第1配線層400aに、第1格子領域401a及び第1斜め格子領域402a,402bがそれぞれ配置される。第2配線層500aには、第1格子領域401aの直上に重なり合う領域に第2格子領域501aが配置され、第1斜め格子領域402a,402bの直上に重なり合う領域に第2斜め格子領域502a,502bが配置される。第3配線層600a上には、第2格子領域501aの直上に重なり合う領域に第3格子領域601aが配置され、第2斜め格子領域502a,502bの直上に重なり合う領域に第3斜め格子領域602a,602bがそれぞれ配置される。第4配線層700a上には、第3格子領域601aの直上に重なり合う領域に第4格子領域701aが配置され、第3斜め格子領域602a,602bの直上に重なり合う領域に第4斜め格子領域702a,702bが配置される。第k配線層800aには、第k−1格子領域の直上に重なり合う領域に第k格子領域801aが配置され、第k−1斜め格子領域の直上に重なり合う領域に第k斜め格子領域802a,802bがそれぞれ配置される。
このように、実施の形態に係る自動設計装置によれば、斜め配線を配置するための第1斜め格子領域402a,402b、第2斜め格子領域502a,502b、・・・第k+1斜め格子領域902a,902bが、チップ領域上の全ての層でそれぞれ重なり合うように配置される。直交配線を配置するための第1格子領域401a、第2格子領域501a,・・・第k+1格子領域901aは、チップ領域上の各層でそれぞれ重なり合うように配置される。この結果、各配線層に配置する第1〜第6グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・、Up-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・の配置位置が一致するため、直交配線を配置するための格子点と斜め配線を配置するための格子点のズレが発生しない。よって、配線を微細化、多層化させる場合においても、格子点のズレによるビアホールを配置位置制約の問題が生じないので、配線設計を容易にすることができる。
次に、実施の形態に係る自動設計方法について、図7のフローチャートを用いて説明する。
(a)ステップS100において、図1に示す情報抽出部10は、半導体集積回路の配線設計に必要なセル情報、配線情報等の各種情報を抽出する。チップ領域上に配置されたセル、マクロセル、メガセルのセル情報(回路情報)は、入力装置4を介してセル情報記憶部21に記憶される。チップ領域の上層に多層配線層を形成するため配線条件等は、入力装置4を介して配線情報記憶部22に記憶される。
(b)ステップS110において、図1に示す第1配線層400aの配線設計を行う。ステップS111において、図2(a)のチップ領域情報抽出部141は、セル情報記憶部21に記憶されたチップ領域の回路情報を抽出する。なお、半導体集積回路の詳細な構造は、特に限定されない。例えば、NAND,NOR,AND,DRAM,LOGIC,DRAM混在LOGIC等のASICであってもよいし、FPGA,CPLD等のプログラマブルデバイス(PLD)であってもよい。ASICとPLDとが混在した半導体集積回路であっても構わない。
(c)ステップS112において、第1格子領域設定部142は、チップ領域情報抽出部141が抽出した回路情報及び配線情報記憶部22に格納された配線情報を読み出して、図4(a)に示すように、第1グリッドX,X2,X3,・・・Xp-1,Xp,Xp+1,・・・及び第2グリッドY,Y2,Y3,・・・Yp-1,Yp,Yp+1,・・・により定義された複数の矩形領域からなる第1格子領域401aを、第1配線層400a上に設定する。第1斜め格子領域設定部143は、チップ領域情報抽出部141が抽出したセル情報、配線情報等を読み出し、図4(a)に示すように、第3グリッドSp-1,Sp,Sp+1,・・・及び複数の第4グリッドTp-1,Tp,Tp+1,・・・により定義された複数の矩形領域からなる第1斜め格子領域402a,402b,402cを、第1配線層400a上に設定する。例えば、第1配線層400aの下層にRAM、ROM等のある程度部分的な領域が必要なマクロセルが設定されており、RAM、ROM等が配置された領域の直上に斜め配線を設定したい場合は、第1斜め格子領域設定部143は、RAM、ROM等が配置された領域の直上に第1斜め格子領域402a,402b,402cを設定する。
(d)ステップS113において、第1配線部144は、第1格子領域設定部142及び第1斜め格子領域設定部143が設定した第1〜第4グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・を基準として、優先方向に延伸する複数の第1配線(図示省略)と第1配線に対して斜めに延伸する複数の第1斜め配線(図示省略)を、第1配線層400aに配置する。
(e)ステップS114において、第1置換領域設定部145は、クロストークが発生する可能性のある領域に、図4(a)又は図4(b)に示すように、第1置換領域403a,403b,403c,403d,403e,・・・を設定する。第1置換領域403a,403b,403c,403d,403eの設定は、操作者が入力装置4を介して指示することもできるし、第1置換領域設定部145が自動的に設定することもできる。
(f)ステップS115において、第1置換領域設定部145は、第1配線部144により配線された第1置換領域403a,403b,403c,403d,403e上の複数の第1配線又は第1斜め配線を引きはがし、引きはがした領域に再配線をするための第5グリッドUp-1,Up,Up+1,・・・、及び第6グリッドVp-1,Vp,Vp+1,・・・により定義された複数の矩形領域を、第1置換領域403a,403b,403c,403d,403e上に配置する。ステップS116において、第1再配線部146は、第5及び第6グリッドUp-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・を基準として、第1配線層400a上に、複数の第1配線と第1配線に対して斜めに延伸する複数の第1斜め配線のいずれかを再配線する。第1配線層400aの配線情報は、図1の第1層情報記憶部24に記憶させる。
(g)ステップS120において、第1配線層400aの上層の第k+1層配線層900aの配線設計を行う。ステップS121において、下(k)層情報抽出部171は、下(k)層情報記憶部26に記憶された第k配線領域801aの情報を抽出する。ステップS122において、第k+1格子領域設定部172は、下(k)層情報抽出部171が抽出した配線領域の情報、及び配線情報記憶部22に記憶された配線の優先方向、配線条件等を読み出して、図6に示すように、第k格子領域801aの直上に第k+1格子領域901aを設定する。第k+1斜め格子領域設定部143は、下(k)層情報抽出部171が抽出した配線領域の情報及び配線情報記憶部22に記憶された配線条件等を読み出して、第k斜め格子領域802a,802bの直上に、それぞれ第k+1斜め格子領域902a,902bを設定する。
(h)ステップS123において、第k+1配線部174は、第k格子領域設定部172及び第k+1斜め格子領域設定部173が設定した配線領域の情報を基に、第k配線層900a上に、優先方向に平行に延伸する複数の第k+1配線(図示省略)及び第k+1配線の延伸する方向から時計回り又は反時計回りに45°回転させた方向に延伸する複数の第k+1斜め配線(図示省略)を配置し、配線結果を上(k+1)層情報記憶部27に記憶させる。
実施の形態に係る自動設計方法によれば、図6に例示するように、第1〜第k+1配線層400a〜900aの全ての配線層において、斜め配線を配置する第1斜め格子領域402a,402b上に重ね合わせるように、第2斜め格子領域502a,502b、・・・第k斜め格子領域902a,902bが配置される。このため、各配線層に配置する第1〜第6グリッドXp-1,Xp,Xp+1,・・・、Yp-1,Yp,Yp+1,・・・、Sp-1,Sp,Sp+1,・、Tp-1,Tp,Tp+1,・・・、Up-1,Up,Up+1,・・・、Vp-1,Vp,Vp+1,・・・の配置位置を揃えることができる。配置位置を揃えることで、グリッドのズレによるビアホール配置制約の問題を低減できるので、配線を微細化、多層化する際においても、配線設計を容易化できる。さらに、各配線層上に斜め配線を設定するための矩形領域を設定することで、直交配線のみを用いる場合に比べて、配線ピッチを拡大できると共にゲート数を約30%増加させることもできる。この結果、半導体集積回路の配線効率が向上し、高密度化が図れる。
−半導体集積回路−
次に、実施の形態に係る自動設計方法を用いて製造可能な半導体集積回路の一例を、図8の平面図及び図9の断面図に示す。実施の形態に係る半導体集積回路は、図9に示すように、基板30と、基板30上の複数の素子31a,31bと、複数の素子31a,31b上の第1絶縁膜40を有する。第1絶縁膜40には、第1優先方向に対して平行に延伸する複数の第1配線41a,41b,・・・41l,・・・を含む第1配線領域401、及び第1配線41a,41b,・・・41l,・・・に接続され、第1優先方向に対して斜めに延伸する複数の第1斜め配線42d,42e,42f,・・・を含む第1斜め配線領域402を含む第1配線層400を有する。
図9に示すように、第1配線41lは、第1絶縁膜40中に埋め込まれた第1ビアプラグ35lを介して、基板30上の素子31bに電気的に接続されている。第1斜め配線42e,42fは、第1絶縁膜40中に埋め込まれた第1ビアプラグ35e,35fを介して素子31aに電気的に接続されている。第1配線41l,第1斜め配線42e,42f及び第1絶縁膜40の上には、拡散防止用の第1ストッパ膜47が配置されている。
第1ストッパ膜47上には、第2絶縁膜50が配置されている。第2絶縁膜50上面には、図9の断面からは見えない第2配線及び第2配線に接続された第2斜め配線52f,52gが配置されている。第2斜め配線52f,52gは、第2絶縁膜50中に埋め込まれた第2ビアプラグ45f,45gを介して第1斜め配線42e,42fに接続されている。第2斜め配線52f,52g及び第2絶縁膜50の上には、第2ストッパ膜57が配置されている。
第2ストッパ膜57上には、第3絶縁膜60が配置されている。第3絶縁膜60には、図9の断面からは見えない第3配線及び第3配線に接続された第3斜め配線62e,62f及び第3配線62gが配置されている。第3斜め配線62e,62fは、第3絶縁膜60中に埋め込まれた第3ビアプラグ55e,55fを介して第2斜め配線52f,52gに接続されている。第3配線62gは、図9の断面からは見えない他の第3配線に接続されている。第3斜め配線62e,62f、第3配線62g、及び第3絶縁膜60の上には、第3ストッパ膜67が配置されている。
第3ストッパ膜67上には、第4絶縁膜70が配置されている。第4絶縁膜70には、図9の断面からは見えない第4配線及び第4配線に接続された第4斜め配線72g,72hが配置されている。第4斜め配線72g,72hは、第4絶縁膜70中に埋め込まれた第4ビアプラグ65g,65hを介して第3斜め配線62e,62fに接続されている。第4斜め配線72g,72h及び第4絶縁膜70の上には、第4ストッパ膜77が配置されている。
第1〜第4配線41a,41b,・・・71a,71b,・・・、第1〜第4斜め配線42a,42b,・・・71a,71b,・・・、第1〜第4ビアプラグ35e,35f,・・・,65g,65h,・・・の材料としては、アルミニウム(Al)、銅(Cu)、Al−Cu,Al−シリコン(Si)−Cu,銀(Ag),金(Au)等が使用可能である。第1〜第4絶縁膜40,50,60,70としては、比誘電率が3.0以下の低誘電率絶縁膜(low−k膜)が使用可能である。このような低誘電率絶縁膜としては、ポリシロキサン、ベンゾシクロブテン(BCB)等の有機シリコン酸化膜、ハイドロゲン−シルセルオキサンのような無機シリコン酸化膜、或いはポリアリレンエーテル、パリレン、ポリイミドフロロポリマー等のフッ化炭素(CF)系膜等が好適である。
実施の形態に係る半導体集積回路によれば、クロストークの発生の懸念される領域に、斜め配線(第1〜第4斜め配線42a,42b,・・・72a,72b・・・)が配置される。このため、デザインルールに違反することなく配線ピッチを広げることができ、配線のクロストークによる半導体集積回路の誤動作も低減できる。さらに、斜め配線が配置される領域は、基板30上の全ての配線層において、それぞれ重なり合うように対応して配置されるので、配線を多層化する場合においても、ビアの合わせずれを低減することができる。
次に、図10〜図30を用いて実施の形態に係る半導体集積回路の製造方法を説明する。なお、以下に述べる半導体集積回路の製造方法は一例であり、この変形例を含めて、これ以外の種々の方法により実現可能であることは勿論である。
(a)図10に示すように、複数の素子31a,31bが形成された基板30上に、シリコン酸化膜(SiO2膜)等の第1絶縁膜40を成膜する。第1絶縁膜40の表面に、フォトレジスト膜32をスピン塗布し、フォトリソグラフィ技術を用いてパターニングする。反応性イオンエッチング(RIE)等により、パターニングされたフォトレジスト膜32をエッチングマスクとして、第1絶縁膜40の一部を選択的に除去し、図11に示すように、溝33e,33f,33l及びビアホールを形成する。
(b)第1絶縁膜40上のフォトレジスト膜32を除去し、図12に示すように、第1絶縁膜40及び溝33e,33f,33l及びビアホールの表面にバリアメタル34を形成する。バリアメタル34としては、タングステン(W)、窒化シリコン(TiSi),コバルトシリコン(CoSi)、ニッケル(Ni),NiSi,鉄シリコン(FeSi),アルミニウム(Al),Al−Si−Cu,Al−Si,Al−Cu,Ag,Au又はこれらを用いた積層膜が好適である。
(c)図13に示すように、バリアメタル34の表面に、金属膜36をメッキ法、CVD法、又はPVD法等により堆積する。CMP法により、金属膜36を第1絶縁膜40の表面が露出されるまで研磨し、図14に示すように、バリアメタル34e上の第1ビアプラグ35e及び第1斜め配線42e、バリアメタル34f上の第1ビアプラグ35f及び第1斜め配線42f、及びバリアメタル34l上の第1配線41lを形成する。この結果、図15の平面図に示すように、第1配線領域401上を延伸する複数の第1配線41a,41b,41c,・・・,41l,・・・が形成される。第1斜め配線領域402には、第1配線41a,41b,41c,・・・に接続された第1斜め配線42a,42b,・・・41f,・・・が形成される。
(d)図16に示すように、第1配線41l、第1斜め配線42e,42f、及び第1絶縁膜40の表面に、CVD等により第1ストッパ膜47を配置する。第1ストッパ膜47としては、シリコンカーバイド(SiC)、シリコンカーバイドナイトライド(SiCN)、シリコンナイトライド(SiN)、シリコンオキサイドカーバイド(SiOC)等が好適である。続いて、図17に示すように、第1ストッパ膜47の上に第2絶縁膜50をCVD法等により成膜する。第2絶縁膜50としては、SiO2膜の他に、有機シリコン酸化膜、無機シリコン酸化膜、或いはCF系膜等からなる低誘電率絶縁膜が好適である。そして、第2絶縁膜50の上にフォトレジスト膜42を塗布する。
(e)フォトリソグラフィ技術を用いてフォトレジスト膜42をパターニングする。図18に示すように、パターニングされたフォトレジスト膜42をエッチングマスクとして、RIEにより溝43f,43g及びビアホールを形成する。図19に示すように、RIEによりフォトレジスト膜52を除去する。図20に示すように、第2絶縁膜50の表面にバリアメタル44を配置する。バリアメタル44上に金属膜を堆積し、CMP法により第2絶縁膜50が露出するまで研磨し、図21に示すように、第2絶縁膜50中にバリアメタル44fを介して埋め込まれた第2ビアプラグ45f及び第2斜め配線52f及びバリアメタル44gを介して埋め込まれた第2ビアプラグ45g及び第2斜め配線52gをそれぞれ形成する。この結果、図22の平面図に示すように、第2配線領域501上に複数の第2配線51a,51b,51c,・・・が形成される。第2斜め配線領域502には、第2配線51a,51b,51c,・・・に接続された第2斜め配線52a,52b,・・・41g,・・・が形成される。
(f)図23に示すように、第2斜め配線52f,52g及び第2絶縁膜50の表面に、CVD法等により第2ストッパ膜57を配置する。第2ストッパ膜57の上に第3絶縁膜60をCVD法等により成膜する。そして、第3絶縁膜60の上にフォトレジスト膜52を塗布し、フォトリソグラフィ技術を用いてこのフォトレジスト膜52をパターニングする。パターニングされたフォトレジスト膜52をエッチングマスクとして、図24に示すように、溝53e,53f,53g及びビアホールを形成する。その後、残ったフォトレジスト膜52をRIEにより除去する。
(g)図25に示すように、溝53e,53f,53g及びビアホールの表面に、プラズマCVD法等によりバリアメタル54を成膜する。バリアメタル54の上に金属膜を成膜し、この金属膜をCMPにより研磨して、図26に示すように、バリアメタル54eを介して第3ビアプラグ55e及び第3斜め配線62eを形成する。バリアメタル54f上には、第3ビアプラグ55f及び第3斜め配線62fを形成する。バリアメタル54g上には、第3配線62gを形成する。この結果、図27の平面図に示すように、第3配線領域601上に複数の第3配線61a,61b,61c,・・・が形成される。第3斜め配線領域602には、第3配線61a,61b,61c,・・・に接続された第3斜め配線62a,62b,・・・・・・が形成される。
(h)図28に示すように、第3斜め配線62e,62f、第3配線62g及び第3絶縁膜60の表面に、CVD等により第3ストッパ膜67を配置する。第3ストッパ膜67の上に第4絶縁膜70をCVD法等により成膜する。そして、第4絶縁膜70の上にフォトレジスト膜62を塗布し、フォトリソグラフィ技術を用いてこのフォトレジスト膜62をパターニングする。パターニングされたフォトレジスト膜62をエッチングマスクとして、溝63g,63h及びビアホールを形成する。その後、残ったフォトレジスト膜62をRIEにより除去する。
(i)図29に示すように、溝63g,63h及びビアホールの表面に、プラズマCVD法等によりバリアメタルを成膜する。バリアメタルの上に金属膜を成膜し、この金属膜をCMPにより研磨して、溝63gに、バリアメタル54gを介して第4ビアプラグ65g及び第4斜め配線72gを埋め込む。溝63hには、バリアメタル54hを介して第4ビアプラグ65h及び第4斜め配線72hを埋め込む。この結果、図30の平面図に示すように、第4配線領域701上の複数の第4配線71a,71b,71c,・・・が形成される。第7斜め配線領域702には、第4配線71a,71b,71c,・・・に接続された第4斜め配線72a,72b,・・・,62h,・・・が形成される。第4絶縁膜70上に、CVD等により第4ストッパ膜77を成膜すれば、図9に示す半導体集積回路が完成する。
実施の形態に係る半導体集積回路の製造方法によれば、クロストークの発生の懸念される領域に斜め配線(第1〜第4斜め配線42a,42b,・・・72a,72b・・・)が形成できる。このため、デザインルールに違反することなく配線幅を広げることができ、クロストークも低減できる。さらに、斜め配線が配置される領域は、基板30上において多層配線構造を構成する全ての配線層上に対応して配置されるので、配線間を接続するビアの合わせずれを低減することもできる。
(その他の実施の形態)
本発明は、上述の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
第1斜め格子領域設定部143が設定する第1斜め格子領域402a,402b,・・・・は、チップ領域の回路情報に基づいて適宜変更可能である。例えば、集積回路の形成上RAM、ROM、DSP等のある一定の大きさを必要とする領域が存在する場合は、RAM、ROM等が設定される領域全体に斜め格子領域を設定することができる。また、ASICとPLDとが混在する半導体集積回路においては、ASIC部分に直交配線を配置するための第1格子領域を配置し、PLD部分に斜め配線を配置するための第1斜め格子領域を配置することもできる。
また、第1層配線部14が設計する第1層目の配線には、電源配線、クロック配線、信号配線のいずれが配置されても構わない。
図9に示す半導体集積回路は、4層の金属配線を含む半導体集積回路を例示するが、用途により金属配線は何層含んでいてもよい。
図8及び図9に示す半導体集積回路以外にも、様々な半導体集積回路が製造可能である。例えば、図31に示すように、基板30の厚さ方向に順次成膜された第2絶縁膜50上の第2ストッパ膜57,第3絶縁膜60上の第3ストッパ膜67,第4絶縁膜70上の第4ストッパ膜77の一部にそれぞれ穴を開け、O2アッシャにより、第2絶縁膜50,第3絶縁膜60,第4絶縁膜70にそれぞれ空洞58,68,78を形成する。この結果、第2〜第4斜め配線52f,52g,62e,62f,62g,72g,72hは空中配線となるため、絶縁層間の比誘電率が低くなり、信号伝達遅延を更に抑制することも可能である。
図32に示すように、第2絶縁膜50中に、高さHを有する第2ビアプラグ45zと、第2ビアプラグ45zの高さHより低い高さを有する第2ビアプラグ45x,45yを第2ビアプラグ45zに隣接させて埋め込む。第2ビアプラグ45zには、第2斜め配線52zを接続する。第2ビアプラグ45xには、第2斜め配線52xを接続する。第2ビアプラグ45yには、第2斜め配線52yを接続する。
この結果、配線の高さが互いに異なる第2斜め配線52x,52y,52zが得られる。この結果、配線間距離がより長くなり、配線間寄生容量が低減する。したがって、図32に示す構造の半導体集積回路においても、配線間隔が微細になるにつれ顕著になる配線間寄生容量、クロストーク発生の影響による信号伝達遅延を抑制した半導体集積回路を提供できる。また、図32に示す第2斜め配線45x,45y,45zは、図1に示す設計装置により得られた平面レイアウトに基づいて、第2ビアプラグ45x,45y,45zの高さを変えるだけで形成できるので、配線層のパターン設計は容易である。
配線間寄生容量、クロストーク発生の影響を考慮すれば、図32に示す半導体集積回路においては、第2斜め配線52zの下面の高さHを、第2ビアプラグ45x,45yに接続される第2斜め配線52x,52yの上面の高さと同一又はそれ以上の高さに形成するのが好ましい。この結果、第2斜め配線52x,52y,52zは、隣り合う2つの配線構造の側面が互いに対向しなくなるため、配線間寄生容量を低減させることができる。なお、第2斜め配線52zの下面の高さHは、厳密には、製造プロセス中におけるエッチング等の影響により若干上下にずれることは勿論である。
図33は、図32に示す配線構造を図9に示す集積回路の第2〜第4層目に応用した例を示している。また、図34は、第2斜め配線52fの上面、第3斜め配線62e及び第3配線62gの上面、及び第4斜め配線72gの上面に拡散防止膜(ストッパ膜)を配置した例を示している。この場合、第2絶縁膜50a,50bの膜の材料は同種も異種でも構わない。第3絶縁膜60a,60bの膜の材料は同種も異種でも構わない。第4絶縁膜70a,70bの膜の材料は同種も異種でも構わない。なお、図31〜図34に示す半導体集積回路は、4層の金属配線を含む半導体集積回路を例示するが、用途により金属配線は何層含んでいてもよい。
図35は、図31に示す配線構造を図9に示す集積回路の第1〜第4層に応用した例を示している。また、図36は、第2斜め配線52fの上面、第3斜め配線62e及び第3配線62gの上面、及び第4斜め配線72gの上面に拡散防止膜(ストッパ膜)を配置した例を示している。この場合、第2絶縁膜50a,50bの膜の材料は同種も異種でも構わない。第3絶縁膜60a,60bの膜の材料は同種も異種でも構わない。第4絶縁膜70a,70bの膜の材料は同種も異種でも構わない。
図33〜図36に示す半導体集積回路においても、隣り合う2つの配線構造の側面が互いに対向しないため、配線間距離が長くなり、配線間寄生容量が低減する。したがって、図33〜図36に示す構造の半導体集積回路においても、配線間隔が微細になるにつれ顕著になる配線間寄生容量、クロストーク発生の影響による信号伝達遅延を抑制した半導体集積回路を提供できる。
図37に示すように、実施の形態に係る半導体装置は、上層の配線(第k配線層800、第k+1配線層900)を全て斜め配線領域に設定することも可能である。この場合においても、クロストーク発生の懸念される領域の直上には、全て斜め配線領域が設定されることになるので、クロストークの発生を抑制でき、ビアホールの配置制約の少ない設計方法を用いた半導体集積回路が提供可能である。
以上のように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の実施の形態に係る設計装置の一例を示すブロック図である。 図2(a)は、本発明の実施の形態に係る設計装置の第1層配線部の詳細を示すブロック図、図2(b)は上(k+1)層配線部の詳細を示すブロック図である。 本発明の実施の形態に係る設計装置により設計可能な第1配線層のレイアウト(その1)を示す平面図である。 本発明の実施の形態に係る設計装置により設計可能な第1配線層のレイアウト(その2)を示す平面図である。 図4に示す第1斜め配線領域の一部のレイアウトの詳細を示す平面図である。 本発明の実施の形態に係る設計装置により設計可能な半導体集積回路の多層配線構造を示す概略図である。 本発明の実施の形態に係る設計方法の一例を示すフローチャートである。 本発明の実施の形態に係る設計方法により設計可能な半導体集積回路の平面図である。 図8のA−A方向からみた断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その1)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その2)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その3)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その4)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その5)を示し、図15のA−A方向からみた工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その6)を示す平面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その7)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その8)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その9)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その10)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その11)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その12)を示し、図22のA−A方向からみた工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その13)を示す平面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その14)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その15)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その16)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その17)を示し、図27のA−A方向からみた工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その18)を示す平面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その19)を示す工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その20)を示し、図30のA−A方向からみた工程断面図である。 本発明の実施の形態に係る半導体集積回路の製造方法(その21)を示す平面図である。 本発明のその他の実施の形態に係る半導体集積回路(その1)を示す断面図である。 本発明のその他の実施の形態に係る半導体集積回路(その2)を示す断面図である。 本発明のその他の実施の形態に係る半導体集積回路(その3)の多層配線構造の概要を示す概略図である。 本発明のその他の実施の形態に係る半導体集積回路(その4)の多層配線構造の概要を示す概略図である。 本発明のその他の実施の形態に係る半導体集積回路(その5)の多層配線構造の概要を示す概略図である。 本発明のその他の実施の形態に係る半導体集積回路(その6)の多層配線構造の概要を示す概略図である。 本発明のその他の実施の形態に係る半導体集積回路(その7)の多層配線構造の概要を示す概略図である。
符号の説明
1…CPU
2…データ記憶装置
4…入力装置
5…出力装置
6…プログラム記憶装置
10…情報抽出部
14…第1層配線部
15…第2層配線部
17…上(k+1)層配線部
21…セル情報記憶部
22…配線情報記憶部
24…第1層情報記憶部
25…第2層情報記憶部
27…上(k+1)層情報記憶部
30…基板
35e,35f,35l,35x…第1ビアプラグ
40…第1絶縁膜
41a,41b,・・・41l,・・・…第1配線
42a,42b,・・・,42f,42g,・・・…第1斜め配線
45f,45g,45x…第2ビアプラグ
50…第2絶縁膜
51a,51b,・・・…第2配線
52a,52b,・・・…第2斜め配線
58,68,78…空洞
141…チップ領域情報抽出部
142…第1格子領域設定部
143…第1斜め格子領域設定部
144…第1配線部
145…第1置換領域設定部
146…第1再配線部
171…下(k)層情報抽出部
172…第k+1格子領域設定部
173…第k+1斜め格子領域設定部
174…第k+1配線部
400,400a…第1配線層
401…第1配線領域
401a…第1格子領域
402…第1斜め配線領域
402a…第1斜め格子領域
403a,403c,403d,403e,403p…第1置換領域
500a…第2配線層
501…第2配線領域
501a…第2格子領域
502…第2斜め配線領域
502a…第2斜め格子領域

Claims (3)

  1. 第1線群及び前記第1線群に直交する第2線群により定義される第1格子領域、及び前記第1及び第2線群に接続され、前記第1線群に斜めに延伸する第3線群及び前記第3線群に直交する第4線群により定義される第1斜め格子領域を第1配線層にそれぞれ設定し、前記第1〜第4線群を基準として、前記第1格子領域に第1配線を配置すると共に、前記第1斜め格子領域に前記第1配線の長手方向に斜めに延伸する第1斜め配線を配置する第1層配線部と、
    前記第1格子領域及び第1斜め格子領域上に重なる位置に、前記第1及び第2線群により定義される第2格子領域及び前記第3及び第4線群により定義される第2斜め格子領域をそれぞれ第2配線層に設定し、前記第1〜第4線群を基準として、前記第2格子領域に第2配線を配置すると共に、前記第2斜め格子領域に前記第2配線の長手方向に斜めに延伸する第2斜め配線を配置する第2層配線部と、
    前記第2格子領域及び前記第2斜め配線格子領域に重なる位置に、前記第1及び第2線群により定義される上層格子領域及び前記第3及び第4線群により定義される上層斜め格子領域を、それぞれ前記第2層配線層上のすべての上層配線層上に設定する上層配線部と
    を含むことを特徴とする自動設計装置。
  2. 前記第1層配線部が、前記第1配線層の下層に配置されるマクロセルの配置情報に基づいて、前記マクロセル上に重ね合わせるように前記第1斜め格子領域を設定することを特徴とする請求項1に記載の自動設計装置。
  3. 前記第1配線及び前記第1斜め配線の配線結果に基づいて、前記第1配線及び前記第1斜め配線のいずれかを引きはがし、引きはがした配線の延伸方向に斜めに延伸する第5線群及び第5線群に直交する第6線群により定義される第1置換領域を、前記第1配線層上に設定する第1置換領域設定部と、
    前記第5及び第6線群を基準として、前記第1置換領域に前記第1配線及び前記第1斜め配線のいずれかを再配線する再配線部
    を更に含むことを特徴とする請求項1又は2に記載の自動設計装置。
JP2004301663A 2004-10-15 2004-10-15 自動設計装置 Expired - Fee Related JP4316469B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004301663A JP4316469B2 (ja) 2004-10-15 2004-10-15 自動設計装置
US11/249,388 US7370307B2 (en) 2004-10-15 2005-10-14 Computer automated design system, a computer automated design method, and a semiconductor integrated circuit
US12/036,708 US7719115B2 (en) 2004-10-15 2008-02-25 Semiconductor integrated circuit including a multi-level interconnect with a diagonal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301663A JP4316469B2 (ja) 2004-10-15 2004-10-15 自動設計装置

Publications (2)

Publication Number Publication Date
JP2006114763A JP2006114763A (ja) 2006-04-27
JP4316469B2 true JP4316469B2 (ja) 2009-08-19

Family

ID=36179890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301663A Expired - Fee Related JP4316469B2 (ja) 2004-10-15 2004-10-15 自動設計装置

Country Status (2)

Country Link
US (2) US7370307B2 (ja)
JP (1) JP4316469B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004835A (en) * 1997-04-25 1999-12-21 Micron Technology, Inc. Method of forming integrated circuitry, conductive lines, a conductive grid, a conductive network, an electrical interconnection to anode location and an electrical interconnection with a transistor source/drain region
US7388260B1 (en) 2004-03-31 2008-06-17 Transmeta Corporation Structure for spanning gap in body-bias voltage routing structure
JP4316469B2 (ja) * 2004-10-15 2009-08-19 株式会社東芝 自動設計装置
CN102148217A (zh) * 2005-06-20 2011-08-10 国立大学法人东北大学 层间绝缘膜、布线结构以及它们的制造方法
US7305647B1 (en) * 2005-07-28 2007-12-04 Transmeta Corporation Using standard pattern tiles and custom pattern tiles to generate a semiconductor design layout having a deep well structure for routing body-bias voltage
US7721235B1 (en) * 2006-06-28 2010-05-18 Cadence Design Systems, Inc. Method and system for implementing edge optimization on an integrated circuit design
US8018070B2 (en) * 2007-04-20 2011-09-13 Qimonda Ag Semiconductor device, method for manufacturing semiconductor devices and mask systems used in the manufacturing of semiconductor devices
US7861204B2 (en) * 2007-12-20 2010-12-28 International Business Machines Corporation Structures including integrated circuits for reducing electromigration effect
JP5301879B2 (ja) * 2008-05-26 2013-09-25 ルネサスエレクトロニクス株式会社 半導体装置
JP2011014576A (ja) * 2009-06-30 2011-01-20 Renesas Electronics Corp 半導体チップ、半導体ウエハ、及び半導体チップの製造方法
US8203212B2 (en) 2010-04-01 2012-06-19 International Business Machines Corporation Air gaps in a multilayer integrated circuit and method of making same
KR20130143586A (ko) * 2010-10-12 2013-12-31 코닌클리케 필립스 엔.브이. 유기 전자 디바이스의 제조 방법
JP5603768B2 (ja) 2010-12-28 2014-10-08 株式会社東芝 半導体集積回路の配線方法、半導体回路配線装置および半導体集積回路
JP5554303B2 (ja) * 2011-09-08 2014-07-23 株式会社東芝 半導体集積回路および半導体集積回路の設計方法
US10068834B2 (en) 2013-03-04 2018-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
CN104199586B (zh) * 2014-09-16 2018-04-13 重庆京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏和触控显示装置
JP2017135308A (ja) * 2016-01-29 2017-08-03 セイコーエプソン株式会社 半導体集積回路装置及びそのレイアウト設計方法、並びに、電子機器
KR102521222B1 (ko) * 2017-11-15 2023-04-12 삼성전자주식회사 반도체 장치 및 이의 제조 방법
JP7451362B2 (ja) * 2020-09-11 2024-03-18 キオクシア株式会社 半導体装置及び配線構造

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04676A (ja) 1990-04-18 1992-01-06 Hitachi Ltd 最短経路決定方法及び最短経路決定システム
US5739579A (en) * 1992-06-29 1998-04-14 Intel Corporation Method for forming interconnections for semiconductor fabrication and semiconductor device having such interconnections
JPH0653320A (ja) 1992-07-29 1994-02-25 Fujitsu Ltd 半導体装置
US5723908A (en) * 1993-03-11 1998-03-03 Kabushiki Kaisha Toshiba Multilayer wiring structure
JP3185540B2 (ja) 1994-06-10 2001-07-11 松下電器産業株式会社 半導体集積回路
US6340435B1 (en) * 1998-02-11 2002-01-22 Applied Materials, Inc. Integrated low K dielectrics and etch stops
US6262487B1 (en) 1998-06-23 2001-07-17 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, semiconductor integrated circuit wiring method, and cell arranging method
US6849923B2 (en) 1999-03-12 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
US6696712B1 (en) * 2000-08-11 2004-02-24 Seiko Epson Corporation Semicustom IC having adjacent macrocells
US6504202B1 (en) * 2000-02-02 2003-01-07 Lsi Logic Corporation Interconnect-embedded metal-insulator-metal capacitor
JP3822009B2 (ja) 1999-11-17 2006-09-13 株式会社東芝 自動設計方法、露光用マスクセット、半導体集積回路装置、半導体集積回路装置の製造方法、および自動設計プログラムを記録した記録媒体
US7262130B1 (en) * 2000-01-18 2007-08-28 Micron Technology, Inc. Methods for making integrated-circuit wiring from copper, silver, gold, and other metals
US7055120B2 (en) * 2000-12-06 2006-05-30 Cadence Design Systems, Inc. Method and apparatus for placing circuit modules
US20050240893A1 (en) * 2000-12-07 2005-10-27 Cadence Design Systems, Inc. Method and arrangement for layout and manufacture of nonmanhattan semiconductor integrated circuit using simulated euclidean wiring
US6858928B1 (en) * 2000-12-07 2005-02-22 Cadence Design Systems, Inc. Multi-directional wiring on a single metal layer
US6900540B1 (en) * 2000-12-07 2005-05-31 Cadence Design Systems, Inc. Simulating diagonal wiring directions using Manhattan directional wires
JP3586190B2 (ja) 2000-12-26 2004-11-10 株式会社東芝 半導体装置およびその製造方法
US7096449B1 (en) * 2002-01-22 2006-08-22 Cadence Design Systems, Inc. Layouts with routes with different widths in different directions on the same layer, and method and apparatus for generating such layouts
JP2004031830A (ja) 2002-06-27 2004-01-29 Seiko Epson Corp 半導体集積回路
US7080342B2 (en) * 2002-11-18 2006-07-18 Cadence Design Systems, Inc Method and apparatus for computing capacity of a region for non-Manhattan routing
US7480885B2 (en) * 2002-11-18 2009-01-20 Cadence Design Systems, Inc. Method and apparatus for routing with independent goals on different layers
JP4245418B2 (ja) * 2003-06-25 2009-03-25 富士通マイクロエレクトロニクス株式会社 斜め方向配線を有する半導体集積回路装置及びそのレイアウト方法
US6905909B2 (en) * 2003-10-22 2005-06-14 Lsi Logic Corporation Ultra low dielectric constant thin film
JP2005141679A (ja) * 2003-11-10 2005-06-02 Toshiba Microelectronics Corp 半導体集積回路装置、半導体集積回路装置のレイアウト方法および半導体集積回路装置のレイアウト設計プログラム
US20050173799A1 (en) * 2004-02-05 2005-08-11 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnect structure and method for its fabricating
JP4178242B2 (ja) * 2004-02-26 2008-11-12 富士通マイクロエレクトロニクス株式会社 斜め配線を有するlsiの配線容量の抽出方法およびその抽出プログラム
JP4694801B2 (ja) * 2004-08-11 2011-06-08 三洋電機株式会社 Led制御回路
JP4316469B2 (ja) * 2004-10-15 2009-08-19 株式会社東芝 自動設計装置
US8373355B2 (en) * 2006-11-09 2013-02-12 Apple Inc. Brightness control of a status indicator light

Also Published As

Publication number Publication date
US20080142987A1 (en) 2008-06-19
JP2006114763A (ja) 2006-04-27
US7719115B2 (en) 2010-05-18
US20060081991A1 (en) 2006-04-20
US7370307B2 (en) 2008-05-06

Similar Documents

Publication Publication Date Title
JP4316469B2 (ja) 自動設計装置
CN107665855B (zh) 制造半导体器件的方法
KR101645825B1 (ko) 반도체 디바이스 및 그 제조 방법
US7205637B2 (en) Semiconductor device with a multilevel interconnection connected to a guard ring and alignment mark
JP5430338B2 (ja) ディッシング効果を低減する接合パッドの設計
US7138700B2 (en) Semiconductor device with guard ring for preventing water from entering circuit region from outside
US7250681B2 (en) Semiconductor device and a method of manufacturing the semiconductor device
KR100187872B1 (ko) 반도체 칩 커프 소거 방법 및 그에 따른 반도체 칩과 이로부터 형성된 전자 모듈
US20090051011A1 (en) Semiconductor device having seal ring structure and method of forming the same
KR101541541B1 (ko) 반도체 장치 및 그 제조 방법
WO2004027865A2 (en) Support structures for wirebond regions of contact pads over low modulus materials
JP2012147006A (ja) 能動領域ボンディングの両立性のある高電流構造体
US20080174020A1 (en) Electronic device having metal pad structure and method of fabricating the same
US7999392B2 (en) Multilayer wiring structure, semiconductor device, pattern transfer mask and method for manufacturing multilayer wiring structure
US5924006A (en) Trench surrounded metal pattern
US20060261486A1 (en) Semiconductor device including interconnection structure in which lines having different widths are connected with each other
US20090057908A1 (en) Wire bond pads
JP2007035771A (ja) 半導体装置及びその製造方法
US7154183B2 (en) Semiconductor device having multilevel interconnection
US9627315B2 (en) Semiconductor device having a multi-level interconnection structure
KR100893939B1 (ko) 본딩 패드 구조체를 갖는 전자 장치 및 그 제조방법
US20230207501A1 (en) Semiconductor structure and method of manufacturing same
JP4535904B2 (ja) 半導体装置の製造方法
KR20050032307A (ko) 반도체 소자의 제조방법
JP2008282933A (ja) 半導体装置の配線およびその形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees